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ABSTRACT 12 

Monomineralic millimeter-sized olivine nodules are common in kimberlites worldwide. It is 13 

generally thought that such ‘dunitic nodules’ originate from the base of the cratonic lithosphere 14 

and that their formation marks the onset of deep-rooted kimberlite magmatic plumbing systems. 15 

However, thermobarometric constraints to support such a model have been lacking thus far. 16 

This study focuses on the petrography and textures, as well as on pressure–temperature 17 

estimations, of well-preserved dunitic nodules from the Quaternary Igwisi Hills kimberlite lavas 18 

on the Tanzania craton, with the ultimate goal to constrain their origins. We utilize EBSD-19 

determined textural information in combination with olivine geochemistry data determined by 20 

EPMA and LA-ICP-MS methods. We find that host olivine grains in these nodules are 21 

compositionally similar to olivine in garnet-facies cratonic mantle peridotites, and such an 22 



association is supported by garnet inclusions within olivine. Projection of Al-in-olivine 23 

temperatures onto a regional geotherm suggests that the host olivine grains equilibrated at ~100-24 

145 km depth, which points to origins from mid-lithospheric levels down to the lower cratonic 25 

mantle if a depth of 160-180 km is considered for the lithosphere–asthenosphere transition 26 

beneath the Tanzania craton. These first pressure–temperature estimates for dunitic nodules in 27 

kimberlites suggest that their formation also occurs at much shallower depths than previously 28 

assumed. 29 

Recrystallized olivine grains (i.e., neoblasts) show random crystallographic orientations 30 

and are enriched in minor and trace elements (e.g., Ca, Al, Zn, Sc, V) compared to the host 31 

olivine grains. These features link neoblast formation to melt-assisted recrystallization of 32 

cratonic mantle peridotite, a process that persisted during kimberlite magma ascent through the 33 

lower half of thick continental lithosphere. Partial recrystallization of olivine-rich mantle 34 

xenoliths makes these materials texturally weaker and subsequent liberation of mineral grains 35 

promotes the assimilation of compositionally ‘unstable’ orthopyroxene in rising carbonate-rich 36 

melts, which is considered to be an important process in the evolution of kimberlite magmas. 37 

Dunitic nodules in kimberlites and related rocks may form as melt–rock equilibration 38 

zones along magmatic conduits within the lower half of the cratonic mantle column all the way 39 

up to mid-lithospheric depth. Such an origin potentially links dunitic nodules to olivine 40 

megacrysts, which are equally considered as melt/fluid-assisted recrystallization products of 41 

peridotitic mantle lithosphere along the ascent pathways of deep-sourced CO2-H2O-rich 42 

ultramafic melts. 43 

 44 

 45 



Keywords: Kimberlite magma evolution, Olivine textures and compositions, Igwisi Hills 46 

volcanoes, Tanzania craton, East African Rift, Continental mantle lithosphere, EBSD 47 

 48 

 49 

Introduction 50 

Olivine is a ubiquitous constituent of kimberlites and some varieties may contain up to 60 vol.% 51 

of this mineral phase (Dawson 1971; Mitchell 1986; Kamenetsky et al. 2008; Brett et al. 2009; 52 

Arndt et al. 2010; Moss et al. 2010; Giuliani 2018). In coherent magmatic kimberlites, olivine 53 

occurs in the form of (i) anhedral to rounded discrete macrocrysts (0.5–10 mm) devoid of any 54 

recrystallization features, (ii) subhedral to euhedral phenocrysts (typically <1 mm), and (iii) 55 

rounded to subrounded dunitic nodules (generally 1–5 mm across) hosting abundant 56 

recrystallized olivine grains that are hereafter referred to as ‘neoblasts’. Macrocrysts dominate 57 

among the olivine populations and their cores typically show evidence of deformation such as 58 

kink bands and undulose extinction. Together with evidence from mineral inclusions, the 59 

deformation features have been interpreted in light of lithospheric mantle origins of the olivine 60 

macrocryst cores (Kamenetsky et al. 2008; Brett et al. 2009; Bussweiler et al. 2015; Sobolev et 61 

al. 2015; Giuliani 2018), although Moore et al. (2020) considered this line of evidence as 62 

ambiguous and ascribed some of the olivine deformation features to the kimberlite magma ascent 63 

mechanism at crustal depths. In contrast, undeformed euhedral olivine phenocrysts often contain 64 

inclusions of other near-liquidus or even groundmass phases such as spinel, phlogopite and rutile 65 

(Kamenetsky et al. 2008; Bussweiler et al. 2015; Soltys et al. 2018). Although olivine 66 

phenocrysts can be abundant in some kimberlites (Mitchell et al. 2019; Soltys et al. 2020), the 67 



volumetrically most significant portion of magmatic olivine occurs as overgrowths on entrained 68 

olivine xenocrysts, such as the broad margins of most olivine macrocrysts. 69 

Dunitic nodules in kimberlites are mm-sized polycrystalline olivine grains or aggregates 70 

that consist of multiple anhedral ‘host’ olivine grains, which are typically strained and enclose 71 

<0.5 mm large recrystallized olivine subgrains (i.e., neoblasts). According to Arndt et al. (2010) 72 

and Cordier et al. (2015), all subrounded to rounded mm-sized olivine grains in kimberlites and 73 

related rocks should be called ‘dunitic nodules’, a view that we do not share for several reasons, 74 

as will be discussed in this paper. Herein, we do not consider sizable discrete olivine crystals 75 

without any neoblasts as ‘nodules’, but rather consider those as ‘macrocrysts’. The undeformed 76 

subgrains in dunitic nodules are either rounded or polyhedral ‘neoblasts’. Elongated subhedral to 77 

euhedral neoblasts with asymmetrical faces are commonly referred to as ‘tablets’ (Boullier and 78 

Nicolas 1975; Guéguen 1977; Mercier 1979; Green and Guéguen 1983; Arndt et al. 2010; Tappe 79 

et al. 2021). In this study, all recrystallized olivine grains in dunitic nodules, regardless of 80 

whether they are anhedral, subhedral or euhedral, are collectively referred to as ‘neoblasts’ (Fig. 81 

2c-d). 82 

Two main compositional types of olivine xenocrysts are known from kimberlites and 83 

related rocks worldwide; i.e., Mg-rich and Fe-rich (Kamenetsky et al. 2008; Brett et al. 2009; 84 

Arndt et al., 2010; Pilbeam et al. 2013; Bussweiler et al. 2015; Howarth and Taylor 2016; Moore 85 

and Costin 2016; Giuliani 2018; Lim et al. 2018; Dongre and Tappe, 2019; Shaikh et al. 2019; 86 

Soltys et al. 2020). Arndt et al. (2010) argued against such a bimodal distribution of ‘kimberlitic’ 87 

olivine compositions and instead suggested the existence of a compositional continuum between 88 

the two main recognized endmembers. The Mg-rich olivine xenocrysts are generally considered 89 

to be sourced from cratonic mantle peridotites, whereas the Fe-rich olivine xenocrysts are linked 90 



to the products of melt-related mantle metasomatism such as olivine megacrysts and sheared 91 

peridotites (Brett et al. 2009; Bussweiler et al. 2015; Howarth and Taylor 2016; Moore and 92 

Costin 2016; Giuliani 2018). 93 

The origin of dunitic nodules in kimberlites and related rocks is a matter of active debate. 94 

Arndt et al. (2010) proposed a model in which dunitic nodules form by the removal of pyroxenes 95 

and garnet from four-phase peridotite during interactions with the proto-kimberlite melt at the 96 

base of cratonic mantle lithosphere. This process was termed ‘defertilization’ and argued to be an 97 

important precursor mechanism that aids kimberlite magma ascent through the overlying 98 

lithosphere (Arndt et al. 2010; Cordier et al. 2015). Other studies pointed out that dunitic nodules 99 

may be sourced from coarse-grained peridotites and olivine megacrysts (Giuliani and Foley 100 

2016; Moore 2017). Rooney et al. (2020) suggested that dunitic nodules in aillikites from the 101 

Superior craton formed by fusion of metasomatic carbonate and phlogopite components within 102 

peridotite at the base of cratonic mantle lithosphere. It must be noted, however, that links 103 

between dunitic nodules and the lowermost cratonic mantle lithosphere have not been tested yet 104 

by the application of modern pressure–temperature estimates (hereafter P–T). 105 

In this study of exceptionally fresh kimberlite lavas from the Igwisi Hills in Tanzania, we 106 

employed a combined approach to examine the possible origins of dunitic nodules, which 107 

includes petrographic–textural analysis by the electron backscatter diffraction method (EBSD), 108 

as well as major and trace element analyses of olivine by EPMA and LA-ICP-MS techniques. 109 

Our results reveal that dunitic nodules from the Igwisi Hills kimberlite volcanic system formed at 110 

significantly shallower, mid-lithospheric depths compared to previous models for similar 111 

materials that placed their origin exclusively at the base of cratonic mantle lithosphere (e.g., 112 

Arndt et al. 2010; Cordier et al. 2015; Rooney et al. 2020). Textural observations from the 113 



dunitic nodules and discrete olivine macrocrysts enable us to further constrain kimberlite magma 114 

evolution. This also includes possible links between dunitic nodules and olivine megacrysts, 115 

which may hold clues to the workings of kimberlite and similar deep-sourced volatile-rich 116 

magmatic systems such as aillikites. 117 

 118 

The Quaternary Igwisi Hills kimberlite volcanic system 119 

The modern Igwisi Hills kimberlite volcanoes (4°53′19.22″ S, 31°55′59.15″ E) are located at the 120 

western margin of the Tanzania craton (Fig. 1), where the magmas erupted through gneisses of 121 

the Archaean Dodoman system (Bell and Dodson 1981). The volcanoes comprise three 122 

exceptionally well-preserved sub-circular volcanic centres (NE, Central and SW volcanoes), 123 

which contain pyroclastic rocks and lava flows at the crater margins, plus sediments in the crater 124 

centres (Fig. 1). The lava flows contain variable proportions of olivine-dominated micro-125 

xenoliths (Dawson 1994), referred to here as ‘dunitic nodules’ to conform with recent 126 

developments in kimberlite petrology (Arndt et al. 2010). The dunitic nodules are set in a calcite-127 

rich groundmass that also contains abundant spinel-group minerals, perovskite and apatite 128 

(Willcox et al. 2015). With magma eruption ages between 12.4 ±4.8 ka and 11.2 ±7.8 ka, the 129 

Igwisi Hills volcanic system represents the youngest known kimberlite on Earth (Brown et al. 130 

2012), and its ultimate origin has been linked to tectonic stresses imposed onto the Tanzania 131 

craton by the surrounding active East African Rift System (Tappe et al. 2018). 132 

Whether or not the lava flows at the Igwisi Hills are true kimberlites has been debated. 133 

Mitchell (1970) used the absence of mantle-derived garnet and Cr-diopside xenocrysts as an 134 

argument against a kimberlitic affinity of the Igwisi Hills lavas. On the basis of mineralogy and 135 

bulk rock compositions, Reid et al. (1975) and Dawson (1994) identified the Igwisi Hills lava 136 



flows as calcite kimberlite, a variety that has higher CO2/H2O compositions than more typical 137 

H2O-rich hypabyssal kimberlites, which are more common on a global scale (Kjarsgaard et al. 138 

2009). More recent mineralogical and geochemical studies reiterate the kimberlitic nature of the 139 

Igwisi Hills lavas (Willcox et al. 2015), and the combined Sr-Nd-Hf isotopic compositions 140 

overlap the field of southern African Group-1 kimberlites, which is suggestive of magma 141 

derivation from a moderately depleted convecting upper mantle source (Tappe et al. 2020). 142 

Although seismic tomography studies image lower mantle plumes beneath eastern Africa 143 

(e.g., Nyblade et al. 2000; Weeraratne et al. 2003), kimberlite melt origins from such thermally 144 

anomalous mantle domains is highly unlikely (Stamm and Schmidt 2017; Tappe et al. 2018; 145 

Massuyeau et al., 2021), which is supported by a lack of 182W anomalies in the Igwisi Hills 146 

kimberlite lavas (Tappe et al. 2020). Mitchell (2008) argued for differentiation of the Igwisi Hills 147 

lavas including marked crustal assimilation processes. However, the new isotope data discussed 148 

in Tappe et al. (2020) do not support significant crustal contamination. 149 

 150 

Samples and analytical techniques 151 

Five polished petrographic thin sections (IH45, IH47, IH53, IH57A, IH57B) were prepared from 152 

representative samples of the Igwisi Hills kimberlite lava flows sourced by the NE volcano (see 153 

Brown et al. 2012 for detailed field descriptions) (Fig. 1). The petrographic analysis and 154 

photomicrograph imaging were done on an Olympus BX51 polarizing microscope at the 155 

University of Johannesburg, South Africa. Preferred crystal orientations for two dunitic nodules 156 

(IH57BG1 and IH57BG2) were measured by electron backscatter diffraction (EBSD). The 157 

EBSD data were collected on a JEOL SEM 6610-LV scanning electron microscope (SEM) 158 

installed at the Institute for Mineralogy at the University of Münster, Germany. The SEM 159 



instrument is equipped with a LaB6 electron source plus an Oxford Nordlys EBSD camera 160 

running the Oxford HKL Channel-5 software (Version 5.10.50315). We applied a beam current 161 

of ~1.5 nA, measured on a retractable Faraday cup, and an accelerating voltage of 20 kV. The 162 

working distance was adjusted to 20 mm. EBSD patterns were recorded by the Oxford Flamenco 163 

acquisition software and indexing was done using Oxford Tango and Mambo software packages. 164 

Detailed descriptions of the EBSD technique employed in Münster can be found in Mukai et al. 165 

(2014) and Pabich et al. (2020). 166 

The major element compositions of olivine were determined using a four-WDS 167 

spectrometer enabled CAMECA SX100 electron microprobe (EPMA) at the University of 168 

Johannesburg. The setup for the measurements was 20 nA electron beam current, 20 kV 169 

accelerating voltage, and a beam size of 1 μm. High-resolution backscatter electron (BSE) 170 

images were created with the same instrument to study textural features in greater detail and to 171 

identify compositional heterogeneity within the dunitic nodules. For a representative number of 172 

olivine grains, we conducted X-ray mapping of the areal distributions of Fe, Mg, Ni, Ca, Al and 173 

P using a JEOL 8530F electron microprobe with a field emission source at the University of 174 

Münster. The analytical conditions were 15 kV accelerating voltage, 2 µm beam size, 80 ms 175 

dwell time per pixel, and probe current of 75 nA for major elements and 150 nA for minor 176 

elements. 177 

Olivine minor and trace element concentrations were measured by laser ablation 178 

inductively coupled plasma mass spectrometry (LA-ICP-MS) at the University of Johannesburg. 179 

The instrument setup consists of a 193 nm ArF RESOlution SE155 excimer laser coupled to a 180 

Thermo Scientific iCAP RQ ICP-MS instrument. The olivine trace element analytical protocol, 181 

including the choice of reference materials and setup of data reduction routines, are reported in 182 



detail by Ngwenya and Tappe (2021). Because olivine crystals in incompatible trace element 183 

enriched igneous rocks are prone to contamination along cracks (Foley et al. 2011; Rooney et al., 184 

2020), Ngwenya and Tappe (2021) suggested careful screening of olivine analyses with >0.5 185 

ppm Ba and Sr. In this present study of Igwisi Hills olivine macrocrysts and dunitic nodules, we 186 

tolerated Ba and Sr contents of up to 2 ppm and 1 ppm, respectively. For magmatic olivine, we 187 

tolerated slightly higher Ba and Sr contents of up to 8 ppm and 2 ppm, respectively. MongOl 188 

Sh11-2 olivine was analyzed repeatedly as a secondary matrix-matched reference material to 189 

monitor data accuracy and precision (Batanova et al. 2019) and to enable corrections of the 190 

measured Mn and Sc concentrations. The complete olivine major and trace element dataset for 191 

samples and standards is listed in Supp. Table S1, together with the recommended values for 192 

standards. Further analytical details can be found in Appendix 1. 193 

 194 

Results 195 

Petrography of the kimberlite lavas and included dunitic nodules 196 

The samples of fresh Igwisi Hills kimberlite lavas show an inequigranular texture with abundant 197 

anhedral to rounded olivine macrocrysts up to 7 mm across and <2 mm large subhedral to 198 

euhedral olivine phenocrysts. Abundant rounded to subrounded polycrystalline dunitic nodules 199 

(~1–5 mm) and calcite laths (<0.5 mm) also occur. These larger crystals and crystal aggregates 200 

are set in a fine-grained carbonate- and chlorite-dominated groundmass. Other groundmass 201 

phases identified include abundant irregular fragments of olivine (<0.1 mm), spinel-group 202 

minerals, apatite, perovskite and barite. Olivine in the kimberlite lava samples from Igwisi Hills 203 

is remarkably fresh, with only a little or no serpentinization. Some of the samples show strongly 204 

oriented calcite laths and trails of glass pockets in the groundmass indicative of flow alignment 205 



in the lava (Fig. 2a-b). Detailed descriptions of the petrography of the Igwisi Hills kimberlites 206 

are given by Dawson (1994), Brown et al. (2012) and Willcox et al. (2015). Below we focus on 207 

olivine and in particular on the dunitic nodules, which are the subject of this study. 208 

The dunitic nodules typically comprise single or multiple anhedral host olivine crystals 209 

that are accompanied by recrystallized anhedral and subhedral neoblasts (Fig. 2c-f). Whereas the 210 

host olivine crystals in the dunitic nodules and the discrete olivine macrocrysts show 211 

deformation features, such as undulose extinction and kink bands, the neoblasts are undeformed 212 

(Fig. 2c-f). There are some notable differences between the dunitic nodules from the Igwisi Hills 213 

kimberlites studied here and those from West Greenland aillikites at Kangamiut studied by Arndt 214 

et al. (2010). For example, in the Kangamiut aillikites, there is a variation of the size of dunitic 215 

fragments at fairly similar morphologies, whereas the dunitic nodules from the Igwisi Hills 216 

kimberlites are very well rounded and range from elliptical to almost spherical shapes (Fig. 2a, 217 

b). Also, the Kangamiut aillikites lack a population of small subrounded olivine grains but they 218 

contain abundant euhedral olivine crystals instead, which may represent phenocrysts or 219 

disaggregated neoblasts from the larger dunitic nodules (Arndt et al. 2010). We note further that 220 

olivine neoblasts in the dunitic nodules from the Igwisi Hills kimberlites tend to occur in clusters 221 

of randomly oriented crystals (Fig. 2c, 3b), although some weak alignment of neoblasts may 222 

occur along the nodule margins and also at the boundaries between larger host olivine grains 223 

(Fig. 2d, e). Single or smaller groups of olivine neoblasts have also been observed within larger 224 

host olivine grains (Fig. 2f), a feature that is commonly observed in sheared peridotite xenoliths 225 

from the lower cratonic mantle lithosphere (Tappe et al. 2021). 226 

For the Igwisi Hills kimberlites, a magmatic olivine population was identified as 227 

phenocrysts and as rims on olivine macrocrysts and dunitic nodules. The olivine phenocrysts are 228 



subhedral to euhedral in shape with symmetrical faces and Cr-spinel inclusions that are typically 229 

aligned along planar growth faces of the olivine crystals (Fig. 3c). The host olivine crystals of the 230 

dunitic nodules studied contain rare inclusions of Cr-pyrope garnet (Fig. 8b) and Cr-rich 231 

phlogopite (Fig. 7). Some olivine macrocrysts contain rare inclusions of clinopyroxene and 232 

orthopyroxene (Supp. Table 1S). 233 

 234 

Olivine major and trace element compositions 235 

The olivine grains in the Igwisi Hills lavas are complexly zoned with homogeneous cores and 236 

zoned rims (Supp. Table S1), which is typical for olivine in kimberlites and related rocks from 237 

localities worldwide (Mitchell 1986; Tappe et al. 2006; Kamenetsky et al. 2008; Brett et al. 238 

2009; Arndt et al. 2010; Pilbeam et al. 2013; Bussweiler et al. 2015; Howarth and Taylor 2016; 239 

Jaques and Foley 2018; Shaikh et al. 2019; Rooney et al. 2020). The cores of host olivine 240 

crystals in dunitic nodules and of discrete macrocrysts analyzed here are characterized by 241 

elevated forsterite contents (Fo = 89.5–92.4) and high NiO concentrations (0.34–0.46 wt.%) at 242 

<0.2 wt.% CaO (Fig. 4a-b), which is typical for cratonic mantle-derived olivine xenocrysts 243 

(Kamenetsky et al. 2008; Brett et al. 2009; Sobolev et al. 2009; Tappe et al. 2009; Arndt et al. 244 

2010; Foley et al. 2013). Olivine cores show low concentrations of Al (15–109 ppm), Ti (42–158 245 

ppm), Cr (43–325 ppm) and Mn (617–957 ppm), and extremely low concentrations of Li (<3 246 

ppm) and Cu (<7 ppm) (Supp. Table S1; Fig. 5, 9), which indicates derivation from relatively 247 

depleted mantle peridotites (Seitz and Woodland 2000; De Hoog et al. 2010; Ngwenya and 248 

Tappe 2021). Olivine neoblasts in the dunitic nodules exhibit a highly restricted range of Fo 249 

values (89.6–91.0), which overlap with those values that define the lower end of the Fo range of 250 

olivine cores and host olivine crystals in the dunitic nodules (Fig. 4a). The olivine neoblasts 251 



show elevated concentrations of Ca, Mn, Al, Sc, Zr, Zn, Gd and Ce compared to the cores of 252 

olivine macrocysts and host olivine crystals in dunitic nodules (Fig. 5; Supp. Table 1s). In 253 

general, the olivine neoblasts in each dunitic nodule analyzed show a clear enrichment in Fe and 254 

incompatible trace elements compared to their host olivine grains (see the element maps in Fig. 255 

6, 7). Olivine phenocrysts and the inner zones of olivine macrocrysts exhibit moderately high Fo 256 

contents (89.0–91.2) and an extremely wide range of NiO between 0.09–0.52 wt.%, whereas the 257 

rims show narrower ranges of Fo (89.7–91.2) and NiO (0.13–0.34 wt.%) at relatively high trace 258 

element concentration levels (e.g., Ca, Ti, Zn, Sc) (Supp. Table S1). In forsterite–NiO space, the 259 

olivine rims show a concave-up evolutionary trend typical of olivine fractional crystallization 260 

(Gordeychik et al. 2020). 261 

 262 

Electron backscatter diffraction (EBSD) and EPMA elemental mapping of olivine 263 

Two dunitic nodules (IH57BG1 and IH57BG2) were selected for EBSD and EPMA elemental 264 

mapping (Mg, Fe, Ni, Ca, P). The ~2.5 mm large subrounded IH57BG1 nodule consists of 265 

multiple strained host olivine grains and five undeformed olivine neoblasts that occur along 266 

fractures and host olivine grain boundaries (Fig. 6). Deformation features in the host olivine 267 

grains, such as kink and dislocation bands, are visible in crystallographic orientation maps (Fig. 268 

7). The ~3 mm large IH57BG2 nodule consists of a strained host olivine grain that encloses four 269 

discrete undeformed olivine neoblasts (Fig. 7). Grain boundaries between subhedral neoblasts 270 

and the host olivine grain are generally straight and rarely curved to bulgy, whereas ‘touching’ 271 

subhedral neoblasts have straight grain boundaries. Grain boundaries between anhedral olivine 272 

crystals are commonly curved to irregular. Curved to bulging grain boundaries are indicative of 273 



grain boundary migration (Drury and Urai 1990). The two dunitic nodules studied in detail host 274 

numerous carbonate-rich melt inclusions ranging in size from <10 µm to up to 250 µm. 275 

The EBSD measurements show that the host olivine grains in the dunitic nodules exhibit 276 

crystal-preferred orientations, which suggests a significant contribution of dislocation creep to 277 

the deformation mechanism (Fig. 6-7). However, the orientation of the host olivine crystals 278 

differs between the two nodules studied within the same thin section. For example, the host 279 

olivine crystals in IH57BG1 show slightly diffuse [010] and [001] axes that fall at a high angle 280 

(Fig. 6), whereas the distribution of the [100] axis is more concentrated than for the [001] axis in 281 

the host olivine grain from dunitic nodule IH57BG2. This may indicate the presence of dominant 282 

tilt walls with [100] as the main glide direction. Olivine neoblasts in both nodules show a highly 283 

disordered orientation that is strongly dispersed by comparison to their deformed host olivine 284 

grains (Fig. 6-7). A similar observation was made for olivine in dunitic nodules from an aillikite 285 

dyke of the Kangamiut area in West Greenland (Arndt et al. 2010). 286 

Mapping of the Mg, Fe, Ni and Ca distributions within the two dunitic nodules for which 287 

EBSD data had been collected displays three main zones; that is, a highly resorbed core and an 288 

inner zone plus a rim. For IH57BG2, the core has a Fo content of ~92.5 and is mantled by a 289 

relatively Fe-rich inner zone with a Fo content of ~89. This inner zone contains inclusions of Cr-290 

rich phlogopite, plus numerous minute spinel crystals. The inner zone occupies most of the 291 

neoblast area and is overgrown by a relatively Mg-rich rim with a Fo content of ~90. The rim 292 

truncates the olivine neoblast, which establishes neoblast formation before the final phase of 293 

olivine rim development in the dunitic nodules (Fig. 7). The major and minor element 294 

heterogeneity observed in the dunitic nodules is largely independent of crystal orientation as 295 

mapped by EBSD analysis. For example, the inner zones of olivine within the IH57BG2 nodule 296 



show similar crystallographic orientations compared to the cores of the host olivine grains, but 297 

all olivine neoblasts exhibit different orientations. Also, the rims do not have independent 298 

orientations but show similar orientations to the olivine cores and neoblasts upon which they 299 

grew. 300 

 301 

Melt inclusions and fractures in olivine 302 

Both dunitic nodules and olivine macrocrysts exhibit fractures of multiple generations. Fractures 303 

of a first-generation tend to be larger and are typically filled with carbonate-rich melt (now glass) 304 

plus oxide minerals (Fig. 3a). These early-stage fractures resemble ‘sealed’ cracks (Brett et al. 305 

2015), which run across olivine cores and mostly terminate at the core–rim boundaries. Fractures 306 

of a second-generation are ‘healed’ cracks (Brett et al. 2015) with a diffuse appearance. They 307 

typically contain trails of minute melt/fluid and oxide mineral inclusions (Fig. 3a). The third 308 

generation of fractures comprises multiple curvilinear cracks that are restricted to the olivine 309 

grain margins (Fig. 2f, 3a, d). In general, fractures propagate from the recrystallized olivine 310 

grains (i.e., neoblasts) into host olivine domains (Fig. 3b). 311 

Up to 2 mm large carbonate-rich melt inclusions occur within many olivine grains of the 312 

dunitic nodules from the Igwisi Hills kimberlite lavas. The melt inclusions appear to be 313 

associated with the inner zones (Fig. 7, 8), and they have irregular to lenticular shapes (Fig. 3a). 314 

The melt inclusions are similar to so-called ‘polymineralic’ inclusions commonly observed in 315 

kimberlite-borne megacrysts from localities worldwide (Bussweiler, 2019), including 316 

megacrystic olivine (Howarth and Büttner 2019; Abersteiner et al. 2019). Another important 317 

feature of the Igwisi Hills kimberlite lavas is the presence of quenched carbonate-rich melt 318 

pockets in the groundmass. These 50–400 µm long worm-shaped melt pockets are aligned within 319 



the magmatic flow texture (Fig. 2a, b). Alternatively, they may represent ‘sheared’ vesicles filled 320 

with secondary carbonate. 321 

 322 

Discussion 323 

Some remarks on the term ‘nodule’, as used in kimberlite petrology 324 

Arndt and co-workers suggested that all subrounded to rounded mm-sized olivine grains in 325 

kimberlites should be referred to as ‘dunitic nodules’ (Arndt et al. 2010, 2021; Cordier et al. 326 

2015), a view that we find problematic for the following reasons: (i) The rounding of olivine 327 

grains does not necessarily reflect petrogenetic processes sensu stricto but is mainly a function of 328 

physical processes, such as abrasion and attrition, that operate during fast and turbulent 329 

kimberlite magma ascent (Brett et al. 2009, 2015; Moss et al. 2010; Jones et al. 2014). For the 330 

same reason, other mantle-derived minerals and mineral aggregates can also attain nodule-like 331 

morphologies, for example, the oval to round ‘glimmerite nodules’ in type aillikite from 332 

Labrador (Tappe et al. 2006). The roundness of grains is also influenced by other factors such as 333 

their depths of origin within the lithospheric mantle (Bussweiler et al. 2015), or the timing of 334 

their liberation from mantle-derived xenoliths during magma ascent. (ii) Although Arndt and co-335 

workers stressed that the term ‘nodule’ is used in a purely descriptive sense without genetic 336 

connotations, the meaning is easily confused with that of the term ‘microxenolith’, which is also 337 

problematic for single discrete olivine grains (e.g., Giuliani and Foley 2016). Note further that 338 

the term ‘macrocryst’ is also widely used as a non-genetic descriptor of single grains in 339 

kimberlites, and we maintain that ‘macrocrysts’ and ‘nodules’ are not necessarily equivalent in 340 

terms of their anatomies as well as origins. Here, we suggest the following guidelines as to how 341 



such kimberlite petrology jargon could be effectively applied, with special reference to olivine 342 

(e.g., Mitchell 1986; 1995): 343 

 344 

• Single discrete grains between 0.5-10 mm in size = ‘macrocrysts’ 345 

• Single discrete grains >10 mm in size = ‘megacrysts’ 346 

• Millimeter-sized polycrystalline–monomineralic aggregates = ‘nodules’ 347 

• Millimeter-sized polycrystalline–polymineralic aggregates = ‘microxenoliths’ 348 

 349 

(iii) The cores of olivine macrocrysts typically represent mantle-derived xenocrysts, although 350 

some cores may be a product of mantle metasomatism (Howarth and Taylor 2016) or mantle 351 

source ‘defertilization’ (Arndt et al. 2010). Hence, there are olivine macrocryst populations in 352 

kimberlites and related rocks that have no apparent relationship to dunitic nodules, such that it is 353 

inaccurate to label all the rounded olivine grains as ‘nodules’. (iv) Many kimberlites, including 354 

those from the Igwisi Hills, contain large amounts of highly complex rounded to subrounded 355 

olivine grains that cannot be linked to a single lithospheric mantle source or metasomatic process 356 

(see the discussion below). Therefore, it is not warranted to consider sizable discrete olivine 357 

grains without any recrystallized subgrains as ‘nodules’, and we opt for such single olivine 358 

crystals to be referred to as ‘macrocrysts’, as exemplified by the following petrogenetic 359 

discussion. 360 

 361 

Origins of dunitic nodules and their significance for kimberlite petrogenesis 362 

Constraints from the host olivine grains of dunitic nodules 363 



Previous models suggested that dunitic nodules in hypabyssal kimberlites and related rocks are 364 

sourced from peridotites at the base of cratonic mantle lithosphere (e.g., Arndt et al. 2010; 365 

Cordier et al. 2015; Rooney et al. 2020), which appears to be metasomatically overprinted by 366 

proto-kimberlitic melts. During mantle metasomatism, olivine can attain more Fe-rich 367 

compositions (Howarth and Taylor 2016; Shaikh et al. 2019), with or without preserved olivine 368 

relicts that are Mg-rich. Several dunitic nodules from the Igwisi Hills kimberlite lavas preserve 369 

Mg-rich host olivine crystals, and their core compositions are similar to olivine in refractory 370 

cratonic mantle peridotites (Fig. 4a, b). These ‘inherited’ relicts from the peridotite-dominated 371 

cratonic mantle lithosphere can be used to extract information about the origin of olivine crystal 372 

cargo in kimberlites and related rocks (Bussweiler et al. 2017; Jaques and Foley 2018; Shaikh et 373 

al. 2019; Ngwenya and Tappe 2021). Relict olivine cores in the dunitic nodules (e.g., IH53N1, 374 

IH47G1, IH57AG1, IH57AG2) have similar major and trace element compositions to olivine in 375 

coarse granular peridotite xenoliths recovered from kimberlites on all major cratons (Fig. 4a, b). 376 

Their Mn/Al, Zr/Sc and V/Al systematics suggest garnet-facies peridotites as the source (Fig. 9a, 377 

b), which is supported by the presence of garnet inclusions inside the host olivine domains of the 378 

dunitic nodules (Fig. 7). 379 

Relict olivine cores of the dunitic nodules and the cores of discrete olivine macrocrysts 380 

derived from garnet-bearing peridotites (Fig. 9a, b) can be used to calculate Al-in-olivine 381 

temperatures applying the calibration of Bussweiler et al. (2017). Olivine equilibration 382 

temperatures were calculated for assumed pressures of 40, 50, 60 and 70 kbar; i.e., a pressure 383 

range equivalent to ~130-230 km depth. By using iterative calculations, the obtained Al-in-384 

olivine temperatures were then projected onto the Cenozoic geotherm of the Tanzania craton at 385 

~41 mW/m2 (Gibson et al. 2013). Such data treatment yields information about the approximate 386 



vertical distribution of peridotite-derived olivine within the cratonic mantle column (Fig. 10). 387 

The projected temperature solutions reveal a lithosphere thickness of ~180 km, with a kimberlite 388 

magma sampling interval between 100–160 km depth. These data also suggest a ~50 km thick 389 

diamond window beneath the Igwisi Hills consistent with previous P-T constraints for the 390 

Tanzania craton during Cenozoic times (Gibson et al. 2013). 391 

Our petrology-based estimate of the lithosphere thickness is consistent with the majority 392 

of geophysical studies that indicate a ~180 km thick lithosphere beneath the central part of the 393 

Tanzania craton (Ritsema et al. 1998; Nyblade et al. 2000; Weeraratne et al. 2003; Tiberi et al. 394 

2019; Clutier et al. 2021), although Globig et al. (2016) suggest a thinner cratonic lithosphere of 395 

~150-160 km thickness for the study region. Given that peridotitic mantle xenoliths from Labait 396 

volcano, located at the rifted eastern margin of the Tanzania craton, record a maximum depth of 397 

origin of ~150 km (Lee and Rudnick 1999), a ~180 km thick continental lithosphere beneath the 398 

central and western parts of the craton, more distal to the strong influence of the East African 399 

Rift, appears to be reasonable. 400 

Our P-T estimates for the relict olivine cores of the dunitic nodules (850-1126 ºC and 32-401 

46 kbar) suggest an origin from between 100 and 145 km depth (Fig. 10). This implies 402 

entrainment of peridotitic material by the rising kimberlite magmas along roughly 1/3rd of the 403 

mantle lithosphere column from near the craton base to mid-lithospheric depth. Hence, dunitic 404 

nodule formation is not restricted to the craton base, as was assumed in previous models for 405 

kimberlite petrogenesis (Arndt et al. 2010; Cordier et al. 2015). Our results suggest that a major 406 

portion of the lower lithospheric mantle column is involved in fluid/melt-assisted 407 

recrystallization processes and metasomatic reactions along kimberlite magma conduits, and 408 

these mechanisms would certainly influence the major element compositions of ascending 409 



kimberlite melts, as had been suggested in previous studies (Mitchell 2008; Kjarsgaard et al. 410 

2009; Russell et al. 2012; Pilbeam et al. 2013; Soltys et al. 2016; Dongre and Tappe 2019; 411 

Giuliani et al. 2020; Dalton et al. 2020; Tovey et al. 2021). The ascent of highly reactive and 412 

progressively evolving kimberlitic to carbonatitic melts has been argued to produce a wide range 413 

of metasomatic imprints on the lower half of the cratonic mantle lithosphere (e.g., Tappe et al. 414 

2011, 2017; Giuliani et al. 2013; Kargin et al. 2016; Fitzpayne et al. 2019; Kopylova et al. 2021). 415 

This finding is also consistent with many cratonic mantle peridotite xenolith studies that showed 416 

fluid/melt-assisted recrystallization features over several 10s of kilometers thick depth ranges 417 

(Drury and van Roermund 1989; Tommasi et al. 2008; Baptiste et al. 2012; Tappe et al. 2021). 418 

This form of reactive melt transport may equate to the ‘defertilization’ process invoked by Arndt 419 

et al. (2010) for the origin of dunitic nodules in kimberlites and related rocks, although the rather 420 

passive role of olivine in this model has been challenged (Giuliani and Foley 2016; Moore 2017; 421 

Rooney et al. 2020). 422 

 423 

Constraints from olivine neoblasts in the dunitic nodules 424 

On the basis of morphology, two types of olivine neoblasts, namely anhedral and subhedral to 425 

euhedral crystals, are identified in the dunitic nodules from the Igwisi Hills kimberlites, and 426 

elsewhere. The subhedral to euhedral neoblasts are commonly referred to as ‘tablets’ (e.g., Arndt 427 

et al. 2010). Here, we emphasize that both types of neoblasts may be genetically linked, and 428 

possibly formed during different stages in the evolution of kimberlite magmas. The anhedral 429 

olivine neoblasts are thought to form by fluid/melt-assisted recrystallization and annealing of 430 

mantle peridotites shortly after plastic deformation such as shearing (Drury and van Roermund 431 

1989). With further stress-release, the anhedral olivine neoblasts may grow into euhedral tablets 432 



by static re-equilibration and annealing (Boullier and Nicolas 1975; Guéguen 1977; Mercier 433 

1979; Green and Guéguen 1983), possibly during the ascent of the kimberlite magma and its 434 

entrained mantle cargo (Mercier 1979; Green and Guéguen 1983; Arndt et al. 2010). In our 435 

samples from Igwisi Hills, a progressive olivine recrystallization mechanism is supported by the 436 

fact that both neoblast types co-exist in the same nodule, suggesting a genetic association (Fig. 437 

2c, e). Furthermore, crystallographic orientation maps advocate random growth of the olivine 438 

neoblasts in an environment of lower strain relative to sheared mantle lithosphere, such as rising 439 

magmas (Fig. 6, 7). 440 

Several dunitic nodules show distributions of multiple cracks propagating from 441 

recrystallized grains into host olivine domains (Fig. 3c). Crack propagation was probably driven 442 

by fluid/melt percolation and decompression during magma ascent (Jones et al. 2014; Bussweiler 443 

et al. 2016). These textural observations suggest that at least some of the fractures formed during 444 

recrystallization processes. Hence, fluid/melt-assisted recrystallization weakens peridotitic 445 

mantle rocks mainly by increasing the number and length of olivine grain boundaries and also by 446 

creating additional fractures (Drury and van Roermund 1989), which altogether promotes 447 

disaggregation of mantle cargo in ascending kimberlite magmas. This idea is supported by the 448 

presence of olivine neoblasts that tend to be aligned along fractures in the dunitic nodules (Fig. 449 

2e). 450 

 451 

Constraints from the ‘inner zones’ of olivine grains 452 

So-called ‘inner zones’ of olivine are reported from magmatic kimberlites and related rocks 453 

worldwide (Fedortchouk and Canil 2004; Kamenetsky et al. 2008; Pilbeam et al. 2013; 454 

Bussweiler et al. 2015; Cordier et al. 2015; Howarth and Taylor 2016; Giuliani 2018; Lim et al. 455 



2018; Soltys et al. 2018, 2020; Shaikh et al. 2019; Tovey et al. 2020). Their formation has been 456 

variably explained by: (i) solid-state diffusion (Pilbeam et al. 2013), (ii) equilibration between 457 

olivine cores and interacting proto-kimberlite melts (Cordier et al. 2015; Howarth and Taylor 458 

2016), and (iii) a direct overgrowth of olivine cores by host kimberlite magmas (Pilbeam et al. 459 

2013; Howarth and Taylor 2016; Soltys et al. 2018). In this paper, we do not discuss the complex 460 

compositional trends of the ‘inner zones’ of olivine in kimberlites, because this topic has been 461 

covered extensively by Cordier et al. (2015), Giuliani (2018), Lim et al. (2018) and Soltys et al. 462 

(2020), to name a few studies. Instead, we focus on the timing of ‘inner zone’ formation with 463 

respect to the various known main stages of kimberlite magma evolution. 464 

 The inner zones of olivine grains from the Igwisi Hills kimberlite lavas typically have a 465 

gradational border with the core zones (Fig. 6, 7, 8), but sharp contacts have been observed for a 466 

few grains (Fig. 8c). A key observation of this study is that olivine-hosted melt inclusions and 467 

olivine neoblasts are associated exclusively with such ‘inner zones’ (Fig. 8a-d). The smallest 468 

melt inclusions form trails and correspond to healed cracks, whereas larger inclusions resemble 469 

sealed cracks (Brett et al. 2015). It appears that the liquid trapped in these inclusions was 470 

involved in fluid/melt-assisted recrystallization processes, including metasomatic enrichment of 471 

mantle-derived olivine, which possibly gave rise to the inner zones. The melt inclusions have a 472 

carbonate-rich character consistent with some of the proposed compositions of proto-kimberlite 473 

melt (Kamenetsky et al. 2008; Giuliani et al. 2012; Russell et al. 2012; Pilbeam et al. 2013; Brett 474 

et al. 2015; Bussweiler et al. 2016; Soltys et al. 2016), which is argued to be ubiquitous near the 475 

cratonic lithosphere-asthenosphere boundary (Gregoire et al. 2006; Tappe et al. 2018). The inner 476 

zones of some olivine grains exhibit trails of spinel inclusions near the contact with the olivine 477 

cores (Fig. 8b). Combined, these features suggest that the inner zones of some olivine grains 478 



formed by direct crystallization from kimberlitic magma, whereas in other grains they may 479 

represent equilibration zones that formed by the interaction between olivine cores and host 480 

magma. Indeed, the inner zones analyzed are enriched in Ni, Ca and Mn (Fig. 6, 7), and they 481 

have Fo contents that are very similar to those of the olivine phenocrysts (Fig. 4), which supports 482 

a genetic link to kimberlitic magma. 483 

Howarth and Taylor (2016) suggested that some of the inner zones (their ‘melt zones’) of 484 

olivine grains formed by direct crystallization from kimberlitic magma and may thus represent 485 

equilibration zones, as also noted by other authors (Arndt et al. 2010; Kamenetsky et al. 2008). 486 

Cordier et al. (2015) introduced the term ‘grain boundary zone’ for inner zones of olivine grains 487 

in dunitic nodules, which largely corresponds to ‘equilibration zones’. Irrespective of 488 

nomenclature, equilibration zones occur mainly as: (i) a continuous rim sandwiched between 489 

olivine core and overgrowth rim (e.g., Fig. 7, 8d), and (ii) a marginal zone along grain 490 

boundaries and fractures in dunitic nodules and discrete olivine macrocrysts (e.g., Fig. 6). The 491 

first type of equilibration zone occurs in the majority of discrete olivine macrocrysts and dunitic 492 

nodules, where they are continuous and typically show evidence of resorption before the 493 

formation of overgrowth rims (Fig. 7, 8d, 11a). From these textures, it can be inferred that thin 494 

melt films ‘wetted’ entire olivine grains within peridotitic mantle domains (e.g., Drury and van 495 

Roermund 1989). Thus, these zones may record the onset of melt accumulation at the base of the 496 

cratonic lithosphere, possibly shortly prior to kimberlite magma eruptions (Cordier et al. 2015). 497 

We note that several olivine macrocrysts exhibit discontinuous equilibration zones as illustrated 498 

in Figure 11b. In these grains, olivine cores may show a sharp yet discontinuous contact with the 499 

overgrowth rims indicating that equilibration zones did not develop fully around an entire olivine 500 

core zone. In this case, equilibration zones must have formed before the breakage or liberation of 501 



the olivine crystal from its parent xenolith or a larger xenocryst. In kimberlite-borne dunitic 502 

nodules, the most common equilibration zones in olivine occur along grain boundaries, which 503 

provide ample open volume for percolating melts (Faul 1997). 504 

 505 

Links to megacryst formation 506 

A link between Fe-rich olivine cores of metasomatic origin and megacryst suites (i.e., large 507 

discrete crystals of olivine, garnet, clinopyroxene, orthopyroxene, ilmenite, zircon and 508 

phlogopite) had been proposed by Moore and Costin (2016) based on major and minor element 509 

compositions. Giuliani and Foley (2016) and Moore (2017) pointed out that Fe-rich dunitic 510 

nodules in kimberlites could be sourced from olivine megacrysts because of their strong 511 

compositional similarities. Similar to the proposed origin of the dunitic nodule suite (e.g., Arndt 512 

et al. 2010), megacryst formation is widely attributed to interactions between proto-kimberlite 513 

melt and cratonic mantle lithosphere (Hops et al. 1992; Nowell et al. 2004; Moore and 514 

Belousova 2005; Kopylova et al. 2009; Tappe et al. 2011; Giuliani et al. 2013; Kargin et al. 515 

2016; Bussweiler et al. 2018; Sun et al. 2018), which involves the growth of large crystals (1–15 516 

cm) coupled to strong plastic deformation and recrystallization processes (e.g., Tappe et al., 517 

2021, and references therein). 518 

The Igwisi Hills kimberlite lavas lack extremely Fe-rich olivine compositions with Fo 519 

<88, which are known from many kimberlites on major cratons worldwide (Giuliani 2018). 520 

However, several Igwisi Hills olivine populations, including the neoblasts and inner zones, show 521 

moderate Fe-enrichment with Fo <91, which is similar to olivine in sheared cratonic peridotite 522 

xenoliths (Fo ~86–92; Fig. 4) (Hervig et al. 1986; Tappe et al. 2021), but still higher than Fo 82-523 

88 as typically reported for olivine megacrysts in kimberlites (Moore and Costin 2016; Howarth 524 



2018). Links between olivine megacrysts and dunitic nodules in kimberlites are supported by 525 

their elevated concentrations of Ca, Mn, Al, Sc and V (Fig. 5, 9). Also, similar sizes and textures 526 

of olivine grains are noted for dunitic nodules and discrete megacrysts in kimberlites and related 527 

rocks, further establishing a possible genetic relationship between these olivine types (Arndt et 528 

al. 2021). Yet another link may be provided by the abundant melt inclusions within the inner 529 

zones of olivine crystals from the Igwisi Hills kimberlites bearing some resemblance to the 530 

polymineralic inclusions known from olivine megacrysts in kimberlites from localities 531 

worldwide (Bussweiler et al. 2019; Howarth and Büttner 2019; Abersteiner et al. 2019). Iron and 532 

trace element enrichment in olivine has been linked to melt-related metasomatism of peridotitic 533 

mantle wall-rocks (e.g., Howarth and Taylor 2016). Thus, the lack of strong Fe-enrichment in 534 

olivine from the Igwisi Hills kimberlite lavas suggests a rather limited extent of enrichment of 535 

their source rocks in the lithospheric mantle beneath this part of the Tanzania craton, which is 536 

consistent with the paucity of Fe-enriched olivine in mantle-derived peridotite xenoliths and 537 

diamonds from the study region (Dawson 1994; Stachel et al. 1998; Gibson et al. 2013). 538 

In contrast to the original models of megacryst formation, in which these large crystals 539 

were envisaged to form from melts pooled at the lithosphere–asthenosphere boundary (e.g., 540 

Nixon and Boyd 1973), newer research demonstrates much longer depth ranges for the formation 541 

of megacrysts within the cratonic mantle lithosphere (Giuliani et al. 2013; Kargin et al. 2016; 542 

Bussweiler et al. 2018; Tappe et al. 2021). A wide range of Ni-in-garnet temperatures is typically 543 

recorded by megacrystic garnet grains recovered from kimberlites on all major cratons (e.g., 544 

Griffin et al. 2002; Kobussen et al. 2008; Hunt et al. 2012; Shaikh et al. 2020), which 545 

additionally supports long depth ranges for megacryst formation and, by extension, long depth 546 

ranges for the formation of dunitic nodules, as is demonstrated here. 547 



 548 

Where and when does mantle-derived olivine deform? 549 

Olivine deformation features, such as kink banding and undulose extinction, are often ascribed to 550 

strain within the lithospheric mantle, and their identification is typically used as evidence for a 551 

xenocrystic origin of olivine in mantle-derived magmatic rocks (Skinner 1989; Tappe et al. 2009; 552 

Cordier et al. 2015). This concept has been contested by Moore et al. (2020), who proposed that 553 

olivine grains in kimberlites may have been deformed at crustal levels, with the implication that 554 

deformation features alone do not provide unequivocal evidence for a xenocrystic origin from 555 

the cratonic mantle. A similar line of evidence was developed earlier by Kresten (1973), Moore 556 

(1988, 2012) and Shaikh et al. (2018), in which deformation of olivine phenocrysts was ascribed 557 

to torsional forces applied to the kimberlite magma during ascent. 558 

The Igwisi Hills kimberlite samples show a peculiar textural feature that developed on 559 

rounded olivine macrocrysts. These olivine crystals show curvilinear fractures that run parallel 560 

within the curved grain margins (Fig. 3a). Such curvilinear fractures were also reported by Jones 561 

et al. (2014), who ascribed them to the relief from internal forces due to ascent-driven magma 562 

decompression. However, the parallel nature of these tangentially oriented fractures seems to 563 

indicate external stresses caused by the rotation of the olivine crystals during turbulent transport 564 

along kimberlite magma conduits. Importantly, undulose extinction has been observed in this 565 

type of rounded olivine crystal, propagating into the grain interiors. Hence, it is evident indeed 566 

that besides ubiquitous deformation of olivine within the lithospheric mantle, magmatic olivine 567 

grains also deform in response to appreciable forces during magma transport, even at crustal 568 

levels. We note, however, that olivine in kimberlites and related rocks exhibits most commonly 569 



mantle-derived deformation features and that the much rarer deformation attained during magma 570 

ascent can be readily identified within olivine overgrowth rims. 571 

 572 

Conclusions 573 

Dunitic nodules from the Quaternary Igwisi Hills kimberlite volcanoes were studied for their 574 

petrography, olivine major and trace element compositions, and olivine crystallographic 575 

orientations. Host olivine grains in the dunitic nodules yielded a wide range of Al-in-olivine 576 

temperatures, which translates after regional geotherm projections into a sampling interval 577 

between 100 and 145 km depth. An origin of the dunitic nodules from mid-lithospheric depths is 578 

in contrast to previous models, in which these olivine-dominated materials were assumed to form 579 

exclusively at the base of cratonic mantle lithosphere by metasomatic processes that lead-up to 580 

kimberlite magma ascent and eruptions. 581 

Our data show that melt/fluid-assisted recrystallization of olivine and its concomitant 582 

metasomatic enrichment are common processes that operate along kimberlite magma conduits 583 

within the lower half of typical cratonic mantle lithosphere. We demonstrate that equilibration 584 

zones in mantle-derived olivine crystals can form by mineral–melt interactions at the base of the 585 

cratonic lithosphere, but also along translithospheric kimberlite magma conduit systems. It 586 

appears that the petrogenesis of dunitic nodules in kimberlites shares many characteristics with 587 

the formation of olivine megacrysts, and both these olivine types may represent a product of 588 

strong interactions between asthenosphere-derived carbonate-rich melts and lithospheric mantle 589 

rocks. 590 
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 934 

 935 

Figure Captions 936 

 937 

Fig. 1. Location (left side) and geological map (right side) of the ca. 12 ka Igwisi Hills kimberlite 938 

volcanoes. The inset photograph shows a polished kimberlite ‘lava’ rock sample for which the 939 

location is given on the map with a star symbol. Note the abundant subrounded to rounded 940 

dunitic nodules and olivine macrocrysts. 941 

 942 

Fig. 2. Plane-polarized light (PPL) images of Igwisi Hills kimberlite samples (a-b) and cross-943 

polarized light images of dunitic nodules (c-f). Coloured arrows in (a) and (b) mark the veins of 944 

melt inclusions (now quenched as carbonates) trapped in the matrix. Note the olivine crystals and 945 

calcite laths in the kimberlite matrix defining a flow texture. (c-f) Dunitic nodules with anhedral 946 

host olivine grains that are cross-cut by subhedral to anhedral olivine neoblasts. Note that 947 

virtually all dunitic nodules are subrounded. In Panel (e), olivine neoblasts are aligned along an 948 

inter-grain fracture but otherwise occur inside or along the margins of host olivine grains (c, d, 949 

f). Neoblasts – N. 950 

 951 



Fig. 3. (a) Dunitic nodule showing cracks of different generations (i.e., sealed, healed and 952 

curvilinear) and melt inclusions plus minute olivine neoblasts along the host olivine grain 953 

margins. (b) Recrystallized dunitic nodule showing cracks (red arrow) running from the olivine 954 

neoblasts into the host olivine grain. (c) BSE image of an olivine phenocryst showing spinel 955 

inclusions that are aligned along the olivine crystal growth planes. Neoblasts – N. 956 

 957 

Fig. 4. (a) Forsterite versus NiO (wt.%) and (b) forsterite versus CaO (wt.%) contents of various 958 

olivine populations (host olivine in dunitic nodule, macrocryst core, neoblast, phenocryst, inner 959 

zone and rim) identified in the Igwisi Hills kimberlite lavas. The fields for olivine from granular 960 

(pink) and sheared (black dotted line) peridotites are after Giuliani (2018). 961 

 962 

Fig. 5. Concentrations of minor and trace elements in olivine (in ppm): Ca (a), Mn (b), Al (c), Sc 963 

(d), Zn (e) and Gd (f) plotted against Ni for different olivine populations in the Igwisi Hills 964 

kimberlite lavas. Data for olivine megacrysts from the Monastery kimberlite on the Kaapvaal 965 

craton are from Howarth (2018). 966 

 967 

Fig. 6. EBSD texture component image (with the blue colour of the host olivine as reference 968 

orientation), crystallographic pole figures, and element maps (Mg, Fe, Ni, Ca) shown together 969 

with a BSE image of the IH57BG1 dunitic nodule from the Igwisi Hills kimberlite lavas. In the 970 

BSE image, olivine cores are circled by red dotted lines, neoblasts by yellow dotted lines, and 971 

inner zones of olivine by black dotted lines. Note that the crystallographic orientation of the 972 

olivine neoblasts is mostly random and differs from the orientation of the host olivine grains 973 



(shades of blue). The inner zones of olivine crystals are associated with olivine neoblasts. 974 

Numerous carbonate-rich melt inclusions occur along grain boundaries and fractures. 975 

 976 

Fig. 7. EBSD texture component image, crystallographic pole figures, and element maps (Mg, 977 

Fe, Ni, Ca) together with a BSE image of the IH57BG2 dunitic nodule from the Igwisi Hills 978 

kimberlite lavas (olivine core – red dotted line; neoblasts – yellow dotted lines; inner zones of 979 

olivine – black dotted lines). Note that the crystallographic orientation of the olivine neoblasts is 980 

mostly random and differs from the orientation of the host olivine grains (shades of blue). The 981 

host olivine grains show kink banding (see the lower EBSD map) and contain Cr-rich phlogopite 982 

(phl) inclusions (marked in the BSE image). Note that the olivine rim on the left edge also shows 983 

a deformation texture. Carbonate-rich melt inclusions are exclusively associated with the inner 984 

zones of olivine crystals. Note further that the rims cut through olivine neoblasts establishing a 985 

relative sequence of petrogenetic events. 986 

 987 

Fig. 8. BSE images of representative dunitic nodules (a, b, d) and olivine macrocrysts (c) from 988 

the Igwisi Hills kimberlite lavas. Note the strongly resorbed olivine cores and also the melt 989 

inclusions that occur along fractures in olivine. Note further that the majority of the melt 990 

inclusions occur inside the inner zones of olivine, which are relatively Fe-rich compared to the 991 

resorbed olivine cores. cal – calcite, spl – spinel, grt – garnet. 992 

 993 

Fig. 9. Mn versus Al (a), Zr versus Sc (b), and Al versus V (c) diagrams for olivine from the 994 

dunitic nodules (host grains and neoblasts) and macrocrysts in the Igwisi Hills kimberlite lavas. 995 

The layouts of panels (a) and (b) are after De Hoog et al. (2010), whereas panel (c) is adopted 996 



from Bussweiler et al. (2017). Note that all host olivine grains of the dunitic nodules and the 997 

majority of the olivine macrocryst cores show an affinity to garnet-bearing peridotite sources. 998 

 999 

Fig. 10. Aluminium-in-olivine temperature versus pressure for host olivine grains of the dunitic 1000 

nodules and olivine macrocryst cores from the Igwisi Hills kimberlite lavas. The temperatures 1001 

are calculated using the formulation by Bussweiler et al. (2017) and have been projected onto the 1002 

41 mW/m2 modern geotherm of the Tanzania craton as determined by Gibson et al. (2013). 1003 

Oxidized and reduced dehydration solidus curves are after Green and Falloon (1998). The 1004 

graphite–diamond phase transition curve is after Day (2012). The fields for the various primitive 1005 

mantle-derived melt types (i.e., basanite, nephelinite, melilitite, leucitite) are taken from Green 1006 

and Falloon (1998). 1007 

 1008 

Fig. 11. (a, b) Typical olivine macrocrysts from the Benfontein calcite kimberlite sill complex on 1009 

the Kaapvaal craton, redrawn from Howarth and Taylor (2016, their Figures 5a and 6d). Note the 1010 

continuous (a) and discontinuous (b) transition zones (so-called ‘inner zones’ in our work). In 1011 

panel (b), the olivine core shows a sharp contact against the melt zone because the 1012 

transition/equilibration zone is partly missing. 1013 


