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Abstract. Einstein–Weyl geometry is a triple (D, g, ω) where D is a sym-
metric connection, [g] is a conformal structure and ω is a covector such
that • connection D preserves the conformal class [g], that is, Dg =
ωg; • trace-free part of the symmetrised Ricci tensor of D vanishes.
Three-dimensional Einstein–Weyl structures naturally arise on solutions
of second-order dispersionless integrable PDEs in 3D. In this context,
[g] coincides with the characteristic conformal structure and is there-
fore uniquely determined by the equation. On the contrary, covector ω is
a somewhat more mysterious object, recovered from the Einstein–Weyl
conditions. We demonstrate that, for generic second-order PDEs (for in-
stance, for all equations not of Monge–Ampère type), the covector ω
is also expressible in terms of the equation, thus providing an efficient
‘dispersionless integrability test’. The knowledge of g and ω provides a
dispersionless Lax pair by an explicit formula which is apparently new.
Some partial classification results of PDEs with Einstein–Weyl character-
istic conformal structure are obtained. A rigidity conjecture is proposed
according to which for any generic second-order PDE with Einstein–Weyl
property, all dependence on the 1-jet variables can be eliminated via a
suitable contact transformation.
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1. Introduction

We consider second-order partial differential equations (PDEs) in 3D,

F (xi, u, ui, uij) = 0, (1)

where u is a scalar function of the three independent variables x0, x1, x2, and
we denote ui = uxi , uij = uxixj , etc. For every solution of equation (1) the
corresponding characteristic variety,

∑

i≤j

∂F

∂uij
pipj = 0,

defines a conformal structure g = gijdxidxj where the symmetric matrix(
gij

)
3×3

is inverse to the matrix of the symbol
(
gij

)
3×3

, with gij = 1+δij
2

∂F
∂uij

(no summation). Here and in what follows we assume the nondegeneracy con-
dition det gij �≡ 0, i.e. [g] is well-defined on a generic solution of (1). Equations
with nondegenerate characteristic variety will be called nondegenerate.

We will be interested in equations (1) whose characteristic conformal
structure g satisfies the Einstein–Weyl property on every solution of (1) (PDEs
with EW property for short). Recall that Einstein–Weyl geometry is defined by
a triple (D, g, ω) where D is a symmetric connection, g is a conformal structure
and ω is a covector such that [6]:

(a) Connection D preserves the conformal class [g]: Dg = ωg;
(b) Trace-free part of the symmetrised Ricci tensor of D vanishes.

In coordinates, this gives

Dkgij = ωkgij , R(ij) = Λgij , (2)

where ω = ωkdxk is a covector, Dk denotes covariant derivative, R(ij) is the
symmetrised Ricci tensor of D, and Λ is some function. In fact one needs to
specify g and ω only, then the first set of equations (2) uniquely defines the
corresponding Weyl connection D. We will refer to ω as the Weyl covector. It
was shown in [21] that, for broad classes of translationally invariant equations
(1), the Weyl covector is expressed in terms of g by the explicit formula

ωk = 2gkjDxs(gjs) + Dxk(ln det gij), (3)

where Dxk denotes the total derivative with respect to xk:

Dxk = ∂xk + uk∂u + uik∂ui
+ uijk∂uij

+ · · · .

We emphasise that in the general case formula (3) is no longer valid. Finding
a universally applicable formula for the Weyl covector is one of the main ob-
jectives of this paper. Since the characteristic conformal structure g depends
on the 2-jet of u, one can show that the Weyl covector depends on no more
than 3-jets, and is linear in the third-order partial derivatives of u. (Recall
that the k-jet of u at a point x can be identified with the collection of partial
derivatives ∂νu of order |ν| ≤ k.)
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Remark. Given a three-dimensional conformal background [g], the problem
of reconstruction of a covector ω such that (g, ω) satisfy the Einstein–Weyl
equations is far from trivial: it was shown in [18,19] that, for given g, Einstein–
Weyl equations reduce to a complicated differential system for ω. This system is
overdetermined, and not in involution. Thus, it may be inconsistent (the cases
of general left-invariant metric on S3, metric ‘Sol’, or any ‘sufficiently generic’
g), or possess multiple solutions (the case of flat g, and some other metrics
with multiple Killing vectors). In particular, there is no explicit ‘formula’ for
ω in terms of g. What makes difference in our case is that we are dealing
with a whole family of conformal structures parametrised by solutions u of
second-order PDE (1). The corresponding Einstein–Weyl equations split in
the higher-order derivatives of u, thus providing additional constraints for ω,
both differential and algebraic. This leads to a formula for ω depending on the
equation, and involving 3-jets of u only, with the leading part given by (3).

We recall that Einstein–Weyl equations (2) are integrable by twistor-
theoretic methods [27]; in [12] this was explicitly demonstrated in the Manakov–
Santini gauge. PDEs (1) satisfying EW property can be viewed as reductions
of the Einstein–Weyl equations. This, in particular, implies the existence of
a dispersionless Lax representation [5]. We recall that dispersionless Lax pair
consists of two parameter-dependent vector fields X̂, Ŷ for which the integra-
bility condition

[X̂, Ŷ ] ∈ span〈X̂, Ŷ 〉
holds identically modulo (1). In equivalent form, dispersionless Lax pairs have
first appeared in [35] as dispersionless limits of Lax pairs of integrable soli-
ton equations. Relations of dispersionless integrable systems to Einstein–Weyl
geometry have been discussed in [4,13–17,33].

1.1. Summary of Main Results

Partial Classification Results In Sect. 2 we demonstrate that EW property is
an efficient classification/integrability criterion. To illustrate the approach we
obtain complete lists of PDEs with EW property within the following three
classes:

• Dispersionless lattice equations

uxy = f(x, y, t, u, ux, uy, ut, utt).

Modulo natural equivalence transformations preserving this class there
exists a unique example with futt,utt

�= 0, the so-called Boyer–Finley
equation uxy = eutt [3]. This example shows that EW property is a
rather stringent constraint.

• Nonlinear wave equations

utt = f(x, y, t, u, ux, uy, ut)uxy.

The EW property leads to a generic case f = sinh2 ut

uxuy
, plus a number of

degenerations.
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• Generalised Dunajski–Tod equations

(utt − u)uxy − (uxt − ux)(uyt + uy) = f(x, y, t, u, ux, uy, ut).

The EW property leads to a generic case f = c2
uxuy

cosh2 ct
, plus a number of

degenerations.
For all equations arising in the classification we calculate the corresponding
Einstein–Weyl structures and dispersionless Lax pairs. The structure of con-
tact symmetry algebras indicates that all resulting equations are contact non-
equivalent.

Reconstruction of the Weyl Covector In Sect. 3 we outline a general procedure
to calculate the covector ω. This procedure applies to all equations that are not
of Monge–Ampère type, and gives an expression for ω in terms of the equation
(see Sect. 3.1 for Monge–Ampère conditions in 3D). We look for ω in the form
ω = Ω + φ, in components,

ωk = Ωk + φk,

where Ωk are given by formula (3) and φk are the ‘correction’ terms. Substitut-
ing g, ω into Einstein–Weyl conditions (2) and splitting the resulting equations
in the third-order derivatives of u, we conclude that the correction terms φk

must be functions of the 2-jet of u only. Furthermore, along with a number
of differential relations, φk must satisfy an algebraic system of 20 linear inho-
mogeneous equations which, in the non-Monge–Ampère case, determines φk

uniquely.
In other words, the system has the form Aφ = B where A is a 20 × 3

matrix of rank = 3, and B is a 20-component vector (both depend on the 2-jet
of u). Summarising, we have the following result.

Theorem 1. For every nondegenerate non-Monge–Ampère equation (1) with
EW property, the Weyl covector ω is algebraically determined by the equation.

Remark. For Monge–Ampère equations the matrix of the linear system A and
the vector B vanish identically, and further analysis is required to reconstruct
φk. In fact, the EW conditions provide an overdetermined differential system
for φ which, in generic case, implies a formula for φ through differential closure
(compatibility analysis) of the system. We demonstrate this with examples in
Sect. 2.

As a by-product of our analysis we obtain a remarkable fact that, for
any second-order PDE (1) with EW property, ‘freezing’ the 1-jet of u (that is,
giving the variables xi, u, ui arbitrary constant values), results in an integrable
Hirota-type equation F (uij) = 0.

General Formula for Dispersionless Lax Pair For equation (1) with EW prop-
erty, in Sect. 4 we propose an algorithm to calculate the corresponding disper-
sionless Lax pair. Here is a brief summary. Let g and ω be the characteristic
conformal structure and the Weyl covector, respectively. Let us introduce the
so-called null coframe θ0, θ1, θ2 such that

g = 4θ0θ2 − (θ1)2.
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Let V0, V1, V2 be the dual frame, and let ck
ij be the structure functions defined

by commutator expansions [Vi, Vj ] = ck
ijVk. The Lax pair is given by vector

fields

X̂ = V0 + λV1 + m∂λ, Ŷ = V1 + λV2 + n∂λ,

where

m = (12c112 − 1
4ω2)λ3 + (12c102 − c212 − 1

2ω1)λ2 + (12c101 − c202 − 1
4ω0)λ − c201,

n = −c012λ
3 + (12c112 − c002 + 1

4ω2)λ2 + (12c102 − c001 + 1
2ω1)λ + (12c101 + 1

4ω0);

here ωi are the components of the Weyl covector: ω = ωiθ
i. In combination

with Theorem 1 we have the following result.

Theorem 2. Every nondegenerate second-order PDE with EW property is inte-
grable, and the dispersionless Lax pair is algebraically determined by the Weyl
covector ω and the function F of (1).

Corollary. For every nondegenerate non-Monge–Ampère equation (1) with EW
property, the dispersionless Lax pair is algebraically determined by the equation.

This result sounds, in a sense, surprising: intuition coming from the the-
ory of soliton equations tells us that reconstruction of a Lax pair for a given
PDE (known to be integrable) should require ‘integration’ of some kind.
Rigidity Conjecture In Sect. 5 we formulate a rigidity conjecture which states
that, in the non-Monge–Ampère case, every PDE (1) with EW property can
be reduced to a dispersionless Hirota form F (uij) = 0 via a suitable contact
transformation. In other words, all dependence on the 1-jet variables xi, u, ui

can be eliminated (for Monge–Ampère equations this is not true).
To illustrate this phenomenon we consider a PDE [31]

utt =
uxy

uxt
+

1
6
ϕ(uxx)u2

xt,

for which EW property is equivalent to the Chazy equation ϕ′′′+2ϕϕ′′−3ϕ′2 =
0. We prove that any deformation of the form

utt =
uxy

uxt
+

1
6
f(x, u, ux, uxx)u2

xt,

which satisfies EW property, is trivial (contact-equivalent to the undeformed
equation). We believe that our method of proof can be extended to the general
case.

2. Examples and Classification Results

Given a class of second-order PDEs in 3D, we impose Einstein–Weyl conditions
for the characteristic conformal structure g to obtain classification results.
This procedure can be viewed as a ‘dispersionless integrability test’, and is
manifestly contact-invariant. Some illustrative examples are given below. We
emphasise that in all examples the Weyl covector ω, as well as the associated
dispersionless Lax pair, are expressible in terms of the equation by explicit
formulae that work for all special cases arising in the classification.
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2.1. Dispersionless Lattice Equations

Here we consider equations of the form

uxy = f(x, y, t, u, ux, uy, ut, utt). (4)

In the translationally invariant case, such equations arise as dispersionless
limits of integrable lattices

un
xy = F (u, ux, uy, un−1, un, un+1),

see [20]. The characteristic conformal structure of equation (4) has the form

g = 4futt
dxdy − dt2.

Assuming futt,utt
�= 0 (which is equivalent to the requirement that equation

(4) does not belong to the Monge–Ampère class), one can show that the Weyl
covector is given by the following formula in terms of the right-hand side f :

ω =
(

2
3

fut

futt

+
10
3

Dt(futt
)

futt

− 4
3

Dt(futt,utt
)

futt,utt

)
dt

where Dt denotes the total t-derivative. One can represent ω in the form ω =
Ω+φ where Ω as given by formula (3) and the correction term φ are as follows:

Ω = 2
Dt(futt

)
futt

dt, φ =
(

2
3

fut

futt

+
4
3

Dt(futt
)

futt

− 4
3

Dt(futt,utt
)

futt,utt

)
dt;

note the absence of dx- and dy-components. The requirement that g, ω satisfy
Einstein–Weyl conditions on every solution of equation (4) leads to a system
of differential constraints (integrability conditions) for the right-hand side f ,
the simplest of them being

futt,utt,ux
=

futt,utt
futt,ux

futt

, futt,utt,uy
=

futt,utt
futt,uy

futt

,

futt,utt,ut
=

futt,utt
futt,ut

futt

, futt,ux,ux
=

futt,utt
fux,ux

futt

,

futt,ux,uy
=

futt,ux
futt,uy

futt

, futt,uy,uy
=

futt,utt
fuy,uy

futt

,

futt,utt,utt
=

f2
utt,utt

futt

, futt,ux,ut
=

futt,ux
futt,ut

futt

, futt,uy,ut
=

futt,uy
futt,ut

futt

,

futt,ut,ut
=

f2
utt,ut

futt

+ 2(futt,ux
futt,uy

− fux,uy
futt,utt

),

plus a number of more complicated constraints. Note that the set of inte-
grability conditions is not in involution, and the prolongation implies further
second-order relations such as

futt,utt
fut

= futt,ut
futt

,

futt,ux
= futt,uy

= fux,ux
= fuy,uy

= fux,ut
= fuy,ut

= 0, etc.

Consequently, modulo the equivalence transformations u → U(u, x, y, t), equa-
tion (4) has the form

uxy = eutt+ϕut+
2
9u(3ϕ′+ϕ2)
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where ϕ(t) is an arbitrary function. It can be set equal to zero via a suitable
transformation t → a(t), u → b(t)u+c(t), thus leading to the unique canonical
form

uxy = eutt , (5)
known as the Boyer–Finley (BF) equation [3]. This example demonstrates
rigidity of the Einstein–Weyl requirement.

Integrable equations of type (4) possess a Lax representation [X̂, Ŷ ] ∈
span〈X̂, Ŷ 〉 with

X̂ = ∂y + λfutt
∂t + λ2

(
2
3futt

Dtfutt,utt

futt,utt
− 5

3Dtfutt
− 1

3fut

)
∂λ,

Ŷ = λ∂x + ∂t + λ
(

1
3

fut

futt
+ 2

3

Dtfutt

futt
− 2

3

Dtfutt,utt

futt,utt
− λ

Dxfutt

futt

)
∂λ.

Remarkably, this Lax pair works modulo integrability conditions satisfied by
f and is therefore fully invariant under the equivalence transformations pre-
serving class (4). For BF equation (5) it simplifies to

X̂ = ∂y + λeutt∂t − λ2euttuttt∂λ, Ŷ = λ∂x + ∂t − λ2uttx∂λ.

2.2. Nonlinear Wave Equations

Here we consider quasilinear equations of the form

utt = f(x, y, t, u, ux, uy, ut)uxy. (6)

The characteristic conformal structure is

g =
4
f

dxdy − dt2,

the corresponding Weyl covector is given by

ω = (−2Dt ln f + ϕ(t)) dt.

At this stage, ϕ(t) is some function to be determined. One can represent ω in
the form ω = Ω + φ where Ω as given by formula (3) and the correction term
φ are as follows:

Ω = −2Dt ln f dt, φ = ϕ(t) dt.

The requirement that g, ω satisfy Einstein–Weyl conditions on every solution
of equation (6) leads to a system of differential constraints (integrability con-
ditions) for the right-hand side f . The simplest of them are as follows:

fux,ux
= 2

f2
ux

f
, fux,uy

=
fux

fuy

f
, fuy,uy

= 2
f2

uy

f
,

fux,ut
=

fux
fut

f
, fuy,ut

=
fuy

fut

f
, fut,ut

=
ff2

ut
− 2fux

fuy

f2
,

fux,u =
fux

fy + uyfufux
− ffy,ux

uyf
, fuy,u =

fuy
fx + uxfufuy

− ffx,uy

uxf
,

plus four more complicated constraints that involve ϕ(t). One of them is
3
2fut

(ϕf − 2ft − 2utfu) + ux

uy
(ffy,ux

− fyfux
) + uy

ux
(ffx,uy

− fxfuy
) + 2fft,ut

+2utffu,ut
+ 2fxfux

+ uxfufux
− ffx,ux

+ 2fyfuy
+ uyfufuy

− ffy,uy
= 0.
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Analysis of these constraints shows that for (nonlinear) integrable equations
(6), the coefficient fut

cannot equal zero and we obtain an explicit formula for
ϕ(t) in terms of f :

ϕ(t) = 2
ft

f
+ 2ut

fu

f
− 2

3ffut

ux

uy
(ffy,ux

− fyfux
) − 2

3ffut

uy

ux
(ffx,uy

− fxfuy
)

− 2
3ffut

(2fft,ut
+ 2utffu,ut

+ 2fxfux
+ uxfufux

− ffx,ux

+ 2fyfuy
+ uyfufuy

− ffy,uy
).

It is a non-trivial corollary of the integrability conditions that the right-hand
side of this expression is a function of t only. In any case, we have an explicit
formula for ω in terms of the equation.

Solving the integrability conditions results in the following generic case:

utt =
sinh2 ut

uxuy
uxy,

as well as a number of singular strata. Normal forms are achieved modulo
equivalence transformations x → η(x), y → ψ(y), u → u + tp(x) + tq(y) +
r(x) + s(y), translation of the t-variable, rescaling of u, discrete symmetries
x ↔ y and t 
→ −t, and the transformation (x, y, t, u) 
→ (x, y, 1/t, u/t), which
all leave the class (6) form-invariant. The final list is summarised below.

Cases 1–6 are contact non-equivalent: while some of the symmetry alge-
bras have the same dimensional characteristics, none are isomorphic as follows
from the Lie algebra structure. In all cases g is the right extension of an infinite
ideal by a Lie algebra of dimension ≤ 3:

0 → s∞ −→ g −→ s� → 0.

Below we describe g via s∞ = 〈Zi〉, s� = 〈Vj〉 for each item of the table. It
turns out that in all cases, s∞ is the derived algebra [[g, g], [g, g]], and s� is a
subalgebra-complement. Thus, both the functional dimension and the number
of constants are invariantly defined.

(1) The generators are Z1(a) = a(x)∂x, Z2(b) = b(y)∂y, V1 = t∂t + u∂u,
V2 = ∂t, V3 = ∂u. Thus, s∞ = Vect(R) ⊕ Vect(R), s� = R � R

2 and
[s∞, s�] = 0.

(2) Here Z1(a) = a(x)∂x, Z2(b) = b(y)∂y, Z3(c) = c(u)∂u, V1 = t∂t, V2 = ∂t.
Thus, s∞ = Vect(R) ⊕ Vect(R) ⊕ Vect(R), s� = R � R and [s∞, s�] = 0.

(3) Here Z1(a) = a(x)∂x + a′(x)t∂u, Z2(b) = b(x)∂u, Z3(c) = c(y)∂y,
V1 = x∂x +t∂t +u∂u, V2 = ∂t. Thus, s∞ = s′

∞ ⊕s′′
∞ with s′

∞ = Vect(R)�

C∞(R) and s′′
∞ = Vect(R), s� = R � R and in addition [s∞, s�] = s′

∞.
(4) Here Z1(a) = a(x)∂x − (a′(x)u + 1

2 t2a′′(x))∂u, Z2(b) = b(x)∂u, Z3(c) =
c(x)t∂u, Z4(d) = d(y)∂y, V1 = t∂t + 2u∂u, V2 = ∂t. Thus, s∞ = s′

∞ ⊕ s′′
∞

with s′
∞ = Vect(R) � (C∞(R) ⊕ C∞(R)) and s′′

∞ = Vect(R), s� = R � R

and in addition [s∞, s�] = C∞(R) ⊕ C∞(R) ⊂ s′
∞.

(5) Here Z1(a) = a(x)∂x + a′(x)t∂u, Z2(b) = b(x)∂u, Z3(c) = c(y)∂y +
c′(y)t∂u, Z4(d) = d(y)∂u, V1 = t∂t + (u − 1

2 t)∂u. Thus, s∞ = s′
∞ ⊕
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s′′
∞/〈Z2(1) = Z4(1)〉 with s′

∞ = Vect(R) � C∞(R) = s′′
∞, s� = R and

[s∞, s�] = C∞(R)′ ⊕ C∞(R)′′ ⊂ s∞.
(6) This has the same s∞ as in case (5), but s� = R � R is generated by

V1 = 2y∂y + t∂t + u∂u, V2 = ∂t. In addition [s∞, s�] = C∞(R)′ ⊕ s′′
∞.

Equations from Table 1 possess a Lax representation [X̂, Ŷ ] ∈ span〈X̂, Ŷ 〉
with

X̂ = f∂y + λ∂t + λ2(Dt log f − 1
2ϕ) ∂λ, Ŷ = λ∂x + ∂t + λ(λDx log f + 1

2ϕ) ∂λ,

here ϕ(t) is the same as in the formula for the Weyl covector. Note that this Lax
pair works for all cases from Table 1 (upon substitution of the corresponding
expression for f). In fact, one can say more: this Lax pair works modulo
the integrability conditions satisfied by f , that is, it is invariant under the
equivalence transformations used to obtain cases 1–6.

Remark. Contact symmetry algebra of the BF equation, uxy = eutt , contains 6
functions of 1 variable; therefore, it is not equivalent to any of the items in Ta-
ble 1. Indeed, for the BF equation we have: Z1(a) = a(x)∂x + 1

2a′(x)t2∂u,
Z2(b) = b(x)t∂u, Z3(c) = c(x)∂u, Z4(d) = d(y)∂y + 1

2d′(y)t2∂u, Z5(e) =
e(y)t∂u, Z6(f) = f(y)∂u, V1 = t∂t + 2u∂u, V2 = ∂t. Therefore, we have
s∞ = s′

∞ ⊕ s′′
∞ where s′

∞ = Vect(R) � (C∞(R) ⊕ C∞(R)) = s′′
∞; s� = sol(2)

and [s∞, s�] = (C∞(R) ⊕ C∞(R))′ ⊕ (C∞(R) ⊕ C∞(R))′′. Note though that
BF equation can be obtained by potentiation from case 6 of Table 1.

2.3. Generalised Dunajski–Tod Equations

Here we consider Monge–Ampère equations of the form

(utt − u)uxy − (uxt − ux)(uyt + uy) = f(x, y, t, u, ux, uy, ut). (7)

For f = 4e2ρt this equation was discussed by Dunajski and Tod in the con-
text of hyper-Kähler metrics with conformal symmetry [16]. The characteristic
conformal structure of equation (7) has the form

g = (udt + uxdx − uydy − dut)2 + 4fdxdy.

One can show that the Weyl covector can be expressed in terms of the right-
hand side f :

ω = 2
(uxt − ux

utt − u
dx− uyt + uy

utt − u
dy

)
+2R

(
dt+

uxt − ux

utt − u
dx+

uyt + uy

utt − u
dy

)
, (8)

where R = Dtf
f . For f = 4e2ρt we have R = 2ρ, which results in the Einstein–

Weyl structure from [16]. The first term in formula (8) coincides with Ω as
given by (3), the second term is the correction φ. The requirement that g, ω
satisfy Einstein–Weyl conditions on every solution of equation (7) leads to a
system of differential constraints (integrability conditions) for the right-hand
side f . The simplest of them are as follows:

fux,ux
= 0, fux,uy

f − fux
fuy

= 0, fuy,uy
= 0,
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plus a number of more complicated constraints. Solving the integrability con-
ditions results in the generic case

(utt − u)uxy − (uxt − ux)(uyt + uy) = c2
uxuy

cosh2 ct

(where c is an arbitrary constant), as well as a number of other strata. Nor-
mal forms are obtained modulo the following equivalence transformations:
(x, y, t, u) 
→ (η(x), ψ(y), t, u+ p(x)et + q(y)e−t), rescaling of u, translations of
the t-variable, and discrete symmetry (x, y, t, u) 
→ (y, x,−t, u), which all leave
the class (7) form-invariant. Thus we obtain the following integrable cases:

f = c2
(ux + ut + u)(uy + ut − u)

cosh2 c(x + y − t)
, f = c2

(ux + ut + u)uy

cosh2 c(x − t)
,

f = c2
uxuy

cosh2 ct
, f =

(ut + u)(ut − u)
(x − y)2

,

f = ect(xux − ut + u

c + 1
), f = e−t(ux + ut + u),

f = ectux, f = et(ut − u), f = ect.

This list can be reduced further via point transformations as follows.

(x, y, t, u) 
→ (12e2x,− 1
2e−2y, t−x−y, u ex−y) maps f = c2

(ux+ut+u)(uy+ut−u)

cosh2 c(x+y−t)

to f = c2
uxuy

cosh2 ct
,

(x, y, t, u) 
→ ( 12e2x, y, t−x, u ex) maps f = c2
(ux+ut+u)uy

cosh2 c(x−t)
to f = c2

uxuy

cosh2 ct
,

(x, y, t, u) 
→ (
x(c−1)/(c+1)

(c−1) , y, t+ln(x)
(c+1) , u x−1/(c+1)

)
maps f = ect(xux −

ut+u
c+1 ) to f = ectux.

The final list of integrable cases is summarised below.
Cases 1–6 are contact non-equivalent: this follows from the structure of

their contact symmetry algebras, where we use the notation of Sect. 2.2.

(1) The generators are Z1(a) = a(x)∂x, Z2(b) = b(y)∂y, V1 = et∂u,
V2 = e−t∂u, V3 = u∂u. Thus, s∞ = Vect(R) ⊕ Vect(R), s� = R � R

2 and
[s∞, s�] = 0.
(2) Here Z1(a) = a(x)(∂t − u∂u), Z2(b) = b(y)(∂t + u∂u), V1 = ∂x + ∂y,
V2 = x∂x + y∂y, V3 = x2∂x + y2∂y. Thus, s∞ = C∞(R) ⊕ C∞(R),
s� = sl(2) and [s∞, s�] = s∞.
(3) Here Z1(a) = a(x)∂x, Z2(b) = b(y)∂y − b′(y)

c−1 (∂t + u∂u), Z3(c) =
c(y)e−t∂u, V1 = ∂t − cy∂y, V2 = et∂u. Thus, s∞ = s′

∞ ⊕ s′′
∞, where

s′
∞ = Vect(R) and s′′

∞ = Vect(R) � C∞(R); s� = R � R = sol(2). In
addition, [s∞, s�] = s′′

∞ for c �= 0 and [s∞, s�] = C∞(R) ⊂ s′′
∞ for c = 0.

(3+) Here Z1(a) = a(x)∂x, Z2(b) = b(y)(∂t + u∂u), Z3(c) = c(y)e−t∂u,
V1 = y∂y − ∂t, V2 = ∂y, V3 = et∂u. Thus, s∞ = Vect(R) ⊕ (C∞(R) �

C∞(R)); s� = R � R
2 and [s∞, s�] = C∞(R) � C∞(R).

(4) Here Z1(a) = a(x)(∂x + ∂t − u∂u), Z2(b) = b(y)∂y + 1
2b′(y)(∂t + u∂u),

Z3(c) = c(y)e−t∂u, V1 = ∂x, V2 = et−2x∂u. Thus, s∞ = s′
∞ ⊕ s′′

∞, where
s′
∞ = Vect(R) and s′′

∞ = Vect(R)�C∞(R); s� = sol(2) and [s∞, s�] = s′
∞.
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(5) Here Z1(a) = a(x)∂x − 1
2a′(x)(∂t − u∂u), Z2(b) = b(x)et∂u, Z3(c) =

c(y)(∂t +u∂u), V1 = y∂y −∂t, V2 = ∂y. Thus, s∞ = s′
∞ ⊕s′′

∞, where s′
∞ =

Vect(R) � C∞(R), s′′
∞ = C∞(R); s� = sol(2) and [s∞, s�] = C∞(R)′ ⊕

C∞(R)′′.
(6: c �= 2) Here Z1(a) = a(x)∂x − a′(x)

c+2 (∂t − u∂u), Z2(b) = b(x)et∂u,

Z3(c) = c(y)∂y − c′(y)
c−2 (∂t + u∂u), Z4(d) = d(y)e−t∂u, V1 = x∂x − y∂y,

V2 = ∂t + c
2u∂u. Thus, s∞ = s′

∞ ⊕ s′′
∞, where s′

∞ = Vect(R) � C∞(R) =
s′′
∞; s� = R

2 and [s∞, s�] = s∞.

(6: c = 2) Here Z1(a) = a(x)∂x − a′(x)
4 (∂t − u∂u), Z2(b) = b(x)et∂u,

Z3(c) = c(y)(∂t + u∂u), Z4(d) = d(y)e−t∂u, V1 = y∂y − x∂x, V2 = ∂y.
Thus, s∞ = s′

∞ ⊕ s′′
∞, where s′

∞ = Vect(R) � C∞(R), s′′
∞ = C∞(R) �

C∞(R); s� = sol(2) and [s∞, s�] = s∞.

Items 3 and 6 contain a parameter c which is uniquely characterised by
the structure equations.

Item 1 also contains a parameter c, yet it does not enter the structure
equations. In this case non-equivalence does not follow from the symmetry
analysis. Instead, we consider (point) transformations inducing an automor-
phism of the symmetry algebra and preserving the orbit structure. It is easy to
see that such transformations, leaving the class of Dunajski–Tod equations (7)
form-invariant, are only (x, y, t, u) 
→ (X(x), Y (y), t, ku) and so cannot change
c. Thus, the parameter c is essential.

Remark 1. A comparison between the two tables shows that a possible iso-
morphism may exist for the following two cases:

• Table 1 (1) to Table 2 (1). The symmetry algebras are abstractly iso-
morphic, yet the corresponding two-dimensional subalgebras [s�, s�] have
orbits of dimensions 2 and 1, respectively, hence the items are not equiv-
alent.

• Table 1(3) to Table 2(3) (c �= 0). The symmetry algebras are abstractly
isomorphic, yet the corresponding infinite-dimensional subalgebras s′

∞
have orbits of dimensions 2 and 1, respectively, hence the items are not
equivalent.

Thus, all integrable equations from Sect. 2 (Tables 1-2 and BF equation) are
pairwise contact non-equivalent.

Remark 2. For items 2, 3+, 5, 6(c = 2) of Table 2, the infinite part of the
symmetry algebra is not perfect: [s∞, s∞] � s∞. Yet a closer analysis shows
that the splitting and the numerical characteristics of Table 2 are invariantly
defined.

Remark 3. The generalised Dunajski–Tod equation is quasi-linearisable: the
contact transformation

Φ(x, y, t, u, ux, uy, ut) =
(

x, y,
1
2

ln ut,
u − tut√

ut
,

ux√
ut

,
uy√
ut

,
−u − tut√

ut

)
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maps equation (7) to the quasilinear equation

uxuyt − utuxy = h(x, y, t, u, ux, uy, ut)utt (9)

where h = 1
4Φ∗(f). Equation (9) can be viewed as a deformation of the Bog-

danov equation [1]. In the case f = 4e2ρt considered by Dunajski–Tod [16],
equation (9) becomes the integrable PDE studied in [1]:

uxuyt − utuxy = uρ
t utt.

The conformal structure for equation (9) is represented by the metric

g = 4hdxdy + u−1
t (uxdx + utdt)2,

and the corresponding Weyl covector is given by the formula

ω =
(
2
ux

ut
Dt ln h − Dt

ux

ut

)
dx + Dt ln uy dy + 2Dt ln h dt. (10)

Note that Weyl covector (10) satisfies formula (3), i.e. no ‘correction’ is re-
quired, while the covector ω for generalised Dunajski–Tod equation (7) does
not satisfy (3), with the ‘correction’ being the second term containing R in (8).
This demonstrates contact non-invariance of formula (3), while the covector
ω = Ω + φ given by Theorem 1 is genuinely contact invariant.

The dispersionless Lax pairs for both generalised Dunajski–Tod (7) and
generalised Bogdanov (9) equations can be obtained by the recipe from the
proof of Theorem 2. For the former, see Example 3 of §4.2. This implies the
Lax pair for the latter via the contact transformation Φ.

3. Reconstruction of the Weyl Covector

We begin by describing the constraints for a PDE to be of Monge–Ampère
type.

3.1. The Monge–Ampère Property

Recall that equation (1) is said to be of Monge–Ampère type if its left-hand side
can be represented as a linear combination of minors (of all possible orders) of
the Hessian matrix of the function u (with coefficients depending on the 1-jet
of u). Let us represent equation (1) in evolutionary form

u00 = f(x0, x1, x2, u, u0, u1, u2, u01, u02, u11, u12, u22). (11)

To calculate the Weyl covector, we will need explicit differential constraints
for the right-hand side f that are equivalent to the Monge–Ampère property.
These have only been known in low dimensions [2,11,26,32]. In full generality,
they were obtained recently in [23]. In 3D, the Monge–Ampère conditions
consist of two groups of equations for f . First of all, for every i ∈ {1, 2} one
has the relations

fuii
fu0iu0i + fuiiuii

= 0, fu0ifu0iu0i + 2fu0iuii
= 0. (12)
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Secondly, for every pair of distinct indices i �= j ∈ {1, 2} one has the relations

fu0jfu0iu0i + 2fu0ifu0iu0j + 2fu0iuij
+ 2fu0juii

= 0,
fuij

fu0iu0i + 2fuii
fu0iu0j + 2fuiiuij

= 0,
fujj

fu0iu0i + fuii
fu0ju0j + 2fuij

fu0iu0j + 2fuiiujj
+ fuijuij

= 0.
(13)

Due to the contact invariance of the Monge–Ampère class, the system of nine
relations (12)–(13) is invariant under arbitrary contact transformations.

3.2. Proof of Theorem 1

Let us consider a second-order PDE in evolutionary form (11). Note that if
a particular equation under study is not evolutionary, it can be brought to
evolutionary form via a suitable linear change of the independent variables.

It will be convenient to rewrite Einstein–Weyl conditions (2) in terms of
the Levi-Civita connection of the conformal structure g (choose any represen-
tative of the conformal class):

rij +
1
2
(∇iωj + ∇jωi) − 1

4
ωiωj = Λgij (14)

where ∇ denotes covariant differentiation in the Levi-Civita connection of g,
and rij is the corresponding Ricci tensor (which is automatically symmetric),
see [28]. Since g depends on the 2-jet of the function u, the Ricci tensor rij

depends on the 4-jet of u. This implies that components ωk must depend on
the 3-jet of u, furthermore, the dependence of ωk on the third-order derivatives
of u must be affine. Analysis of the dependence of the left-hand side of (14)
on the fourth-order derivatives of u suggests a substitution

ωk = Ωk + φk (15)

where Ωk is given by formula (3), and the ‘correction terms’ φk are some
functions to be determined (we will see that they can only depend on the 2-jet
of u). Under this substitution equations (14) take the form

rij +
1
2
(∇iΩj + ∇jΩi) +

1
2
(∇iφj + ∇jφi) − 1

4
ΩiΩj

−1
4
(Ωiφj + Ωjφi) − 1

4
φiφj = Λgij . (16)

Let us denote by S the system obtained from (16) by eliminating Λ and re-
stricting the resulting five equations to solutions of PDE (11), that is, reducing
the result modulo (11) and its differential prolongation. Equations of system
S possess terms of several different types: (a) linear in the fourth-order deriva-
tives of u, (b) quadratic in the third-order derivatives of u, (c) linear in the
third-order derivatives of u, and (d) depending on the 2-jet of u only. We will
discuss them case-by-case below.

(a) Terms Linear in the Fourth-Order Derivatives of u There are two sources
of such terms: expressions rij + 1

2 (∇iΩj + ∇jΩi) and 1
2 (∇iφj + ∇jφi). Direct

calculation shows that all terms with fourth-order derivatives of u coming from
the expressions rij + 1

2 (∇iΩj +∇jΩi) cancel out. Thus, the only source of such
terms is expressions 1

2 (∇iφj+∇jφi), and this implies that φk must be functions
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of the 2-jet of u only: φk = φk(x0, x1, x2, u, u0, u1, u2, u01, u02, u11, u12, u22),
recall that u00 can be eliminated via (11). In other words, ansatz (15) captures
the dependence of ω on the third-order derivatives of u. For several classes of
(translationally invariant) second-order PDEs the terms φk vanish identically;
however, they are not zero in general. Under conformal rescalings g → λg both
covectors ω and Ω transform as ω → ω + d ln λ, Ω → Ω + d ln λ. Thus, the
covector φ = φkdxk is invariant with respect to conformal rescalings.
(b) Terms Quadratic in the Third-Order Derivatives of u Such terms come
from the expressions rij + 1

2 (∇iΩj + ∇jΩi) − 1
4ΩiΩj , and do not involve φk.

Equating to zero the corresponding coefficients we obtain all third-order partial
derivatives of the function f with respect to the variables u01, u02, u11, u12, u22,
which identically coincide with the integrability conditions for Hirota-type
equations

u00 = f(u01, u02, u11, u12, u22) (17)

obtained in [24]. This leads to a somewhat surprising conclusion: taking an
integrable equation (11) and ‘freezing’ the 1-jet of u (that is, giving the vari-
ables x0, x1, x2, u, u0, u1, u2 arbitrary constant values), we obtain an integrable
Hirota-type equation. Note that the generic integrable Hirota type equation
is a highly transcendental object: it coincides with the equation of the genus
three hyperelliptic divisor [10].
(c) Terms Linear in the Third-Order Derivatives of u These terms come from
the expressions rij+ 1

2 (∇iΩj+∇jΩi)+ 1
2 (∇iφj+∇jφi)− 1

4ΩiΩj− 1
4 (Ωiφj+Ωjφi).

Each of the five equations of system S has seven terms linear in the third-order
derivatives u011, u012, u022, u111, u112, u122, u222, recall that we work modulo
(11) and its differential prolongation. Equating the corresponding coefficients
to zero gives 35 relations involving φk and their first-order derivatives with
respect to u01, u02, u11, u12, u22. Eliminating the derivatives of φk we obtain a
system of 20 equations which are linear inhomogeneous in φk

(we do not write the equations explicitly due to their complexity). It is
exactly at this step that we can determine φ (and hence ω) in terms of the
function f . It should be stressed that the linear system of 20 equations for
φk is nontrivial only if equation (11) is not of Monge–Ampère type: in this
case the linear system can be represented in matrix form Aφ = B where
φ = (φ0, φ1, φ2)T , B is a vector with 20 components and A is a 20 × 3 matrix,
whose coefficients depend linearly on the left-hand sides of the Monge–Ampère
conditions (12)–(13). For equations of non-Monge–Ampère type the unknowns
φk can be reconstructed uniquely because A necessarily contains a nonzero
3 × 3 minor. This is equivalent to the condition rank(A) = 3, note that we do
not require rk(A|B) = 3 as in the Cramer rule. Indeed, the entire set of EW
conditions (more precisely, the differential closure of this system) decomposes
into constraints on φk and equations not containing φk; the latter are integra-
bility conditions for (11). Thus, part of the constraints Aφ = B contributes to
the integrability conditions for the function f .
(d) Terms Depending on the 2-jet of u For Monge–Ampère equations, both
the matrix A and the vector B of the linear system Aφ = B vanish identically.
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In this case further analysis is required. Constraints of the second order in
u involve the derivatives of φk; this overdetermined system for φ is not in
involution. Generically, the differential closure provides more PDEs that can
ultimately lead to algebraic formulae for φ via a finite jet of u. Numerous
examples show that this is indeed the case, and that the Weyl covector ω can
be reconstructed in terms of the equation even for generic Monge–Ampère
equations. However, explicit conditions and demonstration of this are outside
the scope of our paper.

This finishes the proof of Theorem 1. �
Calculations described above to reconstruct the Weyl covector ω are im-

plemented in a Mathematica program which is available from the archive ver-
sion of this paper, arXiv:2104.02716.

3.3. Examples of Computations

To illustrate the general procedure, let us go through steps (a)-(c) for the two
particular classes.

Example 1. Let us begin with equations

utt = f(x, y, t, u, ux, uy, ut, uxy), (18)

the evolutionary form of lattice equations from Sect. 2.1. The characteristic
conformal structure is (set b = uxy):

g = 4dxdy − fbdt2.

We will assume fbb �= 0; otherwise the equation is of Monge–Ampère type.

Step (a): calculation of Ω using formula (3) gives

Ω = Dx(ln fb)dx + Dy(ln fb)dy − Dt(ln fb)dt,

so that our ansatz for ω is

ω = Ω + φ1dx + φ2dy + φ3dt

where φk are functions of the 2-jet of u.
Step (b): here we obtain only one non-trivial equation:

fbbb = 2
f2

bb

fb
.

Step (c): eliminating the derivatives of φk with respect to the variables
uxx, uxy, uxt, uyy, uyt, we obtain a linear system for φk (which vanishes identi-
cally if fbb = 0, that is, if the original equation is of Monge–Ampère type). In
the case fbb �= 0 this system gives an explicit formula for φ:

φ1 = 0, φ2 = 0, φ3 = −2
3
fut

+
8
3
D̂t(log fb) − 4

3
D̂t(log fbb),

thus leading to an explicit formula for the Weyl covector ω. Here D̂t is the
truncated total t-derivative (all differentiations are with respect to the 1-jet
variables only):

D̂t = ∂t + ut∂u + uxt∂ux
+ uyt∂uy

+ utt∂ut
.
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We will not continue with step (d): according to Sect. 2.1, it would lead to
a conclusion that any equation (18) with EW property is point-equivalent to
the BF equation utt = lnuxy.

Example 2. Let us consider equations of the form

utt = f(x, y, t, u, ux, uy, ut, uxx, uyy). (19)

The characteristic conformal structure is (set a = uxx, c = uyy):

g = fcdx2 + fady2 − fafcdt2.

We will assume that at least one of the second-order derivatives faa, fac, fcc

is nonzero; otherwise the equation is of Monge–Ampère type (note also that
fa �= 0, fc �= 0 if the equation is nondegenerate).

Step (a): calculation of Ω using formula (3) gives

Ω = 2Dx (ln fa) dx + 2Dy (ln fc) dy,

so that our ansatz for ω is

ω = Ω + φ1dx + φ2dy + φ3dt

where φk are functions of the 2-jet of u.
Step (b): here we obtain a system of PDEs for f in the arguments a, c:

faaa = faa

(
fac

fc
+

faa

fa

)
, faac = faa

(
fcc

fc
+

fac

fa

)
,

facc = fcc

(
fcc

fc
+

fac

fa

)
, fccc = fcc

(
fcc

fc
+

fac

fa

)
, faafcc = (fac)2.

These equations can be explicitly solved (see [24], Section 3.1).
Step (c): eliminating the derivatives of φk with respect to the variables
uxx, uxy, uxt, uyy, uyt, we obtain a linear system for φk. The first few equa-
tions of this system are as follows:

fafccφ1 = facD̂x(fc) − fccD̂x(fa), fcfaaφ2 = facD̂y(fa) − faaD̂y(fc),

3fafcfccφ2 = 4fafccD̂y(fc) + 4fcfccD̂y(fa) − 4fafcD̂y(fcc) + 2fafccfuy
,

3fafcfccφ3 = 4fafccD̂t(fc) + 4fcfccD̂t(fa) − 4fafcD̂t(fcc) − 2fafccfut
, etc.;

here D̂x, D̂y, D̂t are the truncated total derivatives. In the non-Monge–Ampère
case we can explicitly determine φ (and hence ω). For instance, if fcc �= 0
then the first and the last two of the above equations give explicit values for
φ1, φ2, φ3.

We will not continue with step (d), which would eventually lead to a
conclusion that any equation (19) with EW property is contact-equivalent to
an integrable Hirota type equation of the form utt = f(uxx, uyy); see [24],
Sect. 3.1, for a list of such equations.
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4. Dispersionless Lax Pairs

A background solution is the manifold M = R
3(x0, x1, x2) or a domain thereof,

equipped with a function u solving (1). We encode it into the symbol Mu, which
can be viewed as graph(u) ⊂ M × R, as well as its lift into the jet-space in-
heriting the geometric structure. Of the latter we emphasise the characteristic
variety, which is a projectivisation of the null cone of [g] at every point. This
bundle is four-dimensional, called the correspondence space M̂u.

Recall that a dispersionless Lax pair (dLp) can be identified with a rank 2
distribution Π̂ in M̂u. The distribution Π̂ depends on a finite jet of the solution
u, and is Frobenius integrable modulo equation (1). The natural projection
π : M̂u → Mu has projective fibre P

1 with coordinate λ called the spectral
parameter; it parametrises null 2-planes Π of the conformal structure [g] on
Mu.

It was shown in [5] that modulo equation (1) such Lax pair is unique,
coisotropic with respect to the characteristic variety, and the lift Π ��� Π̂ has
the projective property. In Lemma 4 of [5] it was proved that the Weyl covector
ω uniquely determines the lift (see also Lemma 5 of [5]); however, no explicit
formula for the lift was provided. This is what we do below in the proof of
Theorem 2.

4.1. Proof of Theorem 2

Let X,Y be λ-dependent vector fields generating Π, and let

X̂ = X + m∂λ, Ŷ = Y + n∂λ

be their lifts to Π̂. A section λ = λ(x) is foliated by a one-parametric family
of integral surfaces of Π̂ iff

X̂(λ − λ(x)) = m − X(λ(x)) = 0, Ŷ (λ − λ(x)) = n − Y (λ(x)) = 0.

This gives
m = X(λ(x)), n = Y (λ(x)), (20)

and it remains to show that all first-order derivatives of λ on the right-hand
sides of (20) can be eliminated. Let θ ∈ Π⊥ be a (λ-dependent) annihilator of
the 2-plane congruence Π. The condition that the Weyl connection D preserves
the field of null cones is

DXθ ∧ θ = 0, DY θ ∧ θ = 0, (21)

where we substitute λ = λ(x) prior to differentiation. This condition gives
precisely two linearly independent equations on the 1-jet of λ(x), and these
imply that all derivatives of λ on the right-hand sides of (20) cancel out, leading
to the required formulae for m and n.

Given g, ω and following the above scheme, let us derive an explicit for-
mula for dLp.

First of all, we choose a (nonholonomic) null coframe θ0, θ1, θ2 such that

g = 4θ0θ2 − (θ1)2.
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Let V0, V1, V2 be the dual frame, and let ck
ij be the structure functions defined

by the expansions

[Vi, Vj ] = ck
ijVk ⇔ dθk = −

∑

i<j

ck
ijθ

i ∧ θj .

The 2-plane congruence is Π = 〈X = V0 + λV1, Y = V1 + λV2〉 and θ(λ) =
θ2 − λθ1 + λ2θ0. Representing the Weyl covector ω in the form ω = ωiθ

i we
compute the Weyl connection D:

Dθ0 = (c202 + 4ω0)θ0 ⊗ θ0 + (12c212 + 2ω1 − 1
2c001 − 1

4c102)θ
0 ⊗ θ1

+ (12c001 + 1
2c212 + 2ω1 − 1

4c102)θ
1 ⊗ θ0

+ (14ω2 − 1
2c112)θ

1 ⊗ θ1 + c002θ
2 ⊗ θ0 + c012θ

2 ⊗ θ1,

Dθ1 = −2c201θ
0 ⊗ θ0 + 1

2ω0θ
0 ⊗ θ1 + (c212 − c001 + 4ω1 − 1

2c102)θ
0 ⊗ θ2

+ (c101 + 1
2ω0)θ1 ⊗ θ0 + 1

2ω1θ
1 ⊗ θ1 + (12ω2 − c112)θ

1 ⊗ θ2

+ (c212 + 4ω1 − c001 + 1
2c102)θ

2 ⊗ θ0 + 1
2ω2θ

2 ⊗ θ1 + 2c012θ
2 ⊗ θ2,

Dθ2 = −c201θ
0 ⊗ θ1 − c202θ

0 ⊗ θ2 + (12c101 + 1
4ω0)θ1 ⊗ θ1

+ (14c102 + 2ω1 − 1
2c212 − 1

2c001)θ
1 ⊗ θ2

+ (14c102 + 2ω1 + 1
2c212 − 1

2c001)θ
2 ⊗ θ1 + (4ω2 − c002)θ

2 ⊗ θ2.

Our convention is Dθk = −Γk
ijθ

i ⊗ θj ⇔ DVi
θk = −Γk

ijθ
j . The torsion-free

condition is equivalent to alt(Dθk) = 1
2dθk, and we also have Dg = ω ⊗ g.

Finally, using (21) we compute the dLp to be

Π̂ = 〈X̂ = V0 + λV1 + m∂λ, Ŷ = V1 + λV2 + n∂λ〉,
with

m =(12c112 − 1
4ω2)λ3 + (12c102 − c212 − 1

2ω1)λ2 + (12c101 − c202 − 1
4ω0)λ − c201,

n = − c012λ
3 + (12c112 − c002 + 1

4ω2)λ2 + (12c102 − c001 + 1
2ω1)λ + (12c101 + 1

4ω0).

Let us also note, following [5], §4.3, that the lift of W = V0 +2λV1 +λ2V2 does
not depend on the Weyl connection and equals Ŵ = W + σ∂λ with

σ = m + nλ = −c012λ
4 + (c112 − c002)λ

3 − (c001 − c102 + c212)λ
2 + (c101 − c202)λ − c201.

This is related to the fact that W is null and is therefore independent of the
choice of ω. The lift of other vectors from Π does depend on ω.

As the covector ω is algebraically determined by the equation, the Lax
pair is also explicitly determined, thus finishing the proof of Theorem 2. �

4.2. Examples of Computations

Below we discuss several examples illustrating the calculations described in
the proof.

Example 1. For the dispersionless Kadomtsev–Petviashvili (dKP) equation,
uxt = (uux)x + uyy, the conformal structure is

g = 4dxdt − dy2 + 4udt2,
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and the Weyl covector is ω = −4uxdt. The corresponding Weyl connection D

is given by the following nontrivial relations:

D∂x
∂t = D∂t

∂x = D∂y
∂y = ux∂x, D∂y

∂t = D∂t
∂y = uy∂t + 2ux∂y,

D∂t
∂t = (ut − 2uux)∂x + 2uy∂y + 3ux∂t.

We have θ(λ) = dx + λdy + (λ2 + u)dt and

Π = Ann(θ) = 〈X = ∂y − λ∂x, Y = ∂t − (λ2 + u)∂x〉.
Condition (21) gives

λt = λ2λx + λux + uλx + uy, λy = λλx + ux,

leading to the familiar dLp for the dKP equation: X̂ = X +m∂λ, Ŷ = Y +n∂λ

with

m = λy − λλx = ux, n = λt − (λ2 + u)λx = λux + uy.

Example 2. For the dispersionless lattice equations (4) we have

θ0 = futt
dy, θ1 = dt, θ2 = dx,

so that c001 = Dt ln futt
, c002 = Dx ln futt

and ω1 = ω(∂t) are the only nonzero
entries in the above formulae, giving

m = − 1
2ω1λ

2, n = −Dx ln futt
λ2 + (12ω1 − Dt ln futt

)λ.

This reproduces the Lax pair from Sect. 2.1.

Example 3. For the generalised Dunajski–Tod equations (7) it is convenient
to change the representative of the conformal class as follows:

g = 4dxdy − α2, where α =
1√−f

(
(uxt − ux)dx + (uyt + uy)dy + (utt − u)dt

)
.

Then ω is changed to the new Weyl covector

ωnew = ω − d ln |f | = ω0θ
0 + ω1θ

1 + ω2θ
2

where θ0 = dx, θ1 = α, θ2 = dy is a null coframe. The dual frame is

V0 = ∂x − uxt − ux

utt − u
∂t, V1 =

√−f

utt − u
∂t, V2 = ∂y − uyt + uy

utt − u
∂t.

The coefficients ωi = ωnew(Vi) are given by

ω0 = 2(1 + R)
uxt − ux

utt − u
− Dx ln |f |, ω1 =

2R
√−f

utt − u
,

ω2 = 2(1 + R)
uyt + uy

utt − u
− Dy ln |f |.

The only nonzero structure functions are

c101 = dα(V1, V0), c102 = dα(V2, V0), c112 = dα(V2, V1),

thus giving the Lax pair

X̂ = V0 + λV1 + m∂λ, Ŷ = V1 + λV2 + n∂λ,
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where

m = (12c112 − 1
4ω2)λ3 + (12c102 − 1

2ω1)λ2 + (12c101 − 1
4ω0)λ,

n = (12c112 + 1
4ω2)λ2 + (12c102 + 1

2ω1)λ + (12c101 + 1
4ω0).

5. Rigidity Conjecture

Consider equation (1) which satisfies EW property. As explained in Sect. 3,
step (b), freezing in (1) the 1-jet of u we obtain an integrable Hirota-type
equation. It was demonstrated in [24] that the parameter space of integrable
Hirota-type equations is 21-dimensional, supplied with a locally free action
of the 21-dimensional equivalence group Sp(6, R). This implies the existence
of a universal Hirota master-equation generating an open Sp(6, R)-orbit in
the 21-dimensional parameter space. It was shown in [21] that integrability
of Hirota-type equations is equivalent to the EW property, with the Weyl
covector ω given by formula (3). Finally, it was proved in [10] that the Hirota
master-equation, which is a highly transcendental object, coincides with the
equation of the genus three hyperelliptic divisor. We will say that PDE (1)
is generic if a Hirota-type equation obtained by freezing a generic 1-jet of u
belongs to the open orbit.

Conjecture. A generic second-order PDE (1) satisfying EW property is
equivalent to the Hirota master-equation via a suitable contact transformation.
In other words, for a generic PDE satisfying EW property, all dependence on
the 1-jets is not essential, and can be eliminated by a change of variables.
In fact, examples suggest that the ‘genericity’ assumption can be weakened,
leading to the following stronger conjecture: if a second-order PDE (which is
not Monge–Ampère) satisfies EW property, then it is equivalent to a Hirota-
type equation via a contact transformation.

An illustration of the rigidity phenomenon is given by the classification
result of Sect. 2.1, where it was shown that any equation of type (4) satis-
fying EW property is reducible to the BF equation uxy = euzz . For Monge–
Ampère equations the conjecture is certainly not true: there exist contact
non-equivalent examples satisfying EW property (see Sects. 2.2 and 2.3 , and
Concluding Remarks for a discussion).

Below we prove two rigidity-type results, which motivate the above con-
jecture and demonstrate a technique that may be utilised in its proof in full
generality. The main tool is the existence of an open orbit in the solution space
of some differential equations with respect to their point symmetry groups.

5.1. Rigidity Result 1

Let us consider Lagrangians of the form
∫

uxuyϕ(ut) dxdydt. (22)

It was shown in [25] that the requirement of integrability (EW property) of the
corresponding second-order Euler–Lagrange equation implies that the function
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ϕ(z) satisfies a fourth-order ODE

ϕ′′′′(ϕ2ϕ′′ − 2ϕϕ′2) − 9ϕ′2ϕ′′2 + 2ϕϕ′ϕ′′ϕ′′′ + 8ϕ′3ϕ′′′ − ϕ2ϕ′′′2 = 0, (23)

whose general solution is a modular form of weight one and level three known
as the Eisenstein series E1,3(z).

Proposition 1. Every Lagrangian of the form
∫

uxuyf(t, u, ut) dxdydt, (24)

whose Euler–Lagrange equation satisfies EW property, is equivalent to its un-
deformed version (22) via a change of variables. In other words, Lagrangian
(22) is rigid within the class (24).

Proof. The Euler–Lagrange equation for Lagrangian (24) is

uxuyfut,ut
utt +2fuxy +2fut

uyuxt +2fut
uxuyt +uxuy(fu +fut,t +utfut,u) = 0.

(25)
The corresponding characteristic conformal structure is

g = −(fut
uxdx + fut

uydy − fdt)2 + 2uxuy(2f2
ut

− ffut,ut
).

Looking for ω in form (15) and substituting into the Einstein–Weyl conditions
we obtain

φ1 = −ux
fut

f
Z, φ2 = −uy

fut

f
Z, φ3 = Z,

where

Z =
6fufut

− 2fut
fut,t + 2(ft + fuut)fut,ut

− 2(2f + fut
ut)fut,u

ffut,ut
− 2f2

ut

,

(confirming that ω can be expressed in terms of the equation). Furthermore,
we obtain four differential constraints for the function f(t, u, ut): one of them
coincides with the ODE (23) in the variable ut = z, while the other three are
more complicated. Utilising GL(2)-invariance of ODE (23) [25], we look for a
general solution in the form

f(t, u, ut) =
q

γut + δ
ϕ

(
αut + β

γut + δ

)
,

where ϕ(z) is a generic solution of (23), and α, β, γ, δ, q should be considered
as functions of the remaining arguments t, u. Under this ansatz, the ODE (23)
(in the variable ut = z) will be automatically satisfied. Direct analysis of the
remaining constraints reveals that there exists a common factor p such that
(pα)t = (pβ)u and (pγ)t = (pδ)u. Introducing the potentials one can set

f(t, u, ut) =
q

huut + ht
ϕ

(
guut + gt

huut + ht

)
,

where q can be reconstructed uniquely up to a constant factor, leading to the
following final answer:

f(t, u, ut) =
(guht − hugt)2

huut + ht
ϕ

(
guut + gt

huut + ht

)
; (26)
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here h(t, u) and g(t, u) are two arbitrary functions. With any f(t, u, ut) given
by (26), equation (25) possesses EW property. It is a common phenomenon
that arbitrary functions occurring in the coefficients of integrable systems can
be eliminated by a change of variables. This is exactly the case in our example:
introducing the point transformation

X = x, Y = y, T = h(t, u), U = g(t, u),

one can show that the densities

UXUY ϕ(UT ) dX ∧ dY ∧ dT and uxuyf(t, u, ut) dx ∧ dy ∧ dt

transform into each other, thus establishing triviality of deformation (24). �

5.2. Rigidity Result 2

Equations of the form

utt =
uxy

uxt
+

1
6
ϕ(uxx)u2

xt (27)

have appeared in the classification of integrable hydrodynamic chains [31],
where it was shown that ϕ must satisfy the Chazy equation [8] (set uxx = a):

ϕaaa + 2ϕϕaa − 3ϕ2
a = 0. (28)

Proposition 2. Every equation of the form

utt =
uxy

uxt
+

1
6
f(x, u, ux, uxx)u2

xt, (29)

which satisfies EW property, is equivalent to its undeformed version (27) via a
suitable contact transformation. In other words, equation (27) is rigid within
the class (29).

Proof. The corresponding characteristic conformal structure is

g = u3
xtdxdy −

(
1
6
fau6

xt +
1
4
(uxy − 1

3
fu3

xt)
2

)
dy2 − 1

2
uxt(uxy − 1

3
fu3

xt)dydt

−1
4
u2

xtdt2.

Looking for ω in form (15) and substituting into the Einstein–Weyl conditions
we obtain

φ1 = φ3 = 0, φ2 = −2
3
u3

xtfux
,

(once again confirming that ω can be expressed in terms of the equation).
Furthermore, we obtain the condition fu = 0, as well as four differential con-
straints for the function f(x, ux, uxx): one of them coincides with the Chazy
equation (28) in the variable uxx = a, while the other three are more com-
plicated. Utilising SL(2)-invariance of the Chazy equation [9], we look for a
general solution in the form

f(x, ux, uxx) =
1

(γuxx + δ)2
ϕ

(
αuxx + β

γuxx + δ

)
+

6γ

γuxx + δ
, αδ − βγ = 1,
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where ϕ(a) is a generic solution of (28), and α, β, γ, δ should be considered
as functions of the remaining arguments x, ux. Under this ansatz, the Chazy
equation (28) will be automatically satisfied. Direct analysis of the remaining
constraints reveals that, analogously to the previous example, there exist po-
tentials g(x, ux) and h(x, ux) such that α = gux

, β = gx, γ = hux
, δ = hx.

This leads to the following final answer:

f(x, ux, uxx) =
1

(hux
uxx + hx)2

ϕ

(
gux

uxx + gx

hux
uxx + hx

)
+

6hux

hux
uxx + hx

; (30)

here g(x, ux) and h(x, ux) are two functions which satisfy a single constraint
gux

hx −hux
gx = 1 (corollary of αδ −βγ = 1). With any f(x, ux, uxx) given by

(30), equation (29) possesses EW property. To eliminate arbitrary functions
let us use the potential substitution v = ux which reduces equation (27) to
quasilinear form

vtt =
(

vy

vt
+

1
6
f(x, v, vx)v2

t

)

x

. (31)

Equation (31) can be equivalently represented as the condition of closedness
of the 2-form

vt dx ∧ dy +
(

vy

vt
+

1
6
f(x, v, vx)v2

t

)
dt ∧ dy.

Introducing the point transformation

Y = y, T = t, X = h(x, v), V = g(x, v), (32)

one can verify the identity

VT dX ∧ dY +
(

VY

VT
+

1
6
ϕ(VX)V 2

T

)
dT ∧ dY

= vt dx ∧ dy +
(

vy

vt
+

1
6
f(x, v, vx)v2

t

)
dt ∧ dy,

thus demonstrating triviality of deformation (29) at quasilinear level (31).
The composition of point transformation (32) with the potential substitution
v = ux gives a contact transformation

X = h(x, ux), Y = y, T = t, U = u + q(x, ux),
UX = g(x, ux), UY = uy, UT = ut, (33)

where q(x, ux) is defined by the equations

qux
= ghux

, qx = ghx − ux

(which are compatible by virtue of the relation gux
hx − hux

gx = 1). Contact
transformation (33) takes equation (29) with f(x, ux, uxx) given by (30) to the
undeformed equation

UTT =
UXY

UXT
+

1
6
ϕ(UXX)U2

XT ,

thus establishing the required triviality. �
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5.3. General Rigidity Conjecture

The above arguments can be extended to the general case as follows. Let
U be the Hessian matrix of a function u, and let F (U) = 0 be the Hirota
master-equation. We will exploit two facts (we change to complex coefficients
for classification reasons):

• Generic integrable Hirota-type equations belong to the same open Sp(6, C)-
orbit, see [24];

• Freezing 1-jet of u in equation (1) with EW property yields an integrable
Hirota-type PDE, see §3.2(b).

Thus, a generic second-order PDE with EW property can be represented in
the form

F
(
(AU + B)(CU + D)−1

)
= 0 (34)

where A,B,C,D are 3×3 matrices depending on 1-jet variables xi, u, ui, such
that the 6 × 6 matrix

(
A B
C D

)

belongs to Sp(6, C). Under the substitution (34) part of the Einstein–Weyl
conditions will be satisfied identically, leaving a (complicated!) system of dif-
ferential constraints for A,B,C,D in the 1-jet variables. It remains to prove
that these constraints are equivalent to the existence of a contact transfor-
mation taking PDE (34) into Hirota form F (U) = 0. The complexity of the
resulting differential constraints is a formidable obstacle in this programme.

6. Concluding remarks

1. In this paper, we have studied second-order PDEs in 3D whose charac-
teristic conformal structure is Einstein–Weyl on every solution. A special
subclass thereof are PDEs whose characteristic conformal structure is flat
on every solution (that is, has zero Cotton tensor). We conjecture that
any such PDE is contact equivalent to �u = s where � denotes the
Laplace operator of a constant-coefficient metric and s is some function
depending on the 1-jet of u. In other words, if the characteristic conformal
structure is flat on every solution, the principal symbol can be reduced
to constant-coefficient form for all solutions simultaneously, via a suit-
able contact transformation. This result should be true in any dimension
higher than two (in two dimensions this is clearly false).

2. We have demonstrated the existence of a formula for the Weyl covec-
tor ω for PDEs (1) that satisfy EW property and do not belong to the
Monge–Ampère class. This formula came from the terms in the Einstein–
Weyl equations that are linear in the third-order derivatives of u. We
expect that analogous formula can be constructed for all second-order
PDEs whose characteristic conformal structure [g] is not flat on generic
solution (the required formula should follow from the overdetermined
system formed by the terms depending on 2-jet of u). More generally,
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we conjecture that such a formula exists for any PDE system whose
characteristic variety is a nondegenerate quadric, yet the corresponding
conformal structure [g] is not flat on generic solution. This would include
the Manakov–Santini system, thus agreeing with the results established
in [5].

3. It was observed in [21] that second-order PDEs in 3D that are integrable
by the method of hydrodynamic reductions [22] must necessarily have
EW property. Since EW property (unlike hydrodynamic integrability)
is manifestly contact-invariant, it is tempting to adopt it as a contact-
invariant approach to dispersionless integrability. This would have a se-
rious drawback: it is unknown at present how to solve such equations,
indeed, multiphase solutions coming from the method of hydrodynamic
reductions may not be available. On the other hand, we conjectured that
non-Monge–Ampère second-order PDEs with EW property are in a sense
‘rigid’: they can be reduced to dispersionless Hirota form F (uxixj ) = 0
via a suitable contact transformation. More generally, we expect that
Monge–Ampère equations with Einstein–Weyl characteristic conformal
structure (which is not flat on every solution) can be transformed, via
a suitable Bäcklund transformation, into a translationally invariant form
to which the method of hydrodynamic reductions would already apply.
Note that in the latter case contact transformations may not be sufficient.
As an illustrating example consider the following translationally non-

invariant integrable deformation of the Veronese web equation,

(x1 − x2)ux3ux1x2 + (x2 − x3)ux1ux2x3 + (x3 − x1)ux2ux1x3 = 0. (35)

We refer to [29], Theorem 8.1 for the corresponding Einstein–Weyl structure;
see also [30]. Introducing the one-form

θ(λ) = (λ − x2)(λ − x3)ux1dx1 + (λ − x1)(λ − x3)ux2dx2

+(λ − x1)(λ − x2)ux3dx3,

(here λ is a constant parameter), one can represent equation (35) in com-
pact form dθ(λ) ∧ θ(λ) = 0. Equation (35) is not contact-equivalent to any
translationally invariant equation. Indeed, if it was, it would possess a three-
dimensional commutative subalgebra of contact symmetries (corresponding to
translations in the independent variables). However, the contact symmetry
algebra of equation (35) is generated by vector fields

f(u)∂u, ∂x1 + ∂x2 + ∂x3 , x1∂x1 + x2∂x2 + x3∂x3 ,

and one can easily see that this algebra does not contain any three-dimensional
commutative subalgebra. Nonetheless, equation (35) is Bäcklund-related to the
translationally invariant Veronese web equation [34],

(a1 − a2)uy3uy1y2 + (a2 − a3)uy1uy2y3 + (a3 − a1)uy2uy1y3 = 0, (36)

ai = const, which can be represented as dΘ(λ) ∧ Θ(λ) = 0 where

Θ(λ) = (λ − a2)(λ − a3)uy1dy1 + (λ − a1)(λ − a3)uy2dy2

+(λ − a1)(λ − a2)uy3dy3.
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A Bäcklund transformation between equations (35) and (36) can be repre-
sented in the form

Θ(λ) = θ(λ). (37)
This is a nonlocal change of the independent variables x → y, note that the
dependent variable u remains unchanged. Setting in (37) successively λ = ai

we obtain

uy1dy1 = θ(a1)
(a1−a2)(a1−a3)

, uy2dy2 = θ(a2)
(a2−a1)(a2−a3)

, uy3dy3 = θ(a3)
(a3−a1)(a3−a2)

.

(38)
These relations specify the new independent variables yi uniquely modulo
transformations yi → ϕi(yi), which are point symmetries of equation (36).
Bäcklund transformation (38) can be viewed as a 3D version of reciprocal
transformations that are well-studied in 2D.
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