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ABSTRACT
Transition metal-catalyzed reactions invariably include steps where ligands associate or dissociate. In order to obtain reliable energies for such
reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision multiwavelet calculations to compute the
metal–ligand association energies for 27 transition metal complexes with common ligands, such as H2, CO, olefins, and solvent molecules. By
comparing our multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are
widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult
to employ when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of
reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046023

I. INTRODUCTION

A large branch of computational chemistry deals with the study
of reaction mechanisms.1,2 Many of the studied reactions involve
metal complexes that throughout the course of the reaction bind or
lose a ligand, for example, there may be incoming substrates such
as alkenes or hydrogen (H2) or leaving ligands such as solvent or
product molecules (Scheme 1).3–10

The difficulty of contemporary density functional theory (DFT)
methods to accurately compute metal–ligand interactions has been
highlighted in the literature.11–22 Many of the reported studies focus
on the performance of different DFT functionals and the importance
of including dispersion corrections in the computed energies.11,15

There is less focus on the importance of choosing an adequate basis
set.23–25

The most widely employed basis sets in computational chem-
istry are based on Gaussian-type orbitals (GTOs). Popular choices
for computing reaction energies include, for example, the Pople
split-valence or the Ahlrichs def2 basis sets.26,27 Such bases may
come in different sizes, with many contemporary DFT studies on
metal-systems reporting final energies that were computed using

double-ζ (DZ) or medium-sized triple-ζ (TZ) Pople basis sets28–36

or the somewhat larger triple-ζ Ahlrichs basis set def2-TZVP.37–40

The use of the correlation-consistent Dunning basis sets appears
less widespread for transition metal systems.41 Regardless of size, all
available basis sets are finite, and therefore, they invariably carry a
certain Basis Set Error (BSE), defined as the difference in energy (E)
between the complete basis set (CBS) result and the finite basis set
(FBS) result,

BSE = EFBS − ECBS. (1)

A complete basis set is infinite and therefore a certain level
of truncation in the molecular orbital expansion must be accepted
for any basis set. This fact is referred to as the “basis set truncation
problem” and puts very concrete limitations on quantum chemical
calculations. It is, in addition, not possible to know the extent of the
BSE for a given basis set although the variational principle guaran-
tees that enlarging a basis will reduce the BSE. In practical applica-
tions of GTOs, users often rely on a favorable cancellation of BSEs,
where large errors in absolute energies are partly canceled, when
relative energies (e.g., the energy difference between two states) are
computed.
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SCHEME 1. Generic example of a metal-catalyzed reaction pathway (e.g., a cross-
coupling reaction, M = metal) where ligands enter and leave.

In the case of a geometrical rearrangement and, in particular,
when considering association or dissociation reactions, the BSE can
be divided into two different (though not completely independent)
types of errors: the Basis Set Superposition Error (BSSE) and the
remaining Basis Set Incompleteness Error (BSIE).23,25,42 The BSSE
originates from the fact that atom-centered basis functions follow
the nuclear positions. Therefore, the molecular orbitals will be repre-
sented by different basis sets when comparing two different geome-
tries because the basis functions will overlap differently (or in some
cases not at all) before and after the geometrical change.43–45 The
BSIE can then be considered as the remaining error with respect to
the CBS result, although it is important to underline that the two
errors cannot be separated completely, and both will approach zero
in the limit of a CBS.

The most notable example where the BSSE becomes prominent
is when two molecules are joined into one model, as illustrated in
Fig. 1. In this case, the “borrowing of basis functions” effectively
improves the basis set description of the combined molecules com-
pared to the separated molecules, which can lead to an artificial
lowering of the energy.

A common strategy for dealing with the BSSE is to use
the Boys and Bernardi counterpoise (CP) correction.43 The CP
correction is often applied for association reactions of non-
covalently interacting fragments,25,46,47 but it is also employed when
computing metal–ligand interactions, for example, as part of a

reaction cycle.14,48,49 The theoretical justification for the CP cor-
rection has been the subject of much scientific debate since its
introduction.44,50,51 A mathematical proof was published in 1994,
which demonstrated that the CP correction eliminates intermolec-
ular BSSEs in simple complexation reactions for full CI (FCI) wave
functions.44 However, similar theoretical arguments have, to our
knowledge, not been presented for DFT.

The CP correction is typically computed on the basis of the
complexed system, which is partitioned into fragments, whose ener-
gies are computed in the presence and absence of the basis functions
of other fragments. For non-covalent association and dissociation
reactions, the partitioning is simple, but for reactions where the
combination of fragments involves bond-breaking, the partitioning
becomes ambiguous. As an example, let us consider two reactions:
one where CO2 binds to a complex (Scheme 2, left) and one where
CO2 is inserted into a metal–ligand bond (Scheme 2, right). For the
simple association reaction, the original fragments remain and parti-
tioning is straightforward, but for the insertion reaction, the original
fragments no longer exist in the product and it is thus unclear how
the system should be partitioned. Reaction types other than simple
associations and dissociations are widespread in transition metal-
mediated chemistry, such as oxidative additions, reductive elimi-
nations, insertions, transmetallations, and metathesis pathways—for
all of these, it is not straightforward how to apply a CP protocol.

Another approach for reducing BSEs is to employ a large basis
set. It is a relatively standard procedure in computational studies
to perform single-point electronic energy calculations with a larger
basis set using optimized geometries computed with a smaller basis
set. The large basis sets used for energy calculations may still not
be sufficient (as pointed out by Head-Gordon and co-workers, it
is remarkably difficult to reach the basis set limit, requiring very
large basis sets, such as the quintuple-ζ basis set pc-4);47 however,
for practical applications on first- and second-row elements, and
also smaller 3d complexes, basis sets up to the quadruple-ζ-level
can routinely be applied and provide good results.47,52 The situa-
tion is different for larger metal-based systems, where quadruple-ζ
basis sets may not be available, may be too costly, or may cause
numerical instabilities, implying that for metal systems, single-point
corrections often are carried out with triple-ζ basis sets, sometimes
in combination with an effective core potential on the metal. How-
ever, triple-ζ basis sets from different basis set families may per-
form very differently, and for some of the widely applied basis

FIG. 1. (Left) When two molecules or fragments are joined into one computational model, the fragments can steal basis functions from each other, artificially lowering the
total energy (Etot) of the combined model (an error known as the BSSE). (Right) In a complete basis set, the stealing of basis functions does not occur (the shown systems
are only illustrations and do not correspond to optimized models).
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SCHEME 2. (Left) Simple association reaction, where the complex formed after association easily can be partitioned into the original fragments F1 and F2 in order to
compute the BSSE. (Right) Association reaction involving a chemical transformation, where the partitioning into original fragments becomes ambiguous, and it is unclear
how the BSSE should be computed.

sets, such as 6-311G(d,p),31–34,36 the BSE may still be significant
(vide infra).

In recent years, a new strategy, based on real space methods,53

has emerged, which can resolve BSE issues in a fundamental and
uncontroversial way. In contrast to atom-centered functions, real
space methods represent functions as values on a grid. As the rep-
resentation is fixed in space and does not follow the molecule, the
source of BSSE is eliminated. In this respect, the methods based on
Multiresolution Analysis (MRA)54–56 and Multiwavelets (MWs)57–59

are particularly attractive: molecular orbitals are represented using
polynomials on a predefined grid. Such a grid can be arbitrarily
refined by bisection to gain precision, and the refinement is adap-
tive: it is based on the wavelet norm of a function at a given node,
which guarantees rigorous error bounds based on MRA.60 This
means, in practice, that refinement takes place only where necessary
(typically close to the nuclei), thus reducing the computational over-
head with respect to full-grid methods. Other cornerstones of this
approach are the use of the integral formulation for the Kohn–Sham
equations,57,61 which allows the use of integral operators instead of
differential ones, the separated representation of Green’s function
kernels,62 which reduces the computational overhead, and the non-
standard form of operators,60 which enables adaptivity also when
operators are applied.

This robust mathematical framework of MWs simplifies the
computational protocol substantially compared to GTO calcula-
tions: The vast choice of GTO basis sets require expert knowledge
to fine-tune the basis to the problem at hand; hence, many practi-
tioners fall back to familiar but suboptimal options such as standard
double- or triple-ζ basis sets. MWs, on the other hand, deal with
the mathematical complexity in a robust and formally rigorous way,
exposing to the user only a few parameters to set the requested preci-
sion. This offers a simple protocol, both practically and intellectually,
for obtaining energies that are free from basis set errors to within an
arbitrary and predefined threshold. We have recently employed MW
methods to obtain precise benchmarks on energies63 and electric64

and magnetic properties.65

In this work, we have used multiwavelets to compute the elec-
tronic energies for 27 transition metal-mediated reactions, which
involve association of common ligands such as H2, CO, olefins, or
solvent molecules. To our knowledge, MWs have not been previ-
ously used to compute transition metal systems, although it has
been suggested that by using them, one could improve the results
for DFT calculations involving metals.66 Comparing our multi-
wavelet interaction energies to the results obtained with a variety
of GTO-type DZ, TZ, and QZ basis sets, we show that BSEs in
commonly used GTO basis sets can be very large. Interestingly, the

use of the counterpoise correction to correct for BSSEs may lead to
significant underbinding for metal–ligand interactions, potentially
bringing the corrected value as far from the MW reference value as
the uncorrected one.

II. COMPUTATIONAL DETAILS
A. Choice of reactions

The set of association reactions was based on the following
criteria: (1) The reactions should be simple association reactions
so that standard counterpoise corrections could be applied, (2) the
complexes should feature 3d transition metals in order to limit the
system size, also because not every all-electron basis set studied here
is available for heavier metals, (3) the incoming ligands should be
experimentally relevant and of varying sizes, (4) the nature of the
metal–ligand binding should be diverse, and (5) all chemical species
should have a closed-shell electronic configuration.

Our benchmark reaction set includes 26 transition metal-
mediated association reactions, with the full list presented in
Schemes 3(a)–3(c). Four of these reactions, namely, Cr–CO, Cr–H2,
Cr–alkene-1, and Ni–CO, were chosen from Ref. 19 (but we note
that some of these reactions have been studied computationally
much earlier67), and one, Fe–MeOH, is related to our previous work
on Fe-catalyzed hydrogenation reactions.68 Based on the Cr and
Ni examples, we designed additional reactions involving association
of differently sized alkenes (alkene-1–alkene-6), different solvent
molecules (MeCN, THF, MeOH, and H2O), and common NHC lig-
ands (NHC-1 and NHC-2, Scheme 3). The optimized coordinates of
all species are given in the supplementary material.

One additional CO2 insertion reaction was computed
[Scheme 3(d)] as an example of a reaction, where CP corrections
become ambiguous to compute, as the original fragments are no
longer present in the product. This reaction is not included in the
benchmark averaging, but it is discussed separately.

B. GTO calculations
All GTO calculations were performed with ORCA69,70 versions

4.1.2 and 4.2.1 (see supplementary material, Table S1 for further
details) within the restricted Kohn–Sham DFT framework.71,72 The
SCF cycles were accelerated by the RI73–79 and RI-COSX115 approx-
imations for GGA and hybrid functionals, respectively. A multigrid
scheme was used for the integration grids: Intermediate SCF itera-
tions made use of an angular Lebedev grid of 434 points and a radial
grid of 30, 35, and 40 points for first, second, and third row ele-
ments, respectively (as defined by the grid5 ORCA keyword). A final
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SCHEME 3. Overview of the 26 association reactions included in our dataset (a)–(c) as well as one CO2 insertion reaction discussed separately (d).

SCF computation was then carried out with a larger angular Lebe-
dev grid of 590 points and a radial grid of 40, 45, and 50 points for
first, second, and third row elements, respectively (as defined by the
finalgrid6 ORCA keyword).

All geometries were optimized in vacuum with the def2-SVP
basis set27 and included Grimme’s third generation dispersion cor-
rection with Becke–Johnson damping functions.80,81 For the data
presented in the main text, we used the PBE functional;82–84 how-
ever, in the supplementary material, we also present results with
BP86 and PBE0.85,86 The BP86 and PBE0 results are in close qual-
itative agreement with PBE (supplementary material, Figs. S1–S12).
Default SCF convergence thresholds were used for the geome-
try optimizations. Geometry convergence criteria were set by the
tightopt ORCA keyword, which sets convergence thresholds for the
energy change, maximum gradient, rms gradient, maximum struc-
tural displacement, and rms structural displacement as 1 × 10−6,
1 × 10−4, 1 × 10−5, 1 × 10−3, and 1 × 10−4, respectively (in atomic
units). Finally, a frequency analysis was performed in order to

confirm that the optimized structures represented minima on the
potential energy surface.

Single-points and counterpoise corrections were performed
with ORCA versions 4.1.2 and 4.2.1. SCF convergence was dic-
tated by the tightscf ORCA keywords, which signals convergence
if the changes in the total energy and one-electron energy fall
below 1 × 10−8 and 1 × 10−5, respectively. A range of com-
monly used GTO basis sets of different sizes were employed in
this benchmark study, with examples from Jensen’s polarization-
consistent basis sets,87–90 Ahlrichs’ property-optimized def2 basis
sets,27 Dunning’s correlation-consistent basis sets,91–94 Pople’s split-
valence basis sets,26,95–102 and a popular combination of Pople
basis sets with the LANL2 ECP and accompanying valence basis
set.103

The GTO basis sets included in this study are as follows:

● Ahlrichs: def2-QZVPPD, def2-QZVPP, def2-TZVPD, def2-
TZVP, def2-SVPD, and def2-SVP;
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● Dunning: aug-cc-pVQZ, cc-pVQZ, aug-cc-pVTZ, cc-pVTZ,
aug-cc-pVDZ, and cc-pVDZ;

● Pople: 6-311++G(2df,2pd), 6-311+G(d,p), 6-311G(d,p),
6-31+G(d), and 6-31G(d) (with additional 6-311G and
6-31G results given in supplementary material, Figs. S1–S4);

● 6-311G(d,p) (nonmetals)/LANL2TZ (metals); and
● Jensen: pc-3, aug-pc-2, pc-2, aug-pc-1, and pc-1 (with addi-

tional aug-pc-3 results given in supplementary material,
Figs. S1–S4 and S18).

C. Linear dependencies in large GTO basis sets
Numerical issues can become a problem for larger GTO basis

sets. The overlap between functions centered on different atoms may
become significant, especially for larger molecules, such that near-
linear dependencies occur. GTO codes such as ORCA evaluate the
presence of linear dependencies by diagonalizing the overlap matrix
and discarding eigenvalues and corresponding basis functions below
a certain threshold (10−8 is the default for ORCA). For the associ-
ation reactions studied here (Scheme 3), near-linear dependencies
occurred more frequently for the adduct than the separated frag-
ments. In most cases where the default threshold was employed,
only a handful of functions were discarded (supplementary
material, Table S3), which should have no significant effect on
the energies, because such near-linearly dependent functions by
definition are close to being redundant. Most near-linear dependen-
cies were observed for the basis sets aug-pc-2 and aug-pc-3, where
the SCF iteration converged only if a larger threshold (up to 10−4)
was employed (supplementary material, Tables S3 and S4). In several
instances, this resulted in several hundred functions being discarded
for aug-pc-3 (more than 10%–15% of the functions). Consequently,
we have not discussed the aug-pc-3 results in the main text, but only
in the supplementary material (Fig. S18), in order to show the effect
from computing interaction energies from individual SCF calcula-
tions performed with different linear dependency thresholds. Thus,
the seemingly lower precision achieved by aug-pc-3 compared to pc-
3 (supplementary material, Fig. S18) is not due to inherent basis
set deficiencies but due to a sub-optimal computational protocol
necessary for converging the SCF calculations.

D. Multiwavelet calculations
All MW calculations were carried out with the free and open-

source MRChem quantum chemical software, release version 1.104

Information about how to obtain, compile, and use the code is avail-
able on the documentation web pages.105 A computational domain
with the size (−64, 64) in all three dimensions (angstroms) was used
for all molecular systems, with the molecular structure translated
such that the center-of-mass was in the origin of the computational
domain. A relative precision of 1 × 10−7 a.u. (MW7) was used in
the generation of our MW data. Two convergence criteria were
applied in the SCF optimizations: The change in total energy should
be below 1 × 10−7 a.u., and the orbital residuals should be at least
5 × 10−6. We remark that the electronic energy is variationally opti-
mized and its error is therefore quadratic in the orbital error. The
error threshold of the orbitals should be set to

√
εrel in order to

guarantee that the total energy has been converged to εrel. By set-
ting the orbital residual convergence threshold to 50εrel, we made
a conservative choice in converging the orbital residuals. The SCF

procedure was accelerated by the Krylov accelerated inexact Newton
procedure.106

E. Internal validation of MW convergence
Multiwavelet energies represent the CBS limit within the spec-

ified precision. When MWs are employed to compute reaction
energies, it is important to bear in mind that error cancellation
does not take place when one energy is subtracted from another;
instead, one relies on numerical robustness. As a result, care must
be taken when two energies (e.g., reactants and products) are sub-
tracted: one must ensure that the number of significant digits is
large enough to guarantee that enough precision is retained in the
difference. However, for MWs, this is a systematic and controllable
procedure, as opposed to relying on error cancellation in GTO pro-
tocols, whose extent is not known a priori and which cannot be
controlled.

In order to obtain a sufficient number of significant digits in
the interaction energy, an appropriate MW precision needs to be
used in calculations of individual energies. We evaluated increasing
MW precisions for a subset of the reactions in order to determine
the appropriate precision for our dataset (Table I). A low precision of
1× 10−4 (MW4) contains a lot of noise because of cancellation of sig-
nificant digits. However, increasing the precision to 1 × 10−6 (MW6)
yields a precision of minimum 0.1 kcal/mol, with an even higher
precision observed for most reactions. For the benchmark data in
the main text, we made a conservative choice and used the MW7
interaction energies in our analyses, which our data show to be cor-
rect to ∼1 cal/mol for the cases, where we can compare to MW8
data.

Note that the MW validation data presented in Table I was
computed with BP86, while the benchmark data discussed in the
main text was computed with PBE. This discrepancy is due to an
unforeseen challenge that arose during data collection: originally all
MW and GTO data were computed with BP86, but we later realized
that the BP86 versions in ORCA and MRChem are not identical,
implying that a comparison of GTO to MW at the BP86 level would
be affected by differences in the implementation of the functional,
which our tests indicated could amount to several kcal/mol, when
approaching the CBS limit. Therefore, the GTO to MW compar-
ison in the main text was based on the PBE functional. We also
present a smaller MW validation analysis with the PBE functional
in the supplementary material with 1 × 10−5 (MW5) and 1 × 10−7

(MW7) precisions. The average error of the 1 × 10−5 energies com-
pared to the 1 × 10−7 reference is 0.0635 kcal/mol, which is close to
the error observed with the BP86 functional in Table I for the same
precision.

III. RESULTS AND DISCUSSION
Initially, we present an analysis of the magnitude of the BSSE

with various DZ, TZ, and QZ GTO basis sets for 26 transition metal-
mediated association reactions (Scheme 3). This is followed by an
analysis of the effect of the counterpoise correction—does it bring
the GTO results closer to the MW-computed CBS reference value?
We then take a closer look at the 6-311G(d,p) basis set due to its
unexpected poor performance. Finally, we show how MWs conve-
niently can be applied to compute CBS single point energies for
insertion reactions.

J. Chem. Phys. 154, 214302 (2021); doi: 10.1063/5.0046023 154, 214302-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Errors in electronic interaction energies (kcal/mol) computed with increasing MW precision. We computed all reac-
tions with a precision of 1 × 10−4 (MW4), 1 × 10−5 (MW5), 1 × 10−6 (MW6), and 1 × 10−7 (MW7) and a few with 1 × 10−8

(MW8). The errors for MW4, MW5, and MW6 were obtained by comparing to MW7 results. The MW7 error was obtained
relative to the few MW8 results. With MW6, one obtains at least one correct decimal in the interaction energy and mostly two
or more decimals. With MW7, errors of less than 0.0002 kcal/mol are obtained, as shown by comparison to the MW8 results.
n.a. = not available.

Reaction Error MW4a Error MW5a Error MW6a Error MW7b

Cr–alkene-1 0.907 79 0.024 00 0.001 06 0.000 07
Cr–alkene-2 1.805 26 0.035 88 0.002 13 −0.000 03
Cr–alkene-3 2.244 01 0.153 09 0.004 39 n.a.
Cr–alkene-4 0.214 15 0.056 98 0.005 08 n.a.
Cr–alkene-5 5.606 96 0.235 89 0.008 02 n.a.
Cr–alkene-6 2.078 54 0.157 67 0.012 48 n.a.
Cr–water 1.780 81 0.041 22 0.000 97 n.a.
Cr–MeOH 1.152 02 0.010 78 −0.000 47 n.a.
Cr–THF 2.440 00 0.097 63 0.003 32 n.a.
Cr–MeCN 1.113 60 0.074 43 0.000 89 n.a.
Cr–CO 4.100 96 0.080 51 0.003 71 n.a.
Cr–H2 1.001 21 0.041 25 0.00 209 n.a.
Ni–alkene-1 −1.132 59 −0.014 61 −0.000 86 0.000 12
Ni–alkene-2 1.692 24 0.061 70 0.002 08 0.000 04
Ni–alkene-3 −0.060 38 0.081 28 0.013 71 n.a.
Ni–alkene-4 1.503 49 0.140 09 0.002 95 0.000 02
Ni–alkene-5 2.676 60 0.127 06 0.006 44 n.a.
Ni–alkene-6 −0.911 28 0.061 07 0.002 72 n.a.
Ni–water −1.117 14 −0.004 97 0.000 45 0.000 03
Ni–MeOH −1.046 20 −0.013 19 −0.000 48 0.000 17
Ni–THF 1.142 78 0.045 61 0.002 91 n.a.
Ni–MeCN −0.459 47 0.000 10 0.000 21 n.a.
Ni–CO −0.003 76 0.015 38 −0.000 04 n.a.
Ni–NHC-1 0.665 76 0.067 70 0.003 49 n.a.
Ni–NHC-2 3.266 62 0.483 49 0.009 81 n.a.
Fe–MeOH 1.970 12 −0.136 80 −0.002 28 n.a.
Average 1.255 08 0.073 97 0.003 26 0.000 06
aComputed as ΔE [MWX] − ΔE [MW7], where X = 4, 5, and 6.
bComputed as ΔE [MW7] − ΔE [MW8].

A. How large are BSSEs for metal–ligand association
reactions?

It has been reported that the magnitude of the BSSE relative
to the non-covalent interaction energy for organic molecules starts
off relatively small for minimal basis sets107 and then increases as
the size of the basis set increases, while it eventually diminishes to
negligible magnitudes for very large GTO basis sets.25 Medium-sized
basis sets of DZ quality provided the largest BSSEs.

We have here computed 26 transition metal-mediated associa-
tion reactions (Scheme 3) in order to get an overview of how large
the BSSEs are in these kind of reactions with DZ, TZ, and QZ basis
sets of different sizes and families. The reactions studied here involve
ligands that bind to a metal complex, which are conceptually dif-
ferent from non-covalent interaction energies. We have built our
test set to include ligands of various size, many of which are com-
mon incoming ligands in metal-catalyzed reactions (such as H2, CO,
alkenes, and methanol).3–10

Several features are observed from our computed results
(Fig. 2, see also supplementary material, Figs. S1–S4). First, the

magnitude of the BSSE is largest for DZ basis sets, with an aver-
age value of 9.92 kcal/mol for the 26 reactions with the basis set
6-31G(d,p). However, the BSSE is also unexpectedly large for the TZ
basis set 6-311G(d,p), with 8.63 kcal/mol on average. The combina-
tion 6-311G(d,p) on non-metal atoms and LANL2TZ on the metal
gives a significantly lower average BSSE value of 4.25 kcal/mol for
the 26 reactions, but it is still much larger than the def2-TZVP basis
set, with an average BSSE of only 1.05 kcal/mol (maximum value
of 2.19 kcal/mol). By comparing all results, it becomes clear that the
BSSEs decrease as the ζ-quality increases within each basis set family.
However, comparing ζ-qualities between families does not neces-
sarily follow the same trend. For example, the Jensen triple-ζ basis
set pc-2 has an average BSSE of 0.69 kcal/mol, which is lower than
the Dunning-type quadruple-ζ basis set cc-pVQZ (average error of
0.74 kcal/mol).

Zooming in on the computed reactions, we see that with almost
all basis sets, the largest BSSEs are obtained for the Ni–NHC-2
reaction, which may seem unsurprising, as NHC-2 is the largest lig-
and in our test set. However, there is no clear correlation between
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FIG. 2. Violin plot summarizing BSSEs (as computed by the counterpoise correction) for selected GTO basis sets (at the PBE level), sorted by ascending averages. The
numbers show the average BSSE (kcal/mol) for all association reactions [Schemes 3(a)–3(c)] for a given basis set. Additional basis sets are given in supplementary material,
Fig. S1.

the size of the incoming ligand and the BSSE. For example, even the
association of a small ligand, such as CO, can give similar BSSEs as
much larger ligands, as shown for different TZ basis sets in Fig. 3.
For DZ and medium-sized TZ basis sets such as 6-311G(d,p), a clear
correlation is observed for the type of metal, with BSSEs consistently
being larger for the Ni complexes than for the corresponding Cr
complexes (supplementary material, Fig. S3). This may be due to
the fact that the Cr(CO)5 scaffold is larger than the Ni(CO)3 scaf-
fold and therefore already has a more complete set of basis func-
tions. For larger basis sets such as def2-TZVP, the BSSEs for the
Cr and Ni systems with the same type of incoming ligand are more
similar.

An important point of interest is how large the BSSE is rela-
tive to the interaction energy. BSSE proportions of (uncorrected)
electronic interaction energies in our test set are presented in
Fig. 4. For DZ, TZ, and QZ basis sets, the magnitudes of the

BSSE are up to 60%, 50%, and 20% of the electronic interaction
energy, respectively. An exception is 6-311G(d,p), for which the
BSSE is about 100% of the interaction energy. Significant vari-
ance within each basis set is also observed, spanning at least one
order of magnitude for most basis sets. Even interaction energies
from large QZ basis sets contain significant proportions of BSSE of
up to 20%.

B. Can CP corrections bring GTO energies closer
to the CBS value?

We have computed the electronic interaction energies for the
26 reactions in our test set at the complete basis set limit by using
a MW basis at high precision (1 × 10−7 = MW7, Table I). With
these MW results as a reference, it is possible to gauge how close
the uncorrected and CP-corrected GTO energies are to the CBS

FIG. 3. BSSEs (kcal/mol) for three
selected reactions with three TZ GTO
basis sets (PBE level).

J. Chem. Phys. 154, 214302 (2021); doi: 10.1063/5.0046023 154, 214302-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0046023
https://www.scitation.org/doi/suppl/10.1063/5.0046023


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Violin plot summarizing the proportion of electronic interaction energies due to the BSSEs, in percentages, sorted by ascending averages for selected basis sets
(PBE level). Additional basis sets are given in supplementary material, Fig. S2.

limit. Table II shows the basis set errors (BSEs) at the triple-ζ level
for the raw (CP-uncorrected) electronic interaction energies. The
Pople basis sets perform worst, with even the largest augmented
6-311++G(2df,2pd) basis set showing an average absolute error of
1.4 kcal/mol. The augmented correlation-consistent Dunning basis
set performs slightly better (average error of 1.0 kcal/mol), whereas
the Ahlrichs and, especially, the Jensen basis sets perform very well,
with errors below 0.8 kcal/mol and down to 0.3 kcal/mol for aug-pc-
2 (Table II). The MW results thus provide a unique insight into the
BSE of different basis set families at the DFT level.

Our MW analysis indicates that the signed BSEs are almost
always negative (Table II), implying that the uncorrected basis
sets overbind the complexes. What happens if a CP-correction is
included to correct for the BSSE? In the top panel of Fig. 5, the

TABLE II. Basis set errors (BSEs) for TZ basis sets (in kcal/mol) averaged over the
CP-uncorrected electronic interaction energies for 26 association reactions.

TZ basis set Average errora Average absolute errora

6-311G −4.7488 4.9925
6-311G(d,p) −4.3721 4.3721
6-311G(d,p)/LANL2TZ −3.1087 3.1287
6-311+G(d,p) −1.9159 1.9159
6-311++G(2df,2pd) −1.3753 1.3753
cc-pVTZ −1.3930 1.3930
aug-cc-pVTZ −1.0091 1.0091
def2-TZVP −0.7756 0.7805
def2-TZVPD −0.5085 0.5085
pc-2 −0.5127 0.5127
aug-pc-2 −0.3095 0.3162
aAverage of basis set errors of GTO calculation for 26 reactions, each relative to the
complete basis set limit computed with PBE as ΔE[GTO]−ΔE[MW7].

GTO basis set errors are plotted on a linear y axis in order to
show the different signs of CP-corrected and uncorrected interac-
tion energies. It is evident that uncorrected interaction energies tend
to approach the CBS limit from below (overbinding of the com-
plex), while the CP-corrected interaction energies tend to approach
from above (underbinding of the complex). This is in line with
other work, indicating that including the full CP correction leads to
underbinding.108

In the bottom panel of Fig. 5, the absolute value of the inter-
action energies is plotted on a logarithmic y axis in order to show
the magnitudes of the errors for corrected and uncorrected interac-
tion energies. Jensen’s polarization-consistent basis sets perform the
best within each ζ-quality, with the QZ basis set pc-3 delivering devi-
ations from the CBS limit to within ∼0.1 kcal/mol or less. The aug-
mented version of pc-3 (aug-pc-3) is not reported here but discussed
separately in the supplementary material due to the numerical issues
encountered (Fig. S18). Figure 5 shows that the CP corrections
tend to lower the average error for most basis sets, although there
are notable exceptions, such as 6-311G(d,p) (Fig. 5) and 6-311G
(supplementary material, Fig. S13). For these cases, the counterpoise
correction does not make the absolute error in the electronic inter-
action smaller, as the CP-corrected value is as far from the reference
value as the CP-uncorrected value, just with opposite sign. In order
to illustrate how the BSSE and the counterpoise correction may
affect the reaction energy of a specific reaction, consider reaction
Ni–alkene-3 (Scheme 4), which has a medium-sized alkene as the
incoming ligand (a typical substrate in metal-catalyzed reactions109)
with a commonly used basis set, 6-311G(d,p).31,33,112 The electronic
association energy computed for this reaction is −14.0 kcal/mol
with PBE/6-311G(d,p) (not including any other corrections). The
computed BSSE at the same level is, however, 15.2 kcal/mol, result-
ing in an electronic association energy of +1.2 kcal/mol. The CP
correction thus has a larger absolute value than the non-corrected
electronic interaction energy. Typically, reported computational
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FIG. 5. Violin plot summarizing the basis set errors (in kcal/mol, PBE) for uncorrected and CP-corrected electronic interaction energies using our MW7 data as a reference.
(Top) Basis set errors plotted on a linear axis. Negative values represent overbound complexes. (Bottom) Absolute value of basis set errors plotted on a logarithmic axis.

interaction energies are combined with several correction factors
(thermal corrections, ZPVE, entropy corrections, etc); however, this
does not remove the fact that the CP correction changes the final
result by 15.2 kcal/mol. For calculations that desire to approach
chemical accuracy (±1 kcal/mol), a correction factor of this mag-
nitude becomes problematic, unless one can show that the CP cor-
rection brings the electronic interaction energy closer to the value
expected for a complete basis set. However, our MW-computed elec-
tronic interaction energy for reaction Ni–alkene-3 is −6.7 kcal/mol,
which is approximately in the middle between the uncorrected
6-311G(d,p) energy (−14.0 kcal/mol, error −7.3 kcal/mol) and the
CP-corrected value (+1.2, error +7.9 kcal/mol). This lends some
support to previous proposals to use half the counterpoise correc-
tion;108,110 however, we do note that the underbinding caused by
the full CP correction is highly basis set- and ligand-dependent, and
thus, a general reduction of the CP to 50% cannot be recommended.

On basis of the overall results in Figs. 2–5, we can conclude that
on average, BSSEs of 2–9 kcal/mol can be observed for metal–ligand
interactions for widely used medium-sized basis sets and that CP

corrections do not consistently improve results. It is important to
note that is it impossible to know for a given reaction and a given
basis set if the CP correction will provide improved results or not.
A general recommendation may thus be to not use CP corrections
but rather to use larger GTO basis sets for single point energies or,
in order to avoid BSEs altogether, to use MWs.

C. A closer look at 6-311G(d,p)
The poor performance of 6-311G(d,p) stands out from several

of the results presented in Secs. III A and III B. It displays BSSEs that
more resemble DZ basis sets than TZ basis sets, both in kcal/mol and
relative to the interaction energy (Figs. 2 and 3). Looking at Fig. 5,
one sees that to a large extent, the 6-311G(d,p) CP correction leads
to an underbinding to about the same extent as the uncorrected val-
ues overbind. In other words, one might as well not have performed
the correction. Of course, the CP correction’s job is not to bring the
interaction energy closer to the CBS limit, but rather to remove the
BSSE. Whether or not the resulting interaction energy is closer to

SCHEME 4. Reaction Ni–alkene-3 and the 6-311G(d,p) electronic reaction energy with and without CP correction, alongside the complete basis set multiwavelet (MW7)
electronic interaction energy (all PBE).
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the CBS limit depends on the interplay between BSSEs and BSIEs.
However, the premise for applying the CP correction is that it leads
to more robust interaction energies, but this does not seem to be the
case for 6-311G(d,p). Table III illustrates several examples. For the
Cr reactions, the errors of up to −6.69 kcal/mol in the 6-311G(d,p)
interaction energies are reduced to errors of up to +1.59 kcal/mol
after application of the CP correction, implying that the results seem
reasonable, although a consistent underestimation of the interaction
energy (i.e., underbinding) is observed for the CP-corrected values.
For the Ni reactions, the CP-overcorrection is much more severe,
and in some cases, it even reverses the sign of the electronic reaction
energy (e.g., Ni–alkene-3, Ni–alkene-5, Ni–water, Table III). The
BSE of the CP-corrected energies is between 6 and 10 kcal/mol for all
Ni reactions. This ill behavior for the Ni reactions is not observed for
other basis sets [except 6-311G, which shares the poor performance
of 6-311G(d,p)], and even the smaller DZ Pople basis sets give more
uniform deviations from the CBS reference.

Plotting the BSEs as a function of the number of basis func-
tions used to describe the transition metal complexes (Fig. 6), one
sees that 6-311G(d,p) indeed should be considered a double-ζ basis
set in practice, despite formally being a triple-ζ basis set. The same

is observed if one instead plots the BSSEs as a function of the
basis set size (supplementary material, Fig. S17). A similar con-
clusion was reached by Grev and Schaefer, who argued that the
second set of the three contracted s-functions in 6-311G is not a
valence orbital but a 1s function, turning the basis set, in prac-
tice, into 63-11G.111 It can be noted that the 6-311G(d,p) basis set
nonetheless is used in many contemporary studies for computing
reaction energies of metal systems.31,33,112–114 On the basis of the
shortcomings described here, it is strongly recommended to not
use this basis set for computing energies, at least not for DFT-
studies on the type of transition metal-based systems considered
here.

D. Convenience of MWs to compute organometallic
reaction energies

The combined results for 26 association reactions show that
the basis set error in commonly used GTO basis sets can be large
(Figs. 2–5). In order to reduce the BSE, one could use a large
GTO basis, such as the QZ basis set pc-3. However, if one desires
to quantify the remaining BSSE in large GTO calculations using

TABLE III. Interaction energies (in kcal/mol) from uncorrected and CP-corrected 6-311G(d,p) calculations, compared to our
MW7 reference values (all PBE). The 6-311G(d,p) basis set performs significantly worse than other TZ basis sets, and adding
a CP correction does not seem to robustly improve the interaction energies and even changes the sign of the electronic
reaction energy in several cases.

Reaction
ΔE

6-311G(d,p)
ΔE

6-311G(d,p) + CP
ΔE

MW7
BSE

6-311G(d,p)a
BSE

6-311G(d,p)+CPa

Cr–alkene-1 −28.1338 −24.1678 −24.9850 −3.15 +0.82
Cr–alkene-2 −25.2397 −20.1590 −20.6987 −4.54 +0.54
Cr–alkene-3 −15.1441 −8.3921 −9.6207 −5.52 +1.23
Cr–alkene-4 −21.1783 −14.9975 −15.8985 −5.28 +0.90
Cr–alkene-5 −15.2103 −8.3959 −9.9841 −5.23 +1.59
Cr–alkene-6 −21.8598 −15.2904 −16.3504 −5.51 +1.06
Cr–water −23.2986 −17.0040 −16.6123 −6.69 −0.39
Cr–MeOH −23.3927 −17.9786 −18.1595 −5.23 +0.18
Cr–THF −24.1624 −19.0998 −19.5419 −4.62 +0.44
Cr–MeCN −32.5058 −28.5472 −29.4296 −3.08 +0.88
Cr–CO −46.6358 −42.7000 −43.7583 −2.88 +1.06
Cr–H2 −19.5768 −17.8168 −19.0923 −0.48 +1.28
Ni–alkene-1 −20.6416 −7.1626 −16.3267 −4.31 +9.16
Ni–alkene-2 −16.5817 −4.5109 −11.9557 −4.63 +7.44
Ni–alkene-3 −14.0039 +1.1945 −6.6447 −7.36 +7.84
Ni–alkene-4 −13.9730 −1.5440 −8.9230 −5.05 +7.38
Ni–alkene-5 −12.4233 +1.6408 −6.3232 −6.10 +7.96
Ni–alkene-6 −14.4654 −1.8928 −9.1713 −5.29 +7.28
Ni–water −8.3520 +0.0439 −5.9256 −2.43 +5.97
Ni–MeOH −9.3419 −0.7937 −7.1498 −2.19 +6.36
Ni–THF −10.3608 −1.3775 −8.0951 −2.27 +6.72
Ni–MeCN −16.2620 −8.0467 −15.9414 −0.32 +7.89
Ni–CO −30.4033 −19.1056 −29.2362 −1.17 +10.13
Ni–NHC-1 −41.7440 −27.6821 −36.5822 −5.16 +8.90
Ni–NHC-2 −43.8376 −27.7610 −36.0936 −7.74 +8.33
Fe–MeOH −21.9143 −14.6955 −14.4696 −7.44 −0.23
aBasis set error of GTO calculation relative to the complete basis set limit, computed as ΔE[GTO] − ΔE[MW7].
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FIG. 6. Basis set errors (BSEs) plotted against the number of primitive Gaussian basis functions on the complex (left) and against the number of contracted basis functions
of the product complex (right) for all GTO basis sets evaluated here (all PBE). 6-311G(d,p) is plotted by itself (in red) and is seen to cluster together with DZ basis sets rather
than TZ basis sets with respect to basis set errors and size.

the counterpoise method, this can become very cumbersome. For
example, consider a chemical transformation, such as an insertion
into a metal–ligand bond (Fig. 7, left). For such instances, it is not
straightforward to use the counterpoise correction to compute the
BSSE arising from the combination of the fragments in A to give
complex C. Unfortunately, in organometallic chemistry, one is very
often faced with reaction steps where a change in number of moles
occurs simultaneously with a chemical transformation. A possible
work-around to compute the CP is present if an intermediate struc-
ture B exists, for which the CP can be computed (Fig. 7). However,
this provides only an approximation of the BSSE present in struc-
ture C relative to A. An alternative and straightforward solution is
to use MWs instead of large GTOs. In this case, one only has to
compute the single point MW energies on states A and C, no addi-
tional CP calculations are needed, and no work-around via structure
B has to be attempted. Furthermore, the computed MW and pc-n

results for the Ni–O2CMe reaction (Fig. 7, right) indicate that the
approximate CP correction does not consistently reduce the BSE.
Still, the overall performance of the pc-n series seems very good for
this case, with an absolute BSE less than ∼0.1 kcal/mol already at the
pc-2 level, which is much smaller than other error contributions in
current DFT calculations. However, there is no clear trend or sys-
tematic improvement of the results when going beyond pc-2, and
the very large pc-4 basis is just as far from the MW reference as
pc-2. It can be noted that MWs have only recently become able to
compute metal systems (and to our knowledge, this paper is the first
report of MW calculations on transition metal complexes), so their
implementation and timings are not yet on par with large GTO basis
sets (see supplementary material, Table S2 for timings for reaction
Ni–O2CMe). However, future developments will improve these tim-
ings and allow the extension of MW calculations to all elements in
the Periodic Table.

FIG. 7. (Left) Reaction Ni–O2CMe, involving insertion of CO2 into a Ni–Me bond. In order to compute the CP correction with GTO basis sets, intermediate B can be used
as an approximation, if it exists. (Right) Computed electronic reaction energies for reaction Ni–O2CMe with pc-1 (double-ζ), pc-2 (triple-ζ), pc-3 (quadruple-ζ), and pc-4
(quintuple-ζ) GTO basis sets, with and without CP correction (from structure B) compared to MW6 results.
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IV. CONCLUSIONS
We have presented high-precision Multiwavelet (MW) ener-

gies for 26 transition metal-mediated reactions involving association
of common ligands, such as H2, CO, olefins, or solvent molecules
(Scheme 1). By comparing the MW results, we have shown that
commonly used DZ and TZ GTO basis sets can have large basis set
errors. For the tested triple-ζ basis sets, the average absolute BSEs
are up to 5.0 kcal/mol for the Pople basis sets, 1.4 kcal/mol for Dun-
ning basis sets, 0.8 kcal/mol for Ahlrichs basis sets, and 0.5 kcal/mol
for Jensen basis sets (Table II). Using the counterpoise method to
correct for BSSEs leads to underbinding in many cases (Fig. 5). A
particular poor example is the formally triple-ζ Pople basis set 6-
311G(d,p), which should be considered a double-ζ basis set in prac-
tice (Figure 6)111 and which we do not recommend for computing
energies.

The results presented here showcase the large variance in elec-
tronic interaction energies one can expect for the same reaction step
computed with different GTO basis sets. Due to the particular bal-
ance of the errors inherent to each basis set, GTO results contain
large uncertainties. It is also important to note that reaction steps of
different chemical nature may provide very different errors. If one
considers the mechanism for a catalytic cycle, each step in the cycle
may be chemically distinct (e.g., association, reductive elimination,
migratory insertion, and metathesis). A single GTO basis set may
not be able to describe each step in the cycle on equal footing, which
can lead to unpredictable errors when evaluating relative energies.
Thus, the computed energy for an intermolecular association step
may easily have an error of more than 10 kcal/mol (as indicated by
the large BSSEs observed in our study, Fig. 3), but one can expect
that a following intramolecular step may have a much smaller error.
This type of uncertainty may not be obvious to the non-expert, as it
is easy to think of a basis set’s description as uniform across different
elementary reaction steps.

MWs converge toward the exact CBS limit to within a prede-
fined precision set by the user. This guarantees a uniform basis set
description regardless of the chemical system, implying that MWs
conveniently can be applied to any type of reaction. It also eliminates
any interplay between the basis set and the DFT functional, allowing
a user to evaluate a functional’s inherent accuracy without consid-
ering DFT errors being canceled by basis set errors. As illustrated
by the aug-pc-3 results (Fig. S18 in the supplementary material), the
CBS limit convergence can effectively be precluded for GTO basis
sets due to numerical issues generated by near-linear dependencies.
MWs are orthonormal by construction and such issues cannot arise.
Thus, MWs constitute a highly promising basis, both for applica-
tions to any type of properties and for use in development of new
methodologies, such as new DFT functionals.

SUPPLEMENTARY MATERIAL

See the supplementary material for results with additional basis
sets and DFT functionals and for optimized coordinates.
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