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Abstract: This paper evaluates the thermal performance of a triple-glazed glass window filled
with a phase-change material (PCM) compared to the performance of a traditional triple-glazed
window with air gaps. The chosen PCM was paraffin wax. A mathematical model to simulate
heat transfer within the system was presented. A commercially available software, COMSOL
Multiphysics, was used to numerically solve the governing equations. The analysis was carried
out for the representative days of different seasons using three types of paraffin wax (5, 10, and
15) that have different melting-temperature ranges. Particularly, the study considers the unique
climatic conditions of the Arctic region. Results showed that by integrating a PCM into the cavity of
triple-glazing, thermal performance during summer season of the window was enhanced, while for
spring and autumn thermal performance was affected by the type of paraffin selected. The thermal
performance of glass windows during winter did not change with PCM integration.

Keywords: phase-change material; glass window; triple-glazing; energy storage; arctic region;
COMSOL Multiphysics

1. Introduction

The urgent climate change issues due to the intense depletion of natural resource
are highlighting, now more than ever before, the need to reduce the impact of human
activities on the planet. In particular, the latest 2020 Global Status Report for Buildings and
Construction [1] evidenced how the building sector is still severely contributing to global
total emissions. Indeed, in 2019 it accounted for 35% of global total emissions, and 38% of
energy related carbon dioxide emissions, maintaining the same emission trend as past years.
Therefore, it is essential to take action on different levels to minimize the carbon footprint
of the whole construction sector, and achieve the ambitious goal of a net-zero emissions
society by 2050. Right now, these strategies mainly involve the decarbonization of power
production, through the transition to renewable energy sources, along with reduction of
material-lifecycle carbon emissions, by applying a circular economy model. However, these
initiatives should also be accompanied by an upgraded building code, market regulations
and incentives for the enhanced energy efficiency of buildings. In this regard, cutting global
total emissions is a high priority for the Arctic, which is warming three times faster than
the rest of the world, where changes have global implications [2]. Moreover, harsh Arctic
climate conditions, along with long distances and small communities, represent additional
challenges to the decarbonization of the region, due to the significant amount of energy
needed for heating buildings and transportation [3].

Therefore, local energy production and storage will be one of the biggest technological
challenges of the upcoming decades. In particular, latent-heat thermal energy storage
(LHTES) based technologies have been under investigation for years. By storing and
releasing latent heat, these systems improve the thermal performance of buildings and
reduce on-peak electricity demand [4]. Moreover, LHTES technologies provide a high
energy-storage density per unit of mass, at near-constant temperatures, compared to other
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thermal energy storage (TES) solutions [5]. Phase-change materials (PCMs) are used as
LHTES technologies inside building components, and their application ranges from active
to passive heating and cooling systems, including integration into glazed surfaces. In fact,
since windows represent, in cold climates, the weakest barrier of a building—accounting
for about 10–25% of the total heat loss through the building envelope [6]—PCMs represent
an opportunity to enhance their thermal inertia, while preserving the transparency when
in liquid phase and diffusing the light when in solid state [7].

Despite the numerous studies on PCM integration in transparent building components
that can be found in literature, only a few focus on their application in cold-climate
environments. A study reviewing the available literature on the topic, published between
1997 and 2018 [8], shows that only 37% of existing studies were performed in cold climate
conditions. Among these, only two were carried out under southern-Norway climate
conditions, and none under Arctic climate conditions. Goia F. et al. conducted several
studies on PCM applications in transparent building components in Norway. In 2012,
the author developed a numerical model for investigating the thermal performance of a
simple PCM glazing system—composed of two glass and one PCM layer—during different
seasons, and later validated it by experimental analysis [9,10]. Results from these studies
showed that PCM glazing systems were able to improve thermal condition of indoor
environment for most of the time, during various seasons. However, in days with low-
incident solar radiation, their performance was similar to that of a standard glazed window.
Shuhong Li et al. conducted similar research in 2014 [11]. The study investigated the
effects of a phase-change-material-filled glass window on building energy consumption in
hot-summer and cold-winter areas of China. Results still showed a technology performance
to be satisfactory on sunny summer days, while unsatisfactory in rainy winter days, as it
could not decrease energy consumption. In 2017, Bianco L. et al. proposed a more complex
system [12], composed of a triple-glazed unit with a PCM-filled cavity and thermotropic
glass placed on the outer side, for regulating the phase transition of the PCM layer. In
particular, the study aimed to test different configurations of the glazing system under
winter conditions in Turin (Italy), which is characterized by a humid subtropical climate.
The proposed system solved some criticalities, highlighted in previous studies [10,13],
related to the decrease of overall thermal resistance during the cold season—and showed
a promising range of dynamicity during sunny winter days. A similar system was also
investigated by Changyu et al. in 2018 [14]. The study proposed a simplified calculation
method—validated by experimental results—for the analysis of the thermal performance
of a system consisting of a PCM layer and four glass layers. Different PCM thicknesses
were evaluated, and the results highlighted that PCM thickness plays a significant role
on the thermal performance and solar transmittance of a multilayer glazing façade. In
fact, increased PCM thickness increases interior surface temperature and temperature
time lag. In order to improve the optical performance of PCM windows, Dong Li et al.
examined a double-glazed window with dispersed nanoparticles inside the PCM layer [15].
Research outcomes revealed that nanoparticle-integrated systems have better thermal and
optical performance than pure-paraffin systems. In a later study [16], the same authors
examined the effects of nanoparticle volume fraction and particle diameter on the interior
glass-surface temperature, for representative days of different seasons in Daqing City,
which is characterized by a humid continental climate. Moreover, they also developed a
triple-glazed window where the air layer was replaced by silica aerogel, in order to improve
insulation [17]. The aim of the research was to investigate to what extent the thermal and
physical properties—like density, specific heat, thermal conductivity, and thickness—of
silica aerogel can affect the thermal performance of windows in cold environments. Finally,
in 2021, Shu Zhang et al. numerically examined and compared the energy performance
of ten different window configurations under the severe cold climate of China [5]. The
study included double- and triple-glass layered windows, integrated with silica aerogel
and/or PCM. Results highlighted that, generally, adding PCM to glass windows induces the
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necessity of also adding an external insulation layer, to ensure the charging and discharging
of the working circle of the layer.

Based on these premises, the present paper aims to numerically investigate the en-
ergy performance of a triple-glazed window integrated with PCM under Arctic climate
conditions. There is little available literature on the applicability of this technology in cold
climates. Thus, this work would be the first of its kind to carry out a preliminary study in
the Arctic. The region is unique, being characterized by very low solar radiation during
the winter and autumn months, and by large solar-resource availability during the spring
and summer months. In this regard, due to the low average air temperature also present
during bright months [18], this technology could be used for heating purpose during
the whole year. Moreover, in the context of building renovation, a PCM-filled window
could represent an opportunity to easily enhance buildings’ performance, and achieve
new building standards and certifications, without radical action on the whole-building
structure.

This study adapted a numerical model [9] of the climate characteristics of Northern
Norway, and simulated the case studies presented in this paper. The commercial software
COMSOL Multiphysics was used for simulations. The case studies consisted of one
characteristic day for each season and three PCMs with different melting points. The
performance of the PCM-filled window was compared to a standard triple-glazed widow
filled with air.

2. Materials and Methods
2.1. Model Description
2.1.1. Physical Model

The schematic physical model of the triple-glazed window is presented in Figure 1a.
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Figure 1. (a) Schematic of PCM-filled triple-glazed window. (b) Schematic of standard triple-glazed
window.

The unit was composed of three glass layers of 6 mm each, and two cavities of 14 mm
each, filled with air and macro-encapsulated PCM, respectively. The air layer provided
thermal insulation due to its low thermal conductivity, while the PCM layer acted as
thermal storage. In fact, during the day, it absorbed part of the incoming solar radiation
and changed phase from solid to liquid. Similarly, during the night, the accumulated heat
was released into the indoor environment, and the PCM-layer returned to a solid state.
Therefore, this endothermic and exothermic based process was useful in reducing building
energy demand, while maintaining the comfort of the indoor environment. The selected
PCM for the study was paraffin wax, a material that was, largely, investigated for similar
purposes in previous studies [8]. In particular, paraffin 5, paraffin 10, and paraffin 15
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were chosen due to their melting temperatures, which were compatible with the outdoor
temperature, and their possible activation range. As highlighted in the previous studies
presented in the Introduction, the inner cavity of the triple-glazed window, near the interior,
was filled with paraffin in order to easily achieve the phase-change cycle.

Similarly, the schematic physical model of the standard triple-glazed window is
showed in Figure 1b. It presented the same layer structure and dimensions of the PCM
triple-glazed window, with the difference that the second cavity was filled with air instead
of paraffin. The thermo-physical properties of the layers are showed in Table 1, where k, ρ,
and cp indicate thermal conductivity, density, and specific heat, respectively; cp,s, cp,l, LH,
Tm, and dT refer to the PCM’s thermal properties, and indicate specific heat of solid state,
specific heat of liquid phase, specific latent heat of fusion, melting point, and phase-change
temperature range, respectively.

Table 1. Thermo-physical properties of glass, air, and PCM [16].

Property Glass Air Paraffin 5/10/15

k [W/(m·K)] 1 0.024 0.2
ρ [kg/m3] 2700 1.276 885

cp [J/(kg·K)] 840 1006 -
cp,s [J/(kg·K)] - - 2320
cp,l [J/(kg·K)] - - 2240

LH [J/kg] - - 185,000
Tm [K] - - 279.15/283.15/288.15
dT [K] - - 2

By comparing the results of these two window models, it was possible to obtain a
preliminary evaluation of the energy performance of the PCM technology under arctic
climate conditions, and discuss how PCMs’ melting temperatures act in different seasons.

2.1.2. Mathematical Model

We used a previously developed and validated model [10,13] to simulate heat transfer
within the different layers, i.e., the glass layers, the air layer, and the PCM layer. In this
study, we make the following assumptions:

• One-dimensional and transient heat transfers perpendicular to the glass surface;
• Convection within the PCM layer is negligible due its small thickness;
• The thermo-physical properties of the glass are isotropic;
• Of the thermo-physical properties of the PCM, conduction and density are temperature

independent, while specific heat is temperature dependent;
• The radiative heat exchange between the glass surfaces facing the PCM layer is

neglected;
• Volume expansion during the phase change, and the scattering effects of the paraffin,

are ignored.

We can write the Fourier equation to describe the conduction heat transfer in the three
glass panes as follows:

ρgcp,g
∂Tg

∂τ
= kg

∂2Tg

∂2x
+

.
qsol (1)

where Tg is the temperature (K) of the glass; ρg, cp,g, and kg represent, respectively, the
density (kg/m3), specific heat (J/(kg·K)) and thermal conductivity (W/(m·K)) of the layer;
.
qsol is the solar heat source (W/m2), and τ is the time (s).

For the conduction and radiation heat-transfer processes within the PCM layer, the
equation is written as a rate of change in enthalpy (Equation (2)):

ρpcm
∂H
∂τ

= kpcm
∂2Tpcm

∂2x
+

.
qsol (2)
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where ρpcm and kpcm are the density (kg/m3) and thermal conductivity (W/(m·K)) of the
PCM layer, respectively. The specific enthalpy of the PCM is given by Equation (3):

H =
∫ T

Tre f

cdT + αQL (3)

α = 0, T < Ts (4)

α =
T − Ts

Ts − Tl
, Ts ≤ T ≤ Tl (5)

α = 1, T > Tl (6)

where c and QL are the specific heat (J/(kg·K)) and latent heat (J/kg) of the PCM, re-
spectively; α represents the liquid fraction of PCM undergoing phase change, while Tref,
Ts, and Tl are, respectively, the reference temperature, solidus temperature and liquidus
temperature of the layer.

Boundary conditions on the exterior surface of the outer glass and on the interior
surface of the internal glass were described by (7) and (15).

The exterior surface of the outer glass was exposed to solar radiation; hence the
boundary condition was defined as Equation (7):

− kg
∂T
∂x

=
.
qrad + hout

(
Teg,o − Ta,o

)
(7)

where hout, Teg,o, and Ta,o represent the convective heat transfer coefficient (W/(m2·K)) of
the outer environment, outer surface temperature, and outdoor air temperature (K); hout
was calculated with the following equation (Equation (8)) considering the wind speed v [9].

hout = 5.62 + 3.9 v (8)

The total radiative flux from the outer surface to the external environment (W/m2)
was represented by

.
qrad, defined as Equation (9):

.
qrad =

.
qrad,air +

.
qrad,sky (9)

where
.
qrad,air and

.
qrad,sky are the radiative heat transfer (W/m2) from the glass surface to

the atmosphere and to the sky, respectively (Equations (10) and (11)).

.
qrad,air = σ·εs,o·Fsky·(1− β)·(T4

a,o − T4
eg,o) (10)

.
qrad,sky = σ·εs,o·β·(T4

sky − T4
eg,o) (11)

where σ is the Stefan-Boltzmann constant, εs,o is the emissivity of the glass surface facing
the outdoor environment, and Fsky is the view factor between the vertical façade and the
surroundings. β is a coefficient that divides the heat exchange with the sky dome between
sky and air radiation. Fsky and β are both function of δ, which is defined as the angle
between the vertical façade and the ground. These coefficients were calculated as follow
(Equation (12)).

Fsky =
1 + cos δ

2
(12)

β =

√
1 + cos δ

2
(13)

Finally, Tsky is a function of outdoor temperature Ta,o, and it is defined as Equation (14):

Tsky = 0.0552 T1.5
a,o (14)
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The interior surface of the inner glass is facing the indoor environment; hence, the
following boundary condition applies (Equation (15)):

− kg
∂T
∂x
|in = hin

(
Teg,i − Ta,i

)
(15)

where hin, Teg,i, and Ta,i represent the convective heat transfer coefficient (W/(m2·K)) of the
indoor environment, inner surface temperature, and indoor ambient temperature (K). Since
it is supposed that only natural convection occurs within the room, hin can be determined
using the following equation (Equation (16)) [19].

hin =

 1.5 ·
(

∆T
H

)1.4
]6

+
[
1.23·(∆T)1/3

]6


1/6

(16)

where ∆T is the temperature difference between the inner glazing surface and the indoor
air. H is the façade height.

Finally, the boundary condition at the interfaces between different media in the glazing
system was given by Equation (17):

− λi1
∂T
∂x
|i1=i2 = −λi2

∂T
∂x
|i2=i1 (17)

Ti1 = Ti2 (18)

2.2. Numerical Methods and Validation

The model of this study was built using COMSOL Multiphysics. The governing
equations were discretized by the software using a finite element method, and iteratively
solved by implicit scheme, with second order accuracy. Even if this numerical model was
validated in previous studies, simulation results were compared with those from previously
published literature [5,17].

However, since this study aimed to premilinarily investigate the feasibility of the
application of the window in the Arctic, the model was simplified. Indeed, the three glass
panes were approximated as transparent surfaces, while the PCM layer was treated as an
opaque surface. In fact, evaluation of optical properties of the PCM layer will be the object
of following comprehensive studies, as well as experimental analysis.

2.3. Environmental Conditions

Narvik, Norway, was chosen as the location of the study. It is a small town located
220 km inside the Arctic Circle, and—according to Köppen Climate Classification—it
presents a humid continental climate. Due to its position in the Arctic region, this town is
characterized by long, dark winters and autumns, and very bright springs and summers.

The window was located on a vertical surface facing south. As the analysis considered
one characteristic day for each season, Figure 2a illustrates the air temperature data for
the selected days. Likewise, Figure 2b shows the solar radiation for the same days. For
the analysis, daily equivalent sun hours were used. This method approximates the solar
radiation daily trend, with the number of hours per day during which the average solar
irradiance was 1000 watts per square meter [W/m2] at the selected site. The data source was
the National Renewable Energy Laboratory (NREL). By running simulations in different
seasons, it was possible to obtain results for a wider range of outdoor temperature, wind
speed, and solar radiation conditions.
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Figure 2. Meteorological data. (a) Outdoor air temperature for four characteristic days of four
different seasons in Narvik [20]. (b) Equivalent solar radiation for four characteristic days of four
different seasons in Narvik [21].

2.4. Simulation Parameters

Initial and boundary conditions were set before running simulations. As a boundary
condition, the air temperature of the indoor environemnt—shown in Figure 3a—was
set to 22 ◦C from 8:00 to 21:00, and to 0 ◦C for the rest of the day. In this way, it was
possible to simulate the presence of a heating system. The initial temperature was set to the
same temperature of the indoor environment at time zero. Figure 3b shows the outdoor
heat-transfer coefficient, calculated with Equation (8), and meteorological data on wind
speed. Indoor surface heat-transfer coefficients were also calculated using Equation (16), as
previously introduced. The simulation time was 48 h—hence the air temperature and solar
radiation data of the first day were repeated for the following day—in order have a better
view of the charging and discharging process of the PCM layer. The step time was set at
2 s.
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3. Results and Discussion
3.1. Calculated Parameters

The developed model—already validated in previous studies – was used to evaluate
the performance of PCM in reducing temperature fluctuations on the inner surface of the
proposed system, and, hence, increase thermal comfort of the indoor environment. The
analysis considered different seasons and three types of paraffin, characterized by different
melting temperatures. Thus, to assess the thermal performance of the PCM-filled window,
the following parameters were investigated and compared with results from a standard
glazed window:

1. Inner surface temperature;
2. Liquid phase rate of the PCM;



Energies 2021, 14, 8068 8 of 14

3. Heat flux through the inner surface.

3.2. Paraffin 5

The temperature trends of the inner surface of the paraffin 5-integrated window and
standard window, for different seasons, are presented in Figure 4. Looking at simulation
results, it can be found that, in the selected time span, the insulation performance—which
was represented by the inner surface temperature—varied with the season. For instance,
during winter the standard window showed better insulation performance than the PCM-
filled window, with an average inner surface temperature of 8.6 ◦C, compared to 10.7 ◦C, as
showed in Table 2. The temperature trend for the two window configurations was similar
during spring and autumn, with an average inner surface temperature of 11.3 ◦C, as shown
in the same table. Instead, results of the summer case show better insulation performance
from 14:00 of day one until 6:00 of day two, due to higher outdoor temperatures and
longer solar radiation, which kept temperatures higher than in the standard-window case.
From Figure 5a, it can be seen that, in all seasons, the liquid phase ranged from 0 to 1.
This indicates that paraffin 5 could perform the phase change cycle throughout the day.
However, during summer and autumn the liquid phase period last more than other seasons.
The energy storing- and releasing-effect can also be visualized in Figure 4. In fact, from
21:00 of day one until 6:00 of day two, the inner surface temperature of PCM window
was higher than standard window for all seasons. For instance, looking at the graph of
Figure 5a,b, the PCM layer changed phase from liquid to solid, and at the same time its
temperature decreased, releasing heat. Table 2 also shows that the average surface-heat
fluxes—displayed in Figure 6—were lower in winter and spring for the PCM window than
for the standard window, and inversely, higher for the PCM window than the standard
window during summer and autumn. The same figure shows that surface-heat-fluxes
peaks occurred at 15:00 and 21:00 of both days, concurrently with the not-operation time
of the when the heating system (see Figure 3a). This behavior can be explained by the
fact that the absorption of solar radiation by the PCM layer prevents a portion of solar
radiation from entering the indoor space. Moreover, thermal energy was dissipated within
the indoor space by conduction and radiation.
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Table 2. Thermal performance parameters of paraffin 15-filled window and standard window and for different seasons.

Season Parameter Paraffin 5 Paraffin 10 Paraffin 15 Standard Window

Winter

Maximum inner surface temperature [◦C] 21.9 22.7 17.2 24.7
Average inner surface temperature [◦C] 8.6 9.2 8.6 10.7

Maximum inner surface heat flux [W/m2] 44.8 58.7 77.2 65.6
Average inner surface heat flux [W/m2] −16 −13.4 −18.9 −2.7

Spring

Maximum inner surface temperature [◦C] 25.6 26.2 22.5 24.9
Average inner surface temperature [◦C] 11.3 11.9 9.3 11.3

Maximum inner surface heat flux [W/m2] 74.6 80.9 23.3 44.7
Average inner surface heat flux [W/m2] 4.1 8.4 −10 4.8

Summer

Maximum inner surface temperature [◦C] 34.9 34.9 36.3 30.1
Average inner surface temperature [◦C] 14.8 15.8 16.7 14.2

Maximum inner surface heat flux [W/m2] 119.4 110.7 116.1 72.3
Average inner surface heat flux [W/m2] 30.2 37.4 46.4 26.2

Autumn

Maximum inner surface temperature [◦C] 23.5 23.7 24.7 24.9
Average inner surface temperature [◦C] 11.3 11.6 10.7 11.3

Maximum inner surface heat flux [W/m2] 56.3 79.1 65.6 44.7
Average inner surface heat flux [W/m2] 2.9 2.6 −2.7 4.8
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3.3. Paraffin 10

The temperature trends of the inner surface of the paraffin 10-integrated window and
standard window, for different seasons, are presented in Figure 7. As in the paraffin 5 case,
the insulation performance of both windows was very similar during winter. Data also
show similar behavior to the previous case during spring and autumn, with a slightly
higher average inner temperature—respectively of 11.9 ◦C and 11.6 ◦C in the PCM window
compared to 11.3◦C in the standard window (see Table 2). The insulation performance in
summer is confirmed greater for the PCM-window than the standard window. Furthermore,
the average and the maximum indoor temperatures resulted higher than the case with
paraffin 5 during all the seasons. Compared to paraffin 5 case, heat flux peaks occurred
later in the day—around 16:00 and 21:00. From Figure 8a, it can also be seen that, in
this configuration, the liquid phase rate of PCM ranges between 0 and 1, so the complete
solid-liquid cycle was performed. Moreover, with paraffin 10, the PCM layer presented
the same liquid rate duration in all seasons. As for paraffin 5, from 21:00 of day one to
6:00 of the following day, the inner surface temperature of the innovative window was
higher than in the standard window, due to the energy charge and discharge effect. This
phenomenon can be visualized also in Figures 8a and 9.
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3.4. Paraffin 15

The temperature trends of the inner surface of the paraffin 15-integrated window and
standard window, for different seasons, are presented in Figure 10. In this case, results
show that during winter the inner surface temperature of the paraffin 15-filled window is
equal to 8.6◦C as in the paraffin 5 window. This happened because the layer reached the
phase-change temperature later than in the other configurations—see Figure 11b, compared
to Figures 5b and 8b—and hence kept the inner temperature lower. The liquid phase rate
graph (Figure 11a) highlights also that, during winter, the PCM layer stayed in liquid state
for less time than in the other cases. Furthermore, during autumn and spring, thermal
performance was scarcer than in paraffin 5 and paraffin 10 cases (see values in Table 2),
as result that the phase-change temperature was reached later. This has also led to lower
insulation performance, and, hence, more heat consumption to keep the indoor temperature
high. Summer was the season with the most benefits from paraffin 15. For instance, result
showed higher average and maximum inner surface temperature, respectively, of 16.7 ◦C
and 36.3 ◦C, than previous cases. Looking at the graph of heat fluxes in Figure 12, it is
possible to see that peaks still happened around 15:00 and 21:00.
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4. Conclusions

In the extreme cold conditions of in the Arctic region, the amount of energy required
to maintain a comfortable indoor environment is significant. This paper investigated using
PCMs within the cavity of triple-glazed windows in order to reduce heat loss through
windows, thereby reducing the overall energy consumption of heating a building. The
comparison was made between a standard triple-glazed window and PCM-filled triple-
glazed window. The analysis aimed to assess the thermal performance of this type of
LHTES technology under Arctic climate conditions.

After building the mathematical model, the equations were solved using the software
COMSOL Multiphysics. Three different types of paraffin were evaluated considering a
characteristic day for each season. Based on numerical analysis following conclusions can
be made:

• During summer, the PCM-filled window had better thermal performance—measured
as inner surface temperature and thermal insulation—compared to a standard window.
This was because summer is characterized by higher outdoor temperatures and more
availability of solar resource than other seasons.

• During spring and autumn, paraffin 10 performed better than paraffin 5 and paraffin
15, resulting in higher average and maximum inner surface temperature. Indeed, with
paraffin 10 the PCM layer stayed in a liquid phase for longer time compared to other
cases, hence leading to better performance.

• During winter season, no benefit was observed for a PCM-filled window. The energy
efficiency of the PCM-filled cavity was either worse than, or at best similar to, the
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efficiency of a standard window. This was because of the extremely low outdoor
temperatures and the lack of solar radiation.

Finally, the results indicate that paraffin 10 could be the best solution among the
investigated PCMs, because it provides the best window performance during spring and
autumn—which are season characterized by low outdoor temperatures—and second-best
performance in summer. On the other hand, this technology provides no benefits during
winter. Finally, the study suggests more investigations to evaluate the optical properties of
phase-change materials, and their effect on visual indoor comfort.
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