
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21896  | https://doi.org/10.1038/s41598-021-01295-2

www.nature.com/scientificreports

DeepFake electrocardiograms 
using generative adversarial 
networks are the beginning 
of the end for privacy issues 
in medicine
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Recent global developments underscore the prominent role big data have in modern medical science. 
But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. 
However, synthetic data generated to represent real data carrying similar information and distribution 
may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) 
capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have 
developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs 
with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs 
using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that 
the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and 
amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic 
the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. 
The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake 
generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, 
we were able to generate realistic synthetic ECGs using generative adversarial neural networks on 
normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical 
datasets.

The use of artificial intelligence (AI) has increased in medicine over the past years. The goal of AI in medicine 
is to aid clinicians with decisions that are more accurate and to improve personalized medicine. The prominent 
prerequisite and foundation for AI is a large amount of high-quality clinical data.

With updates of the General Data Protection Regulation (GDPR) regulative in the EU, the free flow of data 
has been restricted to ensure patient consent and anonymity1. Even anonymized or de-identified data must not 
be shared between research groups in different countries, because combining few variables in an anonymized 
dataset, may allow for individual identification2. For example, knowing the zip code, birthday and sex is enough 
to identify 87% of US citizens3. The European GDPR rules are stricter than the US HIPAA rules for health data 
exchange4. EU demands that health data protection in a third country is essentially equivalent to that in the EU, 
which is not the case with the US HIPAA system5. All health data transfers require that informed consent is 
received from each patient, which makes most transatlantic collaboration impossible, if not planned in advance. 
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However, large-scale, publicly available open-access medical datasets are required for personalized medicine to 
improve data-heavy machine learning solutions in medicine.

Generating realistic synthetic data is an alternative solution to the privacy issue. Synthetic data should contain 
all the desired characteristics of a specific population, but without any sensitive content, making it impossible 
to identify individuals. Therefore, properly generated synthetic data is a solution to the privacy problem which 
enables data sharing between research groups.

An electrocardiogram (ECG) is a voltage time series that reflects the electric currents within the heart. An 
ECG is a widely used, easy applicable and inexpensive clinical screening procedure to detect cardiac diseases. 
With the use of multiple electrodes, 3D propagation of cardiac electric impulses is obtained and plotted as a 
standard 10-s 12-lead ECG.

In this paper, we showcase synthetic ECGs as an example of complex medical data. Synthetic ECGs have 
been a topic of interest and research for many years. McSharry et al.6 and Sayadi et al.7 proposed mathematical 
dynamical models to generate continuous ECG signals, but these models were restricted to only one lead and 
did not reflect the distribution found in the normal population, nor did they give any insight in the mechanisms 
behind any disease.

Generative adversarial networks (GAN) were introduced in 2014 by Goodfellow et al.8 to generate synthetic 
data using multi-layer perceptrons. A GAN consists of two deep neural networks: a generator network, which 
creates signals (here ECGs) from random noise, and a discriminator network, which evaluates whether an ECG 
presented to it is real or fake. During training, a mix of real ECGs (from the underlying population) and gener-
ated DeepFake ECGs (from the generator) are presented to the discriminator, which assigns a score to the ECG 
(high score for real, low score for fake). As training proceeds, both the generator and the discriminator improve 
in performance until an equilibrium is reached9. Later, Radford et al.10 developed a convolutional GAN to gener-
ate synthetic images, which is well suited for images.

Since ECGs are time series data, our initial approach was to use a WaveGAN11 which is capable of generating 
sound signals. The classical WaveGAN is only able to output a single channel time series, so we modified the 
WaveGAN to generate 8 ECG channels (denoted WaveGAN*) instead of audio signals. We then introduced a 
novel DeepFake ECG U-net generative model, called Pulse2Pulse, which was inspired by the WaveGAN11, and 
we compared our Pulse2Pulse GAN to the WaveGAN*.

In this paper, we thus present two GANs with the ability to generate an unlimited number of 10-s 12-leads 
synthetic “DeepFake” ECGs as a solution to overcome the privacy issues related to real ECG data. These DeepFake 
ECGs can be openly distributed and freely downloaded as open access and used by other scientists to develop 
ECG algorithms.

Results
We used ECGs from two population studies (GESUS12 and Inter9913). To avoid chimeras between normal and 
abnormal ECGs, we only trained the neural network with ECGs classified as normal by the MUSE 12SL (version 
2.43). As shown in Table 1, both the WaveGAN* and Pulse2Pulse improved during training expressed as the 
percentage of DeepFake ECGs classified by the commercial ECG interpretation program MUSE 12SL as normal 
ECGs. The Pulse2Pulse GAN trained faster than the WaveGAN* and had a better performance (expressed as 
fraction of ECGs classified as normal by the MUSE) compared to the WaveGAN* at their respective optimal 
number of training epochs (Table 1). Figure 1 shows a comparison of real and DeepFake ECGs, and the Sup-
plementary Figure S1 shows twenty randomly chosen DeepFake ECGs. Figure 2 shows the distribution of heart 
rates in the DeepFakes. By clinical definition Normal ECGs heart rates are between 60 and 99 beats per minute. 
The MUSE 12SL14 classified 129 DeepFakes (0.5%) as sinus tachycardia (fast heart rate ≥ 100) and 2863 (10.2%) 
as sinus bradycardia (slow heart rate < 60). Figure 3 shows that the well-known established correlation between 
the QT interval and the RR interval15 was preserved. All covariance structures can be seen in the Supplementary 
Figure S2.

The generated DeepFake ECGs can be downloaded at OSF.io (https://​osf.​io/​6hved/) with the corresponding 
ground truth parameters for the QT, RR, PR and QRS intervals and the P, STJ, R, and T amplitudes (see Fig. 4 
for ECG wave/interval naming terminology) delivered by the MUSE 12SL system. The DeepFake ECGs may be 
freely used for scientific use or commercial algorithm development if this paper is properly cited.

Table 1.   Quantitative difference between WaveGAN* and Pulse2Pulse GAN in the initial training for 
determining the optimal network and optimal number of epochs. The best values are bolded for each GAN.

Checkpoint (epochs)

Fraction of DeepFake ECGs 
classified as Normal (%)

WaveGAN* Pulse2Pulse

500 20.9 78.7

1000 69.5 81.2

1500 71.2 78.8

2000 72.5 79.7

2500 71.3 81.6

3000 65.3 81.5

https://osf.io/6hved/
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Figure 1.   Comparison of examples of a real ECG (left lane) and a DeepFake ECG (right lane). See 
supplementary Figure S1 for 20 more randomly chosen pairs of real and DeepFake ECGs.

Figure 2.   Distribution of heart rates in all 150,000 DeepFake electrocardiograms. Red fill denotes outside the 
normal heart rate range. Blue fill is within normal heart rate range (60–99).

Figure 3.   Scatter plot of the QT/RR interval relationship where Real ECG are shown in blue and normal 
DeepFakes in red. DeepFake dots are nudged 1 ms to the left for visibility. Note that there are 121,977 normal 
DeepFakes and only 7233 Real ECG making the DeepFake distribution more pronounced. As seen by the 
correlation coefficient r2, the real and the fake DeepFake ECGs are similarly distributed.
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Using the Pulse2Pulse model from the optimal number of epochs (2500), we generated 150,000 DeepFake 
ECGs. To ensure that these ECGs were realistic, we uploaded the 150,000 ECGs to the GE MUSE system and 
analyzed them using the 12SL algorithm. We found that 81.3% of the 150,000 DeepFake ECGs were classified 
as “Normal ECG” (vs. 81.6% in the initial training). Table 2 compares real vs. DeepFake ECGs using eight ECG 
properties (heart rate, P duration, QT interval, QRS duration, PR interval, STJ amplitude, R amplitude, and T 
amplitude extracted using MUSE 12SL. See Fig. 4 for ECG nomenclature). The real data included all ECGs from 
GESUS and Inter99 classified as “Normal ECG” which were used for training. DeepFake ECGs are presented both 
as all 150,000 generated ECGs and the subset classified as Normal ECG. Supplementary Table S4 summaries the 
most common reasons for classifying DeepFake ECGs as Non-Normal ECGs.

Discussion
Although deep learning has previously been used for ECG analysis16,17, this study is the first study to generate 
realistic synthetic 10-s 12-lead DeepFake ECGs. We demonstrate that the characteristics of the real ECGs were 
preserved with the DeepFake ECGs.

In our study, nearly one fifth of the DeepFake ECGs were not recognized as Normal ECGs (Non-Normal) 
by the commercial MUSE 12SL ECG analyzer (no ECGs were rejected as being invalid). Many ECG parameters 
use hard boundaries in distinguishing between Normal and Non-Normal. For example, a normal heart rate is 
by definition located between 60 to 99 beats per minute. Since we trained our model only on Normal ECGs, the 
input distribution for the GAN was a truncated asymmetric distribution. Thus, the clinically defined boundaries 
are skewed compared to the normal distribution of heart rates. The left truncation (at low heart rates) will discard 

Figure 4.   An ECG complex with the nomenclature of intervals (QT, QRS, P duration) and Amplitudes (STJ, R, 
T) and RR-interval (which can be converted to heart rate (HR) as HR = 60/RR interval.

Table 2.   Mean, standard deviation (std), 2.5%, and 97.5% percentile for standard ECG parameters in real and 
fake ECGs. BPM beats per minute.

Real—normal (7233)
Pulse2Pulse—normal 
(121,977) Pulse2Pulse—all (150,000)

Mean Std 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

Heart rate BPM 70 8 60 90 70 7 60 88 70 8 60 89

P duration ms 105 12 82 130 117 17 86 152 118 17 84 152

QT interval ms 395 21 352 436 395 20 354 436 395 22 352 436

QRS duration ms 90 9 74 110 92 9 78 112 93 10 78 114

PR interval ms 156 19 120 198 158 17 126 192 159 19 124 194

STJ amplitude (V5) µV 2 27 − 44 58 18 33 − 44 87 16 36 − 54 87

R amplitude (V5) µV 1287 402 600 2163 1275 367 620 2026 1273 402 566 2094

T amplitude (V5) µV 343 137 126 664 366 135 156 668 361 141 141 673
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more individuals than the right truncation (at high heart rates), and the final distribution of the real ECGs will 
be close to a truncated normal distribution with asymmetric truncations. The GAN will generally learn that 
heart rates outside 60–99 are not valid, but small deviations will occur as seen in Fig. 2 and Table 2. Since similar 
boundaries exist for many ECG parameters (for example PR interval > 220 ms or QRS Interval < 120 ms) sharp 
truncations occur with several ECG parameters. This could lead to the exclusion of some DeepFake ECGs, simply 
because the ECG intervals or amplitudes were marginally outside the normal range. Most ECG amplitudes and 
intervals were similar between real ECGs and DeepFake ECGs. It is noteworthy that the STJ amplitude and the 
P duration had the greatest deviation between real ECGs and DeepFake ECGs. This may be because both STJ 
and P amplitudes are small, and that the network may tend to focus on larger waves such as the R and T waves. 
Following this theory, the network would to some extent neglect the smaller waves and features thereby intro-
ducing a larger uncertainty. Future networks may improve the ECG generation using conditional GANs to give 
more attention to smaller signal features. The Pulse2Pulse model was able to preserve the covariance structure 
between different ECG features, as seen in the most important relationship the QT/RR relationship which is 
known to have prognostic importance18.

A challenging task is to define the optimal number of epochs for training. GANs tend to become unstable dur-
ing the training process with the risk of the generator producing unrealistic output. To get an unbiased estimate 
on how well the trained GAN performs, we used the commercial MUSE 12SL system which automatically and 
reliably evaluates an ECG with a sensitivity of 99.9% and specificity of 100%19. Although the ECG discarded by 
the MUSE 12 SL may only have minimal abnormalities (like a heart rate of 59.9 bpm where 60 bpm is normal), 
the filtering of the DeepFake ECGs ensures that the best epoch is chosen without bias. It also ensures that the 
resulting ECGs are normal not only according to the discriminator, but also according to one of the most widely 
used ECG system in hospitals worldwide.

Personalized medicine depends on big data, which is frequently facilitated by international collaborations to 
ensure large datasets for both researchers and industry. However, privacy and general data protection regulation 
rules are major obstacles for sharing data between researchers from different institutions or countries or with 
the industry20.

In conclusion, by constructing synthetic signals from real patients which retain the same clinical information 
as was present in the real dataset, we have paved a new way to overcome privacy and ethical21 concerns for data 
sharing. The synthetic data generated by our Pulse2Pulse GAN are not linked to any specific patients but to the 
entire population, and therefore the ECGs prove useful for data scientists and the industry in developing novel 
algorithms for ECG analysis. The approach is not limited to ECGs but could be generalized to all medical multi-
channel data, e.g., electroencephalography and electromyography. Therefore, the DeepFake ECGs generated from 
the Pulse2Pulse model can be used as a replacement to overcome the privacy constraints in real medical datasets.

Methods
GAN models were first introduced by Goodfellow et al.8. In a GAN, two deep neural networks termed the genera-
tor (G) and the discriminator (D) are combined to achieve the generation task. The main goal of the generator is 
to produce a data sample input [ECG(z)] from random noise (z) to present to the discriminator. The discrimina-
tor is tasked with differentiating between real and fake data, thus forcing the generator to improve performance. 
The generator and discriminator are trained together in a competition (minmax game). When a steady state is 
reached, the training halts and the generator will generate realistic synthetic ECGs.

Data preparation.  We used two combined datasets: the Danish General Suburban Population Study12 
(GESUS) and the Inter99 study13 (CT00289237, ClinicalTrials.gov). GESUS consists of 8939 free-living sub-
jects, and Inter99 consists of 6667 free-living subjects with an available digital ECG. To avoid generation of 
hybrid ECGs with mixed ECG abnormalities not occurring in real persons (e.g., to both be in sinus rhythm and 
atrial fibrillation at the same time which is impossible), we excluded ECGs who were not classified as normal 
(n = 8348) leaving 7233 Normal ECGs for training.

A 10-s 12-lead ECG consists only of 8 independent channels since 4 of the channels are simply trigonometric 
rotations of the two first channels. Therefore, the input ECG signal is 5000 × 8 data points (corresponding to 10 s 
with 500 samples per sec × 8 channels). We calculated the missing four channels with trigonometric functions 
to create the classic 12-channels ECG from 8-channels ECG.

WaveGAN*.  The input to WaveGAN* is a 1D 100 × 1 random noise vector sampled from the uniform distribu-
tion (mean = 0, std = 1) which passes through six deconvolution blocks to generate the desired output of 5000 × 8 
samples (Fig. 5a). The deconvolution blocks were built from a series of four layers: an up-sampling layer, a con-
stant padding layer, a 1D-convolution layer, and a ReLU activation function consecutively. This implementation 
is deeper than the original architecture, which uses five deconvolution blocks used to generate synthetic music 
samples. Table S1 has comprehensive details of our WaveGAN* generator network.

Pulse2Pulse.  The implementation of the Pulse2Pulse architecture (Fig. 5) is inspired by the U-Net architecture22, 
which was used for image segmentation. However, our Pulse2Pulse implementation is different from the origi-
nal U-net implementation because the Pulse2Pulse implementation uses 1D convolutional layers for ECG sig-
nal generation as opposed to the 2D convolutional layers used for the original image segmentation task. The 
Pulse2Pulse network takes an 8 × 5000 noise vector, i.e., the same dimension as the output ECG. The noise is 
passed through six down-sampling blocks followed by six up-sampling blocks as illustrated in Fig. 5b. Each 
down-sampling block consists of a 1D-convolution layer followed by a Leaky ReLU activation. The up-sampling 
block is similar to the deconvolution block used in WaveGAN*. In down-sampling, we have used Leaky ReLU 



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21896  | https://doi.org/10.1038/s41598-021-01295-2

www.nature.com/scientificreports/

instead of the ReLU layer used in the up-sampling to match the down-sampling operations to the discriminator. 
In addition to the up-sampling and down-sampling, the major modification is a bypass option, which concat-
enates the down-sampling block features with the up-sampling block features (represented by the black arrows 
in Fig. 5b). To facilitate for this concatenation, we doubled the input size of up-sampling blocks compared to 
WaveGAN* up-sampling blocks. More details about the Pulse2Pulse generator network are shown in the Sup-
plementary Table S2.

Discriminator.  The same discriminator was used by WaveGAN* and Pulse2Pulse to discriminate between real 
and fake ECGs (Fig. 5c). We used seven convolution layers (the original WaveGAN11 has five layers), and each 
convolution layer is followed by a Leaky ReLU activation and the phase shuffle layer introduced in the original 
WaveGAN paper11. The discriminator takes an ECG as input (5000 samples × 8 channels) and outputs a score 
how close the ECG are to be determined fake or real. Complete details about our discriminator network are 
given in the Supplementary Table S3.

Training.  The models were trained on a Ubuntu workstation with two Xeon processors and a GeForce NVIDIA 
RTX 2080ti running the Pytorch deep learning framework23. We ran all our experiments (generators + discrimi-
nator) using the Adam24 optimizer with a learning rate of 0.0001, β1-value of 0.5, and β2-value of 0.9. As loss 
function, we used gradient clipping WGAN-GP25, to ensure faster and better convergence. Similar to the audio 
generation paper of WaveGAN11, we updated (backpropagated) the discriminator five times per update of the 
generator. We used a batch size of 32, which is half of the original batch size of 64 used in the original WaveGAN 
paper, because we used larger networks than the WaveGAN networks. We kept the training process until 3000 
epochs (~ 10 days computing time) because we experienced unstable training curves for both WaveGAN* and 
Pulse2Pulse afterwards.

Figure 5.   Model architectures of the generators and the discriminator used to generate synthetic ECGs. 
WaveGAN* uses a 1D noise vector with 100 points. Pulse2Pulse uses a 2D noise vector with size of 8 × 5000 as 
input, same as the output ECG size.
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DeepFake ECGs.  For evaluation of our two GAN models, we initially generated 10,000 ECGs from every 500 
epochs until 3000 epochs from each GAN model. The DeepFake ECGs were transferred to the MUSE system 
and evaluated by the MUSE 12SL algorithm v. 2.4314, and we used the fraction of DeepFake ECGs described as 
Normal as the metric (because we only used Normal Real ECGs for the training). Using the best epoch for the 
best GAN, we generated 150,000 DeepFake ECGs. These DeepFakes were also evaluated by the MUSE 12SL.

Data availability
The Normal DeepFake ECGs are available at OSF (https://​osf.​io/​6hved/) with corresponding MUSE 12SL ground 
truth values freely downloadable and usable for ECG algorithm development. The DeepFake generative model 
is available at https://​pypi.​org/​proje​ct/​deepf​ake-​ecg/ to generate only synthetic ECGs.

Code availability
The complete source code of all networks discussed in paper are available at GitHub (https://​github.​com/​vlbth​
ambaw​ita/​deepf​ake-​ecg).
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