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This paper presents a modeling approach for efficient simu-
lation of slender structures, such as wires, cables and ropes.
Lumped structural elements are connected using constraints.
These are solved explicitly, using an elastic version of Baum-
garte stabilization. This avoids singularities in the matrix
inversions. The resulting explicit state-space formulation fil-
ters the higher order dynamics and can be solved using sim-
ple numerical integration methods. Constraints are demon-
strated for modeling different aspects: Internal cable forces,
one cable sliding along another cable and contact between
cable and seabed. Also, a cable initialization routine is pre-
sented for rapid building of different interconnected cable ge-
ometries, ranging from cases in offshore crane operations to
in-sea equipment such as seismic cables. Two case studies
are presented to illustrate the effectiveness and the robust-
ness of the proposed modeling approach; the first one being
a test of two connected, sinking cables, and the last one be-
ing a larger case demonstrating the use of the cable library in
an offshore seismic survey case.

1 Introduction
Wires, cables and ropes are widely used in industry. In

the offshore maritime segment, they are used in areas of ap-
plication ranging from anchor lines, fishing gear, lifting- and
towing operations and seismic surveys. Mathematical mod-
els for cables and wires are often present in operational plan-
ning analyses based on dynamical simulations with models
representing the various system components. Depending on
the type of analysis, models with suited fidelity levels are
used to represent the required characteristics of the system.
For example, if the goal of the analysis is to study the fa-
tigue strength of a cable, as done in [1] for flexible umbili-

cal members for marine structures, a model based on a Fi-
nite Element Method (FEM) is typically used. Such models
are computationally intensive, leading to simplified model-
ing or long computation times. More computational efficient
methods are therefore wanted for time-restricted modeling
of the global forces and movements of slender structures.
This is the scope of this article. On-line decision support
systems may be used to give the operator a window into
the hidden, but mathematically observable, system behavior
and require efficient and robust numeric methods for imple-
mentation. Calculation of system dynamics driven by mea-
surements surpass the human ability to predict motions of
complex interconnected systems, which are frequently en-
countered in operations of marine equipment. Effects of
changes to the system configuration, and ”what if” ques-
tions, can be presented to, and evaluated by, the operator with
a re-configurable model with predictive power. This paper
presents a computationally efficient, and numerically robust
method, suitable for implementation of on-line decision sup-
port systems for the interconnected cable systems found in
marine equipment.

Real-time capable simulation models used for system
surveillance and state estimation purposes are often referred
to as digital twins. There exists a few modeling methods for
flexible, long and slender structures with real-time applica-
ble potentials. One such method is modal system modeling
using a sum of normal modes to describe the geometry of the
structure based on given boundary conditions, material char-
acteristics, loading conditions and energy considerations [2].
Modal theory has been used to model various systems, rang-
ing from beam structures and rotor dynamics [3, 4] to hy-
draulic transmission lines [5] and acoustic filters [6]. This
method results in a compact state-space formulation of the



system, where the number of states are related to the number
of normal modes included in the model. A limited number of
modes are typically needed to achieve results of the desired
accuracy [4]. The derivation of the modal state-space model
is, however, strongly affected by the loading conditions, the
type of forces acting on the body and the boundary condi-
tions. This implies lack of flexibility for modeling systems
that vary in structure during the period of interest. A partic-
ular case is the response from forces attacking in a dynamic
point, which is the case for sliding constraints that will be
discussed later. Flexibility that allows for definition of inter-
connected cables is needed for a general cable formulation
which may be applied in real-time simulations of the previ-
ously mentioned marine operation. The modeling approach
and constraints formulation presented in Sec. 2.4 is sufficient
in order to implement real-time models for a wide variety of
offshore maritime operations.

A mass-spring-damper model is often used for repre-
senting slender structures. Using this approach, the struc-
tural mass is lumped between discrete mass nodes distributed
throughout the the structure and interconnected by a network
of springs and dampers. These models are simple to imple-
ment and to understand, but cannot represent bending and
torsion without interconnected springs in different element
directions, such as shown in [7], which increase complex-
ity of implementation and modeling. Stiff springs may be
required to reflect the material properties. This may intro-
duce high eigenfrequencies in the system and numerical os-
cillations caused by the solver dynamics. This leads to re-
duced simulation time-step sizes, increased computational
effort and longer solution time which are undesirable in on-
line decision support applications. This can to some extent
be alleviated by coarse models, at the expense of fidelity.
Many examples of lumped cable and net models are found
in the literature, such as [8, 9, 10]. In [11] a FEM model
of offshore seismic cables are compared with a lumped pa-
rameter model, consisting of linear mass-spring-damper ar-
rangements, with good results. In [12] a lumped model of
an offshore crane-wire was modeled in 3D based on the 2D
model of a winch wire presented in [13].

Instead of using a spring-damper arrangement between
each lumped element, one can define a set of constraints that
serves the same purpose. However, this will lead to a system
of differential-algebraic equations, but by defining the con-
straint convergence dynamics the result is a set of differential
equations of system and constraint dynamics. The constraint
convergence dynamics may be related to material- and sys-
tem characteristics and the constraints are included explicitly
in the state-space formulation of the system as forces [14],
this will be discussed in detail in Sec. 2.1. Hence, numerical
oscillations can be repressed by the choice of suitable con-
straint dynamics, or constraint control laws. This method for
handling constrained dynamics is referred to as Baumgarte
stabilization, which in general uses analytical reformulations
of constraint forces in mechanical systems to handle differ-
ential algebraic equations [15]. Reformulated models of dif-
ferential equations can be solved using standard integration
routines, including the explicit Euler method used in this ar-

ticle. This method performs well on stiff systems, as shown
in [16, 17].

The use of constraints to lump elements of a structure
together does not put any restrictions on the boundary condi-
tions, the model environment, the model connectivity or the
type of forces acting on each element. Hence, this modeling
approach has the potential of generating modular, generic
models which can be used in on-line simulation connected
to various real-time systems. A particular advantage is the
ability to decide the speed of the constraint dynamics, effec-
tively filtering out from the solver high frequency motions
and gives predictable step size and computational effort. It is,
however, important that the constraint dynamics are signifi-
cant faster than that of important system behavior. Another
issue with this method is that acceleration terms introduced
by the constraint dynamics can lead to numerical singular-
ities related to matrix inversions. This will be discussed in
more detail later. This work uses an elastic version of the
Baumgarte stabilization method to overcome this problem.
The method presented herein, results in a mass matrix that
is always invertible and numerically well-conditioned. This
gives the method the possibility of applying iterative meth-
ods for matrix inversion which increase the efficacy of the
method.

In this work, co-simulation and the Functional Mock-
up Interface standard (FMI) will be used as the simulation
method and the model interface standard, respectively, en-
suring a standardized and modular formulation of the model
interfaces. Co-simulation technology will not be discussed
further, but the reader should be aware of its implications.
The approach of co-simulation is to split a systems simula-
tion into several subsimulators, solve them in parallel and
only exchange information at certain times. Hence, there is
an assumption that each subsimulator is loosely coupled with
the rest of the simulation. Also, the stability of the simula-
tion results might depend on the different time steps in the
co-simulation. For more details about co-simulations, the
reader is referred to [18, 19]. Nevertheless, co-simulations
has been capable of interacting with real-time systems, e.g.
providing measurements from a physical system to a real-
time algorithm such as a control system, and to feed back the
control action to the physical system [20].

This article presents a lumped element cable library for
modeling cables, ropes and wires in maritime applications
with real-time capabilities. This library use the elastic Baum-
garte stabilization method to avoid singularities and to en-
able explicit formulations of constraint forces which can be
solved by any numerical integrator. Moreover, this article
unifies the preliminary results presented in [21, 22] and pro-
vides a novel discussion of common constraints needed to
model slender, flexible marine structures. Hence, the work
presented in this article contributes towards robust, modu-
lar and real-time capable simulation models of various cable
configurations, for the purpose of analyzing marine opera-
tions and for designing digital twins for various flexible and
slender equipment used in different marine operations.



Fig. 1: Cable element with local v.s. global coordinate
frames

2 Modeling
In this work the following vector and matrix syntax will

be used for the lumped models. A vector p, being e.g. a posi-
tion vector, velocity vector or acceleration vector, for lumped
element i in model j in reference frame a at the lumped body
point b, is given as j

i pa/b. Following, a rotation matrix R for
lumped element i in model j rotating from reference frame b
to a is expressed as j

i Ra/b. Other definitions are also used for
readability reasons, and will be explained where first used.
Also, bold letters denote vectors or matrices.

The global reference frame, here referred to as the
NWU-reference frame, is defined such that the x-axis points
to the north, the y-axis towards west and the z-axis upwards,
being zero at the water surface. The local reference frame
for a lumped cable element is defined such that the z-axis is
pointing along the element itself. Both the global and the
local reference frames are illustrated in Fig. 1.

2.1 The basic model
The basic cable model is composed of a given number of

connected elements, where each element is modeled as a bar,
as shown in Fig. 1. In general, the dynamics for an element i
can be expressed as

ẋi = vi,

Miv̇i = Fi +Fc,i,
(1)

where xi is the position and Euler angles, vi is a state vector
holding the velocities and Euler angle rates, Mi is the mass
matrix, and Fi is a vector holding the forces and torques act-
ing on the element (such as gravitational forces). Fc,i is the
constraint force vector which contains forces used to con-
strain the system, e.g. for linking the elements together ac-
cording to the model description. These constraints are pre-
defined and can be solved explicitly from the constraint force
vector

Fc =−J>λ, (2)

where J ∈ Rsize(C)×size(ẋ) is the partial derivative of the con-
straint vector C(x,v) = 0, C ∈ Rnc where nc is the number

Table 1: Relations between β and material properties. Note
that E is the modulus of elasticity, A is the cross section area,
I is the area moment of inertia, G is the rigidity material con-
stant, and J is the torsion constant.

Expression Material property

β2 = EAε Axial stiffness

β2 = EIε Bending stiffness

β2 = GJε Torsional stiffness

of constraints in the system, and λ is the Lagrange multiplier.
To calculate λ the Baumgarte stabilization method [14] can
be used where the stabilization law is defined as

C̈+2αĊ+β
2C = 0 (3)

where α and β are tuning variables, either scalars or diagonal
matrices. Note that β can be related to physical characteris-
tics, e.g. as material properties, as shown in Table 1. For
a common β value, the relationships in the table shows how
the epsilon value can be selected for each degree of freedom
to preserve the elastic properties of the element.

By using

Ċ =
dC
dx

dx
dt

= Jẋ and C̈ = J̇ẋ+Jẍ, (4)

and combining Eq. (1) and Eq. (3), we obtain the total system
of interconnected cable elements expressed as

ẋ = v, (5a)

Mv̇ = Fext (5b)

−J>(JM−1J>)−1(JM−1F+ J̇v+2αJv+β
2C)

2.2 Elastic Baumgarte stabilization
One of the requirements in Eq. (5) is that the mass ma-

trix is invertible, avoiding numerical errors due to singulari-
ties. Since this cannot be guaranteed in a real-time applica-
ble, general simulation model involving cables where itera-
tive matrix inversion procedures are often applied, an elastic
version of the Baumgarte stabilization is used [22, 21], as-
suring a positive definite inertia matrix. This changes the
constraint dynamics given in Eq. (3) to

C̈+2αĊ+β
2C = εIλ (6)

where α and β are tuning variables, either scalars or matrices,
and ε is a small positive number, representing the elastic part
of the method. By combining Eq. (1), Eq. (4) and Eq. (6),
the total system of connected elements can be expressed as

ẋ = v, (7a)

(M+J>ΓJ)v̇ = F−J>Γ(J̇v+2αJv+β
2C), (7b)



where Γ = ε−1I.
To also avoid singularities introduced by the Euler an-

gles, quaternions are used for the orientations. This changes
the state space formulation to

ẋ = H(x)v, (8a)

(M+H>J>ΓJH)v̇ = F (8b)

−H>J>Γ(J̇Hv+JḢv+2αJHv+β
2C),

where H(·) contains the mapping between rotation quater-
nions and Euler orientation rates. Note that the angle rates
(in v) are still expressed through Euler angle rates.

The equations given in Eq. (8) shows a general
state-space formulation of mass-elements lumped together
through well-defined constraints, potentially being affected
by environmental- and external forces. Such constraints and
forces are elaborated in the following.

2.3 Other element types
Even though the main focus here is devoted to cable

dynamics, some elements need to control the boundary con-
ditions for the cables, such as controlling the characteristics
of the cable ends. Three different types will be presented
here, namely a “passive” element taking position commands
as inputs, an “active” element having physical properties,
e.g. a buoy, and a hybrid between the two, e.g. a position
controlled buoy with tension saturation characteristics.

2.3.1 Position-controlled points
Here, the passive position controlled element is an ele-

ment with no geometry and is only used to control the end of
a cable. It takes a position p as input, and employs a second
order normalized Butterworth low-pass filter to estimate its
positions and velocities:

ẋ = v (9a)

v̇ =−x−
√

2 ·v+p (9b)

where x ∈R3 is the position states and v ∈R3 is the velocity
states. Note that there are no orientations for this type
of element. The second order filter used to estimate the
element dynamics is required by the procedure of solving
the constraint vectors, as discussed in Sec. 2.2. Note that no
external or constraint forces (J = 0) are given to the state
equations.

2.3.2 Passive points
The passive element type is a point type that has a

geometry and a mass, and movements are only affected by
modeled external forces. Its state-space model is as given in
Eq. (8). In this work, this point type is used for representing
buoys influenced by hydrodynamic forces, gravity and
buoyancy, in addition to possible constraint forces. This will
be elaborated in Sec. 2.5.

2.3.3 Hybrid points
The hybrid point is a point type that has the character-

istics of the passive point type, but in addition is controlled
based on a time varying position input. The position input is
transformed to control forces, which are saturated based on
tension measurements from the element connected to it.

2.4 Constraint types
The types of constraints added to a cable set the limits

and freedoms for the cable geometry. In many cases physical
effects can be represented either as constraints or as external
forces. This is typically the case for friction forces. To illus-
trate how to define the constraint vector in different cases, a
few constraint types are presented in the following. Note that
all constraints are here given in the global reference frame.

2.4.1 Fixed position constraints
A fixed-end constraint is a constraint for fixing the end

of a lump-segment, e.g. as the one shown in Fig. 1, to an ex-
ternal position (either static or dynamic) or another segment.
The constraint law itself should represent the material stiff-
ness properties, as explained in Sec. 2.2. Note that a segment
here is not only considering a cable element, it can be other
mass elements with defined geometrical properties, such as
e.g. a buoy as elaborated in Sec. 2.3. In general, fixing a
position 1 to a position 2 produce the following constraint

Cpos = 1pg− 2pg = 0 (10)

where ipg ∈R3 denotes position i in the global reference sys-
tem (g). If we were linking the end of a cable segment 1 to a
fixed global position 2, then 1pg in Eq. (10) would change to

1pg = 1pg/cg± 1Rg/l

 0
0
L1
2

 (11)

where 1pg/cg ∈ R3 is the global position of the center of
gravity of segment 1, 1Rg/l ∈ R3×3 is the rotation matrix for
transforming a local vector in the body fixed reference sys-
tem of segment 1 to the global reference system and L1 is
the length of the cable segment 1. Note that ± is used in the
equation to illustrate the difference when working with one
end of the cable segment or the other, as also in Fig. 1. Note
that if two succeeding cable segments are linked together (a
cable segment 1 to a cable segment 2), 2pg would be ex-
pressed similar to 1pg and the resulting constraint would be

Cpos = 1pg/cg± 1Rg/l

 0
0
L1
2

− 2pg/cg∓ 2Rg/l

 0
0
L2
2

= 0

(12)
For succeeding cable elements used to model the same cable
also bending stiffness constraints should be considered, as is
explained in the following.



2.4.2 Bending- and torsion constraints
An angle constraint between two segments 1 and 2 can

be expressed as

C] = θ1−θ2 = 0 (13)

where θ1 and θ2 represent an angle in segment 1 and 2, re-
spectively. If bending (and torsion) stiffness are considered
in all degrees of freedom, the constraints would be expressed
as

C] = Θ1−Θ2 = 0 (14)

where Θi ∈ R3 is the vector of Euler-angles for the lumped
segment i. However, if we are using quaterions, q, the con-
straints change to

C] = q−1
1 q2−q0 = 0 (15)

where qi, is the quaternions for lumped segment i and where
q0 = [1,0,0,0]>.

2.4.3 Depth constraints
In marine operations, depth constraints can be useful to

implement seabed interactions. The first step is to identify
the deepest end of each lumped segment and test if it violates
the seabed restriction. If the different ends of the lumped
cable segment are referred to as A and B, the depths of the
two ends for a segment i are given as

izg/A, izg/B = izg/cg± [0,0,1]>iRg/l

 0
0
Li
2

 (16)

By defining izg/min = min(izg/A, izg/B), and since the global
z-axis is pointing upwards∗, the constraint can be expressed
as

Cw =

{
izg/min− depthzg = 0 if izg/min ≤ depthzg

0 else
(17)

Constraints could also be added to model the friction
between the non-elastic cable segment, which are linked
together through elasticity constraints, and the seafloor when
izg/min ≤ depthzg, similar to the friction forces derived in the
sliding constraint, see Eq. (19)-Eq. (21).

2.4.4 Sliding-end constraint
Assume that the start of cable 1, element 1, slides along

cable 2, as illustrated in Fig. 2. The element of cable 2 which

∗since we are using the NWU reference system convention.

Fig. 2: Sliding cable constraint. The end of segment 1 of
cable 1 is sliding alongside segment n of cable 2

is closest to cable 1 must be identified. This is a trivial task
and is assume here as element n of cable 2. Also, for sim-
plicity reasons, it is assumed that the end A of segment 1 in
cable 1 slides along cable 2 (local z-direction for segment n
in cable 2). Hence, the constraints needed for making the end
of cable 1 slide along cable 2 are given as

C>( = (2
npg/cg− 1

1pg/A)
>2

nRg/l

1 0
0 1
0 0

= 0 (18)

Note that axial stiffness properties can be used for the value
of β2 for sliding constraints. Friction between the two cables
can be included by adding a constraint for the difference in
velocity between the two cables in the local x-direction for
cable 2. This gives the constraint

C� = ∆
2
nvl =

[
2
nRg/l

d
dt
(2

npg/cg− 1
1pg/A)

]>0
0
1

= 0 (19)

The sliding friction parameters† is set as β2 = ε−1 and the
value of Γ is adjusted related to the sliding friction constraint,
here denoted as Γ�,

Γ� = µ
|FN |

1+ ε−1|∆2
nvl |

(20)

where FN is the normal force of the sliding constraint, e.g.
given as

FN = β
2
√

C>(C( = β
2||C(||2 (21)

where C( is given as in Eq. (18).

†according to the sliding friction law Ff = µ|FN |where FN is the normal
force orthogonal to the direction of motion.



2.5 Additional forces
In addition to the constraint forces other forces may

act on the cable system as well. Some of these forces are
considered external, such as gravity and hydrodynamic
drag, while others are considered internal, such as Coriolis
forces. Note that all forces are here presented in the local,
body-fixed reference frame.

2.5.1 Coriolis forces
For each lumped cable element, the Coriolis and cen-

tripetal forces, under the assumption that both the mass ma-
trix and the rotational inertia matrix are diagonal, are given
as

Fvω,i =

[
−(Mi · ivl/cg)×ωi

−(Mi · ivl/cg)× ivl/cg− (Jiωi)×ωi

]
(22)

where Fvω,i ∈ R6 is the force and torque vector, Mi ∈ R3 is
the mass matrix for element i, Ji ∈R3 is the rotational inertia
matrix for element i, ivl/cg is the velocity vector for element
i and ωi is the Euler angle rates vector for element i. These
forces can according to [23] also be expressed as

Fvω,i =

[
0 −S(Mi · ivl/cg)

−S(Mi · ivl/cg) −S(Jiωi)

][
ivl/cg

ωi

]
(23)

where S(·) is the cross-product operator. Note that cen-
trifugal forces disappear in this formulation since the local
reference frame is defined at the inertia center of the element,
which is equivalent to having diagonal mass- and rotational
inertia matrices.

2.5.2 Gravity and buoyancy forces
For an element with circular cross-section, the gravity

and buoyancy forces are simply expressed as

Fgb,i = iRl/g[0, 0, σiρwgLiAi−mig]> (24)

where Ai =
π

4 d2
i is the cross section area of element i, di is

the diameter of element i, ρw is the density of water, mi is the
dry mass of element i, g is the acceleration of gravity and σi
is a coefficient expressing the percentage of submergence of
the element,

σi =


0 if izcg ≥ e>z iRg/lez

Li
2

1 if izcg ≤−e>z iRg/lez
Li
2

− 2·izcg−e>z iRg/lezLi

2e>z iRg/lezLi
otherwise

(25)

where

ez = [0, 0, 1]> (26)

2.5.3 Hydrodynamic forces and added mass
Slender structures are generally not affected by diffrac-

tion wave loads and viscous damping dominates. If the ele-
ment is fully submerged and far from the surface the added
mass may be considered as a constant addition to the rigid
body mass. Constant added mass is included for the sub-
merged part of an element since the acceleration of the el-
ement requires acceleration of the surrounding fluid. Sub-
merged added mass is given as

ma,i = σiCa,iρwAiLi (27)

where Ca,i is the added mass coefficient‡ for element i and σi
is as defined in Eq. (25). Note that the added mass is added
to Mi, e.g. Mi = diag((mi +ma,i) [1, 1, 1]) where mi is the
dry-mass of element i, which also affects the Coriolis forces.

Viscous damping forces are here added as drag forces.
The drag forces acting on a fully submerged lumped element
i due to an uniform current velocity may be expressed as

Fdrag,i =−
1
2

ρwSiCd |iRl/gvc− ivl/cg|>[iRl/gvc− ivl/cg]

(28)
where Cd is a diagonal drag coefficient matrix, Si =
diag([diLi, diLi, πdiLi]) is a diagonal matrix with the pro-
jected areas in the local body axes where di is the element
diameter. Note that if the element is not fully submerged,
the conditions for the added mass simplification are violated
and the flow characteristics around the element will differ
from the conditions on which the drag coefficient is based.
A simplified approach to calculate forces on semi-submerged
cylinders can be implemented, where the drag is scaled with
the percentage of submergence, e.g. similar to Eq. (25), and
drag torques calculated due to the resultant drag force vec-
tor not acting in the center of gravity of the element. If the
current experienced by an element is non-uniform the resul-
tant drag force will not be in center of gravity, resulting in
torques. Nevertheless, details regarding this will not be given
more attention here.

The drag coefficients are usually calculated based on
the Reynolds number and depend on the geometry and the
surface roughness. One example is given in [24, p. 75]
where drag forces on cables in near axial flow are studied.
However, details regarding calculations of drag- and friction
coefficients will not be treated here.

2.5.4 Changing element lengths
Another feature relevant for cables is changing the cable

length. One way of doing this is to change the length of
each lumped element. Since this changes the mass matrix,
compensating forces are needed. Using Lagrange’s equation

‡Ca,i ≈ 1 for fully submerged slender cable elements in infinite fluid
(far from any boundary conditions).



Fig. 3: Catenary calculations for initializing cable geome-
tries, centered in a 2D view.

we can calculate these forces as

F∆L,i =


−ρiAiL̇i · ivl/cg

− 1
16 ρiAid2

i L̇iωi− 1
4 AiL2

i L̇i

1 0 0
0 1 0
0 0 0

ωi

 (29)

where ρi is the density of the cable material. Note that we
also have to update mi, Mi and Ji when an element length
is changing. Also note that changing element lengths in a
simulation might affect the numerical system stability due to
changing the eigenvalues in the mass- and rotational inertia
matrices.

2.6 Initialization of cables
Different strategies for initiating the geometry of cable

systems exist. Here, a method for initializing the cable based
on a catenary curve is presented. In particular, if a cable
with at least two lumped elements has a length L and is fixed
between the points pA and pB, assuming that L > s where

s =
√
(pB−pA)>(pB−pA) = ||pB−pA||2 (30)

a catenary curve between the end points that has the desired
cable length can be found by solving

min
δ∈R>0

f (δ) = L−2δsinh
( s

2δ

)
(31)

where δ is a tuning variable. When δ is found, the catenary
curve is given as

yc = δcosh
(

xc− s
2

δ

)
−δcosh

( s
2δ

)
(32)

where yc and xc are as defined in Fig. 3. When the cate-
nary curve has been calculated the curve can be transferred
to the global coordinate system and lumped elements placed

on the curve, while also calculating the initial orientations for
the lumped elements. Note that if the cable is too short, the
length of the cable might be initialized in tension between
the desired points. Also, if the cable only consists of one
lumped element, the length of the cable is set equal to s and
the cable is initialized as a straight line between the desired
end-points.

2.7 Calculating tension and shear-forces
The tension and shear forces, as well as the bending and

torsion, are generated by the constraints and are calculated
as

Fc = Γ(J̇Hv+JḢv+2αJHv+β
2C) (33)

Note that the term ΓJHv̇, is neglected as it will be small
compared to the other terms. One could also consider the
same for the two first terms inside the parenthesis in Eq. (33).
One reason for removing these smaller terms is that they con-
tribute little to the overall behavior of the cable but introduce
small numerical oscillations which we do not want to trans-
mit as measurements to other systems, e.g. a tension con-
trol system for a winch. Also note that the constraint forces
are given in the global reference frame and represents the
net forces. Hence, the forces should be mapped to tension,
shear forces, bending and torsion in local reference frames
between each lumped element.

3 Case studies
The lumped cable models and the external point types

have been implemented in a C++ library that also supports
co-simulations through the Functional Mock-up Interface
(FMI) standard [25]. Note that all derivative terms, such as
J and d

dt J have been derived and implemented algebraically
for all constraints presented in Sec. 2.4 in order to reduce
numerical errors.

Before presenting a larger case related to in-sea seismic
equipment, a basic case of two connected sinking cables is
presented.

3.1 Case 1: Sinking of connected cables
In this case two cables are connected, as shown in Fig. 4,

where all cable ends are initially situated in the water surface.
Note that the connection constraint is modeled as a ball-joint
with no bending- or torsion stiffness. The outer ends of the
cables, the end at point A and the end at point B in the figure,
are connected to position controlled points, as discussed in
Sec. 2.3.1. In this case, these points are keeps their respec-
tive initial positions. Both cables are equal in dimensions.
Their main parameters are given in Table 2. For simplicity,
the bending stiffness and the torsional stiffness are each set
as a fraction of the axial stiffness. A linear current profile
is calculated based on the surface and seabed currents (Ta-
ble 2). The drag coefficients are calculated as functions of the



Fig. 4: Configuration of sinking connected cables

Symbol Description Value

L Cable length 500m

n Number of elements in each cable 50

d Cable diameter 0.044m

ρ Cable density 1100 kg/m3

ρw Water density 1025 kg/m3

E Elasticity modulus 120GPa

α Baumgarte stabilization damping 50

ε Elastic Baumgarte parameter 10−8

EI
EA Fraction of bending- and axial stiffness 0.01
GJ
EA Fraction of torsion- and axial stiffness 0.01

zdepth Depth -200m

vc,1 Current 1 at surface (0.5,0,0)m/s

vc,2 Current 2 at seabed (0.0,0,0)m/s

Table 2: Main parameters in Case 1: Sinking connected ca-
bles.

Reynolds number. Seabed contact forces are implemented as
depth constraints on each element.

The total cable system consists of 1328§ states. The total
system is simulated as one model using the explicit Euler in-
tegration method with a time-step size of 0.0125 s. To reach
steady state, it is simulated for 1000s (simulation time).

The system was compiled as a standalone executable
and the simulation finished after approximately 195s¶, mak-
ing it about 5.1 times faster than real-time. A graphical repre-
sentation of the cable system geometry throughout the sim-
ulation made using the Mayavi library available in Python.
The results for the 500 first seconds, which is approximately
the time it takes for the cables to sink to the bottom, are
shown in Fig. 5.

The figure shows that the cable system follows the cur-
rent profile direction with the progression of simulation time.
The two cables touch the seafloor at approximately 300 s
(Fig. 5d) and both cables start to land towards each other.
After approximately 500 s (Fig. 5f), the entire cable system
has come to rest and a small buckle in the connection of the
two cables can be seen. This is expected since the cables

§There are 13 states in each lumped cable element and in each point
type, and there is 1 additional state in each cable related to the winching
functionality. Hence, 102 elements × 13 states per element + 2 = 1328.
¶Using a normal workstation laptop, HP ZBook 15 G4, late 2017 mod.

Symbol Description Value

α Baumgarte stab. damping [1 ,5 ,10 ,20 ,30 ,50 ]

ε Elastic Baumgarte parameter [10−7 ,10−8 ,10−9 ,10−10 ]

- Numerical solver Variable Runge-kutta 2

- Relative tolerance 10−5

- Absolute tolerance 10−5

- Simulation time 50 s

Table 3: Main parameters in efficiency study.

land towards each other at the seabed and when there is not
enough space for the cables to completely extend, the re-
maining falls to the side, as is shown in the figure. The size
of the buckle that falls to the side is also determined by the
bending stiffness of the cables.

3.1.1 Efficiency study
The Baumgarte stabilization method has been thor-

oughly studied, validated, and verified already in the liter-
ature, the same yields the environmental loads and friction
characteristics presented in Sec. 2. What is new in the pro-
posed method is the introduction of elasticity in the Baum-
garte stabilization, which is crucial for real-time applications
where a singularity in a matrix inversion can cause a crash
in the application, in the best case produce non-valued re-
sults. To further study the effectiveness of the proposed ca-
ble modeling method, a small study with varying ε and α is
performed. In this study we lift the cable arrangement out
of water and simulate its response using a variable time-step
size solver. The new parameters not previously listed in Ta-
ble 2 are found in Table 3.

Fig. 6 shows a comparison of the simulation results.
Fig. 6a and Fig. 6b show how the choice of α and ε affects
simulation time and error, respectively. Since the choice of
parameters in this case affects the dynamics of the system,
and not the solver, the definition of error is not straightfor-
ward. A simulation which is ’well behaved’ in simulation
performance and accuracy is selected as the reference and
the error is then the difference between the reference and
current simulation. Fig. 6a indicates that the simulation time
increases with increased ε, and particularly when α is low.
This is expected since less damping of the constraints, and
more flexibility in the constraint formulations, give room for
more numerical oscillations. The reason for high values of ε

giving longer simulation times for low values of α is mixed.
Lowering ε will result in a filtering effect of the cable dynam-
ics and the corresponding constraints. Since the diagonal of
the mass matrix becomes more significant, the matrix inver-
sion algorithm will converge faster and become more flexible
with respect to numerical errors. This lowers the simulation
time and is also why increasing α for low values of ε have
less effect on the total simulation time. This filtering effect
is illustrated in Fig. 7, where two different values for ε are
compared visually. But it is not possible to see the oscil-



(a) time≈ 0s (b) time≈ 100s (c) time≈ 200s

(d) time≈ 300s (e) time≈ 400s (f) time≈ 500s

Fig. 5: Graphical representation of the simulation results from the sinking connected cable example. Note that the blue color
in the figure represents the water surface while the gray color, not being the cables, represents the seafloor. The fixed end
positions are represented by orange spherical elements in the figure.

(a) Normalized total simulation time. (b) RMS state vector error, RMS(error) = log10 (σ(error)+10).

Fig. 6: Comparison of results when varying ε and α. Note that the orientation of the plots are not equal.

lations along the cables with the highest value of ε in the
figure. These oscillations are triggered by the cable being
dropped in a gravity field without any significant damping.
The case with the lowest value of ε, however, drops down
and reach an equilibrium point almost momentarily without
experiencing any oscillations, as if critically over-damped.

High values of ε, on the other hand, makes the constraints
more flexible. This can give rise to more numerical vibra-
tions in the cable arrangement, which causes the solver to
use smaller time-step sizes to meet the solver tolerances. Ex-
cept for the lowest values of ε, increasing values of α gives
increased time-step sizes. This is caused by increased con-



(a) ε = 10−12 , α = 1.0 (b) ε = 10−8 , α = 1.0

Fig. 7: Filtering effect on cable dynamics from low values of ε, where the intended dynamics in the connection between the
cables are violated with low values of ε. Note that the connection point between the two cables are not subject to bending
stiffness, which is the case for the cable elements within each cable. Also note that the cable in Fig. 7b has not reached its
steady state at this point, it has oscillations along the cable caused by being dropped in a gravity field without significant
external damping.

straint damping. Experience indicate that when using a fixed
step-size solver, such as the Euler integration method, higher
values of α tend to stabilize the solver, allowing higher fixed
time-step sizes. On the other hand, lower values of ε tend
to destabilize the solver. Hence, real-time applications using
fixed step size solvers will probably benefit from higher val-
ues of ε to relax the system and increase the time-step size.

Fig. 6b shows the RMS error of the state vector when
using a simulation with ε = 10−8 and α = 1.0 as reference.
ε= 10−8 is chosen to avoid the possible filtering effect lower
values of ε have on the simulation results. The constraint
damping can be related to material damping properties. This
means that the best choice of α is highly case dependent, and
can not be chosen solely based on ε. The correlation between
the values of ε and α with the deviation from the reference
simulation and the normalized total simulation time is seen
in the figure indicates that there is a possibility of reducing
simulation fidelity to gain simulation speed while maintain-
ing acceptable results compared to the reference. However, it
is advised to check the resulting dynamics in systematically
in order to verify that the resulting dynamics maintains the
global system response characteristics.

3.2 Case 2: A seismic front end
Seismic streamer cables are used in the search of new

offshore oil and gas resources. Seismic cable spreads con-
sist of up to twenty 10km cables towed behind a vessel,
spanning an area of up to 18km2, making them the largest
man-made moving objects on Earth. A seismic front end,
as shown in Fig. 8, is the cable arrangement in front of the
seismic streamer cables. Its purpose is both to distribute the
towing loads and to keep the seismic cables separated. In
the system shown in the figure, the lead-in cables distribute
the load of the entire towing operation of the seismic in-sea
equipment. The deflectors keep the spread separated, and the
spread ropes keep a more or less constant distance between
the head of the streamer cables. The spur-lines connect the
deflectors to the streamers, while the wide-tow cables con-
nect the deflectors to the vessel itself. In addition to the ca-
bles, deflectors and buoys, a gun-array is often situated in

Fig. 8: Sketch of a seismic front end [22].

the center of the front end. The gun-array is a larger buoy
centered between the inner lead-in cables with air-guns sub-
merged below it. The air-guns are used to produce the sound
waves for recording the seismic data. The gun-array itself is
not part of the seismic front end, but may be connected to it,
as explained shortly.

Some information about the condition of the front end
is available for the seismic vessel crew during normal oper-
ations. The winch systems may provide tension measure-
ments and cable length estimates, but these are often of
poor quality. RGPS‖ on the head buoys can provide posi-
tion references for these. Measurements of cable orientations
are sometimes available for some points along the cable, as
well as depth measurements. Still, operational decisions are
highly based on experience and best practice. A state ob-
server for the front end of a seismic spread was therefore
developed in the industry research project Real-time digital
twin for boosting performance of seismic operations.

In this case study, the front end state observer model
is divided into two parts; a port-side part and a starboard
part. Each side consists of 8 lead-in cables, one wide-tow
cable, one spur-line cable, 7 separation rope cables, 8 buoy
cables, one sliding cable connecting the gun-array to a lead-

‖Relative GPS



Cable description Connections Main parameters
Lead-in cable i ∈
{1,8}

Start: Lead-in
winch i
End: End of buoy
cable i

Number of ele-
ments: 20
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 550-925 m
Buoy cable
i ∈ {1,8}

Start: Buoy i
End: Below buoy i

Number of ele-
ments: 1
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 50 m
Separation rope ca-
ble i ∈ {1,7}

Start: End of buoy
cable i
End: End of buoy
cable i+1

Number of ele-
ments: 10
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 110 m
Spur-line cable Start: End of buoy

cable 7
End: Deflector

Number of ele-
ments: 10
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 200 m
Wide-tow cable Start: Wide-tow

winch
End: Deflector

Number of ele-
ments: 20
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 1100 m
Gun-array cable Start: Lead-in ca-

ble 2, initially at the
middle
End: Gun-array

Number of ele-
ments: 10
Diameter: 0.044 m
Density: 1110 kg/m3

Length: 110 m

Table 4: Cable configuration in each side of the front end.

in cable and 19 external position inputs. Table 4 summarizes
the configuration of the cables in each side of the front end.
Note that the gun-array cables are connected to the lead-in
cables through a sliding constraint, as discussed in Sec. 2.4.

In the observer, the cables are fed with live position
measurements from the buoys, the deflectors and the winch-
positions through position controlled points, as shown in
Fig. 9, and the output from the state observer is the front
end geometry and tensions for the various cables and ropes.
The initial positions of the “points” in the system are shown
in Table 5. Note that the position (0,0,0)m is the center of
gravity for the vessel, and that the positions are set relative
to the vessel. The main cable- and environmental parameters
are listed in Table 6. In this case, the current is set to zero
and the vessel speed is set to 1.5 m/s (xg-direction).

To excite the front end observer, we add noise to the
virtual RGPS measured y-positions of the buoys and the
deflectors after 100 s (simulation time). This noise is im-
plemented as a sine-function with amplitude 50 m and fre-
quency 0.01 rad/s. A load of 10 kN is added to the end of each
lead-in cable, in the xg-direction, to simulate streamer cable
loads. In a realistic application these loads would be time-
varying, and measurements of the resulting tension would be
provided as input to the state observer.

The total state-space model for each side of the front end
consists of 3887 states. An explicit Euler integration method
is used in the state observer, with time-step size 0.025 s. Co-

Point Port-side positions
(x,y,z) [m]

Starboard posi-
tions (x,y,z) [m]

Buoy 1 (−550,50,0) (−550,−50,0)

Lead-in winch 1 (0,1,10) (0,−1,10)

Buoy 2 (−550,150,0) (−550,−150,0)

Lead-in winch 2 (0,2,10) (0,−2,10)

Buoy 3 (−550,250,0) (−550,−250,0)

Lead-in winch 3 (0,3,10) (0,−3,10)

Buoy 4 (−550,350,0) (−550,−350,0)

Lead-in winch 4 (0,4,10) (0,−4,10)

Buoy 5 (−550,450,0) (−550,−450,0)

Lead-in winch 5 (0,5,10) (0,−5,10)

Buoy 6 (−550,550,0) (−550,−550,0)

Lead-in winch 6 (0,6,10) (0,−6,10)

Buoy 7 (−550,650,0) (−550,−650,0)

Lead-in winch 7 (0,7,10) (0,−7,10)

Buoy 8 (−550,750,0) (−550,−750,0)

Lead-in winch 8 (0,8,10) (0,−8,10)

Deflector 8 (−550,900,−1) (−550,−900,−1)

Wide-tow winch 8 (0,10,10) (0,−10,10)

Gun-array 8 (−250,0,−50) (−250,0,−50)

Table 5: Initial positions. These positions are given relative
to the vessel.

Parameter Description Value

C
ab

le
s

α Damping parame-
ter in the Baum-
garte stabilization
method

10

µ Sliding friction
parameter

0.1

EI
EA = GJ

EA Ratio between
bending stiffness
/ torsion stiffness
and axial stiffness

0.05

Streamer load-
cells

— -10 kN in global x-
direction

E
nv

ir
on

m
en

t

ρw Water density 1025 kg/m3

Water temperature — 12 ◦

Current 1 At 0 m depth (0,0) m/s, global
xg,yg-direction

Current 2 At 10 m depth (0,0) m/s, global
xg,yg-direction

Vessel speed xg-direction 1.5 m/s

Table 6: Main cable- and environmental parameters.



Fig. 9: Co-simulation setup of the seismic front end observer.

simulation is employed, enabling us to simulate each side
of the front end in a different integrator. The co-simulation
macro time-step size is set to 0.25 s, and the simulation is run
for 2500 s (simulation time). A separate co-simulation mod-
ule is used for generating the virtual RGPS measurement.

The position changes are fed to the state observer co-
simulation models using a third co-simulation model used
for generating the RGPS measurements. The entire simula-
tion was performed on a quite standard laptop∗∗, using the
Coral co-simulation master algorithm [26]. The simulation
run about 3 times faster than real-time.

The observed geometry of the front end, as seen from the
side, is shown in Fig. 10 for two different simulation times.
This is created by the Mayavi Python library. Detailed results
and their discussion is outside the scope of this paper. After a
while, before we start to excite the model with buoy position
changes, the cables begin to converge to their corresponding
steady-state positions, as shown in Fig. 10b. However, as the
results show, about 100 seconds is not enough for the wide-
tow cables to converge to their steady-state positions.

The forces between the two middle lead-in cables and
their winches when changing the buoy and deflector posi-
tions are shown in Fig. 11, while the geometry of the front
end is shown in Fig. 12, By comparing Fig. 11a and Fig. 11b
we see that the shear forces in x and the tension forces are
in opposite phases, as expected since the front end is mir-
rored about the xg-axis and since both models share the same
forces and the same environmental conditions. Nevertheless,
the results show that the tension forces varies from about
13.3 kN to about 14.5 kN. These tension variations come as
a result of adding the cyclic variations in RGPS position
changes for the head buoy and the deflectors. The effect of
these variations are shown in detail in Fig. 12, which shows
the neutral front end geometry in Fig. 12a, the maximal port-
side deflection of the front end in Fig. 12b and the maximal
starboard deflection of the front end in Fig. 12c. Note that

∗∗HP ZBook 15 G4, late 2017 mod.

(a) Front end side-view right after simulation start.

(b) Front end side-view right before changing buoy and deflector
positions.

Fig. 10: Side views of the seismic front end geometry.

the lead-in and wide-tow cables get slack when the buoy po-
sitions move towards the center line. The reason is that as we
only change the y-position, the distances between the buoys
and the winches are not kept constant.

As a minor validation of the simulated cable tensions in
this case an analytic solutions of a suspended cable having
a catenary geometry was used for comparison. The results
from the analytic solution coincide with the simulation re-
sults.

4 Conclusion
This article presents a robust, real-time capable lumped

modeling strategy for flexible, slender marine systems. Con-
straints are used for modeling the connections between the
lumped elements, in addition to the effects of some exter-
nal forces. The constraint types presented in this article are
position constraints, bending- and torsion constraints, slid-
ing end constraint involving friction, and depth constraints.
The resulting vector of constraints are transformed to explicit
constraint forces by using an elastic version of Baumgarte
stabilization. The constraint force dynamics are tuned to
match material properties and system characteristics, such
as axial stiffness and friction coefficients. Different environ-
mental forces that may act on the lumped models are pre-
sented. This includes buoyancy, gravity and hydrodynamic
drag forces. In addition, forces related to winching function-
ality, which changes the length of each lumped element, and
forces related to rotating coordinate frames are included. A
procedure to estimate a catenary curve between two points



(a) Forces in port-side lead-in cable 1, at the winch connection
point.

(b) Forces in starboard lead-in cable 1, at the winch connection
point.

Fig. 11: Forces in the center lead-in cables for simulation
time t ∈ [100,2500].

are presented. This method is used to initialize cable geome-
tries if the cable itself is longer than the distance between the
initial cable end points.

The proposed modeling approach was implemented as
a C++ library, facilitating the modeling of flexible, slender
marine structures. Two case studies were presented. In the
first case study, two connected cables were attached between
two fixed points. The simulation started in the water surface,
and a linear current profile was used. The simulation showed
the sinking process until the cables found their steady state,
where parts of the cables were suspended from the fixed
points and parts were resting on the seabed. Also, a short ef-
ficiency study regarding variations in the parameters ε and α

were conducted. In general, the results indicate that it is pos-
sible to reduce accuracy in intended model dynamics at the
same time as increasing the simulation speed. This while as-
suring safe matrix inversions without any singularities. This
is one of the benefits of the method and is considered useful

when dealing with large cable systems in real-time applica-
tions, which in general require high computational efforts.
Allowing such a property also comes with a prices, namely
that care must be take when choosing the values of α and ε

such that the cable system dynamics remains as intended.
In the second case study, a marine seismic front end was

simulated. Using co-simulation, the simulation was divided
into three parts: The port front end, the starboard front end
and the measurements from the buoys and deflectors.

The case studies gave some insights to the real-time ca-
pabilities of the implemented cable library. Case study 1 and
2 consisted of 1328 and 3887 states, respectively. Stable sim-
ulations were achieved in both cases, and they were able to
simulate 5 and 3 times faster than real-time, respectively.
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