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Abstract-Intragranular boundaries are important features of polycrystalline materials and impact on 9 

many physical and chemical properties. Knowledge of their physical orientation is often crucial to 10 

explain such properties. However, it has proved difficult to determine the complete orientation of 11 

intragranular boundaries, which involves the misorientation angle and axis about which the adjacent 12 

crystal lattices need to be rotated to bring them into coincidence and also the physical orientation of 13 

the boundary plane, expressed by the plunge and azimuth of its normal; five parameters in total. 14 

Here we present a simple and practical manual method to determine the complete intragranular 15 

boundary orientation in any crystal system. The method is developed on geometrical relationships 16 

exhibited between electron channelling patterns across a common boundary but then extended for 17 

use with electron backscattered diffraction patterns. The method recognises the 18 

channelling/diffraction band, equivalent to a crystal lattice plane, not displaced across a boundary; 19 

the boundary rotation axis must be the normal to this plane. Geometrical relationships between the 20 

boundary trace, the non-displaced band/plane and their respective plane normals constrain boundary 21 

orientation to two alternative symmetrically equivalent solutions and are evaluated via 22 

stereographic projection. The choice of solution is guided by comparison with the presence or 23 

absence of a similarly oriented band/plane observed in the original channelling/diffraction patterns. 24 

The method therefore conforms to the low-index crystallographic lattice plane and dislocation 25 

model for intragranular boundary formation and defines boundary orientation in terms of total 26 

angular misorientation due to tilt and twist components and the orientation of the boundary plane. 27 

Examples of intragranular boundary orientation determination using this method are provided in 28 

olivine. Results are compared to and differ from those obtained via conventional misorientation 29 

analysis, which only rotates adjacent crystal lattices into parallelism and does not consider boundary 30 

plane orientation. Potential extrapolation of the new method to intergranular boundaries is also 31 

considered.   32 
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1. INTRODUCTION 33 

Intragranular boundaries are important and common features of polycrystalline materials, such as 34 

metals, ceramics and rocks. Their presence impacts critically on many physical and chemical 35 

properties, processes and behaviours, including: overall strength and failure, various types of 36 

conductivity, diffusion and creep mechanisms, recrystallisation and recovery processes, corrosion 37 

and precipitation behaviours, etc (e.g. Randle, 1993). Thus, the nature of intragranular boundaries is 38 

crucial to understanding the ultimate behaviour of polycrystalline materials. However, intragranular 39 

boundaries often exist as rather obscure elements within more detailed microstructural 40 

characterisations that focus on the properties of the regions they surround, such as the crystal 41 

texture or fabric (as defined by the crystallographic preferred orientation or CPO), subgrain size, 42 

etc. Perhaps the main reason why intragranular boundaries are often somewhat neglected is due to 43 

problems associated with defining their complete physical and/or crystallographic orientations.  44 

On the one hand, intragranular boundaries are defects that perturb the crystallographic structure of 45 

polycrystalline materials; their definition must include recognition of this impact on the 46 

crystallography. Convention therefore recognises the misorientation angle/axis (/<uvw>) pair, or 47 

the crystallographic direction about which one crystal lattice must be rotated by a (minimum) angle 48 

to bring it into coincidence with an adjacent lattice. As this operation represents a pure rotation of 49 

one crystal coordinate system with respect to the other (Fig. 1a), it can be described by a rotation 50 

transformation matrix (gm), such that, 51 

{Ci} = gm{Cj}          (1) 52 

where {Ci} and {Cj} are the respective adjacent crystal coordinate systems. Misorientation 53 

angle/axis pairs comprise three degrees of freedom: the plunge/azimuth of the axis and the angle 54 

(e.g. Warrington and Bufalini, 1971; Grimmer et al., 1974; Mainprice et al., 1993; Lloyd et al., 55 

1997; Randle, 2003). On the other hand, intragranular boundaries are also physical features (i.e. 56 

‘planes’), the orientation of which is typically crystallographically constrained but is not necessarily 57 
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crystallographically coincident. The physical orientation of the intragranular boundary plane is 58 

defined by the plunge/azimuth of the normal to the plane, which involves two degrees of freedom 59 

(Fig. 1b); however, it can also be represented crystallographically (i.e. <uvw>) with respect to one 60 

and/or other of the two adjacent crystal orientations.  61 

Thus, the complete orientation of intragranular boundaries involves five independent parameters 62 

(e.g. Sutton and Ballufi, 1995; Kim et al., 2005; Randle, 2006; Rohrer and Randle, 2009; 63 

Ratanaphan et al., 2014; Sutton et al., 2015; Dash et al., 2017). However, whilst it is always 64 

possible to determine the misorientation angle/axis pair, particularly via electron backscattered 65 

 

Figure 1. Intragranular boundary relationships. (a) Definition of the crystallographic orientations of two subgrains 

A and B and the alternative three rotations (1, , 2) required to bring their respective lattices XYZ and X’Y’Z’ 

into coincidence, as represented by the misorientation angle/axis pair. (b) Regions A, B share common boundary 

plane (Ahkl, Bhkl), trace (t) and normal (h). (c) Pure tilt boundary (r, rotation axis; , rotation angle). (d) Pure twist 

boundary. 
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diffraction (EBSD) in the scanning electron microscope (SEM), the direction of the boundary plane 66 

normal has proved to be notoriously difficult to establish. Although various methods, techniques 67 

and approaches do exist (e.g. optical microscopy universal stage, transmission electron microscopy, 68 

focussed ion beam, X-ray and neutron techniques, etc.), they tend to be restrictive, laborious, 69 

complex and/or expensive (e.g. Rohrer & Randle, 2009). An exception to these constraints is 70 

provided by the grain boundary character distribution (GBCD) method (e.g. Saylor et al., 2004; 71 

Rohrer et al., 2004b), which combines EBSD misorientation analysis and statistical stereology of 72 

boundary traces. However, GBCD has been reserved mostly for (cubic) metals and ceramics (e.g. 73 

Saylor et al. 2004), with only a single geological application on olivine (Marquardt et al., 2015). 74 

More general characterisation of boundary microstructural data has recently become more common 75 

using SEM/EBSD. In part, this stems from the availability of free resource software. Perhaps the 76 

most readily available is MTex (e.g. Bachmann et al., 2010) and in particular its Tilt and Twist 77 

Boundaries script (https://mtex-toolbox.github.io/TiltAndTwistBoundaries.html ). Analytical scripts 78 

based on the GBCD method for estimating the five grain boundary parameters are also available 79 

(http://mimp.materials.cmu.edu/~gr20/Grain_Boundary_Data_Archive/). In addition, an alternative 80 

but related approach using the weighted mean Burger’s vector has been suggested by Wheeler et al. 81 

(2009), with a recent modification within the MTex software package (Wieser et al., 2020). 82 

However, all approaches are based a priori on the recognition of tilt and twist boundaries based on 83 

accurate definition of the misorientation axis; they do not consider either general boundaries or the 84 

orientation of the boundary plane normal. Thus, they recognise only three of the five parameters 85 

necessary to fully define an intragranular boundary. 86 

The physical orientation of the boundary between two intragranular domains (A, B) can be 87 

described crystallographically relative to either domain (i.e. Ahkl, Bhkl; see Fig. 1b). The boundary 88 

plane can also be described by its trace (tA=B) and normals (hA,B) relative to either grain. As these 89 

are perpendicular, 90 

https://mtex-toolbox.github.io/TiltAndTwistBoundaries.html
http://mimp.materials.cmu.edu/~gr20/Grain_Boundary_Data_Archive/
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ℎ𝐴,𝐵 ∙ 𝑡𝐴,𝐵 = 0          (2) 91 

Within this construction, two ideal ‘end-member’ intragranular boundary configurations can be 92 

recognised: pure tilt (Fig. 1c) and pure twist (Fig. 1d) boundaries.  93 

Pure tilt intragranular boundaries (Fig. 1c) develop by the progressive addition of, in principal, a 94 

single set of edge dislocations to achieve the misorientation between adjacent domains (e.g. 95 

Burgers, 1939a, b and 1940; Buranova, 1940; Shockley and Read, 1949; Read and Shockley, 1950). 96 

A rotation angle () and axis (r) can therefore be recognised. As the rotation axis lies within the 97 

boundary plane and hence perpendicular to the boundary plane normal (h; Fig. 1c), 98 

 𝑟 ∙ ℎ = 0          (3) 99 

In contrast, pure twist intragranular boundaries (Fig. 1d) develop via (at least) two sets of (not 100 

necessarily orthogonal) screw dislocations to achieve the misorientation between adjacent domains 101 

(e.g. Bragg, 1940; Burgers, 1940; Shockley and Read, 1949; Read and Shockley, 1950). In this 102 

case, the rotation axis is perpendicular to the boundary plane and hence parallel to its normal, such 103 

that, 104 

 𝑟 ∙ ℎ = 1          (4) 105 

In practice most boundaries are probably combinations of tilt and twist components necessary to 106 

create the ‘best-fit’ between adjacent domains. Thus, 107 

 0 (pure tilt)  TTC  1 (pure twist)       (5) 108 

where TTC is the vector product of the rotation axis (r) and boundary plane normal (h) and is 109 

known as the boundary tilt-twist component index (Amouyal et al., 2005). However, and in spite of 110 

the apparent simplicity of Eqns 3 – 5, a boundary separating two adjacent misoriented crystal 111 

lattices can have an effectively infinite number of physical orientations, defined by its planar 112 

normal (Fig. 1b - d). Herein lies the inherent problem and concomitant requirement for defining the 113 

complete five-parameter orientation of intragranular boundaries. 114 

In this contribution, we propose a simple practical solution for the definition of the five-parameter 115 
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orientation of intragranular boundaries. Our solution arises from the recognition that all 116 

intragranular boundaries involve four common geometrical parameters (Fig. 1): boundary trace (t), 117 

boundary plane normal (h), rotation axis (r) and rotation angle (). In addition, the basic 118 

requirement involves knowledge of the crystallographic orientation of the domains on either side of 119 

a boundary, as well as the (crystallographic) orientation of the boundary plane normal direction. 120 

Whilst we derive our solution from original observations made via SEM back-scattered electron 121 

(BSE) electron channelling (EC), we subsequently demonstrate not only how it can be adapted for 122 

EBSD data but also suggest how it may be extended to (some) intergranular boundaries.  123 

2. METHOD 124 

2.1 Electron channelling 125 

SEM/EC (e.g. Hirsch et al., 1962; Venables and Harland, 1973; Joy, 1974; Goldstein and Yakowitz,  126 

1975; Joy et al., 1982) is a related technique to SEM/EBSD (e.g. Dingley, 1989; Prior et al. 1999 127 

and 2009) for determining crystallographic orientations via electron channelling patterns (ECP) 128 

rather than EBSD patterns. It also provides images based on sample crystallographic microstructure 129 

via BSE ‘orientation contrast’ (OC), also known as electron or orientation channelling contrast 130 

imaging (ECCI/OCCI) in recent literature (e.g. Zaefferer and Elhami, 2014); such images (e.g. Fig. 131 

2a) are equivalent to EBSD fore-scattered electron (FSE) images. The principal differences between 132 

EC and EBSD patterns are as follows.  133 

(1) In EBSD, a vertical electron beam strikes a sample tilted at ~65-70, whereas for EC a vertical 134 

electron beam is rocked about a fixed point on a horizontal sample. (2) The angular spread of 135 

patterns can approach ~100 in EBSD (Fig. 2b, c) but is typically only up to ~24 in EC (Fig. 2d, e), 136 

as determined by the rocking angle (RA) of the incident electron beam; it is much easier therefore 137 

to identify (index) EBSD patterns, particularly via automation and in phases with low crystal 138 

symmetry. (3) However, the smaller angular spread for ECP results in better angular resolution 139 
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compared with EBSD patterns (Fig. 2b-e). (4) In contrast, the maximum spatial resolution of ECP 140 

formation is from 1 - 10m due to aberrations in the SEM objective lens, which is at least an order 141 

of magnitude greater than conventional EBSD. (5) Because ECPs are produced by rocking a 142 

stationary electron beam about a point on the sample surface, a one-to-one relationship is 143 

 

Figure 2. Comparison between electron backscattered diffraction (EBSD, left) and electron channelling (EC, right) 

patterns from pyrite. (a) EC orientation contrast (OC) and/or EBSD fore-scattered electron (FSE) image; note 

adjacent regions A and B separated by a distinct boundary. (b) and (c) Individual EBSD patterns from regions B 

and A respectively cover ~70 of the crystal structure. (d) and (e) Individual EC patterns (ECP) from regions B and 

A respectively cover only ~20 (i.e. electron beam  ‘rocking angle’, RA, = 10) of the crystal structure. (f) The 

EBSD pattern from the boundary between A and B is formed by the complete superposition of patterns (b) and (c), 

resulting in an indistinct image. (g) The ECP from the boundary between A and B is composed of the relevant 

halves of patterns (d) and (e), resulting in a distinct image consisting of recognisable ‘partial’ patterns. 
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maintained between each point on the surface and in the pattern such that ‘partial’ ECPs 144 

characteristic of the crystallographic orientation on each side of a boundary are produced (Fig. 2g); 145 

this one-to-one relationship does not exist for EBSD patterns, which instead are superposed and 146 

appear indistinct (Fig. 2f). It is this last characteristic that provides the crucial opportunity to 147 

determine the complete orientation of intragranular boundaries. 148 

2.2 Boundary rotation angle(s) and axis 149 

Figure 3a is a schematic representation of partial ECP configurations across an intragranular 150 

boundary (trace t and trace normal ht) and illustrates how the boundary tilt angle () and axis (r) 151 

can be determined. The crucial observation is to recognise the EC (diffraction) band (or crystal 152 

lattice plane) that is not displaced across the boundary trace. This band ‘dips’ towards the pattern 153 

centre by 90-. The value of  is determined via the internal scaling present in ECP formation, 154 

which is constrained by the specific SEM operating conditions (i.e. accelerating voltage, working 155 

distance, etc.) and indicated by RA (degrees/radians) and the pattern diameter (D mm), such that, 156 

 = Bmm x 2RA/Dmm        (6a) 157 

where Bmm is the orthogonal linear distance measured in the ECP between the non-displaced 158 

channelling band and the pattern centre (Fig. 3a). Similar calculations can be defined for all other 159 

EC bands and angular distances.  160 

For the EC band to be non-displaced, the displacement translation vector (dv) must be contained 161 

within the band (Fig. 3b). Thus, the normal to the non-displaced EC band must be parallel to the 162 

boundary rotation axis. As well as the non-displaced EC band, any bands parallel to the boundary 163 

trace are also recognised. The ECP configuration prior to boundary formation can be restored by 164 

translating one partial pattern relative to the other, parallel to the displacement translation vector of 165 

the non-displaced EC band until all bands become aligned (Fig. 3b). The boundary rotation angle 166 

(r) is then obtained from the displacement distance (d) in a similar manner to Eqn 6a, 167 

r = dmm x 2RA/Dmm        (6b) 168 
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In the example shown in Fig. 3, the displacement vector is oblique to the boundary trace, which 169 

indicates a general boundary. From Fig. 1, pure tilt displacements develop normal to the boundary 170 

trace via rotation parallel to the trace, whereas pure twist displacements develop parallel to the trace 171 

via rotation normal to it. The tilt (tilt) and twist (twist) angular components of a general boundary 172 

can therefore be determined by resolving r into its boundary trace normal and parallel 173 

displacements respectively, 174 

 tilt = dsin 2RA/Dmm        (6c) 175 

 twist = dcos 2RA/Dmm        (6d) 176 

where  is the (acute) angle between the non-displaced EC band and the boundary trace (t). 177 

The displacement normal to the boundary trace can also be expressed as a length (e.g. in angstroms, 178 

Å) via the scaling provided by the width of the diffraction bands, which depends on the SEM 179 

 

Figure 3. Determination of boundary rotation axis and angles. (a) Schematic partial ECPs across an intragranular 

boundary (t, trace; ht, trace normal). The normal to the non-displaced EC band, which ‘dips’ 90- where  = 

BxD/2RA (B, linear distance from non-displaced band centre to pattern centre; D, twice the rocking angle), defines 

the direction of the boundary rotation axis (r). Note also a boundary trace parallel EC band. (b) Restoration of pre-

boundary formation ECP configuration via the displacement vector (dv) parallel to the non-displaced EC band (, 

acute angle between non-displaced band and boundary trace). Total rotation angle (r) is parallel to the 

displacement distance (d), with tilt (tilt) and twist (twist) components normal and parallel to the boundary trace 

(determined via internal scaling relative to RA and D); the tilt component can also be represented in terms of 

distance (Å) via internal scaling provided by EC bandwidth (Åhkl). (c) Upper hemisphere stereographic 

(Wulff/equal angle) and/or crystallographic projection representation: 1, boundary trace (t); 2, non-displaced EC 

band; 2, vertical plane normal to non-displaced EC band; r, boundary rotation axis. 
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accelerating voltage used, and is readily available in EC/EBSD processing software. Figure 3c 180 

summarises the boundary trace (1), non-displaced EC band (2), including its vertical normal plane 181 

(2), and rotation axis (r) orientations in terms of (Wulff/equal angle) stereographic and/or 182 

crystallographic projections. 183 

2.3 Boundary plane orientation 184 

As stated previously, the main problem with defining the complete five-parameter orientation of 185 

intragranular boundaries concerns the physical orientation of the boundary plane normal direction. 186 

This is not a problem unique to intragranular boundaries. For example, the inclination () of 187 

boundaries formed during grain boundary sliding (gbs) can be determined from a relatively simple 188 

relationship between the offsets of three mutually perpendicular directions (u, v, w) and the angle 189 

() between the trace of the boundary and a reference direction, such that (Langdon, 2006), 190 

tan = (u – wtan)/v         (7) 191 

However, it is impractical to use this equation (e.g. in the determination of the contribution of gbs to 192 

the total strain) because of the difficulties of measuring the angles θ and ψ at every boundary 193 

(Langdon, 2006; Mohamed, 2011). Similarly, the movement characteristics of geological faults 194 

relies implicitly on knowledge of the dip of the fault plane (e.g. Redmond, 1972; Yamada and 195 

Sakaguchi, 1995 Xu et al., 2007 and 2009; Lisle and Walker, 2013); if the dip is not known, it is 196 

difficult to determine from other parameters except for specific combinations (e.g. Nieto-Fuentes et 197 

al., 2014). Fortunately, the geometry of partial ECPs formed across a common intragranular 198 

boundary (e.g. Fig. 3) offers a relatively simple practical solution to the problem. 199 

The solution assumes implicitly that intragranular boundary orientations are constrained not only 200 

crystallographically to low-index lattice planes (i.e. Read and Shockley, 1950) but also by the origin 201 

of ECPs. Following Friedel’s rule (Friedel, 1913), which introduces an effective centre of 202 

symmetry, each EC band originates from the centre of a spherical projection directly below the 203 

pattern centre defined by the rocking position (Fig. 4a). Thus, only bands ‘steeper’ than (90 - RA) 204 
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are visible in any ECP. As all bands are inclined towards the centre of the pattern, the angle of 205 

projection is given by Eqn 6a. The construction shown in Fig. 4a led directly to the early use of 206 

spherical ECP maps for crystallographic indexing purposes (e.g. Fig. 4b; Lloyd, 1987) and 207 

ultimately to (interactive) spherical Kikuchi maps (e.g. Day 2008 and 2009; Zhu et al., 2019; 208 

Hielscher et al. 2019), which we make use of later in this contribution. 209 

 

Figure 4. EC spherical projection. (a) Schematic representation of trigonal -quartz three-dimensional 

crystallography and ECP formation on the projection surface. (b) Quartz EC crystallographic unit triangle 

constructed via photo-montage over a spherical surface (Lloyd and Ferguson, 1986). (c) Multiple possible boundary 

plane parallel low-index lattice planes, all of which intersect at a2 for a boundary plane trace normal to (2-1-10) 

and apparently parallel to and coincident with (01-11). (d) Schematic representation of parallelism but not 

coincidence between boundary trace (t) and EC bands (in)visible in an ECP. 
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The crux of our solution is that for intragranular boundaries constrained crystallographically to low-210 

index lattice planes, the trace of the boundary plane is parallel to an EC band ideally present in the 211 

(partial) ECPs (e.g. Fig. 3a). However, as shown in Fig. 4c, there can be multiple possible solutions. 212 

The problem therefore is to determine which specific lattice plane is parallel to the boundary plane. 213 

In fact, the problem is even more complex as the boundary plane, although constrained to be 214 

parallel to a low-index lattice plane, does not have to be coincident with that plane (e.g. Fig. 3a). 215 

This is because all EC bands originate from the centre of a spherical projection (Fig. 4a), such that 216 

the distance between the band and the centre of the ECP increases with inclination (Fig. 4c). In 217 

contrast, intragranular boundaries are physical features that do not originate from the centre of the 218 

spherical projection. Thus, whilst EC bands dipping <(90 – RA) do not appear in the ECP, a 219 

mutually parallel intragranular boundary plane can still be observed in the image. Concomitantly, it 220 

follows that straight boundary traces, including those through the centre of ECPs, are not 221 

constrained to be vertical. The solution to the problem of determining the physical orientation of 222 

intragranular boundaries is provided by stereographic projection analysis based on the geometry of 223 

partial ECPs. Figure 3c shows the basic relationships between the boundary trace and its vertical 224 

normal plane, the non-displaced EC band and its vertical normal plane, and the boundary rotation 225 

axis plotted in (Wulff/equal angle) stereographic and/or crystallographic projections. We now 226 

develop this construction in Fig. 5. 227 

We first plot (Fig. 5a) the boundary trace (1), the non-displaced EC band (2) and their respective 228 

vertical normal planes (1, 2). The intersection (3) of the non-displaced EC band (2) and the 229 

vertical section plane normal (1) defines the pitch of the former on the latter. Next (Fig. 5b), we 230 

construct small circles (4) with radii equal to the pitch (3) centred on the strikes (t) of the boundary 231 

trace (1); these small circles define the loci of pitches of the boundary plane relative to the trace (t). 232 

The intersections (5) of the small circles (4) with the vertical section plane normal to the non-233 

displaced EC band (2) define the pitches of the boundary plane on that plane. The strikes (t) of the 234 

boundary trace (1) and the small circle intersections (5) must lie in the boundary plane; the great 235 
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circles (6a, b) through these points therefore define its two alternative orientations (Fig. 5c). To 236 

choose the most likely alternative, we check for coincidence between the predicted boundary planes 237 

and any low-index boundary-parallel EC band (e.g. Fig. 3a); we show below that this identification 238 

is facilitated by spherical Kikuchi maps (SKM). Finally (Fig. 5d), the non-displaced EC band 239 

 

Figure 5. Determination of boundary plane orientation: red and blue colours indicate boundary plane and non-

displaced EC band related elements respectively (see Fig. 3). (a) Plot of boundary trace (1), non-displaced EC band 

(2) and their respective vertical normal planes (1, 2); intersection (3) of 2 and vertical 1 defines the pitch of the 

former on the latter. (b) Small circles (4) with radii equal to the pitch (3) constructed about strikes (t) of the 

boundary trace (1); the small circles define the loci of the pitches of the boundary plane and their intersections (5) 

with the vertical section plane normal to the non-displaced EC band (2) define the pitches of the boundary plane on 

that plane. (c) Strikes (t) of boundary trace (1) and small circle intersections (5) must lie in the boundary plane, such 

that great circles (6a, b) through these points define its potential orientations; the most likely alternative is 

determined by coincidence between the planes and any EC band in the partial ECPs (e.g. Fig. 3a). (d) Determination 

of non-displaced EC band normal (r, boundary rotation axis) and boundary plane normal (h) directions.  
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normal (r), which defines the boundary plane rotation axis, and boundary plane normal (h) 240 

directions are plotted. The crystal indices of these positions, [uvw]r and [uvw]h, are the values that 241 

should be used in Eqn. 4 to calculate the TTC component of the boundary.  242 

In the next section, we provide actual examples of the application of the method to intragranular 243 

boundaries in olivine. The examples were imaged at the University of Leeds using a Tescan Vega3 244 

SEM operated in EC mode using a 25kV accelerating voltage, a specimen working distance of 9mm 245 

and rocking angles of 10-11; beam currents were varied to obtain the best OC and ECP images.  246 

3. EXAMPLE RESULTS 247 

Figure 6a is an EC orientation contrast image of a single forsteritic olivine (orthorhombic, space 248 

group Pbnm) grain from a sample of volcanic ejecta (Kahl et al., in prep.); note the intragranular 249 

boundary comprising long, straight and short, kinked segments. Also shown are ECPs (1 and 2) 250 

from each side of the boundary (Fig. 6b, c). Whilst the patterns are slightly different due to the 251 

misorientation introduced by the boundary (e.g. compare their respective Euler angle triplets), their 252 

individual configurations are consistent along each side of the boundary irrespective of the 253 

(boundary) segment orientation. Figures 6d and e show partial ECPs from each side (1 and 2) of the 254 

two boundary segments respectively, obtained by rocking the incident electron beam on the 255 

boundary as indicated. The boundary traces are clearly observed in both images by displacement of 256 

EC bands. The displacement sense is either sinistral or dextral depending on the orientation (i.e. 257 

angle of intersection) of the EC band relative to the boundary trace. However, one EC band towards 258 

the upper left, which is the same for both boundary segments, is continuous across the boundary. 259 

Spherical geometry dictates that the inclination (‘dip’) of any EC band is the (angular) distance 260 

between the normal to the band, measured from the band centre, and the centre of the pattern 261 

subtracted from 90º (Eqn 6). All bands ‘dip’ towards the pattern centre (i.e. the centre of the 262 
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spherical projection, which is therefore upper hemisphere). Scaling is provided by the rocking angle 263 

involved in pattern formation, which is RA = ±10.7º for this example. 264 

3.1 Boundary rotation angles and axes  265 

The rotation angles and axes for the two olivine intragranular boundary segments (Fig. 6) are 266 

determined following the procedure outlined above (Fig. 3), illustrated in Figs 7a, b and 8a, b. 267 

Based on the orthogonal distances from the centres of the non-displaced band to the rocking 268 

positions (i.e. pattern centres), it is inclined at 81.8 and 82.2 towards the pattern centres 269 

respectively for the two segments. As the normal to the non-displaced EC band defines the 270 

orientation of the boundary plane rotation axis, this must be the same crystallographically for both 271 

 

Figure 6. Intragranular boundary orientation method example. (a) Olivine grain with intragranular boundary 

comprising long, straight and short, kinked segments (electron channelling orientation contrast). (b) and (c) 

Complete electron channelling patterns from points 1 and 2 either side of the boundary (note Euler angle triplets); 

the patterns and hence orientations do not change along the boundary segments. (d) and (e) Partial electron 

channelling patterns from the long, straight (d) and short, kinked (e) boundary segments (broken white lines); note 

displacement of all channelling bands except for one, which is the same for both segments.  
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boundary segments irrespective of the different orientations of their boundary traces and hence 272 

planes. The rotation axes for the two segments therefore plunge 8.2 and 7.8 respectively normal to 273 

the non-displaced band.  274 

The rotation angles associated with formation of the two intragranular boundary segments can be 275 

determined by translating one of the partial patterns parallel to the non-displaced EC band until all 276 

of the other EC bands become continuous (Figs 7b and 8b). In other words, the effect of the 277 

intragranular boundary has been ‘removed’. In the examples shown, the translation directions are 278 

not orthogonal to the trace of either boundary segment, indicating that both segments are general 279 

boundaries and that the overall rotation angle () comprises both tilt (tilt) and twist (twist) 280 

components. 281 

The overall rotation angle is defined by the (angular) separation of the partial patterns along the 282 

displacement vectors, according to the internal scaling present in the ECPs (i.e. RA = 10.7) and 283 

using Eqn 6. The tilt and twist components are the displacements respectively normal and parallel to 284 

the boundary trace such that,  285 

 𝜔 = (𝜔𝑡𝑖𝑙𝑡
2 + 𝜔𝑡𝑤𝑖𝑠𝑡

2 )1/2        (8) 286 

In terms of the long, straight segment,  = 3.3, with tilt = 3.1 and twist = 1.0 (Fig. 7b); whilst 287 

for the short, kinked segment,  = 2.6, with tilt = 2.2 and twist = 1.4 (Fig. 8b). As recognised 288 

previously, both segments are general boundaries. However, by comparing the relative values of the 289 

tilt and twist components for each segment, the long, straight segment involves significantly more 290 

tilt than twist in its configuration. To quantify the boundary segments more precisely (e.g. by the 291 

TTC index) requires accurate definition of their boundary plane orientations. 292 

3.2 Boundary plane orientations  293 

To determine the orientation of the two boundary plane segments (Fig. 6a), we follow the workflow 294 

outlined in Fig. 5. First, we plot (Figs 7c and 8c) Wulff/equal angle upper hemisphere stereographic   295 
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Figure 7. Intragranular boundary orientation determination: olivine long, straight segment (see Fig. 6). 

Nomenclature and colours as in Figs 3 and 5. (a) Partial ECPs from across the boundary segment (t, trend and h t, 

trend normal); all EC bands are displaced across the boundary except one (indicated, with ‘strike/dip/sense’); 

normal to this band defines boundary rotation axis (r, 09/129 ‘plunge/azimuth’). (b) Partial ECPs ‘restored’ to pre-

boundary formation positions by translation parallel to non-displaced EC band such that all bands are continuous. 

The translation distance is the boundary rotation angle (), which can be resolved into its boundary normal tilt 

(tilt) and boundary parallel twist (twist) components for general boundaries. (c) Stereographic projection (upper 

hemisphere, Wulff/equal angle) of progressive steps involved in boundary orientation determination (see Fig. 5 and 

associated text for definition of numbers/symbols). Two symmetrical solutions are indicated, both ‘striking’ 115 

and ‘dipping’ either 81N or 81S. (d) Spherical Kikuchi map (SKM) representation illustrating crystallographic 

indexing procedure and final selection of boundary plane orientation (115/81N) based on coincidence with (2-11) 

EC band/lattice plane. Note also crystallographic orientations of r and h (i.e. true boundary plane normal), allowing 

determination of TTC = 0.17, close to a pure tilt intragranular boundary. 
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projections of the orientations of the boundary trace (1), its (vertical) normal plane (), the non-297 

displaced EC band (2) and its (vertical) normal plane (2). The values are determined using Eqn 6 298 

(0 - 90) and the clockwise azimuthal direction around the pattern circumference (0 – 180). Next, 299 

we determine the intersection (3) of the non-displaced EC band on the (vertical) normal to the 300 

boundary segment trend; the intersection defines the loci of the pitches of the boundary plane as 301 

small circles (4) about the strike (t) of the boundary trace (1). The intersections (5) of the small 302 

circles (4) with the vertical section plane normal to the non-displaced EC band (2) define the 303 

pitches of the boundary plane on that plane. The strikes (t) of the boundary trace (1) and the 304 

intersections (5) must lie in the boundary plane; great circles through these points therefore define 305 

its potential orientations (6).  306 

Typically, two alternative and symmetrical grain boundary plane solutions are obtained (6a and 6b). 307 

To choose the most likely alternative, we check for coincidence between the predicted boundary 308 

plane orientations and an EC band by overlaying the partial ECPs onto the stereographic projection 309 

(Figs 7c and 8c). This is because the dislocation model for intragranular boundary formation 310 

predicts that they coincide with low index crystal planes. For the long, straight segment, alternative 311 

6a oriented 115/81N is coincident with an EC band that is parallel to the boundary trace (see Figs 312 

6b-d and 7a, b), which is therefore selected. For the short, kinked segment, alternative 6a oriented 313 

158/83W is also coincident with an EC band that is parallel to the boundary trace (see Figs 6b-d 314 

and 8a, b), which is therefore selected. Having selected the appropriate boundary plane orientations, 315 

the boundary plane normal directions (h) can be determined for both segments.  316 

Figures 7c and 8c define the boundary segment orientations in terms of spherical angles. As such, 317 

they are measured and represented in terms of the sample coordinate system. In this example, the 318 

olivine grain is from a sample of volcanic ejecta and consequently has no specific specimen 319 

orientation. It would be useful therefore to express the boundary segment plane orientations in 320 

terms of (olivine) crystallography. This is possible by use of spherical Kikuchi maps (SKM; see   321 
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Figure 8. Intragranular boundary orientation determination: olivine short, kinked segment (see Fig. 6). 

Nomenclature and colours as in Figs 3 and 5. (a) Partial ECPs across each boundary segment (t, trend and ht, trend 

normal); all EC bands are displaced across the boundary except for one (indicated, with ‘strike/dip/sense’); normal 

to this band defines boundary rotation axis (r, 09/129 ‘plunge/azimuth’). (b) Partial ECPs ‘restored’ to their pre-

boundary formation positions by translation parallel to the non-displaced EC band such that all bands are 

continuous. The translation distance is the boundary rotation angle (), which can be resolved into its boundary 

normal tilt (tilt) and boundary parallel twist (twist) components for general boundaries. (c) Stereographic 

projection (upper hemisphere, Wulff/equal angle) of progressive steps involved in boundary orientation 

determination (see Fig. 5 and associated text for definition of numbers/symbols). Two solutions are indicated, both 

‘striking’ 158 and ‘dipping’ either 83W or 81E. (d) Spherical Kikuchi map (SKM) representation illustrating 

crystallographic indexing procedure and final selection of boundary plane orientation (158/83W) based on 

coincidence with (222) EC band/lattice plane. Note also crystallographic orientations of r and h (i.e. true boundary 

plane normal), allowing determination of TTC = 0.45, indicating a general intragranular boundary. 
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Day 2008 and 2009) and in particular the interactive versions for olivine available in the HKL 323 

Channel5 and/or AZtecCrystal software packages (Fig 7d and 8d). In effect, the stereographic 324 

projection construction is simply overlain onto an SKM defined by the orientation of the ECPs, 325 

either via visual comparison or, more accurately, via their Euler angle triplets (e.g. Figs 6a, b); 326 

however, care is required beyond 45 from the centre of projection due to increasing spherical 327 

distortion. It is also possible to incorporate the ‘restored’ partial ECPs into the construction (Figs 7d 328 

and 8d). The interactive nature of the SKM then makes it a simple matter to index 329 

crystallographically the relevant planes and direction. 330 

Based on the olivine SKM, the non-displaced EC band common to both boundary segments is the 331 

(17̅4̅) lattice plane (Figs 7d and 8d). The long, straight boundary segment is parallel to the (21̅1) 332 

lattice plane, whilst the short, kinked boundary segment is parallel to the (222) lattice plane. 333 

However, a problem arises in the determination of the normal directions to these lattice planes due 334 

to non-cubic (i.e. orthorhombic) symmetry relationships. We resort therefore to relationships 335 

involving the reciprocal (orthorhombic) crystal lattice and metric tensor (e.g. Bond, 1976; Boisen 336 

and Gibbs, 1990; De Graf and McHenry, 2012), 337 

 𝑀∗ = [
𝑎 ∗2 0 0

0 𝑏 ∗2 0
0 0 𝑐 ∗2

]        (9) 338 

where a* = bc/V, b* = ac/V and c*=ab/V; a = 4.76Å, b = 10.21Å and c = 5.98Å are the orthogonal 339 

olivine lattice parameters; and V = abc is the volume of the olivine unit cell (290.38Å3). The 340 

direction [uvw] normal to the plane (hkl) is then given by, 341 

[
𝑢
𝑣
𝑤

] = 𝑀∗ (
ℎ
𝑘
𝑙

)         (10) 342 

Thus, the rotation axis normal to the (17̅4̅) non-displaced lattice plane is parallel to [23̅5̅], whilst 343 

the normal directions to the (21̅1) and (222) boundary parallel lattice planes are parallel to [71̅2] 344 

and [513] respectively. Combining the common rotation axis with the boundary plane normal 345 
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directions yield TTC values of 0.17 for the long, straight boundary segment and 0.45 for the short, 346 

kinked boundary segment. The former is defined as close to a pure tilt boundary whilst the latter is a 347 

general boundary.  348 

3.3 Summary 349 

Table 1 summarises the results of the olivine intragranular boundary analyses (Figs 6 – 8) in terms 350 

of both the sample (i.e. stereographic projection plane and normal orientations) and crystallographic 351 

(i.e. crystal planes and normals) coordinate systems. The former is not representative for this 352 

example as the sample does not possess a rigorous spatial orientation as it is a sample of volcanic 353 

ejecta; however, this representation may be useful in samples that are kinematically constrained. 354 

The latter represents the complete five-parameter determination of boundary plane orientations and 355 

is constrained by the orthorhombic crystal structure of olivine. For example, the crystallographic 356 

orientations can be represented in terms of conventional upper and/or lower hemisphere 357 

orthorhombic projections (Fig. 9a, b). 358 

4. DISCUSSION 359 

In this section we discuss the implications of the model derived to determine the complete 360 

orientation of intragranular boundaries. In combination with the results from the example (Figs 6 - 361 

Table 1. Summary of olivine boundary parameters (Figs. 6 - 8) 

Boundary Parameter long, straight segment short, kinked segment 

non-displaced EC band (17̅4̅) (17̅4̅) 

rotation axis plunge/trend 08/129 08/129 

rotation axis (r) [𝟐𝟑𝟓̅̅̅̅ ] [𝟐𝟑̅𝟓̅] 

boundary plane (21̅1) (222) 

boundary trend (t) 115/295 158/328 

boundary plane normal plunge/trend 09/025 or 205 10/068 or 248 

boundary plane normal (h) [𝟕𝟏̅𝟐] [513] 

rotation angle () 3.3 2.6 

tilt component (tilt) 3.1 2.2 

twist component (twist) 1.0 1.4 
tilt-twist component (TTC) 0.17 0.45 

‘excess volume’ nm 25.16 8.87 

numbers in bold represent five-parameter definition of intragranular boundary orientations 
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8), we consider: (1) intragranular boundary formation and crystal slip system determination; (2) 362 

conventional (i.e. EBSD-based) misorientation analysis; (3) adapting the EC-based method for 363 

EBSD analysis; and (4) the applicability of the method for intergranular boundaries. To assist in this 364 

discussion, we have summarised Table 1 in Table 2 to compare the olivine five-parameter boundary 365 

definitions (Figs 6 - 8) with slip system determination and EBSD misorientation analysis. 366 

4.1 Intragranular boundary formation – slip systems 367 

The long, straight and short, kinked segments shown in Fig. 6a are clearly part of the same olivine 368 

 

Figure 9. (a) Upper and (b) lower hemisphere SKM orthorhombic projections of the olivine intragranular 

boundary parameters determined by the method developed in this contribution. Also indicated are predicted 

crystal slip plane and directions for boundary formation as well as the misorientation axis determined by 

conventional EBSD analysis. (c) Schematic representation of olivine tilt and general boundary configuration and 

associated crystal planes, directions and slip systems. 
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intragranular boundary. They share the same boundary rotation axis of [235̅̅̅̅ ] in spite of their 369 

different boundary plane orientations, which are parallel to (21̅1) and (222) respectively (Fig. 9c). 370 

However, the former is close to a pure tilt boundary (TTC = 0.17), whilst the latter is a general 371 

boundary (TTC = 0.45). The segments also differ in terms of their rotation angles, which is larger 372 

for the long, straight segment (i.e. 3.3 compared with 2.6). This suggests that the long, straight 373 

segment represents the principal boundary and that the short, kinked segment is a minor component 374 

that may well have been removed with further boundary evolution. 375 

In terms of intragranular boundary formation, we have assumed the standard Reed and Shockley 376 

(1950) dislocation model. Pure tilt boundaries, such as (21̅1), form parallel to the boundary rotation 377 

axis and normal to the slip plane and slip direction. The slip direction is therefore normal to the 378 

boundary plane (Fig. 9c). From Eqn. 10, the boundary plane normal is determined to be [71̅2], such 379 

that the slip system responsible for boundary formation is (122)[7̅12̅]. In contrast, the normal to the 380 

(222) short, kinked boundary plane is parallel to [5̅1̅3̅] suggesting slip on (122̅)[5̅1̅3̅] was involved 381 

in its formation. However, this is a general boundary, which require at least two slip systems to 382 

form; thus, (122̅)[5̅1̅3̅] can be regarded as the tilt component. For pure twist boundaries, the slip 383 

plane is parallel to the boundary plane, which is (222). The slip plane also contains the slip 384 

direction, although its precise orientation is not directly defined. We suggest that the twist slip 385 

direction is parallel to the intersection of the tilt boundary and the slip plane for the pure twist 386 

boundary, which is [43̅1̅] (Fig. 9a, b). Thus, the twist component of the general boundary was 387 

accommodated by slip on (222)[43̅1̅] (see Fig. 9c). Incidentally, the normal to the (122̅) slip plane 388 

Table 2. Comparison of olivine five-parameter boundary definitions (Figs 6 -8), including 

slip systems, with EBSD misorientation analysis 

 Five parameter definition Slip system EBSD misorientation 

Boundary h(hkl) h[uvw]  r TTC SP SD  r 

Long, straight (21̅1) [71̅2] 3.3 [235̅̅̅̅ ] 0.17 (122̅) [7̅12̅] 

6.13 [21̅2], 
Short, kinked (222) [513] 2.6 [235̅̅̅̅ ] 0.45 

(122̅)  
(122̅) 
(222) 

[5̅13̅]  

[43̅1̅] 
[43̅1̅] 
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is [425̅], which is parallel to the intersection of the two boundary segment planes (Fig. 9). 389 

Consequently, the four slip systems either share or intersect with the same slip plane, 390 

namely (122̅). 391 

4.2 Comparison with conventional (EBSD) misorientation analysis 392 

The olivine sample (Figs 6 - 8) has also been analysed via EBSD, which provides Euler angle 393 

triplets for each side of the intragranular boundaries (Fig. 6b, c). EBSD software typically includes 394 

misorientation analysis for specified pairs of Euler angle triplets. However, as the Euler angle 395 

triplets are effectively constant for each side of the boundary, only a single pair of triplets is 396 

required to determine a single misorientation angle/axis pair applicable to both long, straight and 397 

short, kinked segments. The angle/axis pair determined is 6.13/[21̅2], significantly different to the 398 

rotation angles and directions determined by the five parameter method (Table 2). The EBSD 399 

misorientation axis [21̅2] lies close to the non-displaced EC band (17̅4̅) and is oblique to both 400 

boundary segment planes/traces (Fig. 9a, b). The segments are therefore general boundaries with the 401 

same characteristics according to EBSD misorientation analysis.  402 

It is clear from Table 2 and Fig. 9 that conventional (EBSD) misorientation angle/axis pair analysis 403 

is insensitive to boundary type and physical orientation. This is not surprising as its definition 404 

recognises only the axis about which one crystal lattice needs to be rotated to bring it into alignment 405 

with another (Fig. 1a); the orientation of the boundary is not involved. Thus, both segments have 406 

the same misorientation angle/axis pair. The only configurations for which the misorientation axis 407 

could potentially define boundary plane orientation are for pure tilt and twist boundaries; the axis is 408 

parallel to the boundary plane in the former and normal to the plane in the latter. However, there 409 

remain a large number of possible inclinations within either pure tilt or pure twist boundary planes 410 

for a given trend (Fig. 4c, d), which makes even these ideal situations undefinable via conventional 411 

misorientation analysis.  412 
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In the initial SEM/EBSD implementation of misorientation analysis (e.g. Mainprice et al., 1993; 413 

Lloyd et al., 1997), there was no requirement for two crystal lattices to be adjacent (i.e. share a 414 

common boundary), although usually the calculated misorientation ‘angle/axis’ pair relates to 415 

neighbouring or ‘correlated’ domains (Wheeler et al., 2001). Depending on crystal symmetry, there 416 

are several crystallographically related solutions for the misorientation angle/axis pair across an 417 

intragranular boundary. Convention dictates that the solution with the smallest angle is chosen, 418 

often referred to as the ‘disorientation’ (MacKenzie and Thomson, 1957; Hanscomb, 1958; 419 

MacKenzie, 1958; Warrington and Boon, 1975). However, an alternative approach recognises that 420 

the nearest low-index boundary axis solution defines the misorientation between adjacent lattices 421 

(e.g. Gourdet et al., 1998). The two approaches are not equivalent, which results in the distinction 422 

between coincidence site lattice (CSL) and low-order coincident axial direction (CAD) 423 

visualisations of boundary geometry (e.g. Warrington and Boon, 1975). It has been suggested (e.g. 424 

Cross and Randle, 2003) that an unambiguous analysis of intragranular boundary orientation 425 

involves consideration of the CAD solution rather than just the disorientation. The five parameter 426 

method derived in this contribution is most compatible with the CAD solution. 427 

In fact, misorientation analysis angle/axis and five-parameter rotation angle/axis pairs are entirely 428 

different parameters. In the former they bring two crystal lattices into parallelism irrespective of 429 

whether or not the lattices share a common intragranular boundary (Fig. 1a), whereas in the latter 430 

they relate to the rotation between two originally identical crystal lattices due to the formation of an 431 

intragranular boundary (Fig. 1b-d). Thus, in misorientation analysis the misorientation axis is 432 

unconstrained by the boundary plane orientation and adopts an orientation that minimises the 433 

rotation angle between two adjacent crystal lattices. In contrast, in the five-parameter method not 434 

only is the boundary plane orientation of fundamental significance but also the dislocation model 435 

for intragranular boundary formation imposes constraints on boundary plane orientations. We 436 

suggest therefore that conventional EBSD misorientation analysis may involve ambiguity in terms 437 

of characterising intragranular boundary orientations. 438 
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4.3 Adaption to EBSD  439 

The method developed to determine the five parameters needed to constrain the orientation of 440 

intragranular boundaries is based on observations made via SEM/EC (e.g. Figs 2d-g and 3). 441 

However, few SEM are currently capable of EC analysis and crystallographic orientation 442 

measurements are more typically made via EBSD (e.g. Fig. 2b, c). It would be useful therefore if 443 

the basic method could be adapted for EBSD-based analysis and data. A solution is provided via 444 

SKMs (e.g. Fig. 9a, b) and is illustrated using the olivine example described previously (Figs 6 - 8). 445 

The adaption is as follows. (1) EBSD derived Euler angle triplets obtained from each side of a 446 

boundary are input into an SKM to produce maps centred on each orientation (Fig. 10a); the maps 447 

are copied into a vector drawing package. (2) Circles equivalent to ECP rocking angles (e.g. 10) 448 

are drawn about the centre of each map to simulate ECPs from each side of the boundary and the 449 

trace of the boundary is drawn across the centre of each pattern; ‘cropping’ tools are used to extract 450 

the ‘ECPs’ from the SKM (Fig. 10b). (3) The extracted patterns are again ‘cropped’ and separated 451 

along the boundary traces to form simulated ‘partial ECPs’ (Fig. 10c). (4) The cropped patterns are 452 

joined in appropriate pairings to simulate partial ECPs obtained by rocking about a central point on 453 

their common boundary (Fig. 10d). (5) The non-displaced EC/lattice band is identified, from which 454 

all of the parameters needed to define the complete five- parameter orientation of the boundary can 455 

be measured and/or determined via stereographic projection as per the basic method (Fig. 10e). 456 

The adapted solutions in Fig. 10e compare favourably with the original solutions in Figs 7 and 8. 457 

They can therefore be used to determine the crystallographic orientations of the intragranular 458 

boundary planes as shown in Fig. 9. Thus, the original EC-based method devised to determine the 459 

five-parameter evolution of Intragranular boundaries can be easily adapted to EBSD data, making 460 
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   461 

 

Figure 10. Adaption of the EC-based five-parameter boundary orientation method to EBSD data and analysis. 

Nomenclature and colours as in Figs 3 and 5. (a) HKL Channel5 SKMs defined by EBSD derived Euler angle 

triplets from each side of the olivine intragranular boundaries (Fig. 6). (b) Detail of SKM-simulated ECPs. (c) 

Simulated ECPs ‘cropped’ along boundary tracings. (d) ‘Cropped’ patterns joined appropriately along boundary 

traces to simulate partial ECPs formed by rocking about a point on the common boundary. (e) SKM representation 

of boundary orientation determination (1 – 6 refer to steps in the stereographic projection method, see Fig. 5): left, 

long, straight segment; right, short, kinked segment. 
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the approach more generally available. 462 

4.4 Adaption to intergranular boundaries  463 

It is generally accepted (e.g. Rohrer, 2011) that the properties and behaviours of intergranular 464 

boundaries are controlled more by the physical geometry of the interfacial plane rather than 465 

crystallographic misorientation. This is because as misorientation increases so does dislocation 466 

density, which reduces space between neighbouring dislocations until their cores overlap such that 467 

the ordered nature of the boundary begins to break down. Unlike intragranular boundaries, which 468 

develop from a common initial crystal lattice by the progressive accumulation of dislocations (e.g. 469 

Reed and Shockley, 1950), there is no conventional physical reason why crystallographic 470 

relationships should exist across intergranular boundaries. In fact, the existence of such 471 

relationships may have significant implications for microstructural evolution. Thus, the method 472 

developed to determine the five-parameter orientation of intragranular boundaries should not 473 

necessarily be expected to apply to intergranular boundaries unless extenuating circumstances 474 

apply. 475 

To investigate whether the method of determining the five-parameter orientation of intragranular 476 

boundaries can be adapted to intergranular boundaries, we consider the boundary relationships 477 

between a single olivine grain and its seven neighbouring olivine grains (Fig. 11a) in a garnet 478 

lherzolite from the 90 Ma Thaba Putsoa kimberlite, Lesotho (Nixon and Boyd, 1973; Mercier and 479 

Carter, 1985; Allsopp et al., 1989). The microstructure of this rock is characterised by a matrix of 480 

dynamically recrystallised olivine with straight grain boundaries and frequent 120 triple junctions, 481 

with a well-developed if somewhat unusual crystallographic preferred orientation (see Wallis et al., 482 

2019). EBSD data were acquired at the University of Leeds using Oxford Instruments Aztec 2.1 483 

software on a FEI Quanta 650 field-emission gun SEM equipped with an Oxford Instruments 484 

Nordlys-S EBSD camera. Operating conditions were: 20kV accelerating voltage, 8mm working 485 

distance and 70 specimen tilt angle.  486 
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Figure 11. Example of potential adaption of method to intergranular boundary orientation determination. (a) EBSD 

‘all Euler’ image of an olivine grain (0) and its immediate neighbours (1-7) from a garnet lherzolite, Thaba Putsoa, 

Lesotho. (b) SKM ‘pairs’ from each side of a boundary between grain 0 and grains 1-7; also shown are the elements 

of the five-parameter boundary method (see key). See Table 3 for a summary of results. 
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Euler angle triplets (Table 3) were measured from adjacent sides of each intragranular boundary 488 

(i.e. between grains 0 and 1, 0 and 2, etc.) and used to define SKM-pairs ‘fitted’ along the trace 489 

orientation of their common boundary (Fig. 11b), in a similar manner to partial-ECPs (e.g. Figs 7, 8 490 

and 10). Note that the triplets and hence SKMs for Grain 0 are effectively constant. The combined 491 

partial-SKMs are then interrogated to identify the relevant relationships (see above) required to 492 

determine the boundary orientation (Fig. 11b). However, due to the increasing distortions that 493 

accrue with distance from the centre of the projection, it is advisable to consider only an 494 

approximately 45 radius small circle region about the centre. 495 

Results of the analysis of the olivine intergranular boundary analysis (Fig. 11b) are summarised in 496 

Table 3. Of the seven intergranular boundaries considered, only one (boundary 0:5) provides no 497 

overall solution using the five-parameter method as no lattice plane is continuous across the 498 

boundary trace. Another (boundary 0:2) involves the juxtaposition of opposite hemispheres, again 499 

preventing an overall solution due to the absence of a non-displaced plane. A third (boundary 0:6) 500 

also involves the juxtaposition of opposite hemispheres but now the (131̅) and (13̅1̅) planes are 501 

‘continuous’ across the boundary and hence provide a potential solution but one involving two 502 

possible boundary plane orientations. The validity of this solution depends on whether the 503 

equivalence of different planes of the same family is appropriate in terms of the five-parameter 504 

method. The remaining four boundaries all provide tangible solutions based on the occurrence of 505 

non-displaced lattice planes across the boundary traces. Indeed, three of these boundaries (0:1, 0:3 506 

and 0:7) involve the same non-displaced families of planes and hence rotation axes, specifically 507 

{025} and <019> respectively. The fourth boundary (0:4) has (22̅2) as the non-displaced plane and 508 

[51̅3] as its rotation axis. 509 

Five-parameter analysis indicates that two of the intergranular boundaries (0:3 and 0:7) have the 510 

same orientation (Table 3), parallel to (066) and with boundary plane normal parallel to [037]. 511 

Interestingly, these boundaries are on opposite sides of the central grain (Fig. 11a). The other two 512 
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intergranular boundaries for which solutions have been found (i.e. 0:1 and 0: 4) are parallel to (192) 513 

and (13̅1̅) planes respectively, with normal directions parallel to [253] and [43̅3̅], again 514 

respectively. 515 

The rotation angles for the intergranular boundaries that provide five-parameter orientation 516 

solutions (Table 3) are derived by translating one of the partial SKMs parallel to the non-displaced 517 

EC/lattice plane until the SKM is reconstituted (Fig. 12). This is the same procedure used for the 518 

partial ECPs (e.g. Figs 7 and 8). The three boundaries sharing a <019> rotation axis exhibit 519 

increasing rotation angles from 12.5 (boundary 0:3), which is only just indicative of an 520 

intergranular boundary, through 26.5 (boundary 0:7) to 30.2 (boundary 0:1). However, according 521 

to their TTC values, boundaries 0:3 and 0:7, which also have the same orientation, are almost pure 522 

twist boundaries, whilst 0:1 is even closer to a pure tilt boundary. The other boundary (0:4) has a 523 

very small rotation angle and is in fact an intragranular boundary, which explains why it provides 524 

the most rigorous five-parameter orientation solution. As none of the boundaries are either pure tilt 525 

Table 3. Adaption to intergranular boundaries: summary of results (see Figs 11 and 12).  

Boundary & 

Euler angle 

triplets 

Non-

displaced 

EC band 

Rotation axis 

(r) 

Rotation angles  Boundary 

plane 

(hkl)/[uvw] 

TTC 
EBSD 

angle/axis r tilt twist 

137.6 

102.6 

39.5 
0:1 

147.8 

110.8 

72.6 
(023̅) [014̅] 30.2 27.4 12.7 (192)/[253] 0.06 32.7/[1̅02̅] 

137.0 

103.1 

39.5 
0:2 

21.5 

135.4 

144.0 
different hemispheres – no solution 84.2/[03̅1] 

137.7 

102.8 

38.5 
0:3 

141.9 

100.3 

50.7 
(025) [019] 12.5 2.5 12.3 (066)/[037] 0.90 12.3/[014] 

137.5 

102.6 

39.8 
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49/[100] 
(34̅4̅)[51̅4̅]] 0.41 
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(12̅2)[42̅5] 0.27 

(34̅4̅)[51̅4̅] 0.84 
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103.1 

39.4 
0:7 

133.7 

97.8 

56.8 

(025) [019] 
26.5 5.5 25.8 (066)/[037] 

0.90 
19.0/[102̅] 

(025̅) [019̅] 0.68 
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or pure twist in character, the contributions of the tilt and twist components can also be readily  526 

determined by simple geometry (Fig. 12 and Table 3). 527 

As the Euler angle triplets are known for each side of the seven boundaries (Fig. 11a and Table 3), 528 

HKL Channle5 software can be used to determine the conventional misorientation angle/axis pair 529 

for each boundary (Table 3). This approach is based only on the restoration of crystal lattices into 530 

-  

Figure 12. Determination of the total and tilt/twist component rotation angles for the four olivine inter/intra-

boundaries yielding tangible five-parameter orientation solutions via translation (broken blue arrow) parallel to the 

non-displaced EC band (solid blue line) of one partial-SKM (broken red outline) relative to its pair until the 

‘disrupted’ crystal lattice configuration is restored. 
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parallelism and takes no account of boundary orientation or configuration; thus, all seven 531 

boundaries provide a misorientation angle/axis pair. In contrast, the five-parameter method, can 532 

only provide a rotation angle/axis pair if a solution to the boundary orientation exists; that is 533 

boundaries 0:1, 0:3, 0:4 and 0:7 (see Fig. 12). A direct comparison between the two approaches is 534 

therefore only possible for these four boundaries. In general, comparisons are poor, which is not 535 

surprising as the two measures are fundamentally different. The closest match is for boundary 0:3, 536 

with the five-parameter method giving 12.5/[019] against 12.3/[014] for misorientation analysis. 537 

We conclude, as before for intragranular boundaries, that conventional misorientation analysis is 538 

not necessarily a good indicator of complete intergranular boundary relationships. 539 

4.5 Related methods 540 

Having considered how the basic method can be adapted to both EBSD data and intergranular 541 

boundaries, we can now turn to its relationship to existing methods for boundary orientation 542 

determination. Although the method presented here is new in its entirety, there are two existing 543 

methods that it does relate to: (1) ‘plane-matching’; and (2) ‘grain boundary character distribution’ 544 

(GBCD). 545 

(1) ‘Plane-matching’ 546 

The ‘plane-matching’ method (Pumphrey, 1972) recognises that periodic lines observed in 547 

transmission electron microscope images of high angle grain boundaries result from the mismatch 548 

of either low or higher index atom planes across the grain boundary. The common factor in all 549 

observations is that there is at least one set of planes of relatively high atomic density that is either 550 

continuous or only slightly mismatched across the boundary. Watanabe (1983) and Watanabe et al. 551 

(1989) reported ECP observations of grain boundaries that they argued supported the ‘plane-552 

matching’ model. This led them to suggest that ECP provided a powerful tool for the precise 553 

determination of crystallographic orientations; for example, to determine the relative orientation 554 

relationship between adjacent grains that geometrically characterise a grain boundary. In terms of 555 
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the present model, ‘plane-matching’ is equivalent to the non-displaced diffraction band. However, 556 

the ‘plane-matching’ approach does not determine the orientation of the grain boundary; rather, it 557 

constrains the direction of growth of one grain at the expense of another grain (e.g. during 558 

recrystallisation). Nevertheless, as Watanabe (1983) and Watanabe et al. (1989) provided the ECPs 559 

for the boundaries they investigated, it seems apposite to consider examples in terms of the present 560 

model, particularly as the ‘plane-matching’ approach did not define the boundary orientations. 561 

 

Figure 13. Comparisons between the current and ‘plane-matching’ methods: (a) – (c) low-angle (intragranular) 

boundary between two grains (A, B) in bcc Fe-6.5 mass% Si alloy (Watanabe et al., 1989, Fig. 4); (d) – (f) high-

angle grain boundary between two grains (A, B) in bcc Fe-3% Si alloy (Watanabe, 1983, Fig. 1). Colour coding and 

nomenclature/symbols as for Figs 3, 5, 7, 8 and 10-12. (a) and (d) SEM images of boundary microstructures (cross 

indicates beam incident position). (b) and (e) Partial ECPs from the beam incidence positions. (e) Interpretation of 

the low-angle (intragranular) boundary via the current method as a vertical pure tilt boundary (TTC = 0) parallel to 

(110) with 4.9 misorientation. (f) Interpretation of the high-angle grain boundary via the current method as a sub-

vertical (87.4 dip) general boundary (TTC = 0.20) parallel to (2̅30) with 65.8 misorientation comprising 64.4 tilt 

and 6.6 twist components. 
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The first example is a low-angle (intragranular) boundary between two grains in bcc Fe-6.5 mass% 562 

Si alloy (Watanabe et al., 1989, Fig. 4; see Fig. 13a). Partial ECPs from across the boundary (Fig. 563 

13b) clearly reveal the matched plane as (1-10), which is also the non-displaced EC band. 564 

Superposing the partial ECPs onto a SKM for bcc iron (Fig. 13c) indicates that the matched 565 

plane/non-displaced EC band passes through the projection centre; the band must therefore be 566 

vertical and hence the rotation axis is horizontal, parallel to [1̅10]/[11̅0]. Furthermore, not only 567 

does the boundary trace also pass through the projection centre but it is almost coincident with the 568 

vertical normal to the matched plane/ non-displaced EC band. Applying the method described in 569 

this contribution constrains the boundary plane to be vertical (Fig. 13c); however, the very slight 570 

off-set between boundary trace and non-displaced EC band means that the boundary plane normal 571 

direction is parallel to [881]/[8̅8̅1]. Combining these directions with the rotation axes via the Excel 572 

spreadsheet in the Appendix yields a TCC value of zero; thus this is a pure tilt boundary. Finally, 573 

using the internal scaling present in the ECPs and SKM (Fig. 13c) allows the tilt angle to be 574 

determined as 4.9, confirming this as a low-angle (intragranular) boundary. 575 

The second example is a high-angle grain boundary between two grains in bcc Fe-3% Si alloy 576 

(Watanabe, 1983, Fig. 4; see Fig. 13d). Partial ECPs from across the boundary (Fig. 13e) reveal the 577 

matched plane and hence non-displaced EC band to be (110). Superposing the partial ECPs onto a 578 

SKM for bcc iron (Fig. 13f) indicates that the matched plane/non-displaced EC band does not quite 579 

pass through the projection centre; the band therefore is not quite vertical and hence the rotation 580 

axis is sub-horizontal parallel to [110]. Whilst the boundary trace almost passes through the 581 

projection centre, it is clearly not parallel to the matched plane/non-displaced EC band. Applying 582 

the method described in this contribution constrains the boundary plane to be parallel to (2̅30) and 583 

to dip at 84.7, with the boundary plane normal direction constrained to be parallel to [2̅30] (Fig. 584 

13f). Combining these directions with the rotation axes via the Excel spreadsheet in the Appendix 585 

yields a TCC value of 0.20, indicating a general boundary albeit with a dominant tilt component. 586 

Using the internal scaling present in the ECPs and SKM (Fig. 13f) allows not only the total 587 
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boundary misorientation to be determined at 65.8 but also the tilt and twist components at 64.4 588 

and 6.6 respectively. The fact that such a large grain boundary misorientation can still exhibit a 589 

matched plane/non-displaced EC band suggests that the two adjacent grains share an affinity (see 590 

Watanabe et al., 1989).  591 

(2) GBCD 592 

In principal, the GBCD method (e.g. Watanabe, 1979, 1984, 1986 and 1988; Watanabe et al., 1981 593 

and 1986) should have much in common with our method as it targets the five parameters needed to 594 

define the complete orientation of a boundary. However, in practice there are significant differences 595 

between the two approaches. GBCD concerns the description of the type and frequency of grain 596 

boundaries in polycrystalline materials. In particular, it seeks to characterise the distribution of 597 

special types of boundaries that might impact upon material properties and behaviours. The grain-598 

boundary distribution is expressed in terms of the conventional five parameters from measurements 599 

of grain orientations and the orientations of the lines formed where grain boundaries intersect the 600 

plane of observation. The fundamental aim of GBCD is to provide a quantitative description of the 601 

amount and type of (special) boundaries that are present in a polycrystalline material (e.g. CSLs).  602 

A significant advantage that the GBCD approach has over the method presented here is that it has 603 

been automated via EBSD and stereology (e.g. Saylor and Rohrer, 2002; Saylor et al., 2004; Rohrer 604 

et al., 2004b; Marquardt et al., 2015; Marquardt & Faul, 2018) and hence can consider large 605 

populations of boundaries that potentially provide statistically significant observations. However, 606 

the method does have disadvantages. In particular, it requires either 3D EBSD data derived via 607 

serial sectioning or 2D EBSD data from samples lacking CPO to ensure the approximately random 608 

distribution required for stereological determination of grain boundary normal directions (Randle 609 

and Davies 2001; Rohrer 2007 and 2011; Brandon 2010; Marquardt et al., 2015). In addition, 610 

GBCD relies on the three disorientation parameters to define the minimum misorientation 611 

angle/axis pair, which we have suggested is independent of boundary orientation except in special 612 
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circumstances. Further comparison between GBCD and the method described here is beyond the 613 

scope of this contribution. 614 

4.6 Accuracy, precision and error  615 

The method introduced here is overtly manual and practical, even when involving Euler angle 616 

triplets determined via EBSD. It is therefore subject to the accuracy, precision and error limitations 617 

inherent in such approaches, particularly in terms of visual inspection/interpretation and manual 618 

measurements. In general, errors depend on the resolution and quality of the diffraction patterns 619 

(either EC or EBSD), the size of the spherical region, boundary inclination and the precision of the 620 

stereographic projection, amongst other factors. As such, it is difficult if not impossible to derive 621 

precise relative error(s) or error function(s). Nevertheless, the original potential error from which all 622 

others ultimately derive is in the recognition of the non-displaced diffraction band and the 623 

associated linear and/or angular measurements (misorientation displacements and/or angles). If the 624 

non-displaced band is clearly defined and particularly if it is located within~45 of the centre of 625 

projection, then measurements should be both accurate and precise. However, if the non-displaced 626 

band is poorly defined, which tends to be exacerbated if it occurs towards the periphery of the 627 

projection, then accuracy and indeed precision are impacted. In general, the best possible accuracy 628 

is probably to within one decimal place for both angular and linear measurements. In terms of 629 

actual boundary orientations, this means that steeper boundaries are likely to be more accurately 630 

defined than shallower boundaries.  631 

Whilst the accuracy and precision in locating the boundary trace are typically high, the recognition 632 

of the actual boundary plane depends on stereographic projection. The projection involves plotting 633 

the non-displaced diffraction band and its vertical normal plane, as well as the boundary trace and 634 

normal. Initial errors in defining the non-displaced diffraction band can therefore be propagated. In 635 

general, the orientation of the boundary trace can be defined accurately for straight boundaries; 636 

however, curved boundaries need to be considered as linear segments, which must introduce some 637 
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error or approximation. In addition, magnification of boundary images and especially EBSD-638 

derived ‘maps’ can also introduce pixilation of boundary traces, leading to lack of precision and 639 

error. The stereographic solution also provides two alternative boundary orientations, with the final 640 

choice depending on the presence/absence of a coincident (low-index) lattice plane, which may not 641 

be perfectly matched and hence could add additional error. 642 

The method presented is based on the assumption that intragranular boundaries are constrained to 643 

low-index crystal lattice planes (i.e. the conventional Read-Shockley model), which can introduce 644 

limitations in solutions for boundary plane orientation and hence errors. Whilst the basic 645 

assumption can be geometrically established based on dislocation systems that usually operate with 646 

short Burger vectors, more general intragranular low angle or composite boundaries (e.g. those with 647 

orientation gradients that can be solved for combinations of different slip systems) can deviate from 648 

the conventional approach. Whilst this situation must be recognised, we would emphasise that 649 

although the basic premise of the method is the Read-Shockley model, the solutions derived are not 650 

necessarily low-index planes or directions (e.g. Tables 1-3). Indeed, the converse question can be 651 

posed as to how valid is the practice of ‘rounding’ the indices to the nearest low angle solution.  652 

4.7 Future developments 653 

This contribution has focussed on deriving a practical method to determine the complete (five-654 

parameter) orientation of intragranular boundaries. Whilst such a method has been demonstrated, it 655 

certainly needs further testing via more examples, case studies and applications. These aspects 656 

represent current work in progress. In addition, as presented the method is overtly practical and 657 

hence applicable to relatively small datasets; it does not compare therefore with the opportunities 658 

provided by EBSD misorientation analysis, although as demonstrated such analysis may contain 659 

ambiguity in terms of boundary plane orientation. Nevertheless, the practical five-parameter 660 

boundary orientation method would certainly benefit from both quantification and automation. The 661 

former is also currently being investigated via several approaches involving definition of the 662 
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orientation matrix (g) in terms of crystal indices, Euler angle triplets and quaternions, although the 663 

plunge and azimuth of the boundary plane normal still have to be determined using the method 664 

proposed here. The latter requires (image) recognition of boundary traces and comparison of 665 

(quantitative) Euler angle triplet based orientations for adjacent regions across boundaries to define 666 

the necessary parameters. Hopefully, should the basic practical method prove viable, full 667 

quantification and automation will follow. 668 

5. CONCLUSIONS 669 

Boundaries are important features of polycrystalline materials and influence most properties, 670 

characteristics and behaviours. Accurate, reproducible and ideally rapid and efficient definition of 671 

boundary configuration is central therefore to furthering understanding polycrystalline materials. 672 

The complete definition of boundary orientation involves the misorientation between the crystal 673 

lattices of adjacent regions across the boundary and also the physical attitude of the boundary plane 674 

(e.g. the direction of the plane normal). Whilst it has become relatively easy and efficient to 675 

determine boundary misorientation (e.g. via EBSD in the SEM), definition of the boundary plane 676 

orientation has proved difficult.  677 

This contribution has presented a practical method to determine the complete ‘five-parameter’ 678 

orientation of intragranular boundaries based on matching the spherical geometries of ‘partial’ SEM 679 

electron channelling patterns (ECPs) across boundary traces. The method assumes that intragranular 680 

boundaries are constrained to low-index crystal lattice planes (i.e. Read-Shockley model) and relies 681 

on recognising electron channelling bands, equivalent to crystal lattice planes, which are not 682 

displaced across or are parallel to the boundary trace. The former indicates the translation or 683 

displacement direction of one side of the boundary relative to the other, such that its normal 684 

direction defines the boundary rotation axis. Stereographic projection considerations of the 685 

spherical geometry relationships between the non-displaced channelling band and the boundary 686 

trace, together with the boundary trace parallel channelling bands, allow for determination of the 687 
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orientation of the boundary plane. Finally, one partial pattern is translated relative to the other 688 

parallel to the non-displaced channelling band until the undistorted ECP is restored, from which the 689 

boundary rotation angle can be measured. 690 

Although developed from EC theory for intragranular boundaries, it has been shown how the 691 

method can be adapted relatively simply to both EBSD data (i.e. Euler angle triplets), involving the 692 

use of interactive spherical Kikuchi maps, and intergranular boundaries. However, not all 693 

intergranular boundaries may possess the necessary relationships between adjacent grains. In 694 

addition, the new method not only readily distinguishes between tilt and twist boundaries but also 695 

allows the relative contributions of these two end-member forms to the statistically more common 696 

general boundary configurations to be accurately determined and represented, both in terms of 697 

component rotation angles and also the tilt-twist component (TTC) index. 698 

Whilst this contribution is principally concerned with the derivation of a basic method to determine 699 

accurately the complete five-parameter orientation of intra- and some inter- granular boundaries, the 700 

examples included suggest that conventional (i.e. EBSD) misorientation analysis may not 701 

necessarily provide an accurate and/or reliable representation of (intragranular) boundary 702 

configurations. Misorientation analysis is based only on matching crystal lattices via rotations about 703 

a specific axis (i.e. angle/axis pairs) and is independent of boundary configuration. We anticipate 704 

therefore that our method could potentially offer a new field of analysis based on data that are 705 

readily available and stimulate discussions on the nature and significance of (intragranular) 706 

boundaries.  707 
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APPENDIX: 917 

Excel spreadsheet to assist crystallographic calculations involved in the five-parameter based 918 

determination of the orientation of intragranular boundaries 919 

We have developed a simple Excel spreadsheet to perform the crystallographic calculations 920 

involved in the five-parameter based determination of the orientation of intragranular boundaries 921 

(see below). This Appendix explains the calculations, which are all standard crystallography 922 

relationships; all user input cells are indicated by bold red text. In general, the determination of the 923 

five-parameters involves crystal directions, [uvw], rather than planes, (hkl). The description is based 924 

on olivine; modifications for other phases and in particular crystal symmetries are indicated where 925 

necessary. Note that the calculations involve rounding, whilst some indices can be user-simplified. 926 

0. Miller/Miller-Bravais conversions (hexagonal and trigonal lattices)  927 

As the crystal operations involved in boundary determination assume Miller indices and notation 928 

(i.e. (hkl) or [uvw]), it is necessary to convert between these and Miller-Bravais indices applicable 929 

to hexagonal and trigonal lattices (i.e. (HKIL) or [UVTW]).  930 

Miller-Bravais to Miller 931 

Directions: u = U – T v = V – T w = W      (A1a) 932 

Planes:  h = H  k = K  l = L      (A1b) 933 

Miller to Miller-Bravais  934 

Directions: U = (2u – v)/3  V = (2v – u)/3  T = (u + v)/3  W = w (A1c) 935 
Planes:  H = h   K = k   I = h + k  L = l (A1d) 936 

1. Input phase lattice constants  937 

These are the physical dimensions (a, b, c) of the unit cell in a crystal lattice. The number of unique 938 

terms depends on crystal symmetry but three input values are required.  939 

2. Input rotation axis  940 

The five-parameter boundary orientation determination method requires the crystallographic 941 



51 

orientation of the rotation axis and boundary plane normal directions. The former is input here. 942 

However, the value may involve calculations in Sections 4 and/or 5.  943 

3. Calculate normalised rotation axis 944 

The calculation of TTC involves the normalised rotation axis (e.g. Amouyal et al., 2005; Jhang et 945 

al., 2018). Normalisation, [𝑢̅𝑣̅𝑤̅]is achieved via,  946 

𝑢̅ = 𝑢/Σ 𝑣̅ = 𝑣/Σ 𝑤̅ = 𝑤/Σ       (A2) 947 

where  = (a x u + b x v + c x w)1/2.  948 

4. Calculate normal [uvw] to plane (hkl) - orthorhombic lattices  949 

In general, the normal direction to a crystal plane in non-cubic crystal lattices does not consist of the 950 

same indices due to the different lengths of the lattice constants, although there are symmetry-951 

dependent exceptions. For example, in the orthorhombic olivine lattice, the normal to the plane 952 

(111) is not [111] but [413]. The main text explains how the reciprocal lattice concept can be used 953 

to solve this problem (i.e. Eqns 9 and 10). 954 

5. Calculate plane (hkl) from two directions <u1v1w1>, <u2v2w2>, 955 

When using Spherical Kikuchi Maps, lattice planes are not always displayed, particularly as their 956 

indices increase. Fortunately, any plane can be determined from two known directions (i.e. zone 957 

axes) through which it passes. First, the two zone axes are written twice, one beneath the other: 958 

u1 v1 w1 u1 v1 w1 959 

u2 v2 w2 u2 v2 w2 960 

Next, the first and last pairs are excluded. Finally, the lattice plane is calculated from, 961 

h = v1 x w2 – v2 x w1  k = w1 x u2 – u1 x w2  l = u1 x v2 – v1 x u2  (A3) 962 

6. Calculate tilt/twist component (TTC) 963 

This is calculated simply from Eqn. 3 in the main text using the normalised rotation axis and 964 

boundary plane normal indices. The former is automatically copied into the calculation; the latter is 965 

input manually after appropriate use of sections 4 and/or 5.  966 
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 967 

 

Excel spreadsheet to assist calculation of five-parameter based orientation of intra/inter-granular boundaries

Input values: BOLD RED; output values BOLD BLACK

0. Miller/Miller-Bravais Conversions (hexagonal and trigonal lattices)

Miller-Bravais to Miller

Direction <U V T W> to <u v w>

1 1 -2 0 3 3 0

Plane {H K I L} to {h k l}

1 1 -2 0 1 1 0

Miller to Miller-Bravais

Direction <u v w> to <U V T W>

3 3 0 1 1 -2 0

Plane {h k l} to {H K I L}

1 1 0 1 1 -2 0

1. Input Phase Lattice Constants - Olivine

a b c

4.756 10.21 5.98

2. Input Rotation Axis

u v w

0 0 1

3. Calculate Normalised Rotation Axis

Products of lattice constants and crystal direction

0.000 0.000 5.980

SQRT of squares of products = 5.980

Calculate normalised crystal direction:

0.000 0.000 1.000

4. Calculate normals [uvw] to planes (hkl) in orthorhombic lattices

Calculate reciprocal lattce except for [100], [010], [001] //   (100), (010), (001)

Lattice volume = 290.381

a* = 0.210 b* = 0.098 c* = 0.167

Conversion

u a*.a* 0 0 h

v = 0 b*.b* 0  k

w 0 0 c*.c* l

Input plane (hkl)

0.04421 0 0 0

= 0 0.009593 0  0

0 0 0.027964 1

0 0 0

= 0 x 100 = 0 = 0

0.027964 2.796389 3

5. Calulate plane (hkl) containing two directions <uvw>

Input first direction <u1, v1 w1> Input second direction <u2, v2 w2>

u1 v1 w1 u2 v2 w2

1 0 0 0 0 3

Conversion expression

1 0 0 1 0 0

0 0 3 0 0 3

Calculate common plane

h k l

0 -3 0

6. Calculate tilt/twist component (tilt = 0 < TTC < 1 = twist)

Rotation axis (A[uv w]) Grain boundary normal (B[uvw])

u v w  u v w 

0 0 1 0 0 0 3 4.32

Products of lattice parameters and axis indices

u v w  u v w 

0.000 0.000 5.980 0.000 0.000 0.000 17.940 4.320

SQRT of squares of indices= 5.980 SQRT of squares of indices= 17.940

Calculate normalised rotation axis: Calculate normalised grain boundary normal:

A*[uvw] = 0.000 0.000 1.000 N*[uvw] = 0.000 0.000 1.000

TTC = A*[uvw]N*[uvw] = 1.000


