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Abstract: Observations of changes in phenology have provided some of the strongest
signals of the effects of climate change on terrestrial ecosystems. The International
Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to
measure plant phenology in tundra study areas across the globe. Today, this valuable collec-
tion of phenology measurements depicts the responses of plants at the colder extremes of
our planet to experimental and ambient changes in temperature over the past decades.
The database contains 150 434 phenology observations of 278 plant species taken at 28 study
areas for periods of 1–26 years. Here we describe the full data set to increase the
visibility and use of these data in global analyses and to invite phenology data contributions
from underrepresented tundra locations. Portions of this tundra phenology database have
been used in three recent syntheses, some data sets are expanded, others are from entirely
new study areas, and the entirety of these data are now available at the Polar Data Catalogue
(https://doi.org/10.21963/13215).

Key words: Arctic, alpine, climate change, experimental warming, International Tundra
Experiment (ITEX), flowering, plant, vegetation change.

Résumé : Les observations des changements dans la phénologie ont fourni certains des sig-
naux les plus forts des effets du changement climatique sur les écosystèmes terrestres.
L’expérience internationale sur la toundra ITEX (International Tundra Experiment), lancée au
début des années 1990, a établi un protocole commun pour mesurer la phénologie des
plantes dans les zones d’étude de la toundra à travers le monde. Aujourd’hui, cette
précieuse collection de mesures phénologiques décrit les réponses des plantes des régions
les plus froides de notre planète aux changements expérimentaux et ambiants de
température au cours des dernières décennies. La base de données contient 150 434 observa-
tions phénologiques de 278 espèces de plantes prises dans 28 zones d’étude sur des périodes
allant de 1 à 26 ans. Les auteurs décrivent ici l’ensemble des données afin d’accroître la
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visibilité et l’utilisation de ces données dans les analyses globales, et d’inviter les contribu-
tions de données phénologiques provenant d’endroits sous-représentés de la toundra. Des
parties de cette base de données phénologiques sur la toundra ont été utilisées dans trois
synthèses récentes, certains ensembles de données ont été élargis, d’autres proviennent
de zones d’étude entièrement nouvelles, et l’intégralité de ces données est désormais dis-
ponible sur le Catalogue de données polaires (https://doi.org/10.21963/13215). [Traduit par la
Rédaction]

Mots-clés : Arctique, alpin, changement climatique, réchauffement expérimental, International
Tundra Experiment (ITEX), floraison, plante, changement de végétation.

Introduction

Changes in phenology are some of the most well-recorded and easily observable biotic
responses to climate change (Parmesan and Yohe 2003; Thackeray et al. 2016; Menzel et al.
2020), and phenology observations provide important information for predicting ecosys-
tem response to future climatic change (Diez et al. 2012). While climate change has signifi-
cantly altered the phenology of many organisms around the world, the magnitude of
phenological responses can differ greatly among genotypes, species, sites, ecosystems,
and biomes (Primack 1980; Parmesan 2007; Post et al. 2018; Prevéy et al. 2018). The many
consequences of shifts in the timing of plant flowering and growth include altered trophic
interactions (Post and Forchhammer 2008; Høye et al. 2013) and changes in carbon seques-
tration and trace gas feedbacks (Pattison et al. 2015; Leffler et al. 2016).

The International Tundra Experiment (ITEX) was established in 1990 to examine effects
of experimental warming in tundra ecosystems, using common experimental warming
protocols and standardized measurements of treatment responses at plant, community,
and ecosystem scales (Webber and Walker 1991; Henry and Molau 1997). Some of the first
and most frequent measurements taken at ITEX sites were plant phenology observations,
and the value of these coordinated observations—taken using a common protocol across
sites in similar experimental conditions—has continued to grow over time (Arft et al.
1999; Prevéy et al. 2019). Phenology data from ITEX experiments have supported numerous
publications, including: single-site studies (Molau et al. 2005; Bjorkman et al. 2015; Hollister
et al. 2015; Panchen and Gorelick 2015; Semenchuk et al. 2016), comparisons of single taxa
across sites (Alatalo and Totland 1997; Jones et al. 1997; Lévesque et al. 1997; Stenström et al.
1997; Welker et al. 1997), and analyses of phenology data from multiple species and sites
(Arft et al. 1999; Oberbauer et al. 2013; Prevéy et al. 2017, 2019; Assmann et al. 2019).
Observations from this data set revealed that phenology of plants at colder Arctic sites is
more sensitive to changes in temperature than phenology of plants from warmer Arctic
sites (Arft et al. 1999; Prevéy et al. 2017); that late-flowering species flower earlier with
warmer temperatures than early-flowering species—potentially leading to shorter flower-
ing seasons with predicted warmer summers in the future (Høye et al. 2013; Prevéy et al.
2019); and that snowmelt and temperature are important drivers of plant phenology along
coastal tundra sites (Assmann et al. 2019).

Although the ITEX phenology data have been used in several syntheses within the tundra
biome, data from tundra sites are underrepresented in regional and global plant phenology
syntheses (Parmesan and Yohe 2003; Menzel et al. 2006; Cleland et al. 2007; Cook et al.
2012; Wolkovich et al. 2012). Thus, one goal of publishing this database is to increase the vis-
ibility and accessibility of these data for use in global analyses. In addition, the phenology
data set described here is the most comprehensive collection of tundra phenology observa-
tions to date, containing over 100 000 more phenology observations than previously pub-
lished data sets, with more phenophases, sites, and years of data than previous data sets. In
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this data paper, we describe the structure and content of the tundra phenology database and
establish a publicly available DOI with the Polar Data Catalogue (https://doi.org/10.21963/
13215) where updates to the database can be added to aid in future syntheses.

Materials and methods

Study area information and experimental setup
The tundra phenology database currently contains observations from 28 study areas in

tundra ecosystems (i.e., ecosystems above latitudinal or elevational tree lines, Fig. 1,
Table 1, and Supplementary Table S12). “Study areas” indicate general regions ranging in
size from several hundred square meters to up to tens of kilometers. “Subsites” are smaller
regions within larger study areas, either located in different habitat types or created as
blocks of plots within study areas, and “plots” are the smallest study area units, located
within subsites and study areas, and range in size based on the plant species of interest
and landscape characteristics (Supplementary Table S12). Study areas with warming experi-
ments have clear plastic or fiberglass open-top chambers (OTCs) that were designed to
artificially increase air temperature within the chambers by an average of 0.5–3 °C
(Webber and Walker 1991; Marion et al. 1997; Arft et al. 1999; Bokhorst et al. 2013; Prevéy
et al. 2019, Supplementary Table S12). Variation in the amount of warming experienced in
OTCs likely results from variation in habitat types and ambient climate conditions, build-
ing materials used, and differences in the height and diameter of OTCs at different study
areas. The OTCs were constructed from clear fiberglass or polycarbonate materials and have

Fig. 1. General locations of tundra study areas with plant phenology observations in the database. The size of the
symbols indicates the number of years of data from study areas with either only control plots (blue circles) or both
control and experimentally warmed plots (red circles). The map was created with the “ggplot2” package (Wickham
2016) in the statistical program R (R Core Team 2020) using a base map from Natural Earth, and location data from
the tundra phenology database (https://doi.org/10.21963/13215).

2Supplementary material is available with the article through the journal Web site at http://nrcresearchpress.com/doi/
suppl/10.1139/as-2020-0041.
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Table 1. Tundra study areas with phenology observation included in the database.

Study area Latitude Longitude Elevation (m) No. of species* Phenophase† Years‡ Treatment§

Adventdalen, Svalbard, Norway 78.16 16.10 50 16 Flower, flowerend, green,
seedmat, senesce

2007–2013 CTL

2015 CTL/OTC
Alexandra Fiord, Nunavut,

Canada
79.00 −76.00 30 6 Flower, flowerend, green,

seedmat, senesce
1992–1998 CTL/OTC

2000–2005 CTL/OTC
2007–2008 CTL/OTC
2010–2013 CTL/OTC
2015 CTL/OTC

Atqasuk, Alaska, USA 70.45 −157.40 20 31 Flower, flowerend, green,
seedmat, senesce

1998–2001 CTL/OTC

2007–2008 CTL/OTC
2010–2019 CTL/OTC

Baker Lake, Nunavut, Canada 64.38 −95.88 68 1 Flower, flowerend 1992–2005 CTL
Bogong, Australia −37.00 147.00 1700 15 Flower, flowerend, seedmat 2004–2009 CTL/OTC
Bylot Island, Nunavut, Canada 73.13 −80.00 64 1 Flower, flowerend 2001–2005 CTL
Changbai Mountains, China 41.99 128.01 2123 4 Flower, flowerend, green, senesce 2018 CTL
Daring Lake, Northwest

Territories, Canada
64.87 −111.53 420 8 Flower, flowerend, green,

seedmat, senesce
1996–2019 CTL

Endalen, Svalbard, Norway 78.18 15.76 94 6 Flower, flowerend, green,
seedmat, senesce

2002–2005 CTL/OTC

Faroe Islands 62.00 7.00 600 1 Flower, flowerend 2002 CTL/OTC
2007–2009 CTL/OTC

Finse, Norway 60.62 7.52 1475 4 Flower, flowerend, green 1994–1996 CTL/OTC
2009 CTL

Foscagno Pass, Italy 46.47 10.27 2485 36 Flower 2007–2014 CTL
Gavia Pass, Italy 46.34 10.5 2692 3 Flower, flowerend, seedmat 2010–2014 CTL/OTC
Healy, Alaska, USA 63.88 −149.25 670 6 Flower, green, senesce 2010–2019 CTL/OTC
Jakobshorn, Switzerland 46.77 9.86 2320 24 Flower, flowerend, green,

seedmat, senesce
2015 CTL/OTC

Kangerlussuaq, Greenland 67.02 −50.72 200 14 Flower, green, seedmat 2003–2004 CTL/OTC
2005–2013 CTL

Latnjajaure, Sweden 68.36 18.49 1000 144 Flower, flowerend, green,
seedmat, senesce

1993–1997 CTL/OTC

1992–2001 CTL
Narsarsuaq, Greenland 61.16 −45.40 50, 450 12 Flower 2015–2018 CTL
Niwot Ridge, Alaska, USA 40.00 −105.38 3528 12 Flower 2007–2008 CTL/OTC
Nuuk, Greenland 64.12 −51.35 5 3 Flower, flowerend 2008–2018 CTL
Qikiqtaruk, Nunavut, Canada 69.58 −139.08 42 3 Flower, flowerend, green,

seedmat, senesce
2001–2017 CTL
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Table 1. (concluded).

Study area Latitude Longitude Elevation (m) No. of species* Phenophase† Years‡ Treatment§

Stillberg, Switzerland 46.78 9.86 2180 7 Flower, flowerend, green, senesce 2004–2005 CTL
2015 CTL

Tanquary Fiord, Nunavut, Canada 81.40 −76.87 4 2 Flower 1995–2014 CTL
Toolik Lake, Alaska, USA 69.00 −150.00 720 16 Flower, flowerend, green,

seedmat, senesce
1996–2001 CTL/OTC

2007–2008 CTL/OTC
Utqiaġvik, Alaska, USA 71.31 −156.59 4 48 Flower, flowerend, green,

seedmat, senesce
1994–2001 CTL/OTC

2007–2008 CTL/OTC
2010–2019 CTL/OTC

Val Bercla, Switzerland 46.47 9.58 2490 13 Flower, flowerend, green 2014–2015 CTL/OTC
White Mountains, Alaska, USA 37.50 −118.17 3500 1 Flower, flowerend 2013 CTL/OTC
Zackenberg, Greenland 74.50 −20.50 30 6 Flower, flowerend 1995–2018 CTL

*No. of species is the total number of species with phenological observations at each study area.
†Phenophase represents flower for first flowering dates, flowerend for last flowering dates, green for dates of first green-up of leaves, seedmat for dates of seed maturation or seed release,

and senesce for dates of first observed leaf coloring in fall or leaf senescence.
‡Years lists the years of data present for each data type.
§Treatment is either CTL for control plots only or CTL/OTC for data from control and warming (open-top chamber) plots.
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a footprint of ca. 1–2 m2 (Marion et al. 1997). The OTCs were placed on plots either during the
summer and removed in the winter or left on plots throughout the year, depending on the
study area (Prevéy et al. 2019; Supplementary Table S12). All warmed plots had associated
control plots and some study areas continued monitoring the control plots beyond the time
period during which warming treatments were applied. More details on study area and
experimental characteristics for many of the study areas can be found at the ITEX
Wikipedia page: https://en.wikipedia.org/wiki/International_Tundra_Experiment.

Eleven of the 28 study areas in the database were originally established as part of the
ITEX network (Webber and Walker 1991; Henry and Molau 1997). Oberbauer et al. (2013)
added one additional study area and years of data from 1992 through 2009 for use in a phe-
nology synthesis paper. Most recently, phenology data from 11 additional study areas and
years through 2015 were collected for three cross-site syntheses (Prevéy et al. 2017, 2019;
Assmann et al. 2019). The updated phenology data set described here includes five addi-
tional study areas and years of data through 2019. A current synthesis (Collins et al. 2021)
is using some of these data to examine the variation in plant responses to warming across
multiple phenophases over time and with inter-annual climate.

Phenology data collection protocols
Phenology measurements collected at all original ITEX study areas were taken using a

common protocol outlined in the ITEX manual (Molau and Mølgaard 1996). The standard-
ized protocol involves checking the phenological status of plant species within study areas
or plots one to three times per week over the snow-free season. Scientific names for plant
species were standardized across all study areas using The Plant List (2013, v 1.1) via the pack-
age Taxonstand in the statistical program R (R Core Team 2020). The date that a phenologi-
cal event, or phenophase, is observed is recorded as the day of year and retained in this
database. The five phenophases that were recorded most frequently across study areas,
and are included in the database, are: green-up of leaves (green), first flowering date
(flower), last flowering date (flowerend), seed maturation (seedmat), and leaf senescence
(senesce; Arft et al. 1999). Phenophases were defined differently depending on plant species
(Molau and Mølgaard 1996), but they were recorded consistently over time for each species
at each study area (Supplementary Table S22).

For 21 of the study areas in the tundra phenology database, the phenophase observations
reflect the first observed phenological event per species, plot, study area, and year
(Supplementary Table S22). At these sites, flower was defined as the date when either the
first flower was open, the first pollen was visible, or the first anthers were exposed, and
flowerend was defined as the date when the first anthers withered or first petals dropped.
Seven study areas recorded phenological events differently as noted below. At the Lapland
subsite at Latnjajaure, Sweden, there were no distinct plots, so observations for this subsite
reflect the first observed phenological events per species. At Baker Lake and Tanquary
Fiord, Nunanvut, Canada, the phenological observations reflect the mean date of pheno-
phases across 20–30 monitored plants at each site. The phenological observations for
Narsarsuaq, Zackenberg, and Nuuk, Greenland, per plot and year reflect the dates of 50%
flowering or senescence rather than the first observed open or senesced flower (Høye et al.
2013). In all cases, the manner of data collection and aggregation is consistent over time
within each study area and noted in Supplementary Table S22.

All phenology observations at all study areas were graphed and visually inspected to
ensure that dates were within logical ranges, for example, phenophase observations from
November through March in the Northern Hemisphere were double-checked with data
owners as these would have occurred outside the short growing season in tundra ecosys-
tems. Additionally, any phenological observation outliers that were greater than three
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standard deviations away from the mean day of year per site, species, and phenophase were
double-checked with data contributors and removed if there were determined to be errors.
However, we cannot ensure that the database is entirely free of errors (e.g., observations
being improperly recorded on datasheets, etc.), and we reserve the right to make correc-
tions to the database as necessary.

Dataset availability and usage guidelines
The tundra phenology database is available at the Polar Data Catalogue

(www.polardata.ca): https://doi.org/10.21963/13215. Since the phenology data collection at
some study areas is ongoing, and we encourage the inclusion of data from new tundra study
areas, the phenology database will occasionally be updated with new years of data, or more
details on study area characteristics, and each update will be released with a new version
number and made available at the DOI above. We are enthusiastic to welcome new phenol-
ogy observations to the database, especially from underrepresented tundra regions (Fig. 1).
Principal investigators wishing to join the ITEX experimental network and contribute to
the tundra phenology database should contact the corresponding author of this data paper,
or visit the ITEX webpage: https://www.gvsu.edu/itex/ for more information.

The data set is fully available to the public and should be appropriately referenced by cit-
ing this data paper if used in published analyses. A large amount of time, effort, and fund-
ing has gone into conducting these frequent phenology observations in remote tundra
locations. Thus, collaborating with the relevant data contributors helps recognize the huge
effort of the study area principal investigators and data collectors and facilitates site-
specific interpretations of cross-site data analyses. Full recognition for data use allows inves-
tigators to secure funding for the continued collection of data at remote tundra study areas.
We therefore kindly request that data users contact and invite the data contributors of rel-
evant observations in the database as coauthors should the data set form a key contribution
to the scientific analysis conducted in any resulting publications. The names and emails of
data contributors are provided in the “data_provider” column of the data set.

Results and data set description

Phenology observations were collected from a total of 28 study areas in Arctic and alpine
tundra ecosystems on a total of 278 plant species (Fig. 1, Table 1). Seventeen study areas
include observations from both control and experimentally warmed plots, and 11 study
areas include observations from only control plots (Fig. 1). There was a median of 10 and a
mean of 11 years of data collected per study area, on a mean of 15 species per study area
(Table 1). The earliest observations were taken in 1992 at Alexandra Fiord and Baker Lake
in Nunavut, Canada, and Latnjajaure in Sweden. The most recent observations were taken
in 2019 at three study areas in Alaska, USA (Utqiaġvik, Atqasuk, and Healy), and Daring
Lake in Northwest Territories, Canada (Table 1). The largest total number of phenology
observations came from Utqiaġvik, Alaska, with 60 434 observations of phenological events
of 48 species over 26 years in control and experimentally warmed plots. The greatest
number of species observed at one study area came from Latnjajaure, Sweden, with first
flowering dates of 144 species monitored over 10 years. The longest time series of observa-
tions came from Utqiaġvik, Alaska, which started monitoring in 1994 and continued
through 2019 in this data set, and they continue to be collected every year. The second
longest period of records are the flowering phenology monitoring measurements at
Zackenberg, Greenland, which started in 1996 and continued through 2018 in this release
of the dataset and that also continue to be collected every year. Across all study areas over
time, the numbers of observations increased from the early 1990s until 2001, and then
fewer numbers of observations were recorded in the years from 2001 to 2006 (Fig. 2). This
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Fig. 2. The total number of phenology observations of each phenophase type across all study areas in the database
per year. Flower observations are first flowering dates. Flowerend observations are last flowering dates. Green
observations are leaf green-up dates. SeedMat observations are seed maturation or seed dispersal dates. Senesce
observations are leaf senescence dates.

Fig. 3. The total number of observations of each phenophase taken at (A) the 23 study areas with <6000
observations each and (B) the study areas with >6000 observations each. Note the change in scale between (A)
and (B) on the y axes. Flower observations are first flowering dates. Flowerend observations are last flowering
dates. Green observations are leaf green-up dates. SeedMat observations are seed maturation or seed dispersal
dates. Senesce observations are leaf senescence dates.
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was followed by a large increase in the number of observations the following two years,
with the most observations taken in 2008, likely boosted by an increase in funding for field
observations from the fourth International Polar Year in 2007 and 2008 (Fig. 2).

At the time of publication, the database contains 42 203 observations of green-up
(green), 38 443 observations of first flowering dates (flower), 26 723 observations of last
flowering dates (flowerend), 22 559 observations of leaf senescence (senesce), and 20 506
observations of seed maturation (seedmat; Fig. 3). Phenological events that happen earlier
in the summer (green-up, first flowering dates) are almost twice as numerous in the data
set than late-season events (leaf senescence, seed maturation), possibly because of

Fig. 4. (A) The day of year (DOY) of flowering observations by year across all Arctic and alpine tundra study areas
that recorded flowering, colored by study area latitude. The DOYs for the southern hemisphere were shifted by
6 months to match those from the northern hemisphere sites. (B) The number of flowering observations
recorded by latitude colored by study area latitude. (C) Locations of study areas with flowering observations,
colored by study area latitude. The map was created with the ggplot2 package (Wickham 2016) in the statistical
program R (R Core Team 2020) using a base map from Natural Earth, and location data from the tundra
phenology database (https://doi.org/10.21963/13215).
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herbivory, early snowfall, or because it is difficult to staff seasonal personal through late
August and September in remote tundra locations when later phenological events may be
occurring.

Twenty-six percent of the observations in the database were first flowering observations,
with all 28 study areas recording this event over a mean of 10.8 years (Figs. 3 and 4). There
was a large range in flowering dates among species, study areas, plots, and years (Fig. 4),
with an average range of 54 days among flowering dates within a year at study areas that
recorded flowering of six species or more (Fig. 4). The structure of the database and variable
descriptions are provided in Table 2.

Conclusions

To our knowledge, this database represents the largest collection of repeated phenology
observations of plant species from across the tundra biome. This large collection of data has
the potential to be used in future syntheses of vegetation response to climate change, both
globally and locally. These data could be used to inform and refine climate–vegetation mod-
els and, among many other research directions, help predict phenology in tundra regions
where phenological mismatch between vegetation, herbivores, and (or) pollinators could
occur as the climate changes.
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Table 2. Structure of the tundra phenology database.
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subsite Name of subsite location within study area (if applicable)
soil_moisture General classification of the soil moisture status at a study area or subsite: dry

(containing roughly<20% gravimetric soil moisture content (GMC)), moist (20%–60%
GMC), or wet (>60% GMC)

lat Latitude, decimal degrees N
long Longitude, decimal degrees E
elevation Elevation (above sea level) in meters
ecosystem Tundra ecosystem type: Arctic (north of latitudinal treeline) or alpine (above elevational

treeline)
exstart Year the experiment or monitoring began at each study area
year Year of the phenological observation
treatment Experimental treatment, either CTL (control) or OTC (open-top chamber —

experimentally warmed)
plot Plot within study area or subsite (if applicable)
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Note: The database is provided as a .csv file of a single data table structured by the following column headings and descriptions.
Each row in the data table corresponds to a phenological observation.
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Aujuittuq, Iñupiat, Waveroo, Cheyenne, Resolute Bay, and Finse Alpine Research Center,
among many others. These observations were made possible with the support of many
funding agencies and grants, including: ArcticNet; the Natural Sciences and Engineering
Research Council of Canada; the Canadian International Polar Year Program; the Polar
Continental Shelf Program of Natural Resources Canada; the Northern Scientific Training
Program, Polar Knowledge Canada; the W. Garfield Weston Foundation; the Danish
Environmental Protection Agency; the Swiss Federal Institute for Forest, Snow and
Landscape Research WSL; the National Geographic Society; the US National Science
Foundation (grant numbers PLR1525636, PLR1504141, PLR1433063, PLR1107381,
PLR0119279, PLR0902125, PLR0856728, PLR1312402, PLR1019324, LTER 1026415, OPP1525636,
OPP9907185, DEB1637686, 0856710, 9714103, 0632263, 0856516, 1432277, 1432982, 1504381,
1504224, 1433063, 0856728, 0612534, 0119279, 9421755, 0632184, 9617643, and 9321730; the
Swiss National Science Foundation (155554); the Danish National Research Foundation
(grant CENPERM DNRF100); the Danish Council for Independent Research (Natural
Sciences grant DFF 4181-00565); the Deutsche Forschungsgemeinschaft (grant: RU 1536/3-1);
the Natural Environment Research Council (grant NE/M016323/1); European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
(grant 754513), the Aarhus University Research Foundation, the Department of Energy
(grant SC006982); a Semper Ardens grant from the Carlsberg Foundation to N.J. Sanders;
The Strategic Research Area BECC (Biodiversity and Ecosystems in a Changing Climate) to
UM and MPB; and an INTERACT Transnational Access grant to JSP. This work was supported
by the Norwegian Research Council SnoEco project, grant number 230970 to E.J. Cooper,
The Villum Foundation (grant 17523), the Carlsberg foundation (grant CF14-0992), and by
the U.S. Department of Energy, Office of Biological and Environmental Research,
Terrestrial Ecosystem Science (TES) Program Awards #DE-SC0006982, #DE-SC0014085,
#DE-SC0020227.

References
Alatalo, J.M., and Totland, Ø. 1997. Response to simulated climatic change in an alpine and subarctic pollen-risk
strategist, Silene acaulis. Global Change Biol. 3: 74–79. doi: 10.1111/j.1365-2486.1997.gcb133.x.

Arft, A.M., Walker, M.D., Gurevitch, J., Alatalo, J.M., Bret-Harte, M.S., Dale, M., et al. 1999. Responses of tundra
plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol. Monogr. 69:
491–511. doi: 10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2.

Assmann, J.J., Myers-Smith, I.H., Phillimore, A.B., Bjorkman, A.D., Ennos, R.E., Prevéy, J.S., et al. 2019. Local snow
melt and temperature — but not regional sea ice — explain variation in spring phenology in coastal Arctic
tundra. Global Change Biol. 25: 2258–2274. doi: 10.1111/gcb.14639.

Bjorkman, A.D., Elmendorf, S.C., Beamish, A.L., Vellend, M., and Henry, G.H.R. 2015. Contrasting effects of warming
and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biol. 21:
4651–4661. doi: 10.1111/gcb.13051.

Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E.J., Dalen, L., et al. 2013. Variable temperature effects of
Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biol. 19:
64–74. doi: 10.1111/gcb.12028.

Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., and Schwartz, M.D. 2007. Shifting plant phenology in response
to global change. Trends Ecol. Evol. 22: 357–365. doi: 10.1016/j.tree.2007.04.003. PMID: 17478009.

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

12 Arctic Science Vol. 00, 2021

Published by Canadian Science Publishing

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
iT

 N
O

R
G

E
S 

A
R

K
T

IS
K

E
 U

N
IV

E
R

SI
T

E
T

 o
n 

02
/0

7/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://dx.doi.org/10.1111/j.1365-2486.1997.gcb133.x
http://dx.doi.org/10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2
http://dx.doi.org/10.1111/gcb.14639
http://dx.doi.org/10.1111/gcb.13051
http://dx.doi.org/10.1111/gcb.12028
http://dx.doi.org/10.1016/j.tree.2007.04.003
http://www.ncbi.nlm.nih.gov/pubmed/17478009


Collins, C.G., Elmendorf, S.C., Hollister, R.D., Henry, G.H.R., Clark, K., Bjorkman, A.D., et al. 2021. Experimental
warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 12: 3442.
doi: 10.1038/s41467-021-23841-2.

Cook, B.I., Wolkovich, E.M., and Parmesan, C. 2012. Divergent responses to spring and winter warming drive com-
munity level flowering trends. Proc. Natl. Acad. Sci. USA, 109: 9000–9005. doi: 10.1073/pnas.1118364109. PMID:
22615406.
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