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� Abstract

This paper investigates possible biological and economic effects by the use of marine protected 

areas (MPAs) as a management tool, employing cellular automata (CA) techniques to model 

biological growth and area distribution. Two simple 2D continuous cellular automata (CCA) models 

are presented and incorporated in a fish harvest model based on standard assumptions of economic 

rational behaviour by individual decision makers with free access to a common-pool fish stock 

resource. Stock dynamics is modelled as a discrete process in time and area. Performance of MPA 

regulations has been studied under different diffusion and growth conditions and different types of 

effort distribution. As expected the MPA regulation performance is found to be strongly linked to 

the size of the protected area and the diffusion properties of the stock. First of all the year to year 

fluctuation in the state variables proves to be functions of the size of the protected area.

Keywords: Bioeconomics, Marine Protected Area, Cellular automata
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� Introduction

As the word suggests, the aim of a Marine Protected Area is to protect marine ecosystems from 

human activities which may cause destruction or other unwanted impact on the environment or 

species located in the area. Such destruction may have negative economic consequences for 

fisheries, tourism or other industries.  In this study the MPA area defines a region where fishing 

activities are prohibited, while there is open access to the fish resource outside the MPA area. The 

term MPA is chosen because it is commonly used in the literature, but the only type of MPA 

considered in this study is marine sanctuaries.

A vast number of publications on the economics of fisheries managed by MPA have emerged the 

last years. The papers do however not give a unanimous answer on what value MPA regulation has 

as a management measure. Several studies based on deterministic models indicate that MPA in fact 

has limited value as a management tool (Hannesson 1998; Conrad 1999). The introduction of MPA 

simply reduces the net revenues, and the conservation effect is weak unless very large areas are 

included in the marine sanctuary. Conrad (1999) argues that deterministic models are less useful to 

reveal the true value of MPA regulation. He therefore introduced a model with stochastic growth 

and found the variance of fish stock biomass to be reduced by the introduction of marine 

sanctuaries. Hannesson (2002) arrived at the same conclusion using a stochastic spatial distribution 

of the stock components inside and outside the MPA.

The spatial component seems to be the methodological most challenging problem while 

investigating economic effects of MPA regulation. A variety of different models exists, but the most 

common approach is to define two stock components, one within the MPA and the other within the 

fishable area, where both areas interact through density driven migration. Different solutions exist 

on how to handle the environmental carrying capacity of two stock components and differences in 

conclusions seem in some extent to reflect differences in methodology. Such models are specified in 
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continuous time or as discrete processes in time and they are used both to investigate open access 

solutions and maximizing present value of net revenues over time. 

Sumaila and Charles (2002) give a useful introduction to different approaches to economic 

modelling of fisheries in the presence MPAs. According to the different classes of models identified 

by Sumaila and Charles (2002), this study should be categorised as a theoretical study on 

behavioural economics in a deterministic spatially-heterogeneous model including MPA. The idea 

presented in this paper is to use a deterministic spatially-heterogeneous model based on the 

principles of cellular automata modelling combined by a more traditional harvest production model 

under the assumptions of open access to the stock resources.

Moustakas et al. (2006) developed a high resolution migratory fish and fishers model including 

stochastic elements, for evaluating effects of closed areas. Fishing is included as a learning process 

by vessel movements between neighbouring cells based of fish stock densities. Apart from harvest 

production economic modelling is not included and the fleet dynamics is controlled by presence of 

fish, willingness to move and fleet density constraints. Moustakas et al. (2006) utilised cellular 

automata methodology to model spatial distribution in the model.

Cellular automata methodology (Wolfram 2002) is a rather new approach to model a variety of 

complex systems by certain arbitrary rules specifying how the automaton develops. The cellular 

automaton consists of cells and the state of each cell evolves over time due to rules based on current 

state of the cell and its neighbouring cells. Simple rules may create extremely complex pattern as 

the automaton defined by a fixed number of cells evolves from one computational stage to the next. 

The original idea of cellular automata (CA) presented by Wolfram in the early 1980ies was a 

dynamic model, discrete in time (stages of evolvement), space and state. The basic idea is not 

altered by modifying the original model to include a continuous state variable within each cell, 

normally referred to as continuous cellular automata (CCA; see Wolfram 2002).
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Darwen and Green (1996) claims that cellular automata methodology is a better approach than 

partial differential equations to model a population in a landscape. CA and CCA models are 

consistent with empirical experiences in allowing population density to be heterogeneous, with local 

extinctions and local booms (Darwen ad Green 1996). The simplicity of cellular automata also 

reduces the computer time compared with corresponding models based on solving differential 

equations.

Balzer et al. (1998) gives a good overview over the first two decades of the development of cellular 

automata ecological models. During recent years the number of publications within this field has 

exploded and cellular automata models are now virtually covering all areas of biological modelling 

as well as most other modelling areas.

The models presented in this paper are deterministic models where the fish stock biomass 

essentially develops by simple CCA rules, also influenced by fishing activities. The fleet dynamics 

is a function of economic performance, following standard open access dynamics where the growth 

in fishing effort is proportional to net revenue.

This study includes two alternative biological growth models, both based on continuous cellular 

automata modelling. The first (referred to as CCA) is a model presented by Wolfram (2002; page 

157), while the other (referred to as LCA) is a straight forward cellular automata representation of a 

discrete time logistic growth equation. A slightly altered logistic growth model was also studied as a 

cellular automata rule by Darwen and Green (1996). Their model included however a grid of cells 

(lattice of sites) while the models presented here consist of a row of cells evolving over discrete 

computational steps.
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� Biological model

Assume a linear representation of a fish stock biomass distribution. Total stock biomass is the sum 

of discrete biomasses along the line in a finite number (n) of biomass cells. Let the first and last cell 

at the line connect to each other similarly as two neighbouring cells, converting from a linear to a 

circular cell distribution. The initial biomass vector with n elements is

(1)� � �b1, b2, b3, ...., bn�.

� evolves over time as a function of � and a simple CA rule involving a growth rate (g) and a fixed 

diffusion pattern. The diffusion pattern is given by the range parameter r which determines the 

range of the rule in number of affected neighbouring cells at each side of the actual cell (Wolfram, 

1984). In case of r = 1 the biomass origin from b2 in (1) the next time step will be distributed 

equally to b1, b2 and b3. In the first model (CCA) only the fractional part of the new biomass will 

remain in the cell, therefore

(2)0 � bi � 1

for 1 � i � n. The growth rate (g) gives the percentage growth per unit of time. The biomass growth 

is then expressed by

(3)bi, t�1 � frac
g � 1

2�r � 1
��
j�i�r

i�r

b j,t ,

while bn�1, t = b1,t, g � 0 and r � 0.

Natural mortality is expressed indirectly by the remaining fractional part, assuming a density 

dependent mortality. The biomass vector is a discrete function of time at given initial biomass value 

��0), here expressed by the continuous cellular automata rule
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(4)�t � CCA��t�1�.

 The corresponding discrete logistic growth equation is

(5)bi, t�1 �
g � 1

2�r � 1
1 � 2 �

j�i�r

i�r

b j,t �
j�i�r

i�r

b j,t,

represented by the cellular automata rule 

(6)�t � LCA��t�1�.

Total biomass at time t is

(7)Bt ��
i�1

n

bi, t.

According to Wolfram (2002) the equilibrium biomass is B� � 	n
2

for r 
 0. Biomasses calculated 

by Model (4) are presented in Table 1 for 13 cells, g = 	1
2

 and an initial biomass with value 1 placed 

in the mid cell. Table 2 displays corresponding biomasses of Model (6) distributed on 7 cells and  g 

= 	3
5

.

Graphical examples of the biological model (4) are shown in figures 1 and 2 for two different initial 

conditions, while varying growth rate (g) and diffusion pattern (r). Figure 1 shows how a single 

initial biomass in the centre cell of 99 cells develops over 100 time steps for different growth and 

range parameters, as shown numerically in Table 1. In Figure 2 the initial condition is a fixed seed 

random initial biomass distribution on 100 horizontal cells in the first (upper) row.

������	�
�	�
�� �  �

103



Growth model (4) is displayed in Figures 1 and 2 as biomass patterns, while Figures 3-5 present 

biomass development over time �Bt) in a more traditional way. Corresponding biomass 

developments shown as biomass surfaces or patterns in Figure 2 are presented as biomass curves in 

Figure 3. The figures show how diffusion and growth properties affect biomass variations. The 

development of 100 cells with low growth rates is in Figure 2 seen as pattern stretched in the 

vertical direction, while increasing ranges stretches the pattern in the horizontal direction.

While increasing number of cells (n) and time span (t), the graphical presentation displayed in 

Figures 1 and 2 soon turns useless and more traditional graphical presentations of stock biomass 

development over time prove to be more useful. Figure 3 reveals both a lower biomass in the case of 

r = 0 and g = 0.25, while increased biomass fluctuations occur by increased r-values. These 

fluctuations seem to be damped by increasing growth rates (g). An interesting difference between 

Models (4) and (6) is the lower equilibrium biomass in the first in case of r = 0.

From a biological point of view diffusion may be explained as adaptation to environmental 

conditions, as prey density may increase and predator density decline by migratory behaviour. The 

principal difference is found between diffusion (r > 0) and no diffusion (r = 0), since the range 

parameter (r) value defines the speed of adaptation. A full investigation of the growth and range 

properties of the two models are however not included in this study.

Figures 4 and 5 show the biomass growth curves of Models (4) and (6) when initial cell biomasses 

are low. Figure 4 displays total biomass development over time with a spatial distribution on 100 

cells, while Figure 5 displays the corresponding picture in the case of 100,000 cells. The impacts of 

increasing growth rates and range of rules (diffusion) are easily seen in both figures. The solid 

curves represent the CCA model, while th dashed curves represent the logistic growth model (LCA). 
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Increasing the number of cells creates smoother curves, as seen while comparing Figures 4 and 5. 

Increased diffusion increases biomass fluctuation, while mean biomass equilibrium remains 

independent of diffusion properties, with the previously mentioned exception of no diffusion (r = 

0), leading to significant lower average total biomass.

Model (4) and (6) express biomass growth as discrete time processes on micro levels (within and 

between cells). Total biomass is not a variable in the growth functions at micro level, but in the long 

run the average biomass of neighbouring cells may be a good proxy of the overall total biomass in 

the stock in the absence of harvest. Diffusion (represented by range parameter r) increases each 

cell's impact on neighbouring cells and may contribute in establishing a closer relationship between 

micro biomasses (in cells) and total biomass.

� Fishing regulated by closed area

Let us now introduce fishing to the biological models (CCA and LCA) presented above. The only 

fishing activity regulation is by the closed MPAs. The control is assumed to be perfect and no 

control costs are considered.

The stock biomass within a MPA is given as a subset of the biomass vector �,

�MPA � �bs, ...., bs�m�1�

where s is the first cell and m is the number of cells included in the MPA. Absence of protected area 

is regarded being a special case of MPA regulation (no closed area; m = 0). The model circularity 

makes the choice of s-value unimportant, hence s = 1 is used in the following. The MPA biomass 

vector then simplifies to

(8)�MPA � �b1, ...., bm�,
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0 � m � n.

Fishing activities target biomasses in the non-protected area (NPA), represented by the 

complementary subset to �MPA of the biomass vector �

(9)�NPA � �b1�m, ...., bn�.

Total targeted biomass at time t then is

(10)BNPA,t � �
i�1�m

n

bi, t.

Most harvest production models assume a priori the stock-output elasticity to equal one. This 

origins from the basic assumption of a linear relationship between the fishing mortality rate and the 

fishing effort per unit of time. Most studies on stock-effort-harvest relationships indicate however 

that this linear relationship is rare, as the stock-output elasticities normally is found to be well below 

1, most often closer to 1/2 than to 1 (Hannesson 1983; Eide et al. 2003). The fish harvest production 

function used in this study therefore assumes a stock output elasticity of 1/2, while harvest (h) is 

assumed to be linear in fishing effort;

(11)hi,t � q ei,t� bi,t ,

when bi � �NPA and ei is the fishing effort of cell i. Total fishing effort is the sum of the fishing 

effort of all cells

(12)Et � �
i�1�m

n

ei, t
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and total harvest is given by

(13)Ht � �
i�1�m

n

hi, t .

The spatial dimension in the cellular automaton opens for different ways of spatial distribution of 

fishing effort. A distribution rule based on stock biomass distribution is given by the expression

(14)ei,t �
bi,t

d

�i�1�m
n bi, t

d
�Et,

where the distribution parameter d (normally d � 0 is expected) controls to what extent biomass 

distribution affects the distribution of fishing effort. The special case d = 0 gives a homogenous 

distribution of fishing effort independent of biomass distribution. This rule covers most published 

MPA models separating the stock into two components. Fishing effort per cell with homogenous 

distribution (d = 0) is constant, equal

(15)ei,t �
bi,t

0

�i�1�m
n bi, t

0
�Et �

Et

n � m
,

while d = 1 gives an effort distribution perfectly reflecting the stock biomass distribution. d > 1 

represents effort distributions which take advantage of biomass clustering, successfully targeting 

cells with the highest biomass densities. The extreme is of course d = +�, by which all fishing 

effort is placed in the single cell holding the highest biomass.

More sophisticated distribution rules (or simple cellular automatons, for example as proposed by 

Moustakas et al., 2006) may take into consideration distribution histories (of biomass and effort) 

and put constraints on local densities and growth of effort. The distribution model proposed above 
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(equations 14) connects however to history through the total fishing effort path over time, as will be 

explained in the next section.

Including harvest model (11) in the biological growth model (3) yields

(16)bi, t�1 � frac
g � 1

2�r � 1
��
j�i�r

i�r

b j,t � hi,t

Equation (4) is adjusted accordingly and the complete CCA model including harvest (by the fishing 

effort E) and MPA regulation (by the MPA size variable m), is expressed by

(17)�t � CCA��t�1, Et�1, mt�1,�,

m being the number of MPA cells and E the total fishing effort. Corresponding expression in the 

logistic case is from equation (5) found to be

(18)bi, t�1 �
g � 1

2�r � 1
1 � 2 �

j�i�r

i�r

b j,t �
j�i�r

i�r

b j,t � hi,t

and rule (6) is modified correspondingly,

(19)�t � LCA� �t�1, Et�1, mt�1,�.

� Economic model

The harvest equation (11) involves fishing effort (E) which is assumed to have a fixed unit cost c. 

The unit cost c also includes opportunity costs of all input factors in the production of fishing effort. 

Similarly a constant unit price of harvest (p) is assumed. The net revenue of harvest (NR) is

(20)NR � p H � c E.
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Since a normal profit is included in the unit cost of effort, NR more precisely is the total resource 

rent obtained in the fishery. 

In an ongoing open access fishery current fishing effort is as a function of previous fishing effort 

and economic rent. Since normal profit already is included in the total cost of effort, normal profit is 

obtained from the harvest production process when NR = 0. Economic rent is earned when NR > 0, 

which with access to the common-pool resource should increase fishing effort. In this study effort 

dynamics is modelled while assuming a linear relationship between NR and change in effort, as a 

discrete time process;

(21)Et�1 � Et �1 � a NRt�.

a is the adjustment (stiffness) parameter and represents an intrinsic rate of change in effort. Cost of 

fishing effort (c) is decomposed on cells by fishing effort (equation 14), and net revenue of the cell, 

hence net revenue (economic rent) of cell i is

(22)nri � p hi �
c bi

d

�i�1�m
n bi

d
�E

or simply

(23)nri � p hi �
E

n � m

in case of d = 0 (as seen from equation 15). Global net revenue is

(24)NR ��
i�1

n

nri.

������	�
�	�
�� �  
�

109



� Results

The biological models presented above (CCA and LCA, equations 17 an 19) include the biological 

and spatial parameters g, r, d and n. The economic part of the bioeconomic model includes the 

economic parameters q, p, c and a, while m is the management variable. The two state variables 

(biomass vector � and E) have initial values �0 and E0.

Figures 6 and 7 display how fishing effort (horizontal axis) develops as economic rent (vertical axis) 

changes over time in Models (17) and (19) respectively, for different MPA regimes (in term of 

sizes). Parameter values used in the simulations presented by the two figures are shown in Table 3. 

The initial biomass vector in all simulations includes 100 cells evolving over 2000 time steps.

The ranges of the axes in the graphs displayed in Figure 6 are Total fishing effort (E) from 0 to 60 

and economic rent (NR) from  -250 to 150, while the corresponding ranges of the graphs in Figure 7 

are from 0 to 15 (E) and from -20 to 20 (NR).

Figure 8 includes four value combinations of r and d (0 - 0, 2 - 0, 2 - 1 and 2 - 8) and average values 

of biomass, harvest, effort and rent, over a period of 500 time steps plotted on percentage area 

covered by MPA. The first column (r = 0, d = 0) is the situation of no migration between cells and 

homogenous distribution of fishing effort. The three columns to the right have all the same 

biological distribution range as in Figures 6 and 7 (r = 2). The second column represents the 

situation of homogenous distribution of effort (d = 0, as in the upper panels of Figures 6 and 7), next 

column (second column from the right) represents a distribution of fishing effort perfectly reflecting 

the distribution of biomass on cells (d = 1), while the right column represent an effort distribution 

effectively targeting cells of high biomass density (d = 8, as in the lower panels of Figures 6 and 7).

Figure 9 displays biomass surfaces as function of time and MPA size, referring to the biomasses 

shown in the first row of Figure 8. The second row of Figure 9 also connects to the upper panels in 

Figures 6 and 7, while the last row in Figure 9 connects to the lower panels of Figures 6 and 7.
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A cluster analysis has been performed on the same data sets displayed in Figures 8 and 9. The 

results of the cluster analysis are shown in Figure 10 as dendrogram plots of data sets of different r-

d-combinations for the CCA model (upper panel) and the LCA model (lower panel). Size of MPA is 

used as clustering variable.

� Discussion

Figure 8 clearly shows increased average stock biomass by increased MPA size in an open access 

fishery. This is the case in both the CCA and LCA model. Biomass variance (only shown in Figure 8 

for the CCA model 17) however is decreasing by increasing the MPA size, suggesting larger stock 

biomass fluctuations by smaller MPAs. This is consistent with the findings in the stochastic model 

presented by Conrad (1999), where also the difference in variance between open and closed area is 

discussed.

The decreasing variance related to increasing MPA size is reflected by average harvest (Figure 8) 

and first of all average net revenue (resource rent). Fleet dynamics related to net revenue 

fluctuations causes limit-cycle patterns in the LCA model (19) (see Figure 7), while the CCA model 

(17) shows pseudo-random patterns (Figure 6). The differences are also easily seen from the 

biomass surfaces of Figure 9, where decreasing fluctuations by increasing MPA sizes are illustrated. 

Furthermore Figure 7 displays increasing range of fishing effort within the limit-cycle while 

increasing MPA size up to a certain point (about 25% MPA), from which the opposite relation is 

found. Figure 6 may indicate a similar pattern in the CCA model (17). 

The two figures (Figures 6 and 7) also show interesting differences in open access efforts between 

the two panels (d = 0 and d = 8) of each figure. In the lower panels (d = 8) fishing activities 

effectively targeting high density areas aim to maintain a high total production of fishing effort even 

when the size of MPA increases, while homogenous distribution of fishing effort (d = 0) produces 

larger fluctuations, but lower average fishing effort in open access. For the CCA model (Figure 6) 
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this is also reflected in Figure 8, where fluctuations over time are represented by confidence 

intervals (shaded areas), becoming more narrow as the MPA size increases.

Another interesting difference between the CCA and LCA models is found in the case of no biomass 

diffusion between cells (r = 0); easily seen in Figure 3 where biomass equilibrium of the CCA 

model never reaches the level of 0.5 times number of cells, while this is established by the LCA 

model. Increasing growth rate (g) moves however the CCA equilibrium biomass closer to the LCA 

equilibrium. The LCA model also shows to be more robust towards changes in d (Figure 8), while 

the CCA model displays significant changes as the value of d vary, reflecting more heterogeneous 

biomass distribution. While effort perfectly reflects biomass distribution (d = 1) average biomasses 

in the CCA model are very close to what is obtained by the LCA model. For other values of d the 

CCA biomasses seem however to always be larger of corresponding LCA biomasses. The 

conservation effect of MPA regulation therefore comes out to be less (and sometimes almost 

negligible) in the CCA model compared with the LCA model. With no MPA regulation or very 

small protected areas the result may however be opposite, as best seen from the biomass surfaces 

shown in Figure 9. Higher expertise in targeting the biomass clusters (d > 0) contributes in 

stabilising the stock and reducing the risk of depleting the stock by increasing values of d. Note that 

this result is corrected for the increased net revenue obtained by targeting higher densities of fish.

The positive resource rent obtained in open access fishery (as seen from Figures 6, 7 and in 

particular from Figure 8) may be surprising given the expected NR = 0. It is however well known 

that stock biomass fluctuations and fleet dynamics in the long run often lead to such effects (Eide, 

2007). As the fluctuations are reduced by increased MPA size, the result is diminishing aggregated 

resource rent by increasing MPA size.

The cluster analysis displayed in Figure 10 shows that no clear pattern could be obtained identifying 

efficient MPA sizes. In the CCA model (upper panel) no MPA (0) shows to be significantly different 

from all other sizes of MPA (for r = 2 and d equal 0 or 1), while this is not equally apparent when d 
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= 8 or in within the LCA model. The latter model (lower panel) identifies other significantly 

different sets for other sizes of MPA (70% for r = 0, d = 0; 15% for r = 2, d = 0; 60% for r = 2, d = 1)

The concept of cellular automata represents a simple way of modelling spatial distributions. A range 

of alternative methods could be used to obtain this, and a number of previous MPA studies have 

utilised these methods. The other special feature of cellular automata modelling is however not 

equally easy achieved by other modelling techniques. Cellular automata implements micro 

dynamics at cell levels and is a bottom-up modelling approach. The biological models proposed in 

this study could also include cell specific parameter values in addition to the state variables. 

Varying environmental capacity of different cells could be implemented by varying cell specific 

growth rates and/or saturation levels (biomass maximum). A further study of the robustness of MPA 

regulation under different environmental conditions and distributions rules should also include 

spatial environmental variation. The model set up presented in this study represents a way forward 

to perform such investigations.   
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Table 1. Cellular biomasses calculated by Model (4) for g = 1/2, r = 1 and �0 given by the first row (t = 

first period of the pattern shown in the mid column of the first row of figure 1.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 B

t�0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

t�1 0 0 0 0 0 	1
2

	1
2

	1
2

0 0 0 0 0 	3
2

t�2 0 0 0 0 	1
4

	1
2

	3
4

	1
2

	1
4

0 0 0 0 	9
4

t�3 0 0 0 	1
8

	3
8

	3
4

	7
8

	3
4

	3
8

	1
8

0 0 0 27
8

t�4 0 0 1
16

	1
4

	5
8

0 3
16

0 	5
8

	1
4

1
16

0 0 33
16

t�5 0 1
32

5
32

15
32

7
16

13
32

3
32

13
32

7
16

15
32

5
32

1
32

0 99
32

t�6 1
64

3
32

21
64

17
32

21
32

15
32

29
64

15
32

21
32

17
32

21
64

3
32

1
64

297
64

Table 2. Cellular biomasses calculated by Model (6) for g = 3/5, r = 1 and �0 given by the first row (t = 

b1 b2 b3 b4 b5 b6 b7 B

t�0 0 0 0 1 0 0 0 1

t�1 0 0 	2
5

	2
5

	2
5

0 0 	6
5

t�2 0 24
125

128
375

56
125

128
375

24
125

0 568
375

t�3 7616
78 125

832
3375

833 152
2 109 375

912 448
2 109 375

833 152
2 109 375

832
3375

7616
78 125

4 030 016
2 109 375
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Table 3. Parameter values used in the simulations displayed in Figures 6 and 7. 

Paramet� CCA LCA Comment

t 2000 2000 Number of time steps

n 100 100 Number of cells in population

r 2 2 Number of affected

g 0.5 0.5 Biological growth rate

�0 Seed random Seed random Initial cell biomass vector

E0 5 5 Initial fishing effort

d 0 and 8 0 and 8 Fishing effort distribution parameter

q 1 1 Catchability coeffisient

p 10 10 Unit price of harvest

c 5 5 Unit cost of effort

a 0.002 0.002 Growth rate in effort dynamics
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g � 0.25 g � 0.50 g � 0.75

r � 1

r � 2

r � 3

Figure 1. CCA model (4) of varying diffusion properties at constant growth with an initial condition of one single 

biomass �b49=1) in the centre cell of 99 cells (n = 99). The growth rate (g) is 0.5 and the diffusion property given by 

the range parameter r , indicating number of influenced neighbouring cells. The vertical axes of each case represents 

computational steps (time), increasing downwards. The figure includes 100 computational steps (t=100).
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g � 0.25 g � 0.50 g � 0.75

r � 0

r � 1

r � 2

r � 3

Figure 2. CCA model (4) of varying diffusion properties (r) at growth rates (g) as explained in Figure 1. Each panel 

has the same seed random initial cell biomasses distributed in 100 cells (n = 100). The vertical axes of each case 

represents computational steps (time), increasing downwards. The figure includes 100 computational steps (t=100).
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r � 0 r � 1 r � 2 r � 3

g � 0.25

g � 0.50

g � 0.75

Figure 3. The solid curves represent biomasses over time derived by CCA model (4) of range parameter values (r) 

and growth rates (g) with the same seed random initial cell biomasses distributed in 100 cells (n = 100). The vertical 

axes of each case measures biomass and the horizontal axis time. The figure includes 100 computational steps 

(t=100). The dashed curves are biomasses derived by LCA model (7), the corresponding logistic growth functions.

r � 0 r � 1 r � 2 r � 3

g � 0.25

g � 0.50

g � 0.75

g � 1.00

Figure 4. Biomasses over time in a CCA model (4) (solid curves) and LCA model (7) (dashed curves) of varying 

diffusion properties (r) at growth rates (g) with the same random initial cell biomasses and 100 cells (n = 100). The 

vertical axes of each case measures biomass and the horizontal axis time. The figure includes 100 time steps (t=100).

������	�
�	�
�� �  ��

119



r � 0 r � 1 r � 2 r � 3

g � 0.25

g � 0.50

g � 0.75

g � 1.00

Figure 5. Biomasses over time in a CCA model (4) (solid curves) and LCA model (7) (dashed curves) of varying 

diffusion properties (r) at growth rates (g) with the same random initial cell biomasses and 100,000 cells (n = 

100,000). The vertical axes of each case measures biomass and the horizontal axis time. The figure includes 100 

time steps (t=100).
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CCA: 0
MPA, d�0 CCA: 3
MPA, d�0 CCA: 5
MPA, d�0 CCA: 10
MPA, d�0

CCA: 15
MPA, d�0 CCA: 20
MPA, d�0 CCA: 25
MPA, d�0 CCA: 30
MPA, d�0

CCA: 40
MPA, d�0 CCA: 50
MPA, d�0 CCA: 65
MPA, d�0 CCA: 80
MPA, d�0

CCA: 0
MPA, d�8 CCA: 3
MPA, d�8 CCA: 5
MPA, d�8 CCA: 10
MPA, d�8

CCA: 15
MPA, d�8 CCA: 20
MPA, d�8 CCA: 25
MPA, d�8 CCA: 30
MPA, d�8

CCA: 40
MPA, d�8 CCA: 50
MPA, d�8 CCA: 65
MPA, d�8 CCA: 80
MPA, d�8

Figure 6. CCA model (17) on varying percentage of MPA cells and two fishing effort distribution, d=0 (upper 

panel) and d=8 (lower panel). Parameter values used are displayed in Table 3. In all graphs the horizontal axis 

measure total fishing effort (E), while net revenue (NR) is measured by the vertical axis. The period displayed in 

each graph counts 2000 time steps.
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LCA: 0
MPA, d�0 LCA: 3
MPA, d�0 LCA: 5
MPA, d�0 LCA: 10
MPA, d�0

LCA: 15
MPA, d�0 LCA: 20
MPA, d�0 LCA: 25
MPA, d�0 LCA: 30
MPA, d�0

LCA: 40
MPA, d�0 LCA: 50
MPA, d�0 LCA: 65
MPA, d�0 LCA: 80
MPA, d�0

LCA: 0
MPA, d�8 LCA: 3
MPA, d�8 LCA: 5
MPA, d�8 LCA: 10
MPA, d�8

LCA: 15
MPA, d�8 LCA: 20
MPA, d�8 LCA: 25
MPA, d�8 LCA: 30
MPA, d�8

LCA: 40
MPA, d�8 LCA: 50
MPA, d�8 LCA: 65
MPA, d�8 LCA: 80
MPA, d�8

Figure 7. LCA model (19) on varying percentage of MPA cells and two fishing effort distribution, d=0 (upper panel) 

and d=8 (lower panel). Parameter values used are displayed in Table 3. In all graphs the horizontal axis measure 

total fishing effort (E), while net revenue (NR) is measured by the vertical axis. The period displayed in each graph 

counts 2000 time steps.
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r � 0 and d � 0 r � 2 and d � 0 r � 2 and d � 1 r � 2 and d � 8

Figure 8. Average values of biomass, harvest, effort and rent obtained by CCA model (17) (solid curves) and LCA 

model (19) dashed curves for simulations over periods of 500 time steps. The shaded areas show the variances found 

in the CCA model (19). Parameter values are as dislayed in Table 3 unless other is indicated in plot labels where 

different r and d values are displayed.
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Figure 9. Surface plots of the biomasses calculated in Figure 8, as functions of MPA size and time. CCA model (17) 

is presented in the left column, while LCA model (19) is presented in the right column.
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0 20 5 4 15 30 40 50 10 3 7 1 2 60 70 80 90 95 97 99

CCA: r � 0, d � 0

0 15 10 7 20 60 90 95 97 99 80 70 50 40 30 2 1 5 4 3

CCA: r � 2, d � 0

0 1 2 3 5 30 15 20 4 7 40 70 90 97 95 99 80 60 50 10

CCA: r � 2, d � 1

0 70 90 95 97 99 80 60 50 40 20 30 3 4 1 15 5 2 10 7

CCA: r � 2, d � 8

0 1 2 3 4 5 7 10 15 20 30 40 50 60 80 90 95 97 99 70

LCA: r � 0, d � 0

0 1 2 3 4 5 7 10 15 20 30 40 50 60 70 80 90 95 97 99

LCA: r � 2, d � 0

0 1 2 3 4 5 7 10 15 20 30 40 50 60 70 80 90 95 97 99

LCA: r � 2, d � 1

0 7 10 15 20 30 40 50 60 70 80 90 95 99 97 1 2 3 4 5

LCA: r � 2, d � 8

Figure 10. Dendrogram plots showing clustering on MPA size (horizontal axis) of the data sets presented in Figures 

8 and 9. The upper panel shows clustering on MPA size in the CCA model (17), while the lower panel shows the 

corresponding clustering pattern in the LCA model (19). Data included in the cluster analyses are biomasses, fishing 

efforts and net revenues over the period of 500 time steps. The vertical axis indicates how close the sets of data 

belonging to each MPA size are, increasingly downwards.
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