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Abstract
Plant communities worldwide show varied responses to nutrient enrichment—including shifts in species identity, decreased 
diversity, and changes in functional trait composition—but the factors determining community recovery after the cessation 
of nutrient addition remain uncertain. We manipulated nutrient levels in a tundra community for 6 years of nutrient addition 
followed by 8 years of recovery. We examined how community recovery was mediated by traits related to plant resource-use 
strategy and plant ability to modify their environment. Overall, we observed persistent effects of fertilization on plant com-
munities. We found that plants with fast-growing traits, including higher specific leaf area, taller stature and lower foliar C:N, 
were more likely to show a persistent increase in fertilized plots than control plots, maintaining significantly higher cover 
in fertilized plots 8 years after cessation of fertilization. Additionally, although graminoids responded most strongly to the 
initial fertilization treatment, forb species were more vulnerable to fertilization effects in the long-term, showing persistent 
decline and no recovery in 8 years. Finally, these persistent fertilization effects were accompanied by modified environmental 
conditions, including persistent increases in litter depth and soil phosphorous and lower soil C:N. Our results demonstrate 
the potential for lasting effects of nutrient enrichment in nutrient-limited systems and identify species traits related to rapid 
growth and nutrient-use efficiency as the main predictors of the persistence of nutrient enrichment effects. These findings 
highlight the usefulness of trait-based approach for understanding the persistent feedbacks of nutrient enrichment, plant 
dynamics, and niche construction via litter and nutrient build-up.
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Introduction

Nutrient enrichment has been implicated as a driver of biodi-
versity loss and compositional change for plant communities 
globally (Bobbink et al. 2010; Harpole et al. 2016; Payne 
et al. 2017). As the negative impacts of nutrient enrichment 

on biodiversity have become clear, suggestions for ways to 
decrease nutrient inputs on natural systems have gained trac-
tion, including the abandonment of agriculture (Bakker and 
Berendse 1999), international management plans to reduce 
nutrient loads (Nielsen et al. 2019), or active restoration 
through top-soil removal and liming (Smolders et al. 2008). 
Despite these efforts, patterns of recovery after the cessation 
of nutrient enrichment have thus far been less well studied. 
In some cases, soil nutrients can recover relatively quickly 
to pre-enrichment levels (Stevens 2016), while the effects on 
plant communities in experimental studies often last even 
decades after treatments ceased, sometimes but not always 
including depressed species richness (Strengbom et al. 2001; 
Isbell et al. 2013; Street et al. 2015; Stevens 2016). Further 
investigating which mechanisms lead to either recovery or 
persistent changes after cessation of nutrient enrichment are 
needed to improve our understanding of community pro-
cesses following global change pressures.

Communicated by Sarah M Emery.

 *	 Chhaya M. Werner 
	 cwerner@ucdavis.edu

1	 Department of Physiological Diversity, Helmholtz Center 
for Environmental Research (UFZ), 04318 Leipzig, Germany

2	 German Centre for Integrative Biodiversity Research (iDiv) 
Halle-Jena-Leipzig, 04103 Leipzig, Germany

3	 Department of Ecology and Genetics, University of Oulu, 
90014 Oulu, Finland

4	 Department of Arctic and Marine Biology, UiT, The Arctic 
University of Norway, 9019 Tromso, Norway

http://orcid.org/0000-0002-2967-8603
http://crossmark.crossref.org/dialog/?doi=10.1007/s00442-021-05064-w&domain=pdf


676	 Oecologia (2021) 197:675–684

1 3

Theoretical predictions and field data indicate that in 
nutrient-enriched conditions, traits that allow plants to 
take advantage of increased resources are those associated 
with higher competitive ability for light in resource-rich 
conditions by promoting fast growth (Reich 2014). These 
“resource-acquisitive” traits include high relative growth 
rate, high specific leaf area, high leaf N and P concentra-
tions (Westoby et al. 2003; Adler et al. 2013; Reich 2014), 
and taller stature, which is associated with higher competi-
tive ability for light (Fargione and Tilman 2002; Hautier 
et al. 2009). In contrast, species with the opposite, “resource 
conservative” traits that permit survival and growth under 
nutrient-constrained conditions are less likely to be able to 
take advantage of increased nutrient availability (Chapin 
et al. 1986; Fargione and Tilman 2002; Adler et al. 2013), 
and can exhibit greater loss-likelihood in resource-rich con-
ditions (Stevens et al. 2011; Helsen et al. 2014; Kidd et al. 
2017; Kaarlejärvi et al. 2017). Consequently, trait-driven 
species responses to nutrient addition can lead to shifts in 
functional trait composition, decreased species richness, and 
ultimately altered ecosystem functioning (Suding et al. 2008; 
Cadotte et al. 2011).

The potential role of traits in the recovery or persistent 
responses of species and communities after nutrient enrich-
ment remains to be explored. On one hand, since species 
with resource-acquisitive traits are often most responsive 
to nutrient limitation (Chapin et al. 1986), they could be 
outcompeted by resource-conservative species once nutrient 
levels were no longer artificially elevated (Tilman 1988). 
However, if resource-acquisitive species modify their envi-
ronment via niche construction, the abundance of these spe-
cies may change the physical and chemical conditions of 
their environment in a way that promotes their dominance 
even after the cessation of nutrient enrichment (Laland et al. 
2016). Niche construction can result in an environment 
where light is the most limiting resource, for which they 
are often dominant competitors (Hautier et al. 2009; Reich 
2014; Borer et al. 2014). Resource-acquisitive species are 
likely to produce more litter due to higher turnover of leaves 
(Adler et al. 2013), which can reinforce community changes 
via a physical barrier to seed germination or light reduction 
(Lamb 2008). The litter produced by fast-growing species is 
also often rich in nitrogen and decomposes faster (Cornwell 
et al. 2008), which could maintain nutrient-rich conditions 
that benefit these same fast-growing, nutrient-demanding 
species. Despite the great potential of traits for predicting 
various community processes, their role as predictors of spe-
cies’ persistence in previously nutrient-enriched conditions 
has yet to be addressed.

Here we present results from a long-term study on the 
patterns and drivers of persistent consequences of nutri-
ent enrichment for plant communities. This study in tundra 
experimentally manipulated nutrient availability with 6 years 

of nutrient addition, crossed factorially with habitat type, 
and reported trait-dependent changes in diversity and pro-
ductivity (Eskelinen et al. 2012). We then examined whether 
the effects of nutrient enrichment persisted 8 years after the 
cessation of the nutrient addition treatment by comparing 
the pretreatment communities to communities 14 years 
after the experiment was established (i.e. showed persistent 
responses) or whether the communities had returned to the 
pretreatment stage (i.e. had recovered). Furthermore, we 
assessed whether species’ persistence in previously nutri-
ent-enriched conditions was explained by traits. Tundra 
ecosystems are ideal to test theories of persistent nutrient 
effects, with strong resource limitation, and high diversity 
of species in small plots (Shaver and Chapin 1980; Virtanen 
et al. 2013). These communities have few to no exotic spe-
cies, which allows tests of the general effects of nutrient 
enrichment on native communities (separate from feedbacks 
between invasive species and nutrient enrichment). Finally, 
the interspersion of two different habitat types with greatly 
varying initial nutrient levels at our study site (Eskelinen 
et al. 2009) facilitates investigation of the generalizability 
of patterns and mechanisms.

We hypothezed that the previously fertilized plots would 
have persistently lower species richness (H1a), higher turn-
over of species from the pre-nutrient addition community 
(H1b) and larger shifts in functional groups (H1c) than con-
trol plots. We predicted that species with resource-acquis-
itive traits (i.e., greater SLA, height and N concentrations) 
would be more likely to have persistent increases in the 
enriched plots than those with resource conservative traits 
(H2). We also predicted that this trait-based increase would 
be associated with aspects of niche construction, including 
increased accumulation of litter (H3a) and persistent differ-
ences in soil nutrients (H3b).

Methods

Study system

This study was conducted in tundra communities above 
treeline on Mount Saana, located in northwest Finland 
(69.05′ N, 20.83′ E). Treeline lies in 600–650 m a.s.l. On 
Mt. Saana, two distinct bedrock types result in a mosaic pat-
tern of soil and vegetation (hereafter referred to as “habitat 
types”). Non-acidic and relatively nutrient-rich soils, derived 
from dolomitic bedrock, support forb- and graminoid-rich 
Dryas heaths (“fertile habitat”). In contrast, acidic and 
relatively nutrient-poor soils lie above siliceous rocks, and 
support dwarf shrub- and graminoid-rich Empetrum heaths 
(“infertile habitat”). Fertile habitats had higher soil pH and 
NH4-N than infertile habitats (Eskelinen et al. 2009). For 
our experimental study, we chose five patches for each of 
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these two habitat types, fertile and infertile habitats, spa-
tially interspersed within a distance of 5 km, at altitudes of 
720–800 m a.s.l. and with similar topographic and moisture 
conditions.

Experimental design

In 2004, we established eight 25 × 25 cm plots at each of the 
ten sites (five fertile and five infertile habitats), for a total 
of 80 plots. To examine the persistent effects of nutrient 
enrichment on plant communities, we established a fully 
factorial combination of three treatments: fertilization, lim-
ing, and grazer exclusion. Each site had one replicate of 
each of the consequent treatment combinations. Our original 
experimental design included liming and grazer exclusion to 
make sure that lower pH at some sites would not constrain 
plants from responding to fertilization and because recov-
ery from fertilization could depend on grazing (Olsen and 
Klanderud 2014).

Fertilization was conducted with a fast-dissolving NPK 
16-9-22 fertilizer, which we applied twice per growing sea-
son (in mid-June and at the end of July) every year from 
2005 to 2010. Fertilizer was applied in the plot and an addi-
tional 15 cm wide buffer on each side. Total nutrient quanti-
ties per year were 9.6 g N/m2, 5.4 g P/m2, and 13.2 g K/m2. 
Fertilizer applications were followed immediately by water-
ing using 500 mL of water per plot from nearby brooks. Lim-
ing to manipulate pH was conducted on the same schedule 
and with the same spatial buffer as fertilization. We added 
300 g/m2 of dolomite lime (CaMg(CO3)2) to the plots in 
2005 and 600 g/m2 in each of 2006–2010. Grazer exclosures 
were established in August 2004 and constructed of galva-
nized mesh netting approximately 1.5 m in circular diameter 
(mesh size 1.2 × 1.2 cm). The exclosures were 80–100 cm 
above ground and 10 cm deep into the soil to prevent grazing 
by both semi-domesticated reindeer (the dominant grazer in 
the system), voles and lemmings. Fertilization and liming 
treatments were terminated after 2010, but grazer exclosures 
were left in place throughout the duration of the study.

We initially included liming treatment as a predictor 
variable in our models, but since it was not a significant 
component to any of the initial treatment effects (Eskelinen 
et al. 2012) or in any of our analyses, we pooled across the 
limed and un-limed plots and will not discuss this treat-
ment further. Furthermore, reindeer grazing in the system 
was high from the start of the experiment until around 
2012; however, due to changed reindeer herding prac-
tices and following shifts in the movement of the herds 
in Kilpisjärvi area, grazing pressure on Mt. Saana was 
considerably lower from 2013 to 2019. For this reason, 
grazing pressure after the termination of fertilization is not 
fully comparable to years 2004–2010. We included grazing 
in our statistical models as it did affect some variables; 

however, due to changed reindeer herding practices our 
results probably greatly underestimate the potential impact 
of grazing on recovery from fertilization and is therefore 
given less consideration.

Community measurements

The presence and percent cover of all vascular species in 
the 25 × 25 cm plots was estimated during the peak bio-
mass of vegetation in late July–August of 2004 (just before 
application of experimental treatments), 2010 (at the end 
of fertilization and liming treatments), and 2019. In 2004 
and 2019 cover was estimated visually by an experienced 
person, and in 2010 cover estimates were conducted using 
a point-intercept method (Jonasson 1988) with 40 evenly 
spaced sampling points per 25 × 25 cm plot. Although we 
included the 2010 data as useful reference information for 
initial treatment effects, our questions and findings focus 
predominantly on the changes from 2004 to 2019 (persistent 
effects of treatments) when the same method was used. For 
four species pairs that were difficult to tell apart in their veg-
etative state, we pooled the cover estimates (Carex bigelowii 
and C. vaginata, Equisetum arvense and E. pratense, Equi-
setum scirpoides and E. varigetum, Anthoxantum odoratum 
and Poa alpigena).

In 2019 we additionally measured litter depth at three 
uniformly assigned points per plot, and sampled soil at three 
points in the 15 cm fertilized buffer zone surrounding each 
plot. Soils were later analyzed for total N and C (used to 
calculate C:N ratio), NH4, P, K, Ca, and Mg concentrations 
(Eurofins lab, Oulu).

Trait measurements

To investigate the role of plant traits in species’ responses 
to fertilization, we measured three traits: specific leaf area 
(SLA, leaf area [mm2] per unit of dry leaf mass [mg]), foliar 
C:N ratio (based on the percentage of plant total carbon and 
nitrogen in plant leaves), and height (mm). Trait data were 
collected for 38 species in 2011 from the area where the 
experiment was carried out, with > 10 individuals collected 
for each species, following standard collection and handling 
protocols (Cornelissen et al. 2003). We additionally used 
trait data from a study located in a nearby area for six spe-
cies (Anthoxantum odoratum and Poa alpigena [pooled as 
above], Pyrola minor, Ranunculus acris, Gentiana niva-
lis, and Solidago virguarea) which were collected in 2014 
(Kaarlejärvi et al. 2017). SLA was analyzed using ImageJ to 
calculate fresh leaf area (Rasband 1997). Total C and N of 
leaves were analyzed on a CHN Element Analyzer (Fisons 
Instruments, Milan, Italy).
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Data analysis

Analyses were carried out using linear mixed-effects 
models (LME) using a model selection approach. The 
full models included habitat type, fertilization, herbivory, 
and their interactions as explanatory variables, and site 
as a random variable. We assessed differences in multiple 
vegetation metrics, considering both initial differences 
(comparing 2004 and 2010 data) and persistent differ-
ences (comparing 2004 and 2019 data). This structure 
was used to investigate initial and persistent differences on 
the plot level in species richness (H1a), species turnover 
(H1b, calculated as 1—Jaccard similarity), and changes 
in total graminoid, forb, fern, and shrub cover (H1c, only 
comparing 2004–2019). Since 2010 cover data was meas-
ured using a different method than 2004 and 2019 cover 
data, we did not compare it directly to the other years, but 
did model differences between treatments in 2010 func-
tional group cover to demonstrate initial treatment effects 
(Supplement S3). We did not have pre-treatment data for 
moss and lichen cover, so we modeled this using the 2019 
measurements only rather than a change between years 
(H1c). We also modeled litter depth (H3a) and soil nutri-
ents (H3b) measured in 2019 as response variables. Model 
selection was conducted using comparisons of AICc val-
ues to select the best-fit model from all possible combina-
tions, AICc values and ΔAICc comparisons are reported 
in Supplemental Table S1. Results are reported as effect 
sizes ± standard error.

To investigate plant traits as predictors of individual spe-
cies’ responses to fertilization (H2), we took the difference 
in species’ percent cover between 2004 and 2019 and simpli-
fied this to a binary representation of change, either increas-
ing or not increasing. We modeled this response using gener-
alized linear mixed-effects models (GLMM) with a binomial 
structure, with a separate model for each trait (height, SLA, 
and C:N). The response variable was the probability for each 
species to increase in each plot, and the predictors were the 
traits (trait values were centered and scaled), habitat type, 
fertilization, herbivory, and their interactions (including 
three- and four-way interactions) as fixed factors and a site as 
a random variable. We used the same AICc model selection 
approach described in the previous paragraph. Using this 
GLMM structure allowed us to consider species that were 
lost from or colonized each plot relative to the local species 
pool. To ensure that we were focusing on species that were 
or could be present in plots, rather than those that are com-
pletely absent from a given site, only species that were pre-
sent in the site at any of the three-time points were included 
in the analysis. As a robustness check, we also included a 
LME model of change in cover for the species present in the 
plot, the results of which were generally consistent and are 
included in Supplemental Table S2.

All data management and analyses were conducted in R 
and used ‘simba’, ‘plyr’, and ‘tidyverse’ packages (Wick-
ham 2011, 2017; Jurasinski and Retzer 2012; R Core Team 
2019). All models were fit using the ‘lme4’ package, and 
model selection was conducted using the ‘MuMIn’ package 
(Bates et al. 2015; Bartoń 2019). Plots of the fitted relation-
ship between traits and probability of increase were gener-
ated using the glm.predict() function, which uses the delta 
method approximation for standard error estimates. Figures 
were made using ‘ggplot2’ and ‘cowplot’ packages (Wick-
ham 2016; Wilke 2019).

Results

H1: community change

Species richness initially increased more in fertilized plots 
than in unfertilized plots (i.e., comparing 2004–2010, 
Table 1; 1.3 ± 0.48), but showed no persistent effects of ferti-
lization (i.e., comparing 2004–2019, Supplemental Fig. S1) 
despite an overall decrease in species richness across all 
treatments (from 9.9 ± 0.32 species per plot in 2004 to 
8.1 ± 0.23 in 2019). We did find both initial and persistent 
effects of fertilization on species turnover (Fig. 1). Initial 
turnover between 2004 and 2010 was higher in fertilized 
plots than unfertilized plots across all treatments and habitats 
(0.15 ± 0.02). Herbivore presence mitigated the initial effects 
of fertilization on turnover but did not completely counteract 
it (Supplemental Fig. S2; − 0.078 ± 0.03). Persistent species 
turnover between 2004 and 2019 was also higher in fertilized 
plots than unfertilized plots (0.086 ± 0.03). There was no 
persistent interaction between fertilization and herbivory 
treatments.

Although graminoid cover had a strong initial response 
to fertilization, with an average cover in 2010 of 74% in fer-
tilized plots, compared to 27% in unfertilized plots (Supple-
ment Fig. S3; 34 ± 5.5), there was no persistent difference of 
fertilization on graminoid cover, with 2019 graminoid cover 
averaging 14% in fertilized plots and 10% in unfertilized 
plots (Fig. 2a). (Note that these cover values are comparable 
within but not between years due to different methods of 
measuring cover in 2010 versus 2004 and 2019, see methods 
for details). In contrast, forb cover showed minimal initial 
response to fertilization, with an average cover in 2010 of 
26% in fertilized plots and 23% in unfertilized plots (Supple-
ment Fig. S3; 4.1 ± 2.6). However, we did observe persistent 
negative effects of fertilization on forb cover in fertile habitat 
(Fig. 2b, 19% versus 49%) but not infertile habitat (19% 
versus 18%; Table 1; habitat × fertilization 39 ± 9.0). There 
was an additional interaction between herbivory and habitat 
on persistent differences in forb cover (− 17 ± 9.0), but this 
did not interact with the fertilization treatment. Shrub cover 
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did not change in response to fertilization (Fig. 2c, Supple-
mental Fig. S5). Species-level changes are presented in Sup-
plemental Table S3. Moss and lichen cover (measured only 
in 2019) was lower in fertilized plots than unfertilized plots 
(2.5% versus 7.6%; Supplemental Fig. S4).

H2: traits as predictors of species responses

We found that functional traits interacted with fertilization 
to explain the probability of species increasing in cover 
from 2004 to 2019, i.e., persistent responses (Table 2). Tall-
statured species were less likely to increase overall, but 
more likely to increase in fertilized plots than control plots 
(Fig. 3, trait × fertilized effect size 0.27 ± 0.15). Species with 

low SLA were mostly likely to increase in control plots, 
while in fertilized plots species with high SLA were equally 
likely to increase as species with low SLA (trait × fertilized 
0.39 ± 0.14). Species with a high C:N ratio—i.e., species 
having low N concentrations—were most likely to increase 
in control plots, while in fertilized plots species with low 
and high C:N ratio were equally likely to increase (Fig. 1c; 
trait × fertilized − 0.27 ± 0.12).

Table 1   Effects of fertilizer, herbivory, habitat, and their interactions on richness change, community turnover (1—Jaccard similarity), change in 
graminoid cover, change in forb cover, 2019 moss and lichen cover, and 2019 litter depth

Values are effect size ± standard error, ‘–’ indicates that the variable was not included in the best model

Intercept Fertilized Herbivory Habitat Fertilized * herbivory Fertilized * habitat Herbivory * habitat

Richness change
 Initial 0.97 ± 0.41 1.3 ± 0.48 – − 0.75 ± 0.48 – – –
 Persistent − 2.8 ± 0.54 – 0.72 ± 0.44 1.3 ± 0.70 – – –

Species turnover (Jaccard)
 Initial 0.59 ± 0.02 0.15 ± 0.02 0.045 ± 0.02 − 0.045 ± 0.02 − 0.078 ± 0.03 – –
 Persistent 0.66 ± 0.03 0.086 ± 0.03 – − 0.19 ± 0.03 – – –

Graminoid change
 Persistent − 11.8 ± 3.4 – 10.7 ± 3.7 11.1 ± 4.9 – – − 8.1 ± 5.2

Forb change
 Persistent − 11.6 ± 6.4 − 40.8 ± 6.4 18.8 ± 6.4 15.9 ± 9.0 – 39.2 ± 9.0 − 17.4 ± 9.0

Moss cover
 2019 9.4 ± 1.6 − 5.0 ± 1.8 – − 3.7 ± 1.8 – – –

Litter depth
 2019 2.2 ± 0.37 2.0 ± 0.46 − 1.8 ± 0.46 0.76 ± 0.33 − 1.6 ± 0.66 – –

(b)(a)

Fig. 1   Species turnover compared to 2004 pre-treatment data, in a 
fertile and b infertile sites. Turnover is measured as 1—Jaccard simi-
larity (using presence/absence data) between time points for each plot 
(mean ± SE). Color indicates fertilization treatment

(b)(a)

(d)(c)

Fig. 2   Change in cover from 2004 to 2019 of a–c different func-
tional groups and d total cover, by soil type. Values are displayed as 
mean ± SE. Total cover also includes Equisetum species, which are 
not included in any of the three main functional groups



680	 Oecologia (2021) 197:675–684

1 3

These relationships between traits and fertilization were 
consistent within habitats as well as across habitats (Supple-
mental Fig. S5), although the overall relationships between 
height or SLA and probability of increasing differed some-
what between habitat types, with a stronger advantage to tall-
statured and high SLA species in-fertile sites (Supplemental 
Fig. S5; height trait × habitat − 0.29 ± 0.14; SLA trait × habi-
tat − 0.26 ± 0.14). Although the grazer exclusion treatment 
had an overall effect on species’ probability to increase (all 
trait models 0.17 ± 0.11), this did not differ between fertiliza-
tion treatments or interact with species traits.

H3: litter depth and soil nutrients

Litter depth was higher in fertilized plots (3.0 mm versus 
1.7 mm; Fig. 4; 2.0 ± 0.46) and ungrazed plots (3.7 mm ver-
sus 1.0 mm; 1.8 ± 0.46) as well as infertile habitats (2.7 mm 
versus 2.0 mm; 0.76 ± 0.33). There was an additional inter-
action between fertilization and herbivory, with a larger 
effect of fertilization on litter depth in plots where herbi-
vores were excluded than those where they were present 
(− 1.6 ± 0.66).

Soil phosphorus (P) concentration and soil C:N ratio indi-
cated some persistent below-ground effects of fertilization, 
although no other nutrients differed by fertilization treatment 
(Supplemental Fig. S6). P was higher in fertilized plots than 
unfertilized plots (1200 ppm versus 1000 ppm; effect size 
176 ± 44). C:N ratio differed strongly between habitat types 
(17 versus 22; 4.7 ± 1.2) but was marginally lower in ferti-
lized plots across habitat types (19 versus 20; − 0.75 ± 0.37). 
Total nitrogen, ammonia, nitrate, potassium, calcium, and 
magnesium all showed no persistent effects of fertilization.

Fig. 4   Litter depth by fertilization treatment and herbivory treatment, 
in fertile and infertile sites (mean ± SE). Litter depth was higher in 
fertilized and ungrazed plots

Table 2   Effect of fertilizer, herbivory, habitat, traits (height, specific leaf area, and foliar C:N) and their interactions on the probability of species 
increase between 2004 and 2019

Values are effect size ± standard error, ‘–’ indicates that the variable was not included in the best model

Intercept Trait Fertilized Herbivory Habitat Trait * fertilized Trait * habitat

Height − 1.4 ± 0.11 − 0.30 ± 0.13 − 0.13 ± 0.11 0.17 ± 0.11 0.30 ± 0.11 0.27 ± 0.15 − 0.29 ± 0.14
SLA − 1.5 ± 0.11 − 0.28 ± 0.12 − 0.07 ± 0.11 0.17 ± 0.11 0.20 ± 0.11 0.39 ± 0.14 − 0.26 ± 0.14
C:N − 1.4 ± 0.11 0.31 ± 0.08 − 0.13 ± 0.11 0.17 ± 0.11 0.23 ± 0.11 − 0.27 ± 0.12 –

Fig. 3   Relationship between species’ traits and their probability to 
increase in cover between 2004 and 2019 by fertilization treatment. 
Traits include a plant height b specific leaf area c leaf C:N. Values 
are displayed as fitted relationship with estimated standard errors, 
generated using the ‘glm.predict’ function for these models
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Discussion

Adding to the growing evidence that plant communities 
are slow to recover after nutrient addition (Strengbom et al. 
2001; Isbell et al. 2013; Street et al. 2015; Stevens 2016), we 
found persistent differences in fertilized plant communities 
over 8 years after the end of the nutrient treatment. While 
several other studies have identified individual species or 
groups that showed lasting responses to fertilization (Olsen 
and Klanderud 2014; Street et al. 2015), ours is among the 
first to successfully use functional traits as predictors of 
these persistent changes. Furthermore, these changes were 
associated with persistent litter build-up and enhanced soil 
nutrients. These results support the predictions of niche con-
struction theory (Thakur and Wright 2017), that species can 
promote their own abundance by modifying the environmen-
tal filters present in the local area (Laland et al. 2016), and 
provide evidence that this species-engineered microenviron-
ment has strong consequences for the trait distribution of 
species in the community.

We found that species with traits associated with resource 
acquisitiveness (tall stature, high SLA, and low foliar C:N) 
were more likely to have persistent increases in fertilized 
plots than control plots. Similar suites of traits have previ-
ously been associated with species most likely to respond 
to nutrient addition (Suding et  al. 2005; La Pierre and 
Smith 2015), but the role of traits in recovery and persistent 
changes has been less clear. Our findings indicate that spe-
cies with resource-acquisitive traits may modify their envi-
ronment to benefit their own success in ways that hamper 
community recovery to the pre-nutrient-enriched state. We 
found higher litter quantity in previously fertilized plots (up 
to twice as deep as the control plots) 9 years after the cessa-
tion of fertilization. Deep litter layers can inhibit germina-
tion (Kitajima and Tilman 1996; Henry et al. 2004; Lamb 
2008), and reduce the immigration success of shorter-stat-
ured resource-conservative species, consequently maintain-
ing the dominance of already established resource-acquisi-
tive species. High SLA and low C:N, traits that in our data 
were associated with persistent responses to fertilization, are 
strongly linked to faster litter decomposition rates (Cornwell 
et al. 2008) which can combine with persistent microbial 
community changes to result in persistently elevated nutrient 
cycling rates (Carreiro et al. 2000; Power et al. 2006; Clark 
et al. 2009; Högberg et al. 2014; Gravuer and Eskelinen 
2017; Bowman et al. 2018). Elevated nutrient cycling rates 
could in turn benefit resource-acquisitive plants that take 
advantage of resources as they become available (Suding 
et  al. 2008), resulting in an overall fast-cycling system 
(Wardle et al. 2004; Eskelinen et al 2020). It is possible 
that such feedback mechanisms maintain the dominance 
of resource-acquisitive species in our system even 8 years 

after the cessation of nutrient enrichment. The reinforcement 
between above-ground traits and below-ground processes 
may represent alternative states created by nutrient enrich-
ment; potentially transient states, but persistent on the scale 
of decades (Isbell et al. 2013; Chisholm et al. 2015).

In addition to trait-based changes, we observed persistent 
species turnover and changes in the total cover of differ-
ent functional groups. During the initial period of nutri-
ent enrichment, we observed elevated species richness and 
higher species turnover in fertilized plots. The effects on 
species richness did not persist after the cessation of nutrient 
addition, but the differences in species composition (higher 
turnover rates) did, indicating that the species recruiting into 
the fertilized plots after the end of the treatment were differ-
ent than those that were lost. Deeper litter layer such as we 
observed in the previously fertilized plots could have par-
ticularly strong influence on forbs—the group that showed 
the largest persistent decline in our study. We observed a 
persistent drop in forb cover in-fertile habitats, with ferti-
lized plots having an average of 19% forb cover compared 
to 49% in unfertilized plots. This difference is particularly 
striking because it was not apparent as a response to nutrient 
addition, but appeared as a lagged response to the nutrient 
enrichment 8 years after the treatments were terminated. In 
tundra communities, where strongly vegetatively reproduc-
ing shrubs and graminoids form a considerable proportion of 
species, seedling-based reproduction is often found for forbs 
(Welling and Fennici 2000; Austrheim and Eriksson 2003; 
Eskelinen et al. 2017). The deeper litter layer may have pre-
vented the recruitment of forb seedlings after the cessation 
of nutrient addition. These litter layer impacts could also 
extend to bryophyte and lichen communities, suppressing 
their growth, as suggested by the approximately half lower 
total cover of bryophytes and lichens in control plots than in 
fertilized plots. We did find that graminoid cover returned 
to pre-treatment levels, which has been observed in some 
recovery experiments (Bowman et al. 2018) but not others 
(Olsen and Klanderud 2014; Street et al. 2015). Long-term 
plant community changes or direct effects of nutrients could 
also deplete belowground seed bank diversity, further reduc-
ing the potential for recovery (Bakker and Berendse 1999; 
Basto et al. 2015; Eskelinen et al. 2021, accepted).

The trait-based patterns we observed were generally 
consistent across the two habitat types we studied and 
across herbivory treatments. The interspersed tundra 
habitats differ not only in initial soil conditions but also 
in community composition, ranging from the dominance 
of very slow-growing evergreen dwarf shrubs in infer-
tile heaths to N-rich forbs and legumes in fertile heaths 
(Eskelinen et al. 2009; Stark et al. 2012). Nevertheless, 
species’ responses in both habitats were explained by their 
traits in a similar way. Persistent effects of nutrient addi-
tion may also be influenced by mowing or grazing regime, 
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as previous studies have found that removal of standing 
biomass (including live plants and litter) can improve 
recovery trajectories (Olff and Bakker 1991; Olsen and 
Klanderud 2014; Storkey et al. 2015). We did not observe 
effects of reindeer exclusion on any aspects of recovery 
other than litter depth; however, this is likely due to altered 
herd management and related changes in grazing intensity 
at our study site (see “Methods”), a caveat that cautions 
against drawing strong conclusions about this factor in our 
study. Further, we suspect that these changes in herd man-
agement and grazing pressure, coupled with climate trends 
that are particularly strong in arctic ecosystems (Box et al. 
2019) but see Virtanen et al. (2021), are responsible for 
the strong changes we observed over 15 years in our con-
trol plots. It is noteworthy that even relatively low graz-
ing pressure can mitigate the persistent effects of nutrient 
enrichment on litter accumulation, with possible conse-
quences for community resilience through germination and 
above-belowground interactions. These habitat- and graz-
ing regime-independent results highlight the strength of 
our findings and point toward the potential of plant traits 
to be a useful generalizable currency for understanding 
persistent responses to nutrient enrichment.

Plant traits have been used as a generalizable currency 
for understanding existing differences between communi-
ties (McGill et al. 2006), and for forecasting species and 
community vulnerability and resistance to various global 
change factors, including climate warming, changes in 
rainfall, and nutrient enrichment (Kimball et al. 2016; 
Bjorkman et al. 2018; Harrison and LaForgia 2019). We 
propose that they also have the potential in understanding 
community recovery from such changes, niche construc-
tion mechanisms and patterns of resilience and regime 
shifts between alternative states. Our results highlight the 
usefulness of trait-based approaches for predicting persis-
tent responses to nutrient enrichment, with implications 
on planning restoration strategies in human-degraded 
ecosystems.
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