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Abstract. We find generators for the algebra of rational differential invariants for
general and degenerate Kundt spacetimes and relate this to other approaches to the
equivalence problem for Lorentzian metrics. Special attention is given to dimensions
three and four.

1. Introduction

There are various approaches for distinguishing and classifying pseudo-Riemannian
metrics, and to determine their Killing vectors, important in mathematical relativity.

spi: Scalar polynomial invariants are obtained by complete contractions of the Rie-
mann tensor, its covariant derivatives and their tensor products.

cci: Cartan curvature invariants are obtained from structure functions of the abso-
lute parallelism on the reduced frame bundle, and their derivatives.

sdi: Scalar differential invariants are obtained as the invariants of the diffeomor-
phism pseudogroup acting in the space of jets of metrics.

By a theorem of Weyl [31], spi are sufficient to distinguish Riemannian and generic
pseudo-Riemannian metrics. However, there exist non-equivalent metrics of non-positive
signature with the same spi. For instance, VSI spaces with vanishing scalar (polynomial)
invariants [26] are indistinguishable from the Minkowski spacetime by spi, and this is
not related to any symmetry of the problem [11]. In addition, a sufficient number of
spi has never been specified in the literature1. For instance, while principally known to
resolve the count of Killing vectors for Riemannian metrics [10, 28, 7], the number and
complexity of the involved spi is beyond a reasonable computational capacity [17].

Cartan invariants, on the other hand, are universally applicable in the study of space-
times in general relativity, since they do separate metrics. They are especially popular
in the form of the Cartan-Karlhede algorithm, in the Penrose-Newman formalism, etc
[9, 25, 12, 22]. In the original approach, the invariants live on the Cartan frame bundle
[2], and they classically correspond to covariants. Those combinations that are invariant
with respect to the structure group are actually cci, and can be treated on the base
manifold M . They are obtained as components of the curvature tensor and its covari-
ant derivatives by normalizations of the group parameters. The invariants are usually
considered local and smooth.

Key words and phrases. Differential invariants, Lorentzian geometry, Kundt spacetimes.
1Even to specify all invariants of the second order in dimension 4 required some efforts [32].
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Scalar differential invariants, though a classical tool in differential geometry [30], have
never been pivotal in relativity applications. An essential difference between cci and sdi
is the following. With the approach of Élie Cartan, the frame bundle depends on the
metric and the remaining freedom is a finite-dimensional structure group (a subgroup of
the pseudo-orthogonal group). With the approach of Sophus Lie, an infinite-dimensional
transformation pseudogroup (a subgroup of the diffeomorphism group) acts on the space
of jets of all metrics in the class and sdi are invariant functions of this action. With mild
assumptions, the differential invariants can be assumed rational in jet-variables [15] and
global2 since they do separate generic orbits of the action.

In this paper, we follow the latter (sdi) approach and apply it to Lorentzian metrics
that are indistinguishable by spi. These metrics are known to be contained in the Kundt
class [18, 5]. Furthermore, it was shown in [3] (in dimensions 3 and 4) that a Lorentzian
spacetime is either weakly I-nondegenerate (a discrete point in the set of metrics with
the same spi; thus locally characterized by them) or is a degenerate Kundt spacetime
(this class contains the VSI spacetimes). For related results in higher dimensions see [4].

Our main goal is to distinguish degenerate Kundt spacetimes by describing the algebra
of rational sdi following the theory from [15]. Simultaneously, we consider the case of
general Kundt spacetimes since the equivalence problem of those can be approached
in the same way. For all Kundt spacetimes (general and degenerate), there exist local
coordinates in which their metric takes the form

g = du
(
dv +H(u, x, v) du+Wi(u, x, v) dxi

)
+ hij(u, x) dxidxj.

The quotient of the space of all (local) Kundt metrics by the diffeomorphism pseudogroup
coincides with the quotient of the space of metrics of the above form by the Lie pseu-
dogroup preserving this form. We will describe the algebra A of rational sdi in the latter
setting. In particular, we find a set of generators for A. This implies the solution of
equivalence problem through the method of signature manifolds.

Note that our results are adaptable to Kundt metrics (general or degenerate) in any
coordinate system. We also find an invariant frame adapted to Kundt spacetimes, thus
relating to the Cartan approach. Several subclasses of Kundt metrics have been discussed
in the literature using the Cartan-Karlhede algorithm, see [21] and references therein.
For Kundt waves in 4D we compared both approaches, via sdi and cci, in [16]. In
the present paper we discuss the general situation in general dimension n, with special
attention given to dimensions 3 and 4.

The structure of the paper is as follows. In Section 2, we introduce the necessary con-
cepts and notations regarding Kundt spacetimes and their jets, and recall the Lie-Tresse
approach to differential invariants. For Kundt spacetimes (both general and degenerate),
we choose adapted coordinates that result in metric tensors of a particular shape, and
we write down the Lie pseudogroup of transformations preserving this shape. In Section
3, we count the number of algebraically independent sdi depending on the jet-order, and

2This means they are only subjects to nonequalities but not to inequalities (which can happen for
smooth cci). Contrary to spi, defined for all metrics, both cci and sdi have a domain of definition.
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provide Hilbert functions and Poincaré functions for the algebras of differential invari-
ants. Afterwards, in Section 4, we find generators for the algebra of differential invariants
in general dimension. We finish by presenting a simplified version of invariants for three-
and four-dimensional Kundt spacetimes. In particular, we write down a generating set
of invariants in coordinates in dimension 3. In the appendix we demonstrate how the
class of degenerate Kundt spacetimes arises by consideration of relative invariants of the
Lie pseudogroup of shape preserving transformations.

2. Setup: Jets and Pseudogroups

We first review the general theory and then apply it to Kundt spacetimes.

2.1. Jets and Differential invariants. The notion of jet-space formalizes the compu-
tational devise of truncated Taylor polynomials; we refer for details to [14]. If xi are coor-
dinates on X = Rn and yj are coordinates on Y = Rm, then the jet-space Jk = Jk(X, Y )
of k-jet of maps from X to Y has coordinates yjσ for multi-indices σ = (i1, . . . , in), is ≥ 0,
|σ| =

∑
is ≤ k. The same applies for general X, Y with local coordinates xi, yj, called in-

dependent and dependent variables, respectively. Any map ψ : X → Y , xi 7→ yj = yj(x)
lifts to the map jkψ : X → Jk given by xi 7→ yjσ = ∂yj(x)/∂xσ.

The jet-space Jk is equipped with the Cartan distribution Ck ⊂ TJk, where for a
point ak ∈ Jk the space Ck(ak) is spanned by all n-planes Takjkψ(X), jkψ(X) 3 ak.
A differential equation of order ≤ l can be geometrically interpreted as a submanifold
E l ⊂ J l, and its solutions are integral manifolds of Cl.

By differentiating the defining equations for E l, we obtain the prolonged equations
E l+i for i ≥ 1. A smooth solution of E l is also a smooth solution of E l+i. For jet spaces,
we have the projections πj,i : J

j → J i for i < j, and we define Ek = πl,k(E l) ⊂ Jk for
k = 0, . . . , l − 1.

A transformation groupG on J0 = X×Y or a local Lie pseudogroupG ⊂ Diff loc(X×Y )
canonically lifts to a pseudogroup acting in Jk by the condition that the class of integral
manifolds jkψ(X) (or equivalently the Cartan distribution Ck) is preserved. For G 3 g :
J0 → J0 the prolongation is denoted by g(k) : Jk → Jk. If G consists of symmetries of a
PDE E , then there is an induced action g(k) : Ek → Ek.

Differential invariants of order ≤ k are functions f : Ek ⊂ Jk → R that are constant
on the orbits of the prolonged action: f ◦ g(k) = f (when there is no PDE, one considers
functions on Jk that are constant on orbits). The spaces of all such invariants Ak unite
over k into the algebra of differential invariants

A = lim
k→∞
Ak.

One also exploits invariant derivations∇ : Ak → Ak+1 of this algebra, which are invariant
horizontal vector fields. In other words, they are invariant operators of the form aiDxi ,
where ai are functions on Er ⊂ Jr for some r and Dxi are total derivative operators:
Dxi(f)|jk+1ψ = ∂xi(f ◦ jkψ) for every f ∈ C∞(Jk) and ψ : X → Y .
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By [15], under mild assumptions3, the invariants can be assumed rational in the jet-
variables yjσ, |σ| > 0, and even polynomial in jets of sufficiently high order |σ| > k0.
From now on we will suppose that A consists of such rational-polynomial functions.
Moreover, the main theorem of [15] gives Lie-Tresse type generation of A by a finite
set of differential invariants Ia and invariant derivations ∇b, so that generic G-orbits in
E∞ ⊂ J∞ are separated by Ia and their derivatives

∇BIa = ∇b1 · · · ∇btIa.

Here B denotes the multi-index B = (b1, . . . , bt). For every k the orbits that are separated
by the invariants unite to a Zariski open set Ek \ Σk in Ek. Here, the set Σk of singular
points intersects any fiber of Ek → J0 by a proper algebraic set, and starting from some
jet-level k1 no new singularities appear for k > k1. More precisely, the set Σk ⊂ Ek of
singular points satisfies Σk ⊂ π−1k,k1(Σ

k1).
In general, the invariant derivations need not commute, meaning that there are non-

vanishing (invariant) structure functions ckij, given by

[∇i,∇j] = ckij∇k.

When A contains n horizontally independent invariants I1, . . . , In, i.e. such that their
restriction to a generic holonomic jet-section j∞ψ are functionally independent, the func-
tions ckij can be derived from the invariants ∇BIa.

2.2. The equivalence problem. If two solutions ψ1, ψ2 to E are equivalent through a
transformation in G, then the k-th order differential invariant Ia ◦ jkψ1 of one solution
pulls back to differential invariants Ia ◦ jkψ2 of the other. In particular, if Ia ◦ jkψ1

is constant, then Ia ◦ jkψ2 is also constant (with the same value), and thus they are
easily compared. On the other hand, two seemingly different nonconstant invariants do
not at once obstruct equivalence. The equivalence problem for solutions of E is thus
reduced to an equivalence problem for a set of functions. However, when we have several
differential invariants, the relations between them are invariant, and these relations do
obstruct equivalence in the sense that if the relations between the invariants in the set
{Ia ◦ jkψ1} are different from the relations between the invariants in {Ia ◦ jkψ2}, then
ψ1 and ψ2 are not equivalent.

To be more precise, with the above approach to differential invariants the equivalence
problem for generic solutions ψ of E with respect to G is solved as follows. Assume
that A is generated by the differential invariants Ia and the invariant derivations ∇b,
and that there are n horizontally independent invariants in {Ia} (this suffices for our
considerations). Then we define the signature

Ψ : X 3 x 7→ (Ia,∇bIa) ∈ Rq

as the map with the components consisting of the basic invariants and their first deriva-
tives (q is the total number) computed on the submanifold j∞ψ(X) ⊂ E∞ ⊂ J∞. Then

3The pseudogroup G acts transitively on J0 (this can be further relaxed) and algebraically on the
fibers of the projections Jk → J0; these assumptions will be satisfied in the case we study.
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ψ1 is G-equivalent to ψ2 iff the signature manifolds Ψ1(X),Ψ2(X) coincide, see [2, 23]
(actually this statement can be localized in X). In general, the differential algebra of
differential invariants is not freely generated; there are differential syzygies. In particu-
lar, this implies that not every n-dimensional submanifold of Rq is a signature manifold
since the syzygies manifest as differential constraints on the signature manifolds.

We note that the definition of signature manifold depends on the chosen set of gener-
ators, and so does the integer q.

2.3. General Kundt spacetimes. An n-dimensional Lorentzian manifold (M, g) is a
Kundt spacetime if it admits a null congruence that is geodesic, expansion-free, shear-free
and twist-free. In other words, there exists a vector field ` such that4

‖`‖2 = 0, Dg
`` = 0, Tr(Dg`) = 0, ‖Dg`sym‖2 = 0, ‖Dg`alt‖2 = 0.

The twist-free condition is equivalent to Frobenius-integrability of `⊥. Thus we have
embedded integrable distributions R · ` ⊂ `⊥ of dimension 1 and codimension 1 on M .
Let λ denote the foliation corresponding to R · `, and Λ the foliation corresponding
to `⊥. The (local) quotient of the corresponding foliations M̄ = Λ/λ has dimension
n− 2; the other Kundt conditions translate to the claim that the degenerate symmetric
bivector g|λ⊥ projects to a Riemannian metric h = (hij) on M̄ . Below we will denote by
x = (x1, . . . , xn−2) both local coordinates on M̄ and their pullback on M .

This implies the well-known claim [18, 12, 5] that in some local coordinates (u, x, v)
on M any Kundt metric can be written as follows

g = du
(
dv +H(u, x, v) du+Wi(u, x, v) dxi

)
+ hij(u, x) dxidxj. (1)

In these coordinates ` = ∂v and `⊥ = {du = 0}. We let M̄u denote Λu/λ, where Λu is a
leaf of Λ (leaves of Λ are parametrized by u, as they are given by u = const.).

2.4. Shape-preserving transformations. Now we determine the Lie pseudogroup G
of diffeomorphisms preserving the class of Kundt metrics given by (1). In other words,
we find the transformations preserving the shape of such metrics; in the language of [29],
they are the transformations “preserving the functional form” (1). For the case n = 4,
the shape-preserving transformations were found in [26].

Theorem 1. The transformations preserving the shape of (1) take the form

G 3 ϕ : (u, xi, v) 7→
(
C(u), Ai(u, x),

v

C ′(u)
+B(u, x)

)
, det[Aixj ] 6= 0, C ′(u) 6= 0. (2)

The Lie algebra g of this Lie pseudogroup G consists of vector fields of the form

ξ = c(u)∂u + ai(u, x)∂xi +
(
b(u, x)− c′(u)v

)
∂v. (3)

4All contractions, norms and raising-lowering are with respect to g. We write Dg for the Levi-Civita
connection to distinguish from invariant derivations ∇i exploited in generation of the algebra A.
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Proof. One approach for proving this is to require that for ϕ ∈ G the metric ϕ∗g has
form (1) with some other functions H,Wi, hij of the same type. This gives a PDE system
that is easy to solve. Another approach is to note that transformations preserving the
filtration λ ⊂ λ⊥ have the form: ϕ(u, x, v) = (U(u), X(u, x), V (u, x, v)). Taking into
account the condition (ϕ∗g)(∂u, ∂v) = 1/2 yields explicit affine behaviour of V in v. �

Note that the Lie pseudogroup G has four connected components in the smooth topol-
ogy, but it is Zariski connected (hence G is the Zariski closure of the component given
by C ′ > 0, det(Aixj) > 0). The formulas in Theorem 1 imply that the action of G on
M is transitive. In the next section we will lift the transformation group to the bun-
dle of metrics, and the explicit formulas will show that the action is transitive on the
total space of this bundle and its prolongation to the space of jets is algebraic. This
justifies the conditions of the global Lie-Tresse theorem [15]. Consequently, the algebra
A of invariants can be assumed to consist of rational-polynomial functions, since such
invariants separate orbits in general position.

The equivalence problem for metrics of the form (1) with respect to the Lie pseu-
dogroup G action is related to the equivalence problem for Kundt metrics (in arbitrary
coordinates) under the action of the pseudogroup of all local diffeomorphisms as follows.
Let g1, g2 be two coordinate expressions of kundt metrics that are not necessarily of the
form (1) and that are related by a diffeomorphism ϕ on M , so that g2 = ϕ∗g1. Let ρ1, ρ2
be diffeomorphisms that bring g1 and g2 to g′1 = ρ∗1g1 and g′2 = ρ∗2g2, respectively, of the
form (1). Then g′2 = (ρ−11 ϕρ2)

∗g′1. Clearly, the diffeomorphism ϕ′ = ρ−11 ϕρ2 preserves the
foliations λ and λ⊥, and it is therefore of the form (u, x, v) 7→ (U(u), X(u, x), V (u, x, v)).
With ϕ′ of this form, it is also clear that if the equality ((ϕ′)∗g′1)(∂u, ∂v) = 1/2 holds
for some g′1 in aligned coordinates, then that implies ((ϕ′)∗g)(∂u, ∂v) = 1/2 for every g
of form (1). Therefore, ϕ′ ∈ G. The metrics g1 and g2 do not necessarily determine
ϕ′ = ρ−11 ϕρ2 uniquely, as there may be several possible choices of ρ1, ρ2. However, in
that case, different transformations ϕ′ are related by a shape-preserving transformation.

Since all Kundt metrics can be locally brought to the form (1), this implies that the
quotient of (local) Kundt metrics in arbitrary coordinates by the pseudogroup of local
diffeomorphisms is equal to the quotient of metrics of the form (1) by the Lie pseudogroup
G. This justifies the claim made in the introduction.

Notice also that some symmetries of metrics may disappear when we transform the
equivalence problem to adapted coordinates. For example, it is clear that G does not
contain the whole Poincaré group, so some of the symmetries of the Minkowski metric
have been lost (those that do not preserve the foliation λ). This does not contradict the
above discussion, as the only equivalences we lose this way are self-equivalences.

2.5. Lifts and jet-prolongations. The image of (1) in S2T ∗M , the second symmetric
tensor power of the cotangent bundle, determines a subbundle isomorphic to the trivial
bundle

π : M × F →M, where F ⊂ RN , N = n− 1 +

(
n− 1

2

)
=

(
n

2

)
, (4)
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whose sections are exactly Lorentzian metrics of the form (1). The coordinates on M are
independent variables u, xi, v, the coordinates on RN are dependent variables H,Wi, hij
(1 ≤ i ≤ j ≤ n − 2), and the domain F ⊂ RN is given by the requirement that the
symmetric matrix defined by hij is positive definite.

Denote by Jkπ the k-th order jet bundle of π. It contains the subbundle of jets of
Kundt metrics given by the equation

E1 = {(hij)v = 0} ⊂ J1π

as well as its prolongations Ek ⊂ Jkπ for k > 0, given by the (k − 1) differentiations of
the above conditions. We use the notation E0 = J0π. The infinitely prolonged Kundt
equation is E∞ ⊂ J∞π.

The pseudogroup G (and its Lie algebra g) have the natural lift to J0π = M × F ,
G 3 ϕ 7→ ϕ(0) ∈ G(0) ⊂ Diff loc(J

0), obtained from the requirement that

g = du
(
dv +H du+Widx

i
)

+ hij dx
idxj ∈ π∗S2T ∗M

is invariant with respect to every ϕ(0).

Remark 1. From here on, g is interpreted as a horizontal symmetric 2-form on π. The
restriction of g to a section ψ of π given by H = H(u, x, v),Wi = Wi(u, x, v), hij =
hij(u, x) is exactly the metric (1). The invariant tensors associated with a metric (the
Riemann tensor, Ricci tensor, etc.) can be defined for the horizontal form g so that the
restriction of such a tensor to a section of π gives exactly the corresponding tensor field
associated to the metric (1). We recall that a horizontal form on a fiber bundle is a
form that contracts to zero with every vertical vector. The value of the horizontal form
g evaluated on vectors along a section is thus completely determined by the restriction
of g to the section.

To get the formula for the lift following the notations of Theorem 1 denote Aij = ∂xjA
i

and let Ǎij be the inverse matrix. Denote also Bj = ∂xjB and Č ′ = (C ′)−1. Then ϕ(0)

maps the fiber as follows:

hij 7→ Ǎki Ǎ
l
jhkl,

Wi 7→ Č ′ǍjiWj − ǍjiBj − 2Č ′Ǎki Ǎ
l
jA

j
uhkl,

H 7→ Č ′2H + Č ′3C ′′v − Č ′Bu + Č ′ǍjiA
i
uBj − Č ′2ǍjiAiuWj + Č ′2Ǎki Ǎ

l
jA

i
uA

j
uhkl.

The lift of vector fields from g, with a = a(u, x), b = b(u, x), c = c(u), is (here and in
what follows aji = aj

xi
, bi = bxi , etc) given by

ξ(0) = c∂u + ai∂xi + (b− c′v)∂v − (alihlj∂hij + alihli∂hii)

− (c′Wi + ajiWj + bi + 2ajuhij)∂Wi
− (2c′H − c′′v + bu + ajuWj)∂H .

These prolong further to transformations ϕ(k) and vector fields ξ(k) on Jkπ.5 Moreover,
by the construction of the lift, prolongations of the pseudogroup G preserve E .

5For the general prolongation formula for vector fields, see for example (2) in [14].
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Note that order k differential invariants of G are rational-polynomial functions f on
Ek ⊂ Jkπ that satisfy

Lξ(k)f = 0 ∀ξ ∈ g. (5)

However, there exist functions that satisfy this system of equations, but are not invariant
under the entire Lie pseudogroup G. An example of this is mentioned in Section 4.4.

2.6. Degenerate Kundt spacetimes. Degenerate Kundt metrics are the Kundt met-
rics that satisfy the following additional conditions:

• The Riemann tensor Riem is aligned and of algebraically special type II.
• Dg(Riem) is aligned and of algebraically special type II.

In terms of (1), the first condition implies (Wi)vv = 0 while the second implies Hvvv = 0.
It follows that (Dg)(k)(Riem) is aligned and of algebraically special type II for every
positive integer k. (In all cases we understand the set of type II tensors to also include
the more special types III, D, etc.)

In 4D these conditions imply that the metric g is I-degenerate [3]. The opposite,
I-nondegeneracy of g, can be defined through the map I : (spacetimes) → (spi) as
discreteness6 of the set I−1(I(g)) for germs of g (in localization of M). Note that for a
generic metric, I−1(I(g)) = g is a one point set.

In any dimension n one can show (by varying H and Wi in lower v-degree terms)
that any degenerate Kundt metric g can be smoothly deformed as a family gτ with
I(gτ ) = const and the deformation is not an isotopy.

Theorem 2. The pseudogroup of local transformations preserving the degenerate Kundt
spacetimes of shape (1) coincides with the pseudogroup G.

Proof. The conditions of degeneracy are natural (coordinate-independent) and therefore
are respected by any pseudogroup of transformations on M . On the other hand, the class
of degenerate Kundt metrics also specifies the filtration λ ⊂ λ⊥ used in the preceding
proof, and the shape is the same, whence the claim. �

Adding the degeneracy condition to Kundt spacetimes determines a new PDE, denoted
by Ẽ , which is specified by the equations

(hij)v = 0, (Wi)vv = 0, Hvvv = 0.

Including the prolongations of those conditions (that is applying total derivatives of all
orders and directions) we get the infinitely prolonged system Ẽ∞ ⊂ J∞π.

More precisely, we have Ẽk = Ek for k < 2, the submanifold Ẽ2 ⊂ E2 is given by
the additional equations (Wi)vv = 0, and Ẽ3 ⊂ E3 by first derivatives of those plus the
equation Hvvv = 0, etc.

By virtue of Theorem 2 the lift and prolongations of the pseudogroup G restrict to the
equation Ẽ of degenerate Kundt metrics. Differential invariants of order k are rational-
polynomial functions f on Ẽk satisfying Lie equation (5). Though the main target is the

6In [3] a weaker requirement is stated, but the proof implies the stated stronger property.
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class of degenerate Kundt spacetimes, we can study simultaneously the class of general
Kundt metrics.

3. Counting the invariants

Now we count the amount of (algebraically) independent differential invariants for
both general and degenerate Kundt spacetimes, depending on the jet-order k.

3.1. Jets and differential equations. At first we determine dimensions of the involved
jet-spaces and equation-manifolds. With N =

(
n
2

)
from (4) we have

dim Jkπ = n+N

(
n+ k

n

)
.

There are
(
n−1
2

)(
n+k−1
n

)
equations of order ≤ k specifying Kundt spacetimes of the

form (1). This number is the codimension of Ek ⊂ Jkπ. We use standard combinatorial
identities in order to obtain

dim Ek = n+ (n− 1)

(
n+ k

n

)
+

(
n− 1

2

)(
n+ k − 1

n− 1

)
= n+ (n− 1)

(
n+ k − 1

n

)
n2 + 2k

2k
for k > 0

and dim E0 = n+N =
(
n+1
2

)
.

The equation-manifolds for degenerate Kundt metrics satisfy Ẽ0 = E0 and Ẽ1 = E1,
while Ẽk ⊂ Ek is given by (n−2) additional constraints for k = 2 and by (n−2)

(
n+k−2
n

)
+(

n+k−3
n

)
constraints for k ≥ 3. Thus

dim Ẽ2 =

((
n+ 1

2

)
+ 1

)((
n

2

)
+ 1

)
,

dim Ẽk = dim Ek − (n− 2)

(
n+ k − 2

n

)
−
(
n+ k − 3

n

)
for k > 2.

3.2. Orbit dimensions. The action of G on J0π is transitive, so that any point can be
mapped to the point p0 given by

u = 0, xi = 0, v = 0, hij = δij, Wi = 0, H = 0.

The stabilizer in g of the point p0 is given in terms of the functional parameters from
Theorem 1 by

ai = b = c = bu = 0, bi = −2aiu, a
i
j = −aji .

These conditions imposed on the jets of pseudogroup elements preserving p0 define an

algebraic (finite-dimensional) group G(k)0 acting in the fibers Jk0 π ⊃ Ek0 ⊃ Ẽk0 over p0. The
invariants of this action bijectively correspond to differential invariants of order k of G.

For an algebraic group action, its field of rational invariants separates generic orbits,
due to Rosenlicht’s theorem [27, 8]. The transcendence degree of this field is equal to
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the codimension of a generic orbit. Of course, the codimension of orbits of G on Ek or
Ẽk equals the codimension of orbits of G0 on Ek0 or Ẽk0 , respectively.

Theorem 3. For k = 1 the codimension of an orbit in general position in E1 = Ẽ1 is 1.
For k ≥ 2 the dimension of an orbit in general position both in Ek and in Ẽk is given by

(n− 1)

(
n+ k

n− 1

)
+ k + 2.

Proof. Consider the action of the stabilizer G(1)0 on E10 . A straightforward verification
shows that

∑n−2
i=1 (Wi)

2
v is an invariant. Now we use the pseudogroup to normalize a

point in E10 by sequentially fixing a set of coordinates, thus restricting to a sequence of
submanifolds. We simultaneously fix parameters of the Lie algebra, so that the remaining
vector fields are tangent to the current submanifold.

(1) Bring the point to the submanifold given by (hij)k = 0, (hij)u = 0. The Lie

subalgebra preserving the submanifold is restricted further by aijk = 0, aiju = −ajiu.
(2) Fix (Wi)j = 0. The stabilizer of this new submanifold is given by the additional

equations bij = (Wi)va
j
u + (Wj)va

i
u, a

i
ju = 1

2
((Wi)va

j
u − (Wj)va

i
u).

(3) Fix (Wi)u = 0. The new stabilizer is given by biu = −2aiuu.
(4) Fix Hu = Hi = Hv = 0. The new stabilizer is given by aiuu = buu = 0, cuu =

(Wi)va
i
u.

(5) The remaining stabilizer is CO(n− 2) nRn−2, and its subgroup SO(n− 2) acts
nontrivially on the covector (Wi)v, so we fix it so: (W2)v = · · · = (Wn−2)v = 0.
Then (W1)

2
v is the value of the above invariant.

For the action of G(1)0 on E10 the stabilizer of a generic point p1 has dimension
(
n−2
2

)
+ 2,

in particular the action is not free.
The same approach works in higher jets: by choosing a specific point pk ∈ Ẽk0 we

compute the rank of all k-jets of vector fields ξ ∈ g at pk. The totality of those fields
may be thought to be the number of free jets of group parameters entering the fields ξ(k),
which is (n − 1)

(
n+k
n−1

)
+ k + 3. However, over p0 the coefficient of c(k+2) vanishes (since

v = 0), the corresponding field is in the kernel of the action, and therefore the group

G(k)0 has dimension 1 less than the indicated number.
Now a tedious verification, which we omit, shows that these vector fields are actually

independent, so the orbit has the dimension as stated, and the action is free for k ≥ 2

(by definition this means that G(k)0 acts freely).
An alternative route is to check (in the same manner as for 1-jets) that the action is

free on a Zariski open subset of Ẽ20 (hence also on a Zariski open subset of E20 ). Therefore,
from the persistence of freeness in prolongation [24], the claim follows. �

3.3. Hilbert and Poincaré functions. Let snk denote the codimension of an orbit in
general position in Ek. This is equal to the transcendence degree of the field of ratio-
nal differential invariants of order k. In other words, snk is the number of algebraically
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independent differential invariants of order k. The Hilbert and Poincaré functions con-
veniently encode this sequence of numbers.

We define the Hilbert function for the action of G on E (or for the quotient E/G) by
Hn
k = snk − snk−1 and Hn

0 = sn0 . From Theorem 3 we conclude:

Proposition 4. The Hilbert function for E/G is given by Hn
0 = 0, Hn

1 = 1,

Hn
2 = n− 5 + (n− 1)

((
n+2
n

)
−
(
n+2
n−1

))
+
(
n−1
2

)(
n+1
n−1

)
=
n4 − 4n3 + 11n2 + 16n− 72

12
,

Hn
k = (n− 1)

((
n+k−1
n−1

)
−
(
n+k−1
n−2

))
+
(
n−1
2

)(
n+k−2
n−2

)
− 1 for k ≥ 3.

Corollary 5. For k ≥ 3 the Hilbert function in dimensions n = 3, 4, 5 is given by

H3
k = k2 + 2k − 2,

H4
k =

1

2

(
k3 + 6k2 + 5k − 8

)
,

H5
k =

1

6

(
k4 + 12k3 + 35k2 + 12k − 42

)
.

For k = 2 we have H3
2 = 4, H4

2 = 14 and H5
2 = 34.

Similarly define s̃nk and H̃n
k = s̃nk − s̃nk−1, H̃n

0 = s̃n0 for the action of G on Ẽk. In the
same manner as Theorem 3 we conclude:

Proposition 6. The Hilbert function for Ẽ/G is given by H̃n
0 = 0, H̃n

1 = 1,

H̃n
2 = (n− 1)

((
n+ 2

2

)
−
(
n+ 2

3

))
+

(
n− 1

2

)(
n+ 1

2

)
− 3,

H̃n
k = (n− 1)

((
n+ k − 1

n− 1

)
−
(
n+ k − 1

n− 2

))
+

(
n− 1

2

)(
n+ k − 2

n− 2

)
− (n− 2)

(
n+ k − 3

n− 1

)
−
(
n+ k − 4

n− 1

)
− 1 for k ≥ 3.

Corollary 7. For k ≥ 3 the Hilbert function in dimensions n = 3, 4, 5 is given by

H̃3
k = 4k − 3,

H̃4
k =

1

2
(7k2 + 5k − 8),

H̃5
k =

1

6
(11k3 + 36k2 + 13k − 42).

For k = 2 we have H̃3
2 = 3, H̃4

2 = 12 and H̃5
2 = 31.

Another way to encode the counting of invariants is through the Poincaré function

Pn(z) =
∞∑
k=0

Hn
kz

k.
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Since the Hilbert function is polynomial in k ≥ k0, the Poincaré function is rational.

Corollary 8. The Poincaré function in dimensions n = 3, 4, 5 is given by

P3(z) =
(1 + z + 4z2 − 6z3 + 2z4)z

(1− z)3
,

P4(z) =
(1 + 10z − 6z2 − 10z3 + 11z4 − 3z5)z

(1− z)4
,

P5(z) =
(1 + 29z − 41z2 + 33z4 − 23z5 + 5z6)z

(1− z)5

for general Kundt spacetimes; for degenerate Kundt spacetimes it is

P̃3(z) =
(1 + z + 4z2 − 2z3)z

(1− z)2
,

P̃4(z) =
(1 + 9z + 2z2 − 8z3 + 3z4)z

(1− z)3
,

P̃5(z) =
(1 + 27z − 15z2 − 15z3 + 18z4 − 5z5)z

(1− z)4
.

4. Computing the invariants

There are several approaches for describing the algebra of invariants by generators and
syzygies in Lie-Tresse type framework discussed in Section 2.1. We first give a common
scheme, and then specify it for general and degenerate Kundt spacetimes. Afterwards we
provide an alternative approach with simpler computations in low dimensions n = 3, 4.

4.1. The general scheme. One general approach is to find n horizontally independent7

rational differential invariants I1, . . . , In, i.e. invariants satisfying

det[DiIs] 6≡ 0. (6)

The condition (6) means that for a generic section ψ ∈ Γ(π), the restriction Īs = (j∞ψ)∗Is
of the above invariants to the holonomic jet-section j∞ψ are functionally independent;
since under this restriction they become functions on M this can be writen as follows:

det[∂iĪs] 6≡ 0.

Next, derive the corresponding horizontal8 coframe ωi = d̂Ii and its dual horizontal
frame ∇i = DIi . This particular set of invariant derivations ∇i are called Tresse deriva-
tives, and they are pairwise commuting. When restricted to a generic section of π, they

7Horizontal independence implies algebraic independence (in jets), i.e. rank(∂Ji,jσ Is) = n, where

J i,jσ consists of the base variables xi and the jet-variables yjσ. But n invariants can be algebraically
independent without being horizontally independent.

8The horizontal differential is defined by the formula d̂f |jk+1ψ = d(f ◦jkψ) ∀f ∈ C∞(Jkπ), ψ ∈ Γ(π).
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reduce to partial derivatives with respect to Īi. We express g in this frame:

g = Gijω
iωj, Gij = g(∇i,∇j) (7)

Now the algebra A of differential invariants is generated by Ii, Gij and ∇i.
Indeed, in any coordinate system (xi) the invariants are obtained from the invariant

combinations of the components gij of the metric, and their partial derivatives. If we
choose invariant coordinates Īi, then the metric components and their derivatives are also
invariants. Since no invariants are lost during the change of coordinates, all invariants
are obtained as derivatives of the components with respect to Īi.

Note that the passage (x1, . . . , xn) 7→ (I1, . . . , In) is a differential operator, without
differential inverse in general. Therefore the count of invariants in Section 3 does not
survive this transformation. However, the asymptotics of the Hilbert function9 do sur-
vive. For general metrics the asymptotics are given by d = n, σ =

(
n
2

)
. For general Kundt

spacetimes d = n, σ = n− 1. For degenerate Kundt spacetimes d = n− 1, σ =
(
n
2

)
+ 1.

This tells us that, modulo diffeomorphism (coordinate) freedom, the metrics in the class
locally depend on σ arbitrary functions of d variables.

The requirement (6) allows for a wide variety of possibilities when it comes to choosing
the n scalar differential invariants I1, · · · , In. For example, for generic Kundt metrics,
they can be taken as normalized components10 of the Riemann tensor (cci: Cartan
invariants), i.e. through its Ricci or Weyl components, cf. [12]. They can also be taken
as spi. For instance, following [19], choose

I1 = Tr(Ricg), . . . , In = Tr(Ricng ).

There are other possibilities, as we will show in detail for dimensions 3 and 4.
The differential invariants Gij are rational functions (also when Ii are psi), and so are

their Tresse derivatives. Notice however that we have good control of the domain where
these rational invariants are defined. The condition (6) is equivalent to

d̂I1 ∧ · · · ∧ d̂In 6= 0.

Assume that the n horizontally independent invariants are of order k or less, and let
Σ ⊂ Ek+1 (or Σ ⊂ Ẽk+1 in the case of degenerate Kundt) denote the set on which

d̂I1 ∧ · · · ∧ d̂In vanishes or diverges. Then Gij are defined on Ek+1 \ Σ. Moreover, the
derivatives ∇i1 ◦· · ·◦∇ir(Gij) are defined on π−1k+r+1,k+1(Σ)∩Ek+r+1, and their restrictions

to fibers of Ek+r+1 → Ek+1 are polynomials. We refer to [15] for more details.
Another way of finding a generating set of invariants is to construct n independent

invariant derivations ∇1, . . . ,∇n that are not Tresse derivatives. These form a horizontal
frame with dual horizontal coframe ω1, . . . , ωn, which in turn determines differential
invariants Gij via (7). This lets us again generate A if we include, in the set of generators,

9If P (z) = R(z)
(1−z)d is the Poincaré function, with a polynomial R(z) not divisible by (1− z), then the

asymptotic is encoded by the numbers d and σ = R(1), see [13].
10Beware that normalization can result in elements of an algebraic extension of the field of rational

invariants. In particular, invariants obtained in this way may contain roots.
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the structure functions ckij from [∇i,∇j] = ckij∇k. The analysis of singular points in the
previous paragraph can be adapted to this setting.

4.2. Invariants of Kundt spacetimes. For general Kundt metrics we can, as dis-
cussed above, use the Ricci operator Ricg and n second-order differential invariants
Ii = Tr(Ricig), 1 ≤ i ≤ n. (The restriction of the horizontal tensor field Ricg to a
Kundt spacetime is an operator TM → TM .) The invariants I1, . . . , In are horizontally
independent on a Zariski open set of 3-jets of Kundt metrics, and thus are sufficient to
generate the entire algebra A of sdi as explained above.

However, for degenerate Kundt spacetimes there are less than n horizontally indepen-
dent functions among Ii. Actually, the Ricci operator in the (u, x, v) coordinates adapted
to Kundt alignment has the form

Ricg =

ν 0 0
∗ Rh 0
∗ ∗ ν


with ν being a double eigenvalue and Rh being determined by the Ricci operator for
the Riemannian metric hij on M̄u and the 2-jet of Wi (more precisely by (Wi)v and
(Wi)xjv) in an invariant manner. When restricted to a degenerate Kundt spacetime, the
block-diagonal entries of the operator depend only on (u, x). Thus, the eigenvalues are v-
independent functions, and the maximal number of functionally independent eigenvalues
is (n − 1). For generic degenerate Kundt metrics, this upper bound is reached and the
rank of the total Jacobian matrix [DiIj] is equal to n− 1.

Let I1, . . . , In−1 be horizontally independent invariants chosen from the above set. For
degenerate Kundt spacetimes we have ∂v Īi = 0. The annihilator of restricted invariants
d(Ii|j∞ψ) = d̂Ii|j∞ψ integrates to the foliation λ of dimension 1; here Ii|j∞ψ is the pullback
by the jet-section j∞ψ of J∞π (equivalently: evaluated on the Kundt metric defined by
ψ), that we also denoted Īi, and similar for 1-forms.

Consider the horizontal covectors d̂I1, . . . , d̂In−1 and g-dual horizontal vector fields
∇1, . . . ,∇n−1 tangent to Λ (we remind that Λ is the foliation of codimension 1 with
fibers tangent to λ⊥). Since the restriction of g to Λ is non-negative definite with one-
dimensional kernel, we can without restriction of generality assume that the vectors
∇2, . . . ,∇n−1 determine a spacelike subbundle of π∗∞TM on a Zariski open set in jets.
We claim that the (n− 2)× (n− 2) Gram matrix is non-degenerate (and hence positive
definite):

det[g(∇i,∇j)]
n−1
i,j=2 6≡ 0.

Finally, we uniquely determine the last invariant derivation ∇n by the conditions

g(∇1,∇n) = 1, g(∇i,∇n) = 0 for 1 < i ≤ n.

In fact, since restriction of g to the rank two distribution 〈∇2, . . . ,∇n−1〉⊥ is Lorentzian,
it has precisely two null-directions at each point. One is Dv, and ∇1 is projected to
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it along 〈∇2, . . . ,∇n−1〉 (its projection is also an invariant derivation). The other null-
direction is spanned by ∇n.

This gives an invariant frame, i.e. a basis of sections of the Cartan distribution C '
π∗∞TM , and the algebra A is determined by this general scheme.

4.3. The algebra of differential invariants in low dimensions. The algorithm
considered above provides a complete set of differential invariants, but the generators
have high algebraic complexity. Therefore, in what follows, we provide an alternative
simpler description of the algebra A in important dimensions n = 3, 4.

We begin with a general remark. As we saw in Section 3, the action of G is transitive
on J0π and has precisely 1 differential invariant of order 1 for both E and Ẽ in any
dimension n. We will recycle the notation Ii and ∇i from Section 4.1 and Section 4.2,
and we will continue doing so in Section 4.4 to Section 4.7.

Proposition 9. Let w = (Wi)vdx
i. The first-order differential invariant is given by

I1 = ‖w‖2g = (Wi)v(Wj)vh
ij.

This invariant corresponds to the invariant described at the beginning of the proof
of Theorem 3. Here [hij] is the inverse of the symmetric matrix consisting of fiber
coordinates hij.

Since the foliation λ is internally invariant, it is reasonable to look for a derivation of
the form

∇1 = γDv.
For general Kundt spacetimes, we have Dv(I1) 6≡ 0, which means that the factor γ
can be determined by the condition ∇1(I1) = 2.11 The invariant I1 determines the

invariant derivation ∇2 = g−1d̂I1 which has, for general Kundt spacetimes, a nonzero
Du-component.

If n = 3, we can complete the frame with a derivation ∇3 which is determined (up to
an overall sign) by the equations

g(∇1,∇3) = 0, g(∇2,∇3) = 0, g(∇3,∇3) = 4/I1.

Note also that we have g(∇1,∇1) = 0 and g(∇1,∇2) = ∇1(I1) = 2. Therefore, the deter-
minant of the matrix with entries g(∇i,∇j) is equal to −8/I1, implying that ∇1,∇2,∇3

are independent for 2-jets in general position.
If n = 4, we find the third derivation ∇3 in a different way. Let ∇3 = Dg

∇2
∇1, where

Dg denotes the covariant derivative with respect to the Levi-Civita connection. The
invariant horizontal frame can now be completed (up to an overall sign) by ∇4 satisfying

g(∇1,∇4) = 0, g(∇2,∇4) = 0, g(∇3,∇4) = 0, g(∇4,∇4) = I1.

In this case we have g(∇1,∇3) = 1
2
∇2g(∇1,∇1) = 0, and one can verify that g(∇3,∇3) =

I1 which implies that ∇3 is independent of ∇1,∇2 on 3-jets in general position. The four

11The constant 2 is a convenient choice with our coordinates. In principle, the right-hand-side can
be set equal to any differential invariant.
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derivations ∇1,∇2,∇3,∇4 are then independent by the same argument as for n = 3,
using the Gram matrix.

In the case of degenerate Kundt spacetimes, the above approach can still be used, but
since Dv(I1) ≡ 0 for degenerate Kundt spacetimes, I1 must be replaced with a different
invariant I which satisfies Dv(I) 6≡ 0.

In what follows we write down explicitly a basis of invariant derivations for n = 3 and
n = 4, slightly different than the ones suggested above. By the discussion in Section 4.1,
such an invariant horizontal frame solves the equivalence problem. For n = 3 we also
write down explicitly a transcendence basis for the field A2 of second-order differential
invariants.

We remind that invariance of a function f on Ek (or Ẽk) can be verified by using the
equation Lξ(k)f = 0 while invariance of a horizontal derivation ∇ is verified by using

the equation [ξ(∞),∇] = 0. In both cases, the equation must hold for every ξ ∈ g. In
addition, one must verify that they are invariant under the prolongations of the discrete
transformations

(u, x1, . . . , xn−2, v) 7→ (−u, x1, . . . , xn−2,−v),

(u, x1, . . . , xn−2, v) 7→ (u,−x1, x2, . . . , xn−2, v),

that belong to the disconnected components of G. Such computations are not technically
difficult, but quite cumbersome, and they are thus better left to computer algebra sys-
tems. The same goes for verifying that a set of rational functions are functionally (and
thus algebraically) independent12, although in some of the cases we consider this can be
verified by a straightforward hand-computation.

We have used Maple, with the DifferentialGeometry and JetCalculus packages,
when computing with invariant derivations and differential invariants. These packages
provide an easy way to verify the statements in this section that rely on symbolic com-
putations. In several cases the invariants were found by using Maple’s symbolic PDE
solver pdsolve. When pdsolve failed to give the required solutions, we facilitated the
computation by restricting to a simpler ansatz for the invariants. Because of the highly
computational nature of these results, they are mostly stated without proof.

4.4. General 3D Kundt spacetimes. In this and the next subsection (when we con-
sider n = 3) we simplify the notation: W1 = W,h11 = h, x1 = x. Then the invariant of
Proposition 9 is given by

I1 =
W 2
v

h
. (8)

Note that the function Wv/
√
h is invariant with respect to the connected component of

G in the smooth topology, and it is rational on fibers of E1 → J0π. However, it changes
sign under the transformation

(u, x, v, h,W,H) 7→ (u,−x, v, h,−W,H)

12This can be checked by computing the rank of the corresponding Jacobian matrix.
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which is contained the Zariski closure of the connected component.
The following proposition is easily verified.

Proposition 10. The derivations

∇1 =
Wv

Wvv

Dv, ∇2 =
2

Wv

Dx +
hxWv − 2hWxv

hWvWvv

Dv,

∇3 =
1

Wv

(HvvDx −WvvDu + (Wuv −Hxv)Dv)

are invariant, and they are independent on a Zariski open subset of E2.

We have [∇1,∇2] = −∇2. The other commutation relations contain nontrivial struc-
ture functions (and new invariants), but we omit their explicit form due to their length.

Let αj denote the elements of the dual horizontal coframe (defined by 〈∇i, α
j〉 = δji ).

The horizontal symmetric 2-form g written in terms of this coframe will have coefficients
given by g(∇i,∇j). It takes the form

g = I−11

(
(J1α

3 + J2α
2 − I1α1)α3 + 4(α2)2

)
where

J1 =
HW 2

vv + (−HvvW +Hxv −Wuv)Wvv +H2
vvh

h
,

J2 =
4Hvvh

2 + 2(Wxv −WWvv)h−Wvhx
h2

.

Let us recall from Section 3 that there are 4 algebraically independent second-order
invariants (excluding the one of first order).

Proposition 11. The five differential invariants I1, J1, J2 and

∇3(I1) = 2
HvvWxv −HxvWvv

h
− Wv(Hvvhx −Wvvhu)

h2
,

J3 =
W 2
vv(h

2
u − 2hhuu)

h3
− 2Wvv(HvWvv −HvvWv)hu

h2

− ((HvW −Hx +Wu)W
2
vv −Wv(HvvW −Hxv +Wuv)Wvv + 2H2

vvhWv)hx
h3

+
(−2HxWv + 2HvWx + 2HxvW − 2Hxx + 2Wux)W

2
vv

h2

+
((−2HvvW + 2Hxv − 2Wuv)Wxv − 4HxvHvvh)Wvv + 4H2

vvhWxv

h2

constitute a transcendence basis for the field of second-order differential invariants on
E2.

In this case algebraic independence can be verified by, for example, analyzing how the
five differential invariants depend on the variables huu, hu, hx, Hvv.
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Note that ∇2(I1) = 0 and ∇3(I1) = 2I1. By differentiating J1, J2, J3,∇1(I1) with
respect to ∇1,∇2,∇3, we get 12 differential invariants of order 3, while H3

3 = 13. The
differential invariant

c313 =
WvvvWv

W 2
vv

− 1

is algebraically independent from the others, and thus completes the transcendence basis
for the field of third-order invariants. Here c313 is one of the structure functions in the
commutation relation [∇1,∇3] = ci13∇i.

By adding to the 12 third-order invariants the 9 second-order derivatives of J1,J2, J3,
∇1(I1) (36 in total), we get 40 algebraically independent differential invariants of order 4,
which generate a transcendence basis for the field of fourth-order differential invariants.

Since d̂I1 ∧ d̂J1 ∧ d̂J2 6≡ 0, we can obtain all the structure functions from the com-
mutation relations by differentiating these three invariants. Since the coefficients of the
metric in the chosen frame are effectively I1, J1, J2, we obtain the following statement.

Theorem 12. For n = 3 the algebra A of differential invariants of the G action on E is
generated by the differential invariants I1, J1, J2 and the invariant derivations ∇1,∇2,∇3.

This is a good place to point out some similarities and differences between this ap-
proach and the Cartan-Karlhede approach to differential invariants. In the Cartan-
Karlhede algorithm, one chooses a frame ∇̂i such that g(∇̂i, ∇̂j) are constant, and then
one expresses the curvature tensor in terms of this frame. When choosing the frame,
there is some freedom corresponding to the Lorentz group O(1, n− 1). In order to find
actual differential invariants, one removes this freedom by requiring a sufficient number
of the components of the curvature tensor to be constant. When the group is used to fix
as many of the components as possible, the remaining nonconstant components are in-
variant. Next, one computes the covariant derivative of the curvature tensor and repeat
the process until the frame is fixed as much as possible. Note that one in general needs
to compute the covariant derivative to a relatively high order.

In the approach to differential invariants adapted in this article we need an invariant
horizontal frame ∇i. This can be made from the Tresse derivatives corresponding to n
horizontally independent differential invariants, or they can be of more general type such
as ∇1,∇2,∇3 in this subsection. We do not require g(∇̂i, ∇̂j) to be constant. Instead,
we use these derivations ∇i and the invariants g(∇i,∇j) to generate the algebra of
differential invariants. If the number of horizontally independent invariants among those
is < n, one should also add the structure functions ckij, coming from the commutation
relations, to the generating set of invariants. There exist different approaches for finding
differential invariants and invariant derivations. In the previous subsections, we found
them with geometrical arguments, using the Ricci tensor. In this section, and the next
ones, we used symbolic software to help finding solutions to (5) with relatively compact
coordinate expressions.

4.5. Degenerate 3D Kundt spacetimes. The function I1 of the form (8) is a dif-
ferential invariant also in the case of degenerate Kundt spacetimes, since Ẽ1 = E1 and
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the Lie pseudogroup action is the same. From Section 3.3 we know that there are, in
addition, 3 algebraically independent differential invariants of order 2. It is possible to
restrict the invariants on E2 to Ẽ2, but our transcendence basis on E2 does not restrict
to a transcendence basis on Ẽ2.

Let us first define the following:

I2a = Hvv, I2b =
Wvhx − 2hWxv

h2
, K2a =

Hxv −Wuv

W
, K2b =

Wvhu − 2hWuv

Wh
.

The functions I2a and I2b are second-order differential invariants on Ẽ2. The functions
K2a and K2b are not invariant, but will be convenient for simplifying the formulas in this
subsection. For the same reason, we also introduce the (non-invariant) functions

Q =
(2I2aK2b + I2bK2a − I2aI2b)W

I1
,

R =
I2bHW

2
v

I1
− (I2bI

2
2a − 2K2a(I2b − 2K2b)I2a + I2bK

2
2a)W

2

4I22a
.

A fourth second-order differential invariant is given by

I2c =
1

Q2

((I21hu(WWv + hu)− (hx(HvW −Hx +Wu)I
2
1 −W 4

v I2bH))I2aI2b
W 2
v

−2 (WvHx + (hu −Wx)Hv +Hxx −Wux + huu) I1I2aI2b

−W 2I1(K2b(I2b −K2b)I2a − 2I2bK
2
2a)
)
.

Proposition 13. The differential invariants I1, I2a, I2b, I2c constitute a transcendence
basis for the field of second-order differential invariants on Ẽ2.

Notice that Dv(I1) = Dv(I2a) = Dv(I2b) = 0 on Ẽ3. Therefore, d̂I1 ∧ d̂I2a ∧ d̂I2b = 0

everywhere. On the other hand, we have d̂I1 ∧ d̂I2a ∧ d̂I2c 6= 0 on a Zariski open set
in Ẽ3. Since I1, I2a, I2c are horizontally independent, we can write g in terms of them,
as explained in Section 4.1, and in this way generate the whole algebra of differential
invariants.

Alternatively, we can express the metric in terms of an invariant horizontal frame.

Proposition 14. The derivations

∇1 =
I1

I2aI2b
· Q
Wv

Dv, ∇2 =
1

Wv

(
Dx −

K2a

I2a
WDv

)
,

∇3 =
2I2a
I1
· 1

QWv

(K2bWDx − I2bhDu +RDv)

are invariant, and they are independent on a Zariski open subset of Ẽ2.

Notice that ∇1 and ∇2 can be simplified by multiplying by invariant functions. We
have kept these factors because the metric has simple coefficients when expressed in
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terms of this horizontal frame. If we denote by α1, α2, α3 the horizontal coframe dual to
the horizontal frame ∇1,∇2,∇3, we have

g = I−11

(
(−2α1 + 2α2 + α3)α3 + (α2)2

)
.

It follows that the algebra of differential invariants is generated by I1,∇1,∇2,∇3 and
the structure functions in the commutation relations. Since d̂I1 ∧ d̂I2a ∧ d̂I2c 6≡ 0, the
structure functions can be recovered by applying ∇1,∇2,∇3 to I1, I2a, I2c.

Theorem 15. For n = 3 the algebra A of differential invariants of the G action on
Ẽ is generated by the differential invariants I1, I2a, I2c and the invariant derivations
∇1,∇2,∇3.

Remark 2. Here, we have written a frame of invariant derivations with coefficients in
Ẽ2. Allowing coefficients in Ẽk for higher k, may allow for invariant derivations in more
compact form, such as

(WHvv −Hxv +Wuv)Hxvv − 2hHvvHuvv

h
Dv.

4.6. General 4D Kundt spacetimes. For general four-dimensional Kundt spacetimes,
the invariant of Proposition 9 is given by

I1 =
(W1)

2
vh22 − 2(W1)v(W2)vh12 + (W2)

2
vh11

h11h22 − h212
. (9)

Let us introduce the notation

A = (W1)vh22 − (W2)vh12, B = (W1)vh12 − (W2)vh11,

and

T =

A3(h11)x1 − ((h11)x2 + 2(h12)x1)A
2B + ((h22)x1 + 2(h12)x2)AB

2 −B3(h22)x2
− 2(h11h22 − h212)(A2(W1)x1v +B2(W2)x2v − AB((W1)x2v + (W2)x1v))

2(h11h22 − h212)(A(W1)vv −B(W2)vv)
.

We have the following proposition.

Proposition 16. The derivations

∇1 =
(W1)

2
vh22 − 2(W1)v(W2)vh12 + (W2)

2
vh11

A(W1)vv −B(W2)vv
Dv,

∇2 =
(W2)vvDx1 − (W1)vvDx2 + ((W1)x2v − (W2)x1v)Dv

(W1)v(W2)vv − (W2)v(W1)vv
,

∇3 =
ADx1 −BDx2 + TDv

h11h22 − h212
, ∇4 = g−1d̂I1

are invariant, and they are independent on a Zariski open subset of E2.
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Notice that∇4 is the only derivation among these that have a non-zero Du-component.
We have g(∇1,∇i) = 0 for i = 1, 2, 3, and

g(∇2,∇2) = I2a, g(∇2,∇3) = 1, g(∇3,∇3) = I1, g(∇1,∇4) = 2I1, g(∇3,∇4) = 0.

Here

I2a =
(W1)

2
vvh22 − 2(W1)vv(W2)vvh12 + (W2)

2
vvh11

((W1)v(W2)vv − (W2)v(W1)vv)2

is one of the second-order differential invariants. The formulas for the differential invari-
ants g(∇2,∇4) and g(∇4,∇4) are more complicated.

There are H4
2 = 14 algebraically independent differential invariants of order 2, so we

will not attempt to write down all of them. Instead we will be satisfied with finding
four horizontally independent differential invariants. The scalar curvature Sh of the
(u-parametrized) metric h is an invariant function depending only on hij and their xi-
derivatives up to second order. A fourth differential invariant is given by

I2b =

(
((W2)uv −Hx2v)(W1)vv − ((W1)uv −Hx1v)(W2)vv + ((W1)x2v − (W2)x1v)Hvv

)2
h11h22 − h212

.

Theorem 17. The four differential invariants I1, I2a, I2b, Sh are horizontally independent
on a Zariski open subset in E3, and thus sufficient for solving the equivalence problem.

4.7. Degenerate 4D Kundt spacetimes. The first-order invariant I1 is the same as
in the previous section. In total, there are H̃4

2 = 12 algebraically independent invariants
of second order. We write down two of them:

I2a = Hvv, I2b =
((W1)x2v − (W2)x1v)

2

h11h22 − h212
.

Let us find an invariant horizontal frame. The horizontal 1-forms d̂I1, d̂I2a, d̂I2b are
independent: d̂I1 ∧ d̂I2a ∧ d̂I2b 6≡ 0. Since Dv(I1) = Dv(I2a) = Dv(I2b) = 0, the 1-forms
have no dv-component. By solving the equations

(d̂I1 + a1d̂I2a + a2d̂I2b)(Dx1) = 0, (d̂I1 + a1d̂I2a + a2d̂I2b)(Dx2) = 0

for a1 and a2, we obtain an invariant 1-form which is proportional to du. We turn it into
a horizontal vector field by using g, and denote the resulting invariant derivation, which
is proportional to Dv, by ∇1. Next, we define

∇2 = g−1d̂I2a, ∇3 = g−1d̂I2b.

We complete the invariant horizontal frame by requiring ∇4 to satisfy

g(∇1,∇4) = 1, g(∇2,∇4) = 0, g(∇3,∇4) = 0, g(∇4,∇4) = 0.

Proposition 18. The derivations ∇1,∇2,∇3,∇4 are invariant, and independent on a
Zariski open subset of Ẽ3.
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We have Dv(g(∇i,∇j)) ≡ 0 for every i and j. We choose an invariant for which this
is not the case from the commutation relations [∇i,∇j] = ckij∇k. For instance, we have

Dv(c123) 6≡ 0.

Theorem 19. The differential invariants I1, I2a, I2b, c
1
23 are horizontally independent,

and thus sufficient for solving the equivalence problem.

5. Conclusion

We considered the equivalence problem for general and degenerate Kundt metrics with
respect to the action of the pseudogroup of local diffeomorphisms. Denoting these classes
of spacetimes by K and K̃, respectively, we have (many other important subclasses are
omitted):

K ⊃ K̃ ⊃ VSI ⊃ Kundt waves.

For general Kundt metrics the problem can be solved using scalar polynomial invariants,
but even then it is a nontrivial task to specify the required invariants, cf. [32]. For
degenerate Kundt metrics, the spi are insufficient for separating metrics.

We use instead rational differential invariants, which separate jets of metrics in general
position within the class of degenerate Kundt metrics. By integrating the foliations (λ,Λ)
internal to the class of Kundt metrics, one can normalize the set of admissible coordinates
and reduce the pseudogroup Diff loc(M) to G consisting of transformations that preserve
the form of Kundt metrics expressed in terms of admissible coordinates. The equivalence
classes of Kundt metrics K (respectively degenerate Kundt metrics K̃) with respect to
all transformations are in bijective correspondence to those of form (1) with respect to
the shape-preserving transformations:

K/Diff loc(M) = E/G and K̃/Diff loc(M) = Ẽ/G.

In order to be consistent, in these equalities we should interpret K and K̃ to mean the
corresponding spaces of jets of metrics. The algebras of differential invariants consist of
functions on those spaces.

Since our invariants are rational functions in jet-variables of low order and polynomial
in higher jet-variables, there is a Zariski closed subset of jets of (degenerate) Kundt
spacetimes that are not separated by the invariants we have found. By restricting to this
Zariski closed set, and considering the Lie pseudogroup action on this set, it is possible
to repeat the procedure and find an algebra of rational invariants separating generic jets
of metrics in this singular set, etc.

One should note that the coordinates used to create the signature manifold Ψ(X) need
not be adapted to (λ,Λ). For instance, none of the invariants Ii constructed in Section
4.1 were required to be constant along Λ. This however does not obstruct to solve the
equivalence problem: the foliation λ is reconstructed from the first (n − 1) differential
invariants and since the metric g is determined, Λ = λ⊥ is recovered.

In principle, the Cartan invariants can be used for the same purposes, yet with the
formalism for differential invariants we have a better control over the analytic properties
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of the functions in the algebra A of differential invariants. The normalization used in
the Cartan-Karlhede algorithm, for example, requires to solve algebraic equations for
group parameters. In particular, this often results in expressions involving radicals. The
differential invariants we have computed are manifestly rational in jet-variables and thus
defined on a Zariski open subset of the space of jets of Kundt metrics. This is one of the
differences between the approaches. We refer to [16] for further comparisons.

Several classes of transformations were considered in the literature that are natural
subgroups of G. Reference [1] studied nil-Killing fields defined as those vector fields X
on M that are aligned with respect to λ and LXg is nilpotent wrt the filtration (λ,Λ).
It was shown in [20] that nil-Killing vector fields wrt λ, preserving λ, form a Lie algebra:

gλ = {X : LXλ = λ and LXg is of type III wrt λ}.

This is an infinite-dimensional Lie subalgebra of g given by (3). The corresponding
Lie pseudogroup of λ-aligned transformations, preserving spi, depends on 1 function of
(n − 1) arguments (and other functions of fewer arguments), cf. [1, Proposition 6]. In
fact, this pseudogroup consists of transformations (2) forming G such that the induced
transformation of (M̄u, h) is a u-parametric isometry.

A proper subalgebra of gλ is the Lie algebra of Kerr-Schild vector fields wrt λ, defined
as those X, preserving λ, for which LXg ∈ S2λ∗ (has type N), see [6]. This Lie algebra
may be trivial, however if the 1-form w = (Wi)vdx

i on Λ∗ (important in our computations
of invariants, see Proposition 9) is exact, then any infinitesimal transformation b(u)∂v is
a Kerr-Schild vector field, so this algebra may also be infinite-dimensional.

The equivalence problem of classes of spacetimes wrt to those and other Lie sub-
pseudogroups may be of interest in its own right.

Acknowledgements. E. Schneider acknowledges full support via the Czech Science
Foundation (GAČR no. 19-14466Y). This work was also partially supported by the
project Pure Mathematics in Norway, funded by Trond Mohn Foundation and Tromsø
Research Foundation.

Appendix A. Relative differential invariants

Here we demonstrate that the class of degenerate Kundt spacetimes is singled out
among all Kundt metrics by a relative invariant condition, so that the singular behavior
can be observed by studying orbits of the diffeomorphism pseudogroup on the jets of
metrics. Note that due to normalization of the vector ` as in (1) the diffeomorphism
pseudogroup shrinks to the pseudogroup of shape-preserving transformations.

A function f ∈ C∞(Jkπ) is a relative differential invariant wrt a pseudogroup G if
ϕ∗f = sϕ · f ∀ϕ ∈ G for some nonzero function sϕ on Jkπ. For the corresponding Lie
algebra g this translates into:

Lξ(k)f = ω(ξ)f ∀ξ ∈ g
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for some ω ∈ g∗ ⊗ C∞(Jkπ). This ω is a 1-cocycle, i.e. it satisfies the equation (cf. [23])

Lξ(k)ω(η)−Lη(k)ω(ξ)− ω([ξ, η]) = 0 ∀ξ, η ∈ g.

Cocycles of the type ω = dh are called trivial. Cocycles modulo trivial ones are called
cohomology; in arbitrary order they form the group H1(g, C∞(J∞π)). To catch the
algebraic structure of the jet-fibers we consider only such cocycles that (modulo trivial)
are polynomial in the jet-variables. Such relative invariants are not plentiful.

Of course, absolute differential invariants are relative. For any relative differential
invariant f the equation given by f = 0 is G-invariant. If the invariant is genuinely
relative (not absolute), then {f = 0} contains singular orbits. Recall that an orbit is
regular if a neighborhood of it is fibred by orbits, and it is called singular otherwise.

Let us focus on the 3D case (as before we omit indices for Wi and hij here). Since the
action of G is transitive on J0π, as in Section 3.2, we can translate any point to

p0 = {u = 0, x = 0, v = 0, h = 1, H = 0,W = 0}.

Consider the action of G(1)0 on the fiber π−11,0(p0)∩E1. Here W 2
v is an absolute invariant,

with the action transitive on its level sets13. As shown in Section 3.2, we can bring any
point to the point (omitting equations of p0)

p1 = {hu = 0, hx = 0, Hu = 0, Hx = 0, Hv = 0,Wu = 0,Wx = 0,Wv = c}.
Here c ≥ 0 is the level parameter, and hu, hx, . . . are jet-variables. Note that the first
seven of these are normalized by translations, after which we are left with the action of
O(n− 2) = O(1) = Z2 on Wv.

Next consider the action of the stabilizer pseudogroup G(2)1 on 2-jets E21 = E2∩π−12,1(p1).
This space has dimension 15, while the group acting on it has dimension 11. Thus we
get 4 absolute invariants, as established in Section 3.3 and explicitly given in Section
4.4. To get more precise structure of the orbit space note that the group consists of 9
translations and 2 affine transformations. The translations form a 9-dimensional Abelian
group A with the Lie algebra

∂hxx , ∂hux , ∂huu + ∂Wux , ∂Hxx + ∂Wux , ∂Hux , ∂Huu , ∂Huv , ∂Wxx , ∂Wuu .

We use them to set hxx = hux = huu = Hxx = Hux = Huu = Huv = Wxx = Wuu = 0.
This global transversal to the action of A can be identified with the quotient space
Q6 = E21/A. Let us introduce the coordinates z1 = −1

2
Wux, z2 = −Wuv, z3 = Wxv,

z4 = 2Wvv, z5 = 1
3
Wuv − 2

3
Hxv, z6 = 2

3
Wxv + 4

3
Hvv on Q. Then the infinitesimal affine

transformations are

V1 = 2z1∂z1 + z2∂z2 − z4∂z4 + z5∂z5 , V2 = z2∂z1 + z3∂z2 + z4∂z3 + (z3 − z6)∂z5 .
They form a 2-dimensional solvable Lie algebra with [V1, V2] = −V2. Since V2 is nilpotent,
any polynomial relative invariant must belong to its kernel. The linear polynomials in

13Note that W 2
v is an absolute invariant only with respect to the stabilizer subgroup of the point p0.

If we restore the entire group action, then both W 2
v and h are relative invariants of the same weight, so

that their ratio I1 is an absolute invariant.
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the kernel are spanned by z4 and z6. Here z6 is an absolute invariant, while z4 has weight
−1 with respect to V1. The relative invariant z4 gives the first condition for degenerate
Kundt spacetimes: Wvv = 0.

By extending this analysis to E3, we see that the function Hvvv is not a relative
invariant, but becomes so when we restrict to the subset in E3 given by Wvv = 0 and its
differential consequences. This (conditional) relative invariant also has weight −1 with
respect to (the prolongation of) V1.

Note that there exist other nontrivial relative invariants, of higher degree. The in-
variant Wvv on E2 is singled out by having negative weight; all other relative invariants
with negative weight have Wvv as a factor. The invariant Hvvv on the sub-PDE given by
Wvv = 0 is determined uniquely in the same way. Thus the degenerate Kundt conditions
Wvv = 0, Hvvv = 0 arise from investigations of singularities of the G action on E2 and E3.

Theorem 20. The function Wvv is a relative invariant of the G action on E2. On the
submanifold in E3 given by Wvv = 0 and its differential consequences, the function Hvvv

is a relative invariant of the G action.

The same idea can be applied in higher dimensions. The Lie algebra spanned by V1
and V2 is then replaced by an (n − 1)-dimensional Lie algebra from which information
about singular orbits can be read. In this case, Wvv should be considered as a tensorial
relative invariant (covector), whose corresponding zero-set has codimension greater than
1. Then the theorem holds true in higher dimensions as well.
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[26] V. Pravda, A. Pravdová, A. Coley, R. Milson, All spacetimes with vanishing curvature invariants,

Class. Quant. Grav. 19, 6213 (2002).
[27] M. Rosenlicht, Some Basic Theorems on Algebraic Groups, Amer. J. Math. 78, 401–443 (1956).
[28] I. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 685–97 (1960).
[29] S.T. Swift, R.A. d’Inverno, J.A.G. Vickers, Everywhere Invariant Spaces of Metrics and Isometries,

Gen. Rel. Grav., 18 1093–1103 (1986).
[30] T.Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge University Press

(1934).
[31] H. Weyl, The classical Groups: Their Invariants and Representations, Princenton University Press

(1946).
[32] E. Zakhary, C. B. G. Mcintosh, A complete set of Riemann invariants, Gen. Rel. Grav. 29, 539–581

(1997).

†Department of Mathematics and Statistics, UiT the Arctic University of Norway, 9037
Tromsø Norway. E-mail: boris.kruglikov@uit.no.

†Department of Mathematics and Natural Sciences, University of Stavanger, 4036 Sta-
vanger, Norway.

‡Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové
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