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A B S T R A C T

While we know that motivated students learn better than non-motivated students but detecting motivation
is challenging. Here we present a game-based motivation detection approach from the EEG signals. We take
an original approach of using EEG-based brain computer interface to assess if motivation state is manifest in
physiological EEG signals as well, and what are suitable conditions in order to achieve the goal? To the best of
our knowledge, detection of motivation level from brain signals is proposed for the first time in this paper. In
order to resolve the central obstacle of small EEG datasets containing deep features, we propose a novel and
unique ‘residual-in-residual architecture of convolutional neural network (RRCNN)’ that is capable of reducing
the problem of over-fitting on small datasets and vanishing gradient. Having accomplished this, several aspects
of using EEG signals for motivation detection are considered, including channel selection and accuracy obtained
using alpha or beta waves of EEG signals. We also include a detailed validation of the different aspects of
our methodology, including detailed comparison with other works as relevant. Our approach achieves 89%
accuracy in using EEG signals to detect motivation state while learning, where alpha wave signals of frontal
asymmetry channels are employed. A more robust (less sensitive to learning conditions) 88% accuracy is
achieved using beta waves signals of frontal asymmetry channels. The results clearly indicate the potential of
detecting motivation states using EEG signals, provided suitable methodologies such as proposed in this paper,
are employed.
1. Introduction

Motivation, i.e. the driving force behind an individual’s actions,
is an important aspect in individual’s life, especially in education.
Motivation is a pervasive and significant determinant that decisively
affects the behaviour of students, educators and all actors in all edu-
cational levels (Pintrich & Schunk, 2002). It is therefore hardly sur-
prising that motivation has long been an interesting topic in scientific
research (Touré-Tillery & Fishbach, 2014). Various researchers have
found that motivated students are likely to be more engaged, devote
efforts and struggles with more challenging activities, persist longer
at a certain activity and show a higher performance and better out-
comes (Garris, Ahlers, & Driskell, 2002). Since motivation influences
the learning process (Christophel, 1990), it is of importance to study the
educational experience and understand what motivates one’s behaviour
in educational contexts (Elliot & Covington, 2001). According to Elliot
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and Covington (2001), ‘‘intervention programs and procedures that
fail to take motivational considerations into account are destined for
failure’’ (Elliot & Covington, 2001).

Various types of approaches have been made to motivate students
by developing virtual class rooms (Olszewska, 2021) or by using ed-
ucational robot-based learning systems (Chin, Hong, & Chen, 2014)
and so on. These techniques intend to introduce a system which is
more self-driven and less human dependent. Such cyber physical sys-
tem based advanced techniques overcome several challenges of online
learning, and bring about significant changes in educational, techno-
logical and societal means. But with the advent of these technologies
like e-learning, several aspects of jettisons have come forward, which
often cause significant dip in students’ motivation level. The effect
of e-learning on the motivation level of students has been discussed
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in (Harandi, 2015; Nehme, 2010). Some contrasting conclusions reveal
from the approaches mentioned above. Harandi (2015) emphasizes that
these advanced learning techniques help a student to learn more effec-
tively and in more motivated manner. Whereas, Nehme (2010) take
more generic approach towards the affect of e-learning on students’
motivation, and come up with the conclusion that in spite of many
advantages, e-learning might cause serious anxiousness and significant
fear of learning in students’ minds, which can affect the motivation
level of the students as well.

Many other educational approaches try to motivate students by
implementing learning systems containing multimedia and interactivity
such as games. This approach builds on the assumption that students
can be motivated if the pedagogical instructions are engaging and uses
recent learning content technologies. However, this is not always the
case. Motivation is not always inherent to the quality of the content
or the implementation of recent technologies. According to De Vicente
and Pain (2002), the main focus of previous research has been on the
motivation in relation to instructional design, while limited research
has focused on motivation detection which means that more research
is needed in the latter (De Vicente & Pain, 2002).

Measuring motivation is a prerequisite for being able to detect it.
However, because motivation is a psychological concept, it cannot
be directly observed nor recorded (Touré-Tillery & Fishbach, 2014).
Researchers tried to measure motivation by examining different con-
ceptualizations of motivation. However, a significant aspect before
attempting to measure motivation is to determine and understand what
type of motivation the researcher is willing to measure, in what context,
and what are the other concepts involved besides the concept of moti-
vation (Touré-Tillery & Fishbach, 2014). Moreover, applying a suitable
motivation theory as a base for motivation detection investigations is
required because there is a large amount of psychological literature
on theories about emotion and motivation but only few studies have
applied them (De Vicente & Pain, 2002).

The theoretical perspectives applied in this article are the rein-
forcement sensitivity theory (RST) and Arnold’s appraisal theory of
emotion. RST is based on the distinction between approach and avoid-
ance motivation, which are the two types of motivation. In approach
motivation, the behaviour is triggered by a positive and desirable event
like reward, incentive and appreciation to reach desirable outcomes.
On the other hand, in avoidance motivation, the behaviour is trig-
gered by a negative undesirable stimulus like aversion, punishment
and threat (Elliot, 2008; Elliot & Covington, 2001). The distinction
between approach and avoidance motivation in studying and analysing
motivation and behaviour is one of the oldest ideas in psychology
concerning the behaviour of organisms according to Elliot (Elliot, 2008;
Elliot & Covington, 2001). What is new with this distinction is the
ability to explain and predict motivated behaviour (Elliot, Gable, &
Mapes, 2006). Moreover, the widespread use of this distinction reveals
the essential and basic roles of the approach and avoidance motivations
in the human functioning (Elliot, 2008).

The variation between the approach and avoidance motivations lies
in valence (pleasantness and unpleasantness of stimuli or environment).
This means that motivation and emotion goes hand in hand, and there-
fore motivation cannot be studied separately from emotion. Emotions
are considered as a motive according to Arnold’s appraisal theory of
emotion, which explains that emotions generate motivational states
of the person. Liking generates the approach motivation and disliking
generates the avoidance motivation (Arnold, 1960; Buck, 1988; Reeve,
2014).

According to De Vicente and Pain (2002), there have been numerous
attempts for approaching the challenge of measuring and detecting
a person’s motivational states. The difference between these attempts
is on the information source that has been used. The methodological
traditions and formats of motivation measurements used are question-
naire, self-report methodology, behavioural approach and neurophysio-
2

logical measures approach (De Vicente & Pain, 2002; Fulmer & Frijters,
2009). Self-report via questionnaires and scores is a commonly used
approach when it comes to measuring motivation. However, there are
many issues about these approaches. First of all, their accuracy is
questionable because measuring attitudes with a tool like questionnaire
or score raises many sceptical thoughts according to De Vicente and
Pain (2002). They argue that this is because these approaches use a
person’s perceptions to measure motivation states, which results into
the problem of subjectivity (De Vicente & Pain, 2002; Touré-Tillery &
Fishbach, 2014). Furthermore, questionnaires are static, which means
that they can only inform about the permanent characteristics of the
persons but motivation states are changing (De Vicente & Pain, 2002).

Another approach is to use neurophysiological measures such as
recording brain activations using electroencephalogram (EEG) (Touré-
Tillery & Fishbach, 2014). However, there have been a limited number
of attempts that have studied motivation using this approach (De Vi-
cente & Pain, 2002). Further, these attempts have analysed the data
from only a single feature or property derived from the EEG signals or
studied other concepts that can be considered as motivational factors,
such as attention and engagement. One such study used power spectral
analysis of EEG data and reported that EEG waves correlated with
the increase of motivation during a serious game play. Another study
measured a person’s attention level as a motivational factor using
neurophysiological and physiological measures. Data mining, which
is a sub-field of computer science that is used to discover novel and
potentially valuable information from large quantities of data (Baker
et al., 2010), has also been used (Derbali, Chalfoun, & Frasson, 2011)
and the best result of the three data mining classifiers used in this
study reached an accuracy of 73.8% in detecting person’s attention
level using EEG, heart rate & skin conductance. However, using an
objective data source, analysing the data source in a multidimensional
manner and applying suitable motivation theories as a base to capture
the complexity of motivation are required. This is the gap that the
current article addresses.

In this era of artificial intelligence, various deep learning techniques
have evolved in order to address several real life problems. such
as Esen, Inalli, Sengur, and Esen (2008a) have reported a comparative
study of adaptive neuro-fuzzy inference systems (ANFIS) and artificial
neural network (ANN) applied to model a ground-coupled heat pump
(GCHP). In the paper the designed models are used to predict the
system performance related to the air and the ground temperature.
Similar to above, several such automatic approaches to learn to predict
various aspects of GCHP have been developed so far (Esen, Inalli,
Sengur, & Esen, 2008b, 2008c). In these aforementioned studies also
various types of advanced approaches like artificial neural networks,
statistical weighted pre-processing (SWP) and so on are used to achieve
better performances. Similarly, a study to model a solar air heater
(SAH) system (Esen, Ozgen, Esen, & Sengur, 2009) to establish a solar-
assisted ground source heat pump system-based slinky type ground heat
exchanger (GHE) (Esen, Esen, & Ozsolak, 2017) using various ANN,
ANFIS, wavelet neural network (WNN) models have been evolved in
recent times.

Similarly, Schirrmeister et al. (2017) have made thorough experi-
ments with various convolutional neural architectures which are par-
ticularly designed to decode and execute various tasks from raw EEG
signals. Dai, Zheng, Na, Wang, and Zhang (2019) have combined clas-
sical CNN with variational autoencoder (VAE) for classifying various
motor-imaginary tasks via analysing raw EEG signals. The Gaussian
distribution of EEG representation has been fit to the signal by the
decoder part of the VAE, where the extracted CNN features are fed to
the deep VAE. Özdenizci, Wang, Koike-Akino, and Erdoğmuş (2019)
address the problem of specific variability during the recording session
of the EEG in determining a person identity via analysing brain activ-
ity. The authors introduce an adversarial inference approach, which
extends various deep learning models for session-invariant person-
discriminative representations learning, from the view of an invari-
ant representation-learning. Another approach of determining motor-

imaginary tasks by analysing EEG signals have been proposed by Amin,
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Alsulaiman, Muhammad, Mekhtiche, and Hossain (2019). The proposed
technique extracts multi-layer CNN features for having good deal of
spacial and temporal features, and fused those features by using their
proposed MCNN and CCNN techniques. The paper reports very decent
accuracies on two popular and publicly available datasets.

Apart from that, detection of error correlates in EEG-based BCI anal-
ysis, has become an important aspect of research in recent times. Such
as, Rouanne, Śliwowski, Costecalde, Benabid, and Aksenova (2021)
have performed a thorough study over the detection of error correlates
in the primary motor cortex at the single trial level. The paper shows
that the error correlates can be detected by using popularly used clas-
sifiers such as support vector machine (SVM), multi-layer perceptrons
(MLP), N-way partial least squares (NPLS) and CNN. Furthermore, the
authors report very good area under curve (AUC) and ROC curve for all
four aforementioned broad range of classifiers in the motor-imaginary
control condition.

The areas within computer and systems science to which this article
contributes to are data mining and affective computing (Calvo, 2010).
The problem that this article addresses is how to accurately detect
motivational states by (a) applying suitable motivation theories and
related concepts as a base to motivation detection and (b) perform-
ing data mining of multidimensional EEG signal data to provide an
objective alternative to the currently prevalent self-reported subjective
measurements. This study aims to establish a model that detects a
person’s motivational states based on an optimal combination of EEG
data and data mining methods. To accomplish this, we have designed
a game for experimentation purpose and also proposed a novel deep
learning framework for detection of motivation. It is well known that
EEG dataset that can provide very large number of sample data points
for training purpose is scarce, therefore it becomes difficult for deeper
model to learn relevant features. Here in this study we address this
problem too through our proposed Residual-in-Residual Convolution
Neural Network (RRCNN) model that fits very small dataset properly
in spite of having very deep architecture. The basic building block of
RRCNN network is the Residual Stack (RS), which actually operates
the residual-in-residual operation. Despite being a very deep model,
the inclusion of small and large skip-connections for accomplishing
residual-in-residual operations ensures that the proposed RRCNN does
not overfit on a small dataset. In addition, we have used Bayesian
optimization for tuning of various hyperparameters of RRCNN network.

The objective of the paper is to propose data mining and affective
computing framework for studying motivation through the use of EEG
signal and brain–computer interface. Our methodology consists of (a)
designing a game-based interface which allows for stimulating motiva-
tion while recording the EEG signal of the player, (b) selecting suitable
subset of channels and features from the entire EEG channel dataset,
(c) learning the deep residual features that encode the state of moti-
vation by training RRCNN on the selected and pre-processed EEG data
and using the trained RRCNN to detect motivation, and (d) perform
statistical analysis associated with the motivation of the participants.
We undertake a variety of studies regarding the different aspects of our
methodology to validate the effectiveness of our approach. Our results
show improvement over the state-of-the-art and establish the utility of
our approach for studying motivation through EEG signals.

This work is original in the sense that EEG signals have not been
used for detecting motivation. Our unique game-based data mining
approach is designed to extract multi-dimensional EEG signals in re-
sponse to motivation stimuli such as reward and punishment. This has
enabled us to perform data mining, hypothesis validation and statistical
analysis associated with motivation of this nature for the first time.
An important novelty of our work is the RRCNN, which is explicitly
designed to possess both deep residual feature support and the ability
to learn them using small datasets.
3

Fig. 1. The overall workflow of the game is given here. For different experiment
groups, different treatments are given to the players in 1st and 2nd game sessions.
The detailed information is given in 2.2.3.

2. Experiment

In this section we discuss about our data mining approach which
we have implemented in order to gather EEG based data, associated
to motivational states of various persons. Various subsections of this
section discuss about the participants included into the experiment, the
elements which were used in the experiment, the philosophy and the
base of the experiment, the stimuli and the experimentation procedure
(see Fig. 1).

2.1. Participants

Prior approval from institutional review board of Nanyang Tech-
nological University, Singapore has been taken before conducting this
study(detail in Zary (2018)). 30 healthy participants with no history
of drug use and smoking, or any neurological and psychiatric disease,
were chosen for the experiment. The age of each participant was
between 21 to 45 years. All of the participants were from school of
computer science and engineering, school of humanities and school of
social sciences. A recruitment letter was sent to them and the willing
participants who fulfil the aforementioned criteria, were selected for
the experiment. The recruitment was done with the help of Nanyang
Technological University, school of computer science and engineering,
school of humanities and school of social sciences. Thereafter, the
potential students were set to answer a depression checklist, so that,
their depression level and mood scale can be measured, as only the
participants with low depression level were to be included in the study.

2.2. Apparatus and materials

The electroencephalography machine, which was used in data col-
lection, is known as BrainMarker and the model of the machine is
DEV12001EEG. The machine has 21 electrodes in total, 19 of which are
recording electrodes, 1 ground electrode and 1 is for system reference
point. The placement of the ground and the reference points are at AFz,
and CPz. Where AFz is between Nasion and Fz, and CPz is between Cz
and Pz. Following the universal standard of 10–20 electrodes placement
system, 21 electrodes are placed on the scalp of each participant.
The 10–20 electrodes placement system is used. The mentioned EEG
electrodes detect the change in electrical signals with various brain
activities.
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Table 1
The description of the different versions of the game.

Version A Version B Version C

Initial value of score
field

NA 0 12

Hardcoded best score NA 12 4

Score obtained for
one match

NA +1 0

Score obtained for
one mismatch

NA 0 −1

Sound played NA Positive sound Negative sound

Feedback message
upon match

NA ‘Pair match, well
done’

None

Feedback message
upon mismatch

NA None ‘Pairs do not match,
it’s a pity’

2.2.1. The game
A game was designed as the brain computer interface for the experi-

mentation purpose and to evaluate the motivation state of participants.
Gamification’s association with motivation as investigated in Richter,
Raban, and Rafaeli (2015) was used as for designing the game. The
game was designed using the Unity Game Engine, which is a tool-set for
creating computer games. The game has three versions, say A, B, and C.
The first version is a non-treatment game sessions, which is developed
for the control group (described below). This treatment contains 3 card
memory game sessions. The positioning of the cards in each session
were fixed and predefined such that the sequence of cards shown to
each player during the game remains same. The players have to match
consecutively flipped cards. For a particular level of game, if all the
pairs are matched successfully, then ‘‘Proceed to Next Level’’ button
appears on the screen. After the participant completes the 5th game
session, the button ‘‘End of game’’ is used.

The versions B and C are created to embed audio-visual positive
and negative feedback into the game. The version A is the simple
non-treatment game which has been discussed earlier in this section.
Version B is the same as version A but has a positive feedback after
each card flip, which triggers the approach motivation into the player.
Version C is similar to version B, but the only difference is that the
given audio-visual feedback is negative. The negative feedback is given
to trigger the avoidance motivation among the participant players.
Through these versions, the reinforcement sensitivity theory and the
constructs of approach and avoidance motivation are embedded in the
experiment design. The specifications of different versions of the game
are given by Table 1.

2.2.2. Stimulus
In this experiment, motivational factors have been used as stimuli.

These motivational factors trigger the approach and avoidance motiva-
tions, which is discussed in the reinforcement sensitivity theory. Two
types of cues are mentioned in the theory, namely the promotion cue
and the prevention cue. Promotion cue contains success and gain, in
order to trigger the approach motivation. Prevention cue consists of
failure and loss, which triggers the avoidance motivation. The stimuli
for these cues are described below:

• Promotion cue condition:
In promotion cue condition, the game sessions are created such
that, when a pair match occurs then:

– The memory game sessions start with 0 points and the play-
ing participants have to achieve as much points as possible.
(Gain)

– Positive sound effect is given for a match. (Success)
– Positive text is shown for a match : ‘‘Pair match, well done’’

(Success)
4

(

• Prevention cue condition:
In the prevention cue condition, the game sessions with mis-
matched pairs are created such that:

– The game session starts with 13 points and the participants
have to avoid losing points. (Loss)

– Negative sound is played for each loss condition. (Failure)
– For each mismatch pair, negative message is shown: ‘‘Pair

do not match, it’s a pity’’ (Failure)

.2.3. The game procedure and the brain computer interface (BCI)
As given in Fig. 1 this experiment is performed through an open

oop BCI system. 30 selected participants are divided into 3 groups.
ach group consists of 10 participants. The groups are named as control
roup(Con), first experiment group (ER/P) and second experiment
roup (EP/R). Each participant has to play the game for two sessions.
n between two sessions of the game, a calming music video is played
o retrieve the mood of the player to neutral state, which is followed
y a break of 2 min.

The participants who are assigned to the control group (Con) play
he version A. The first experiment group (ER/P) play version B for
he first session and version C for the next session of experiment.
n the other hand, participants of second experiment group (EP/R)
lay the game of version C for the first session of experiment and
ersion B for the second session. So basically for control group, no
eedback is given for either matched pair or unmatched pair. For the
irst experiment group, positive reward is given for session 1, to trigger
pproach motivation and negative reward is given for the later session,
hich triggers avoidance motivation. Whereas for second experiment
roup (EP/R), the feedback of each session is reversed of that of first
xperiment group. Detailed information about the game and game
equence for different groups is given by Fig. 2.

. Proposed hypothesis and validation approach

ypothesis. If a person in motivated then he learns more and starts
etting success consecutively in the game, that is the approach motiva-
ion is triggered. In contrast, consecutive failures or no fixed sequence
f success is evident of triggering the avoidance motivation in the
articipant.

.1. Success in the game paradigm for motivation

For the validation of the hypothesis statistically, we have considered
UMSUM or cumulative sum (Ploberger & Krämer, 1992) plots. In the
xperiment of card flipping, each flip which produces a matched pair,
s labelled as one and, the flips which results in an unmatched pair is
abelled as zero. From the CUMSUM plots, we observe the sequences of
’s and 1’s with respect to the time the player is playing. There can be
hree sequences that can be observed from the CUMSUM plots. These
re

• Sequence of 1’s : In this case, ones start coming consecutively
after some period of the game. That is, the success starts coming
in sequential manner, which means the participant have learnt
the game. In this case, we conclude that the approach motivation
is triggered in the participant.

• Sequence of 0’s : If consecutive zeros are present in the sequence,
it implies that the participant is not learning anything. This
therefore indicates that the patient is under the triggering of the
avoidance motivation.

• Sequence of random 0’s and 1’s : If no fixed pattern of sequence
is found, that is zeros and ones are coming at random, then also
we can say that the participant is not learning, the approach moti-
vation is not triggered prominently and the avoidance motivation
dominates over the approach motivation.

e have obtained conclusive results for visualizing the dataset, from
hese cumulative plots, which are discussed in the Results section

Section 5).
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Fig. 2. The game procedure.
3.2. EEG channel sets of interest

In this current study, we have considered three different EEG chan-
nel sets (see Table 2) to validate proposed hypothesis of motivation.
The channel sets selected for evaluation purpose of proposed model of
motivation detection are frontal asymmetry index, emotions and ‘both’.
The selection of EEG channels with these aforementioned measures are
discussed below. The placement of all 21 channels in 10–20 system of
electrode placement is pictorially shown in Fig. 3.

3.2.1. Frontal asymmetry index
Frontal asymmetry is the measurement of electroencephalography

(EEG) activity in the left frontal region versus the activity in the right
frontal region. Analysis of frontal asymmetry index has always been an
important domain to study the approach and avoidance behaviour of
human beings (Davidson, Ekman, Saron, Senulis, & Friesen, 1990; Ng,
Fishman, & Bellugi, 2015). If left sided prefrontal activation is more,
then that indicates higher level in approach motivation. In contrast,
higher level in avoidance motivation results in activation of right sided
prefrontal lobe (Gollan et al., 2014; Horan, Wynn, Mathis, Miller, &
Green, 2014; Mauss & Robinson, 2009; Ng et al., 2015; Sutton &
Davidson, 1997). For analysis of frontal asymmetry index we have
considered the channels F3, F7, F4 and F8.

3.2.2. Emotion
The connection between valence and frontal asymmetry of an in-

dividual’s emotional state is reported in some research studies (Mauss
& Robinson, 2009). For example we can consider the results obtained
by Davidson et al. (1990). It is stated in Davidson et al. (1990) that
‘‘negative emotions are associated with the right-sided activation in
the frontal and anterior temporal region of the brain, whereas positive
emotions are associated with the left-sided activation in the frontal
and anterior temporal region of the brain’’. Furthermore, research
study by Jatupaiboon, Pan-ngum, and Israsena (2013) indicates that
the channels reporting best results in classifying positive and negative
emotions are T7 and T8. These channels are located on the temporal
lobe and are analysed in our study for motivational state detection.

3.2.3. Both
Motivation and emotion go hand in hand and some researchers

enhance the significance of analysing motivation and emotion in a
combined manner (Arnold, 1960; Buck, 1988; Reeve, 2014). There-
fore in this study, we have considered another measure called ‘Both,
5

Table 2
Measures, and EEG channels selected in the data analysis.

Measures Brain activation area EEG channels

Frontal
asymmetry
index

Greater left-sided prefrontal
activation vs. Greater
right-sided prefrontal
activation

Approach motivation : F3, F7
Avoidance motivation: F4, F8

Emotions The left frontal region left
side of the anterior temporal
region activation vs. Right
frontal region, the right side
of the anterior temporal
region activation

Positive emotions: T7
Negative emotions: T8

Both All brain activation areas
stated above

Both approach motivation and
positive emotions: F3, F7, T7
Both approach avoidance
motivation and negative
emotions : F4, F8, T8

which is the combination of both frontal asymmetry index and emotion
measures. This is to check whether by combining both channels sets
improves the accuracy of classification between motivated and non-
motivated mental states. F3, F7, F4, F8, T7 and T8 channels are taken
into account in order to analyse this measure.

3.3. Selection of EEG spectral bands

EEG records the electrical activity of our brain with the aid of
different electrodes placed at appropriate positions of human scalp. The
electrical brain waves recorded by the EEG machine can be categorized
into four different types: beta (>13 Hz), alpha (8–13 Hz), theta (4–8
Hz), and delta (0.5–4 Hz) (Blinowska & Durka, 2006; Tatum IV, 2014).
In this current study, after de-noising the EEG signal using MATLAB
software, Alpha and Beta waves are extracted from the spectral contents
of the raw signal by using Butterworth band-pass filter. Alpha waves
are associated with the awake and relaxed state of mind, which implies
that the person is active with a passive reacting state. Alpha wave also
reflects particularly, cognitive and memory performance of a person.
On the other hand, beta waves occur in mental effort or activation,
that is doing something with extreme level of concentrations. In this
research framework of detecting motivation level, we have particularly
chosen alpha waves and beta waves to discriminate between different
brain activations caused by passive reflective state of mind versus
concentration, attention and thinking.
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Fig. 3. In (a), 21 channels of 10–20 system of electrode placement is given. The channels which are highlighted in (b), we have evaluated in this study to detect motivation of
participants. These highlighted electrodes include the ground and reference points also.
3.4. EEG and stimulus slicing

During the experiments, EEG signals are recorded continuously
without introducing breaks for the transitions between sessions. There-
fore, it becomes necessary to mark the exact time of usage of the stimuli
in the experiments. The time stamps for each event of matched or
unmatched cards are tracked and sorted in the game log files. This
is a significant step to cut down 300 ms of EEG activity before the
stimulus, which is the thought process and 300 ms of EEG activity
after the stimulus, known as the reaction process. This is done to
compare different brain activations while thinking before the stimulus
and reacting after the stimulus.

4. The proposed Residual-in-Residual CNN (RRCNN)

4.1. Network architecture

Our deep neural classifier is comprised of following stages : shallow
feature extraction, deep feature extraction, adaptive average pooling
and flattening, and classification. A single 1-D convolution layer has
been used for the shallow feature extraction from the raw EEG signal.
Now suppose the input data is 𝑋𝑖 and shallow intermediate feature is
𝐹𝑠. Then, these are related by Eq. (1)

𝐹𝑠 = 𝐶𝑆𝐹 (𝑋𝑖) (1)

where 𝐶𝑆𝐹 (.) is the 1-D convolution operation, using which shallow
features (SF) from the raw input signal is extracted.

Now, the shallow feature map is further fed to our residual portion
of the network for deep feature extraction. The residual portion of
the network is consisted of some stacks of residual blocks and all the
residual blocks within each stack always have same feature dimensions.
These stacks also have residual skip-connections between the input and
output of the stack. Our residual-in-residual architecture of the residual
block comprises of long and short skip-connections (see Fig. 4), which
is able to fit very small dataset without problems like over-fitting,
gradient vanishing and so on.

Suppose there are 𝑎 such stacks, such that the residual portion of the
architecture(𝐴) that extracts deeper low dimensional features, can be
expressed as 𝐴 = {𝐴1, 𝐴2,… ., 𝐴𝑎}. Suppose the input feature map of a
stack 𝐴1 is say 𝐼𝐴1 and output is say 𝑂𝐴1, It is mentioned that the skip-
connection is between 𝐼𝐴1 and 𝑂𝐴1. Since a skip-connection adds the
prior input feature map to the posterior output feature map, therefore
the final output of the residual stack 𝐴 would be the addition of 𝐼
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1 𝐴1
and 𝑂𝐴1. If the final output of stack 𝐴1 is 𝑂𝑓1 and if the operation of
stacked residual blocks for stack 𝐴1 is 𝐶𝑠1 then

𝑂𝐴1 = 𝐶𝑆1(𝐼𝐴1) (2)

𝑂𝑓1 = 𝐼𝐴1 + 𝑂𝐴1 (3)

In addition, let us suppose that the stack 𝐴1 has 𝑏 number of residual
blocks such that,

𝐴1 = 𝐵 = {𝐵1, 𝐵2,… .., 𝐵𝑏} (4)

where 𝐵1, 𝐵2,…. are 1-D residual blocks. For a single stack say 𝐴1, the
input feature dimensions and output feature dimensions of all residual
blocks (𝐵𝑖) are same and can be different for different stacks but then
output of each stack passes through another convolution operation
before being fed to the next stack. Suppose the output feature map of
𝐴1 stack is 𝐹𝐴1, which has suppose the feature dimension of 𝐿𝐴1×𝐶ℎ𝐴1.
Now the convolution operations can be represented as

𝐶 = {𝐶1, 𝐶2,… ..., 𝐶𝑎−1} | 𝐶𝑖 ∈ 𝐶ℎ𝑖×𝐶ℎ𝑖+1 (5)

𝐶ℎ𝑖+1 ≥ 𝐶ℎ𝑖 (6)

where 𝐶1 operation is performed between residual stacks 𝐴1 and 𝐴2.
This is how using skip-connected stacks of residual blocks, deep fea-
tures are extracted from shallow feature maps.

𝐹𝑑 = 𝐶𝐷𝐹 (𝐹𝑠) (7)

where 𝐶𝐷𝐹 (.) extract deep features with the aid of stacked residual
layers.

Since the input time-series data of the thought process for each card
flipping, has been collected in a regular fashion, therefore the time
length for each data is unique and different from other. This results in a
dimension mismatch error in our network. To address this problem, we
have embedded an adaptive average pooling layer, which normalizes
dimension deep feature (𝐹𝑑) to one and outputs in features having
sequence length equals to 1. Now, if the adaptive average pooling
operation is 𝐴𝑣𝑔(.) which takes the input deep feature map 𝐹𝑑 and
produces output 𝐹𝑎𝑣𝑔 having sequence length normalized to one. Due to
this adaptive average pooling operation following mapping takes place.

𝐹𝐿𝑑×𝐶ℎ𝑑
𝑑 → 𝐹 1×𝐶ℎ𝑑

𝑎𝑣𝑔 (8)

Thereafter, the feature map 𝐹𝑎𝑣𝑔 is flattened and 𝐶ℎ𝑑 number of deep
features are obtained from the whole network, which are further fed to
the classifier for classification purpose. The residual architecture of the
proposed RRCNN is pictorially described in details in Fig. 4.



Expert Systems With Applications 184 (2021) 115548S. Chattopadhyay et al.
Fig. 4. The detailed architecture of RRCNN network.
4.2. 1-D residual block

The basic building block of proposed deep neural classifier is the
1-D residual block, which is shown in Fig. 5. The residual blocks are
consisted of two 1-D convolution layers (𝐶𝑟) and the number of input
channels and output channels of each convolution layer are same. The
input feature map is added to the output feature map of the second
convolution layer via skip connection. Batch normalization and ReLU(.)
activation function are embedded after the first convolution pooling.

Suppose the input feature map of a residual block is 𝑥𝑖𝑛. Now after
two convolution operation with 1 dimensional batch-normalization
and ReLU activation, suppose the output feature map is 𝑥𝑜𝑢𝑡. Say this
combined operation is denoted by 𝐶𝑟𝑒𝑠(.), therefore

𝑥𝑜𝑢𝑡 = 𝐶𝑟𝑒𝑠(𝑥𝑖𝑛) (9)

Now the final output 𝑥𝑓 is the addition of 𝑥𝑜𝑢𝑡 and 𝑥𝑖𝑛.

𝑥𝑓 = 𝑥𝑜𝑢𝑡 + 𝑥𝑖𝑛 (10)

The pseudo-code of the residual operation is given by Algorithm 1.

Algorithm 1 Pseudocode for the 1-D residual operation. It has been
mentioned earlier that the kernel size, stride, and padding of the con-
volution layer (𝐶𝑟) are chosen to be 3, 1, and 1. Here in the algorithm
‘+’ sign denotes the pixel-wise addition or aggregation of two feature
maps having equal dimensions.
Input: 𝑥𝑖𝑛 → Input feature map
𝐶ℎ𝑖𝑛 → Input channels
1: Initiate 𝐶𝑟 = 1-D Convolution (𝐶ℎ𝑖𝑛, 𝐶ℎ𝑖𝑛, Kernel size , Stride ,

Padding)
2: Initiate 𝐵𝑛 = 1-D Batch normalization ( 𝐶ℎ𝑖𝑛)
3: Initiate Activation = ReLU(.)
4: for i = 1 : 2 do
5: 𝑥 = 𝐶𝑟(𝑥𝑖𝑛)
6: if i ← 1 then
7: 𝑥 = 𝐵𝑛(𝑥)
8: 𝑥 = Activation(𝑥)
9: end if

10: end for
11: 𝑥𝑜𝑢𝑡 = 𝑥
12: 𝑥𝑓 = 𝑥𝑖𝑛 + 𝑥𝑜𝑢𝑡
13: Output: 𝑥𝑓
7

4.3. BayesIan optimization for hyperparameters tuning

In training of a deep learning model, the loss function gets op-
timized via backpropagation (Hecht-Nielsen, 1992) technique, which
uses an optimizer like stochastic gradient descent (SGD), Adam or
RMSProp and so on. The trainable parameters gets upgraded during
training by the following equation.

𝜃𝑛+1 = 𝜃𝑛 − 𝛼▽𝐿(𝜃𝑛) (11)

where 𝑛 and 𝛼 are the number of iteration and the learning rate of
the optimizer and 𝐿(𝜃) is the loss function, which is to be optimized.
The algorithm of the optimizer can oscillate when it approaches the
mostly erected path of optimum. Therefore to stabilize the motion and
avoid the oscillation another parameter called momentum is added to
the optimizer function. So, Eq. (1) is changed to

𝜃𝑛+1 = 𝜃𝑛 − 𝛼▽𝐿(𝜃𝑛) + 𝛽(𝜃𝑛 − 𝜃𝑛−1) (12)

where 𝛽 is the momentum factor, which determines the contribution of
the step of previous gradient to the current iteration. In addition, data
augmentation, dropouts, adding regularization to the loss function term
can also overcome the overfitting of DNN models. The regularization
embedded loss function becomes

𝐿𝑅(𝜃) = 𝐿(𝛩) + 𝛾𝛷(𝜔) (13)

where 𝛷(𝜔) is given by

𝛷(𝜔) = 1
2
𝜔𝑇𝜔 (14)

In above equations, 𝛾 is the regularization coefficient and 𝜔 is the
weight vector. Since in our CNN model the weight layers, hidden
dimensions of the residual blocks batchnorm, dropouts and such ar-
chitectural hyperparameters are determined manually by performing
exhaustive experimentation, therefore we are left with very few train-
able hyperparameters which are to be optimized by Bayesian opti-
mization (Snoek et al., 2015) technique. These hyperparameters are
not related to the architecture of the network but to the training and
evaluation process of the network. The parameters, which we have
optimized with Bayesian optimization are the optimizer, learning rate,
batch size and the regularization parameter. We have done 5 fold cross
validation for evaluating our model, that is, we have considered 80% of
the data for training, 10% for validation and 10% for testing purpose.

Now, the objective function which is to be minimized is the val-
idation error (𝑒𝑉 ), which is clearly not a convex function or has
any closed form of expression. Therefore, gradient based approaches
would not work in this case. In addition to this, since the evaluation
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Fig. 5. The residual block of RRCNN network.
of the function is computationally much costly, therefore brute force
optimization techniques like grid search or genetic algorithm will not
be applicable here.

Therefore in this case, Bayesian optimization suits perfectly to find
optima of the expensive objective function 𝑒𝑉 . The algorithm works by
constructing a probabilistic model, considering the objective function,
which is in our case the validation error. This technique is advanta-
geous since it takes the benefits of considering all available information
from prior evaluations instead of relying on only Hessian approxi-
mations and local gradients. With the aid of Bayesian optimization
technique, extrema of difficult non-convex functions can be found with
relatively less iterations compare to other optimization techniques.

In Bayesian optimization, we make a fundamental assumption that
the objective function 𝑒𝑉 is defined from prior Gaussian process, that
is, 𝑒𝑉 (𝜂) ∼ 𝑁(0, 𝜒), where 𝜂 is a vector, which consists of the hy-
perparameters. Let us suppose the objective function is corrupted by
Gaussian noise, which has zero mean value and standard deviation of
𝜎𝑛. Therefore 𝜒 is defined as given in Eq. (15).

𝜒 = 𝛹 + 𝜎2𝑛𝑓 (15)

where 𝛹 is a matrix of dimension 𝑓 × 𝑓 such that the first element
(element at position 1,1) is 𝜆(𝜂1, 𝜂1) and the element at position (𝑓, 𝑓 )
is 𝜆(𝜂𝑓 , 𝜂𝑓 ).

Where 𝜆(𝜂, 𝜂′) is known as the covariance function and I is the
identity matrix. Now, let us denote the observations from previous
iterations are

𝑂1∶𝑓 = {𝜂1∶𝑓 , 𝑒𝑉1∶𝑓 } (16)

where 𝑒𝑉1∶𝑓 = 𝑒𝑉 (𝜂1∶𝑓 ). Now suppose, 𝜂𝑓+1 is the next point which is to
be evaluate, therefore the objective function at 𝜂𝑓+1 is 𝑒𝑉𝑓+1 = 𝑒𝑉 (𝜂𝑓+1).
Under GP prior, 𝑒𝑉1∶𝑓 and 𝑒𝑉1+𝑓 can jointly be considered as Gaussian.
Therefore the we can obtain the expression for predictive distribution
as

𝑒𝑉𝑓+1|𝑂1∶𝑓 ∼ 𝑁(𝜇(𝜂𝑓+1), 𝜎2(𝜂𝑓+1) + 𝜎2𝑛 ) (17)

where

𝜇(𝜂𝑓+1) = 𝛬𝑇 (𝜒 + 𝜎2𝑛𝐼)
−1𝑒𝑉1∶𝑓 (18)

𝜎2(𝜂𝑓+1) = 𝜆(𝜂𝑓+1, 𝜂𝑓+1) − 𝛬𝑇 (𝜒 + 𝜎2𝑛𝐼)
−1𝛬 (19)

𝛬 = [𝜆(𝜂𝑓+1, 𝜂1)𝜆(𝜂𝑓+1, 𝜂2).......𝜆(𝜂𝑓+1, 𝜂𝑓 )]𝑇 (20)

Now, the predictive posterior distribution 𝑒𝑉𝑓+1|𝑂1∶𝑓 can sufficiently be
characterized by the predictive variance function (𝜎2(𝜂𝑓+1)) and the
predictive mean function (𝜇(𝜂𝑓+1)) of the distribution. These character-
izing factors solely depend on the selection of the covariance function
(𝜆(𝜂, 𝜂′)). In our study we have used automatic relevance determination
(ARD) Matern 5/2 kernel, such that the problem caused due to unre-
alistic smooth covariance function of ARD squared exponential kernel
can be addressed.
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It has been mentioned earlier that Bayesian optimization technique
uses utility or acquisition function, which is derived from aforemen-
tioned predictive posterior distribution, for distribution of more com-
putations to determine the next point for evaluation. In this current
study, the utility function is the expected improvement over the best
expected value, which is given by

𝜇𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜂𝑙∈𝜂1∶𝑓

𝜇(𝜂𝑙) (21)

Under Gaussian process prior assumption, this utility function has a
close form solution which is expressed as follows

𝑥𝑒𝑖(𝜂𝑓+1) = 𝜎(𝜂𝑓+1)[𝑌 𝛩(𝑌 ) + 𝜃(𝑌 )] (22)

here 𝛩(.) is the cumulative distribution function, 𝜃(.) is the PDF of the
standard normal and 𝑌 is defined as

𝑌 =
𝜇𝑏𝑒𝑠𝑡 − 𝜇(𝜂𝑓+1)

𝜎(𝜂𝑓 + 1)
(23)

The Bayesian optimization algorithm uses proxy optimization to de-
termine which point should be evaluated next. Proxy optimization is
to maximize the acquisition function, i.e., the minimization of the
expected improvement (ei) value over the recent best expected value.
The complete algorithm of Bayesian optimization for deep learning
hyperparameter tuning is given by Algorithm 2.

Algorithm 2 Pseudocode for the Bayesian optimization for deep
learning hyperparameter tuning.
Input: The range of values of the hyperparameters: lr(𝛼),
optimizer(Op), batch size(bs), regularization parameter(𝛽) and
momentum(𝛾).
1: for f = 1, … do
2: With chosen ARD Matern 5/2 kernel, calculate 𝜇(𝜂𝑓+1) and

𝜎2(𝜂𝑓+1) (given by Eqn. (18) and Eqn. (19)).
3: By optimization of the utility function over the Gaussian pro-

cess prior : 𝜂𝑓+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜂𝑥𝑒𝑖(𝜂|𝑂1∶𝑓 ), find 𝜂𝑓+1 =
(𝛼𝑓+1, 𝑂𝑝𝑓+1, 𝑏𝑠𝑓+1, 𝛾𝑓+1, 𝛽𝑓+1)

4: Calculate the validation error (𝑒𝑉 ) with the aforementioned deep
learning parameters.

5: Augment the data 𝑂1∶𝑓+1 = {𝑂1∶𝑓 , (𝜂𝑓+1, 𝑒𝑉𝑓+1)}
6: end for

Output: The best set of hyperparameters, which are given as input.

5. Results

5.1. Data analysis and visualization

It is mentioned earlier in Section 3 that for data analysis and
visualization purpose, we use cumulative sum (CUMSUM) plots of dif-
ferent sequences of different experiment groups. Using the information
obtained from the CUSMSUM plots, we have labelled the data for
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Table 3
The experiment results obtained from CUMSUM plots of different groups.

Group Number of participant Motivated Non-Motivated

Con 10 2 8
ER/P 10 4 6
EP/R 10 7 3

the training of subsequent deep neural classifier. The participants of
different experiment groups have played the game for two sequences.
The CUMSUM plot of a single participant indicates whether that person
is motivated or not. Some common patterns can be found between
the CUMSUM plots of participants who fall under same group and
sequence. We present in Fig. 6 the representative plots of CUMSUM
for both sessions of different experiment groups. Since the time of the
game-play of different players are different from each other, therefore
while plotting the CUMSUM, we have selected first 50 discrete time-
data for analysis purpose. The common pattern in each experiment
group implies that, for different persons, if similar triggering feedback
is given then the motivation level gets triggered in a similar way.
Explicit observations for each group are presented next.

In Fig. 6(a), the CUMSUM of 0’s are rising over time at a larger rate
than the CUMSUM of 1’s. This means that the participant is making
consecutive mistakes in finding matched pair of cards. This further im-
plies that the person is not learning at all. Referring to our hypothesis,
we may conclude that the person is not motivated. Similarly, Fig. 6(b)
also indicates that the player is not much motivated to learn the game,
as 0’s and 1’s are coming at random. On the other hand, in Fig. 6(c),
we see that after some time of game-play, the participant starts getting
1’s in a consecutive manner, that is, the player is motivated enough to
learn the game. These three specific patterns of CUMSUM are found
in all the cases of participants. It is observed that the CUMSUM plots
of first sequence of experimentation for different experiment groups are
quite similar and match Fig. 6(a) or (b). That is, the participants playing
the first sequence of the game are not learning the game at all. On the
other hand, variations are found while playing the second sequence.
For control group (C) and first experiment group (ER/P), the CUMSUM
plots given by Fig. 6(a) and (b) are mostly found in case of second
sequence of the game play. But the number of occurrence of CUMSUM
plots given by Fig. 6(c) is slightly greater for experiment group ER/P
than that of C. On the other hand, the CUMSUM plot Fig. 6(c) is mostly
found for sequence 2 of second experiment group EP/R, for six out
of ten participants. Therefore, it is indicated from the analysis that,
the participants belonging to the group ER/P learn the game better
than that of the participants belonging to other groups. From the data
analysis and CUMSUM plots, we are able to identify which participants
are motivated and which are not. The results of the analysis, that is
the number of motivated and non-motivated participants belonging to
different groups are tabulated in Table 3.

5.2. Detection of motivation

5.2.1. Optimal hyperparameters determination using Bayesian optimization
We have used Bayesian optimization of optimizing the learning

rate of the RRCNN (𝛼), the momentum factor (𝛾), the regularization
coefficient (𝛽) and the batch size (𝑏𝑠) of training samples. The ranges
of 𝛼, 𝑏𝑠, 𝛾 and 𝛽 are given below

𝛼 → [1 × 10−6, 1 × 10−2], 𝑏𝑠 → [1, 15], 𝛾 → [0.01, 0.99],

𝛽 → [1 × 10−6, 1 × 10−3]
(24)

n addition the optimizers which are considered for finding the optimal
et of hyperparameters are Adam, RMSProp and SGD. Different versions
f RRCNN model are described in the following section. Each version
s trained for 150 epochs to find out the final set of hyperparameters.

The results obtained from this optimization is given in Table 4. It is
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bserved that for most of the versions, Adam optimizer with very slow T
earning rate ranging between [10−5, 10−4] is chosen as optimum. SGD
s not been selected for any of these, but RMSProp is selected for two
f the versions. For all the versions, the momentum is around 0.8 and
atch size remains less than 10. Since the training dataset is not too
arge, therefore if the batch size remains very much, thereafter some
nformation may get lost during the 1-D batch normalization operation.
o if the batch size is more, then the model may perform worse,
herefore the optimization algorithm fixes the size to its appropriate.

By this final optimized hyperparameters, the results with different
ersions have increased from 2% to even up to 6% in classification
ccuracies. Therefore, Bayesian optimization has played vital role in
chieving optimum performance of our model.

.2.2. Results of RRCNN architecture variants
In this study we have evaluated different versions of the proposed

RCNN network. All the experiments are done in Python environment
ith the aid PyTorch front end. Among all of the versions, 6 versions
re selected as they have given relatively good and comparable results
hen they are evaluated on our datasets, during various experimenta-

ion. The detailed architectural descriptions of the mentioned 6 versions
f RRCNNs are given by Table 4.

Different versions of RRCNN are mainly different from each other by
eans of the number of RS, residual blocks in each RS and dimensions

f feature maps of residual blocks. For some cases, where the feature
aps of residual blocks of all RS are same, there we have skipped the

ntermediate bridging convolution layers (𝐶𝑟). We can see from Table 4
hat, such structures are RRCNN-B, RRCNN-C and RRCNN-D. Whereas,
n spite of having same intermediate dimensions of residual blocks of
ifferent residual stacks (RS) of RRCNN-A, it has intermediate bridging
onvolution layers. For the versions RRCNN-E and RRCNN-F, the input
nd output feature maps of different residual blocks of different RS
re different from each other therefore bridging convolution layers are
ecessary.

From Table 6, we observe that among all six combinations, RRCNN-
, RRCNN-C, RRCNN-D and RRCNN-E report promising results (>80%)

n most of the cases of this binary classification task. RRCNN-A and
RCNN-F fails to achieve such good results in most cases.

.2.3. Selection of appropriate channel sets
In this study, we have used four channel sets F3, F7 for approach

otivation, and F4, F8 for avoidance motivation. Before arriving at the
onclusion of using these channels sets only, we have performed experi-
entation on various combinations of different channel sets also, which

ombinations are proposed in various papers, investigated for different
omains. Such as Heyat, Lai, Khan, and Zhang (2019) have analysed
4-P4 and C4-A1 channel sets for bruxism detection during deep sleep
f human beings, and reports that C4-P4 channel combination outper-
orms C4-A1 with significant difference. In another paper (Prasad, Liu,
hen, & Quek, 2018), suicidal tendencies of students have been checked
y analysing attention (Fz, F4), emotion (F3, F8) and memory (P8, P3,
3, T7) channels. The reported results show that beta waves outperform
lpha waves in this case of sentiment analysis task. Similarly for the
aper (Song & Sepulveda, 2018), the authors have evaluated channels
1 to P7 by selecting them by the proposed technique in self-paced
rain–computer interface task onset. Similarly, (Chai et al., 2017) have
elected 16 EEG channels (AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8,
P6, T8, FC2, F8, AF4, FP2) out of 32 channels by using independent
omponent analysis (ICA) and scalp map projection (SMP) to classify
river fatigue by performing EEG analysis.

In this proposed work, we have to finalize the channel sets, we
ave performed experimentation by using aforementioned different
ombinations of channel sets also. Since we have used 10–20 electrode
ystem, we have considered only those channels subset from a single
hannel set which are available in our 10–20 electrode system. The
esults (accuracy) obtained by different channel sets are reported in

able 5. It is evident from the obtained results that, the combination
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Fig. 6. Envelop plots of three different types of observations obtained from the CUMSUM strategy of data visualization is given here. It has been mentioned that EEG signals,
producing plots (a) and (b) are considered as non-Motivated and plot (c) is considered as motivated.
Table 4
Different versions of RRCNN network is given with their architectural details and optimized hyperparameters which are fit for this dataset. In the table a and b are the number
of residual stacks (RSs) and the number of residual blocks in each residual stack in the architecture. Ch is the number of channels in the feature maps of each residual block
of RSs.

Version a b Ch Bridging conv layers (𝐶𝑟) Optimized hyperparameters

Conv Input Output 𝛼 ×10−4 𝑂𝑝 𝑏𝑠 𝛾 𝛽 ×10−4

A 3 5 32 Cr1 32 32 1.23 RMSProp 4 0.787 87.7
Cr2 32 32

B 3 5 64 No bridging conv layer 0.18 Adam 6 0.812 3.257

C 3 7 64 No bridging conv layer 0.21 Adam 6 0.809 14.2

D 4 5 64 No bridging conv layer 6.23 Adam 7 0.779 0.976

E 3 5 RS-32 Cr1 32 64 0.435 Adam 4 0.859 4.615
RS-64 Cr2 64 128
RS-128

F 3 5 RS-16 Cr1 16 32 2.36 RMSProp 5 0.758 0.559
RS-32 Cr2 32 64
RS-64
of the approach and the avoidance motivation channels, that is F3,
F7, F4 and F8 achieves the maximum among others. However, if the
emotion channels (T7 and T8) are further added with the motivation
channels, then a little dip in the performance of the RRCNN-C has been
observed, since it achieves 84% accuracy which is significantly less than
the maximum. Therefore we can arrive at the conclusion that, selection
of motivation channels and emotion channels significantly boosts the
performance of RRCNN-C in determining the motivation level of a
student.

5.2.4. Channel sets
It has been mentioned earlier that we have considered two different

channel sets and the combination of those channel sets for analysis
purpose. The results of the analysis are given in Table 6. We derived
the following observations. For all the cases, the results obtained with
these brain channel sets are more than 70%. This clearly indicates that
the motivation state is manifested in EEG signals. Further, the frontal
asymmetry channel set provides significantly better accuracy than the
other channel sets. Most of the accuracies of all cases with frontal
asymmetry index are more than 80% with the highest of 89%. Whereas
10
for emotion it is 81% and for ‘Both’, it is 84%. This suggests that, frontal
asymmetry index carries most important information to detect whether
a participant is motivated or not.

5.2.5. Role of alpha and beta waves
The accuracies achieved by alpha and beta waves are also compared

in Table 6 respectively. As a whole, it is observed that, the results
obtained by beta waves are better than that of the alpha waves. In 11
out of 18 cases accuracies with beta waves dominate over accuracies
with alpha waves. This fact signifies that signals associated to conscious
thought, carry more discriminatory and distinctive information than
that of the signals which cause reflective lower activity in detection
of motivation among participants.

In this study of motivation detection, we have considered the
thought process data for analysis purpose. We know that beta waves
are associated to works which require high level of concentration. Now
if a person is motivated enough to learn the game is directly related
to the fact that how much concentration he imparts in playing the
game. If the player is not playing the game with enough concentration
then he/she will not learn it, that is, he/she is not enough motivated.
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Table 5
Comparison with various EEG channel sets, mentioned in various studies of EEG
analysis.

Paper Used channel
sets

Wave Accuracy

Heyat et al. (2019) C4-P4 Beta 69%

Heyat et al. (2019) C4-A1 Beta 66%

Prasad et al. (2018) Fz, F4, F3, F8,
P8, P3, C3, T7

Beta 73%

Song and Sepulveda (2018) P3, P4, P7, P8 Alpha 70%

Chai et al. (2017) AFz, F3, T7,
T8, CPz, P3,
P4, P8,

Beta 61%

RRCNN-C F3, F7, F4, F8,
T7, T8

Alpha/Beta 84%

RRCNN-C F3, F7, F4, F8 Alpha 89%

Table 6
Classification results obtained using different channel sets, RRCNN versions, and alpha
versus beta waves. Bold indicates row-wise best performance while underline indicates
column-wise best performance.

RRCNN Alpha waves Beta waves

Version Frontal
asymmetry

Emotions Both Frontal
asymmetry

Emotions Both

A 78% 72% 75% 71% 74% 71%
B 87% 78% 81% 88% 74% 82%
C 89% 78% 84% 88% 77% 80%
D 82% 79% 81% 84% 81% 83%
E 83% 76% 80% 85% 75% 84%
F 76% 73% 70% 79% 74% 73%

Therefore beta waves carry more discriminatory features in detection of
motivation level of test participants. For frontal asymmetry index and
‘Both’, in four out of six cases, accuracies achieved using beta waves as
the inputs, are more than that of alpha waves as the inputs. Whereas
with emotion channel sets, in 50% test cases, beta waves dominate
over alpha waves. Therefore, we can conclude that in determining the
motivation of a participant, beta waves happen to be more effective
than that of alpha waves. This study is further insightful in the sense
that the classification accuracy is less dependent on the architectural
optimization of the RRCNN when using beta waves, therefore more
robust in conducting motivation-based studies in general.

5.3. Computational efficiency

Since from the previously mentioned experiment results we can say
that RRCNN-C outperforms all other versions of RRCNN as a whole,
in this section we discuss the computational efficiency of RRCNN-C
only. Though the model RRCNN-C has 0.55M trainable parameters,
it is tend to perform excellently good with noticeably small datasets.
In the model, each RSs, and the pre-RSs layer have 0.17M and 25k
trainable weights and biases in total. This deep RRCNN-C has been
trained with 500 data samples for 300 epochs. In the training process,
the model with minimum validation loss has been saved and further
used for testing purpose. The model has been trained several times and
the time taken in the training process is 143 min or 2 h and 23 min.
In the testing process also, the model takes less than a minute to make
prediction of 100 test samples. Therefore it is evident that the model
is computationally much efficient towards analysing EEG data in an
end-to-end manner.

5.4. Overall performance of the model

Previously we have mentioned that our model is less likely to
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overfit even in small datasets, like our EEG signal dataset of motivation
detection. To justify that fact, we discuss the loss characteristics train
and validation losses of RRCNN-C on alpha signals.

The variation of train and validation losses during training of the
RRCNN-C is given in Fig. 7(a). For comparison purpose, similar loss
plots of LSTM (Alhagry, Fahmy, & El-Khoribi, 2017) and GRU (Dey
& Salemt, 2017) are also given in Fig. 7(b) and (c). The train losses
of these three deep learning classifiers are found almost similar but
significant variations can be observed in validation loss plots. The
validation loss plot of Fig. 7(a) is much consistently decreasing in
nature than the other two. It is observed from the validation loss
plot of GRU, that it is not learning much as the validation loss is
not converging at all, rather it oscillates. Similar characteristic is seen
for the case of LSTM also. LSTM, GRU are state-of-the-art classifiers
for sequential data processing, which also fail in this case, where the
dataset size is very less, and proposed RRCNN-C learns fits in here too.
This signifies the efficiency of proposed architecture.

5.5. Comparison with standard methods of EEG signal processing

Now to estimate the reliability and efficiency of RRCNN model,
we have performed some experiments with popular signal processing
techniques on the proposed dataset of motivation detection. These
techniques include some deep learning models such as LSTM (Alhagry
et al., 2017), GRU (Dey & Salemt, 2017) and BiLSTM (Yang, Huang,
Wu, & Yang, 2020), and some traditional machine learning approaches.
The deep learning models learn relevant features by themselves only,
therefore we fed raw alpha and beta signals to those RNN models.
On the other hand, for evaluating machine learning based models,
we need to extract relevant discriminatory features from raw EEG
signals. For this, we have extracted higher order crossing (HOC) (Prasad
et al., 2018) features from alpha and beta frequency signals and used
SVM (Prasad et al., 2018), KNN (Prasad et al., 2018) and MLP (Chatter-
jee & Bandyopadhyay, 2016) classifiers for classification purpose. The
results obtained by different approaches mentioned above are reported
in Table 7. The specifications of the models and input features as well
as signals can be seen from the given Table 7. It is observed that
RNN based approaches have not brought significantly good accuracies
whereas machine learning classifiers such as SVM achieves impressive
result. The reason can be that, to address the class imbalance problem
in our data, we have considered very few data points for training the
classifier. Therefore the RNN models might not have learnt enough
discriminatory features to achieve impressive results. As a whole we
can say that proposed RRCNN-C achieves the best with a very large
margin of difference even in such a small dataset. This concludes the
elevated efficiency of our model.

5.6. Evaluation of the RRCNN model across other datasets

In order to better justify the performance of the RRCNN model
(RRCNN-C), the model has been evaluated on two other datasets and
an ranked based statistical analysis (Friedman test) have also been
performed based on the obtained results on these three datasets. The
datasets on which the model has been evaluated along with the motiva-
tion dataset are the Sentiment analysis dataset proposed by Prasad et al.
(2018) and BCI-IV 2a (Gaur et al., 2021) motor-imaginary competition
dataset. We have extracted Higher order crossing features of different
orders from the given two datasets and applied aforementioned 6
popularly adopted techniques (LSTM, GRU, BiLSTM, SVM, MLP and
KNN) for the analysis purpose.

In the Sentiment analysis dataset, there are 3 classes, suicide, posi-
tive and neutral respectively. As mentioned in the paper (Prasad et al.,
2018), we also have considered memory channels and HOC features
of order 50 for the intention of analysing the Sentiment data. Prasad
et al. (2018) have achieved maximum of 77.1% 3 class classification

accuracy by considering aforementioned channels and features, and
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Fig. 7. The variation of train and validation losses with the epochs during the training of the model.
Table 7
A comparative study results of some popularly used signal processing techniques, achieved on the proposed motivation detection dataset.

Method Features Specification of the classifier Obtained accuracy

LSTM Alpha waves are directly fed to the RNN model Two LSTM layers are used for classification 71%

GRU Alpha waves achieve better results than beta
waves

Two layers of GRUs have been used in the
model

69%

BiLSTM Beta waves report better results for BiLSTM Two layers are fixed in the model 73%

SVM Higher Order Crossing (HOC) features of beta
waves with order 30 is used

The chosen kernel function and the
regularization parameter are ‘rbf’ and 5000

81%

MLP 20 orders HOC features of beta waves Two hidden layers each having five neurones
are fixed

77%

KNN HOC features with order 30, extracted from
beta waves are used

The number of nearest neighbour is chosen 5 80%

Proposed RRCNN-C End-to-end learning model with results better
with alpha waves than beta waves

Specifications of RRCNN-C is given in Table 89%
with SVM classifier. In our case, the proposed RRCNN-C achieves an
accuracy of 74.31% with the given consideration.

The another dataset, BCI-IV 2a dataset is a very popular publicly
available motor-imaginary task detection dataset. Four different tasks
have been performed while collecting the dataset, these tasks are
moving the left hand, moving the right hand, moving the tongue and
moving the toe. The objective is to determine the motor-imaginary
movement by analysing the raw EEG signal. The data is also collected
using a 10–20 electrode system and have 22 EEG channels and 3
EOG channels. The benchmark accuracies reported so far on BCI-IV
2a dataset, are 80% (Gaur et al., 2021), 79.03% (Mane et al., 2021),
81.34% (Deng, Zhang, Yu, Liu, & Sun, 2021), 79.90% (Li, Wang, Xu,
& Fang, 2019) and so on. In this case our study utilizes the results
reported by Ma, Qiu, and He (2020) for the channels selection purpose.
As mentioned by Ma et al. (2020), we have considered only C3, C4 and
Cz channels for the analysing the motor-imaginary activities of the test
subjects. In this case we have fed raw signals to RRCNN-C and observed
that it gives better results than HOC features of orders 30 and 50. On
BCI-IV 2a dataset, RRCNN-C achieves very good results of 79.31% 4-
class classification accuracy, which is very much comparable to the
state-of-the-art results.
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5.7. Statistical test

Now we have performed Friedman statistical test (Demšar, 2006)
in order to better assess the performance of the RRCNN-C architecture.
The algorithm have been compares to 6 other algorithm as mentioned
above. For each of the three datasets, the algorithms are ranked on
the basis of their performance, and thereafter the Friedman test has
been performed and the performance evaluating criterion (𝜒2

𝑓 ) has been
calculated by following mathematical formula

𝜒2
𝑓 = 12𝑀

𝑁(𝑁 + 1)

𝑁
∑

𝑛=1
[(𝑟𝑎𝑣𝑛 )2 −

𝑁(𝑁 + 1)2

4
] (25)

where 𝑀,𝑁 are number of datasets and the number of algorithms
respectively, and 𝑟𝑎𝑣𝑛 is the average rank of 𝑛th algorithm among the
others, which can be calculated as follows

𝑟𝑎𝑣𝑛 = 1
𝑀

𝑀
∑

𝑚=1
𝑟𝑚𝑛 (26)

The statistical test results are reported in Table 8, where the ob-
tained 𝜒2

𝑓 is 11.59, which is more than the Friedman constant at N=7
and M=3 (𝜒2

𝑁−1=7,𝑀=3,𝛼=0.5 = 5.39). Therefore we can successfully
reject the null-hypothesis and hence, the statistical significance of the
proposed RRCNN-C has been proved.
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Table 8
Friedman statistical test for justifying the results obtained RRCNN-C. Where Dataset
#1, Dataset #2 and Dataset #3 are the motivation, the sentiment analysis, and the
BCICIV-2a datasets respectively.

Algorithms #1 #2 #3 Average rank 𝜒2
𝑓

RRCNN-C 1 2 1 1.33 11.59
LSTM 6 5 3 4.66
GRU 7 6 6 6.33
BiLSTM 5 7 5 5.66
SVM 2 1 3 2
MLP 4 4 7 5
KNN 3 3 2 2.33

5.8. Hypothesis validation and discussion

In this study, the proposed hypothesis has been validated with
statistical approach for data visualization and data understanding, and
machine learning approach for detecting motivation level. From the
CUMSUM results reported by Fig. 6 and Table 3, it is evident that the
participants of the group ER/P learn the most among all three groups.
That is, if negative reward and positive reward both are present in
a consecutive manner, then the motivation level of the participants
remains high in accomplishing the task. This type of formation of dif-
ferent rewards makes the task more challenging, where the participants
have something to loss when they make any mistake and something
to gain after a success. This phenomena keeps the motivation level
intact to a certain level. These conclusive results strongly support the
hypothesis, that we have proposed in Section 3. Now on the basis
of the results obtained by statistical analysis, we have segregated the
data into two divisions-motivated and non-motivated. Our proposed
RRCNN model has been evaluated on the dataset and achieved 89%
classification accuracy in detecting motivation level of the participants.
This is how in this paper we validate the proposed hypothesis and
develop an entirely new approach of motivation detection via EEG
signals processing.

6. Conclusion

Our work indicates that relatively abstract state of motivation is in-
deed encoded physiologically into the EEG signal. It also illustrates that
motivational state can be derived through a suitable brain–computer
interface and data analysis. Further, these motivational states can be
used with suitably designed deep learning mechanisms to assess their
physiological manifestation in the form of EEG signals.

The above conclusions were derived through a methodology with
several novel and original approaches. They include a novel game-
based motivation stimulating brain computer interface, a rigorous ap-
proach for identification of the most relevant EEG channels and fea-
tures, a novel small-data amenable deep learning architecture RRCNN,
extensive validation of the variety of aspects in our methodology, and
detailed statistical analysis.

We show up to 89% accuracy in associating the EEG signals to
the motivational state. The study further indicates that identification
of the channel sets that indicate the motivational state is important,
and in our case frontal asymmetry set comprising of F3, F4, F7, and
F8 have a stronger signature of the state of motivation. We also show
that even though acquiring large datasets for such studies is practically
limiting and time consuming, new deep learning architectures specifi-
cally designed to deal with deep features on small datasets, such as the
proposed RRCNN, can provide significant value for EEG based studies.
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