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Humans have a long-standing coexistence with microorganisms. In particular, the microbial community
that populates the human gastrointestinal tract has emerged as a critical player in governing human
health and disease. DNA and RNA sequencing techniques that map taxonomical composition and geno-
mic potential of the gut community have become invaluable for microbiome research. However, deriving
a biochemical understanding of how activities of the gut microbiome shape host development and phys-
iology requires an expanded experimental design that goes beyond these approaches.
In this review, we explore advances in high-throughput techniques based on liquid chromatography–

mass spectrometry. These omics methods for the identification of proteins and metabolites have enabled
direct characterisation of gut microbiome functions and the crosstalk with the host. We discuss current
metaproteomics and metabolomics workflows for producing functional profiles, the existing method-
ological challenges and limitations, and recent studies utilising these techniques with a special focus
on early life gut microbiome.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mammalian gastrointestinal tract accommodates one of the
densest microbial populations known, the gut microbiome. Each
mammalian species, including humans, has a unique microbial
community that has coevolved with its host and is finely adapted
to the species lifestyle [1]. The trillions of microbial cells, including
bacteria, fungi, protozoa, archaea, as well as viruses, all take advan-
tage of the nutrient-rich gut environment, but it is mainly bacteria
for which there is evidence of benefits being provided to host phys-
iology. Commensal bacteria augment host functions by breaking
down indigestible food components, synthesising essential
vitamins, stimulating the immune system, and protecting against
invading pathogens [2–4]. Still, the nature of the relationship
mammalian hosts share with their gut microbiomes is convoluted,
and research has so far elucidated only initial clues of the functions
involved in microbiome-host crosstalk.

The gut microbiome has been linked to the development and
progression of both infectious [5] and chronic non-communicable
diseases [6,7], including cancer [8], autoimmune [9], and neurolog-
ical disorders [10]. Practical knowledge about the gut microbiome
is highly relevant for medicine because characteristics of the gut
microbiome can be used as a complementary tool to clinical diag-
nosis and be a target for therapeutic interventions by itself. By
being a diagnostic adjunct, microbially derived biomarkers could
inform on treatment response [11], serve as a window into the
side-effects of antibiotics [12] and other drugs [13], or be a baseline
measurement before therapy initiation [14]. Most importantly,
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because of its inherent connection to human physiology, the gut
microbiome will serve as a signature of diseases, based on which
targeted therapeutic interventions such as guided nutritional plans
can be recommended [15].

In this minireview, we outline advances in gut microbiome
characterisation using high-resolution liquid chromatography–
mass spectrometry (LC–MS) for large-scale profiling of proteins
and metabolites. Initially, we discuss steps in a typical workflow
used in LC–MS-based metaproteomics and metabolomics (Fig. 1).
Although there are differences in microbial colonisation and dis-
similar protein and metabolite profiles along the gastrointestinal
tract [16], we concentrate on stool-based approaches because of
their application for biomarker discovery and non-invasive nature.
Furthermore, feces are a heterogeneous material rich in various
macromolecules and small metabolites, introducing challenges
for analysis using instrumental methods and subsequent computa-
tional workflows. We conclude the review with recent studies
using LC–MS omics for gut microbiome characterisation in the
pediatric population (Table 1), which have enabled deeper biolog-
ical insights on microbe-microbe and host-microbe interactions
during early life.

2. Need for functional description of the gut microbiome

The potential for exploiting the gut microbiome in biomedical
applications is immense; however, host-microbiome molecular
interactions are still largely uncharacterised. This is in part because
of the microbiome multi-layered complexity. The gut microbiome
configuration depends on a metabolically active microbial commu-
nity (microbiota), which dynamically responds to fluctuating
physio-chemical properties of the gut [17], the host control of its
composition [18], and other potential factors influencing the
host-microbiota interactions such as microbial pathogens and
Fig. 1. Key steps during functional investigations of the human microbiome by techniqu
robust design of a clinical study and experimental controls. Sample transport chain, stor
might influence the composition of microbial cells and different biomolecules. Mass spec
and statistical filtering of false-positive matches. Metaproteome and metabolome datase
biological information (see text for details). Finally, further experimental design is nee
specific phenotype. Figure was created with Biorender.com.
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medications. Additionally, only a small portion of human gut
microorganisms have been cultured in specialized laboratories,
and most of the microbiota remains uncharacterised using cultiva-
tion techniques. Because of the latter, culture-independent
approaches such as profiling taxonomical marker genes [16S ribo-
somal RNA gene for bacteria and the internal transcribed spacer
(ITS) region for fungi] have gained a major foothold among meth-
ods for microbiota characterisation. Although amplicon sequencing
based on 16S and ITS is limited to describing taxonomic composi-
tion, researchers can use bioinformatics methods such as PICRUSt
(https://picrust.github.io/picrust) to predict the microbial commu-
nity functional profiles based on the taxa found [19].

Amplicon sequencing and predictive functional profile tools are
restricted by low power for taxonomy resolution. Therefore more
robust whole genome shotgun sequencing is used to answer speci-
fic biological questions about less abundant taxa [20], interindivid-
ual strain transfer [21], or prevalence of gene families such as those
involved in antimicrobial resistance [22]. Besides delivering more
refined information on the microbiome taxonomic composition,
metagenomics gives insights into the functional capabilities of
the microbiome by profiling the relative abundances of genes
within the microbial community. Still, similar to other omics
strategies, many challenges remain, including efforts to answer
questions about lower abundant taxa. Aspects such as sequencing
depth, human DNA content removal, and targeted enrichment
methods for less abundant microbial taxa need to be therefore con-
sidered in the design of metagenomics experiments [23].

DNA sequencing techniques will continue to be indispensable in
microbiome studies. Still, conclusions about microbiome function
derived from metagenomics predictions must be treated as
hypotheses requiring functional validation [24]. Despite an earlier
belief that the gut microbiome functional profile is more stable and
generally conserved, based on the bioinformatic annotation of
es based on liquid chromatography-mass spectrometry. The workflow starts with a
age, and pretreatment methods need to be carefully evaluated as any of these steps
tra acquisition is followed by searching the data against a sample-specific database
ts can be analysed by different bioinformatics and statistical approaches to extract
ded to validate identified proteins and metabolites significantly associated with a
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Table 1
Metaproteomic and metabolomic studies describing early life gut microbiome functions.

Reference Main objectives(s) with highlighted LC–MS
techniques

Study
Population2

Samples
Collected
(Age)

Sample Storage and Pre-
processing

LC–MS/MS analysis;
instrument, software and
database used

Detected peptide,
proteins, or
metabolites

Key findings

Henderickx
et al.
2021
[34]

To characterise GIT functionality and
maturation of preterm infants by GIT enzyme
activity assays and metaproteomics.

Preterm infants
n = 40 (GA 24–
33), term
infants n = 3
(GA 37–42)

Gastric
aspirates
(PW 1–2),
feces (PW
1–6)

Samples were frozen at
�20 �C after collection,
and stored at �80 �C.

nano-LC–LTQ-Orbitrap-MS;
MaxQuant;
in-house database based on
16S rRNA sequencing and the
Human Microbiome
Project reference genomes

89,294 unique
proteins, 2317
protein groups
(886-human or
bovine, 1431-
bacterial)

The fecal proteome of preterm infants was deprived of GIT
barrier-related proteins compared to term infants. In
preterm infants, bacterial oxidative stress proteins were
increased compared to term infants and higher birth
weight correlated with higher relative abundance of
bifidobacterial proteins.

Lay et al.
2021
[160]

To elucidate characteristics (metabolome, 16S
rRNA profile, metagenome,
metatransciptome) of a compromised
microbiome and study the role of a synbiotic
in microbiome restoration.

127 infants
born by
elective C-
section
26 vaginally
born infants

Feces (PW
1–22)

Individual stool samples
were
lyophilized and equal
amount of dry weight was
combined to prepare a
pool sample for each
treatment group.

UPLC–MS(QExactive)
KEGG and HMDB for
metabolomics

Not given Gut microbiome acquired during elective C-section birth
was adapted to a more oxidative environment
characterised by reactive oxygen species metabolism,
biosynthesis of lipopolysaccharides and the absence of
detection of genes, transcripts involved in the metabolism
of milk carbohydrates.

Petersen
et al.
2021
[119]

Investigation of the meconium metabolome
to identify components of the neonatal gut
niche that contribute to allergic sensitization.

100 infants of
the CHILD
study

Meconium
-the first
stool
passed
after birth

Not reported besides
storage at �80 �C before
metabolomic analysis

UPLC–MS/MS
Proprietary analysis done at
Metabolon, Inc.

714 metabolites Newborns who develop immunoglobulin E-mediated
allergic sensitization by 1 year of age had a less-diverse gut
metabolome at birth, and specific metabolic clusters were
associated with both protection against atopy and the
abundance of key taxa driving microbiota maturation.

Cortes et al.
2019
[172]

To develop metaproteomics approach for
assessment of biological phenotype and
metabolic status, as a functional complement
to DNA sequence analysis.

8 infants Feces, one
timepoint
(2–
5 months
of age)

4 �C for 1 h, homogenised
stool aliquots kept at
�80 �C
Differential centrifugation
to enrich for bacterial cells

Fractionation of the peptide
mixes by strong cation
exchange chromatography;
nanoAcquity UPLC–MS (Q
Exactive);
Mascot software;
Custom database based 16S
rRNA sequencing

15,250 unique
peptides,
2154 protein
groups

Metaproteomics data yielded more refined information on
microbial composition than 16S rRNA gene sequencing of
the same samples.

Levan et al.
2019
[36]

To test whether elevated faecal
concentrations of 12,13-diHOME identified in
infants by targeted metabolomics promote
allergic inflammation in experimental
models.

91 infants Feces (first
month of
life)

Initial condition of storage
not given, later stored at
�80 �C

LC–MS (LTQ-Orbitrap-XL) Faecal oxylipin
(9,10-diHOME and
12,13-diHOME)

An increase in the copy number of bacterial epoxide
hydrolase genes linked to 12,13-diHOME production, or
the concentration of 12,13-diHOME in the faeces of
neonates was found to be associated with an increased
probability of developing atopy, eczema or asthma during
childhood.

Brown et al.
2018
[35]

To study the premature infant gut
colonization process by metagenomics and
metaproteomics.

35 preterm
infant (GA 24–
32)

Feces (first
3 months
of life)

Direct freezing at �80 �C Microbial cells enrichment by
filtration;
LC–MS/MS (LTQ-Orbitrap Elite
MS); MyriMatch v2.1; Matched
metagenome-based database:

8691 protein
families

Infants were found to be colonized by similar microbes,
but each underwent a distinct colonization trajectory.
Related microbes colonizing different infants were found
to have distinct proteomes, indicating that microbiome
function is not only driven by which organisms are
present, but also largely depends on microbial responses to
the unique set of physiological conditions in the infant gut.

Zwittink
et al.
2017
[71]

To study microbiota development during the
first six weeks in preterm infants by 16S-rRNA
gene sequencing and metaproteomics, and to
identify the factors associated with this
development.

10 preterm
infants (GA 25–
30)

Feces (PW
1–6)

Direct freezing, temporal
storage at �20 �C until
transfer to �80 �C

nano-LC–LTQ-Orbitrap-MS,
MaxQuant
Custom database based on the
bacterial part of the Human
Microbiome Project (Uniprot)-
87 bacterial species, 438,537
sequences

953 bacterial
proteins

GA-dependent microbial signature differentiated between
extremely preterm (25–27 GA) and very preterm (30 GA)
infants. In very preterm infants, the intestinal microbiota
developed toward a Bifidobacterium-dominated
community and associated with high abundance of
proteins involved in carbohydrate and energy metabolism.
Extremely preterm infants remained predominantly
colonized by facultative anaerobes and associated with
proteins involved in membrane transport and translation.

Young et al.
2015
[170]

To determine time-dependent functional
signatures of microbial and human proteins
during early colonization of the gut.

One preterm
infants (GA 28)

Feces (PW
1–3)

Immediately stored at
�80 �C until analysis

nano-2D-LC–MS/MS (LTQ
Orbitrap Velos);
SEQUEST & DTASelect,
Database derived from
metagenome data

16,605 peptides,
and 4031 proteins
(per run)

Detected human proteins included those responsible for
epithelial barrier function and antimicrobial activity.
Neutrophil-derived proteins increased in abundance,
suggesting activation of the innate immune system.

Abbreviations used: GA - gestational age; GIT - gastrointestinal tract; HMDB - Human Metabolome Database, PW - Postnatal week.
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putative protein-coding genes [25], studies measuring mRNA or
proteins have demonstrated that the metatranscriptome and
metaproteome display greater variability and sensitivity to pertur-
bation when compared to the information content of the metagen-
ome [26–28]. This is partly because of an imperfect coupling of the
gut microbiome composition and function [29], which stems from
complex regulatory networks along the gene-transcript-protein
expression path. Although metatranscriptomics gives greater
insights into the functional potential of the microbial community
than metagenomics [26], not all transcripts are translated to pro-
teins in the same manner. For example, timing of expression (tran-
scriptional regulation) and various mechanisms of post-
transcriptional regulation, such as differences in mRNA stability,
will affect transcript levels [30]. Similarly, protein abundance is a
combined result of protein synthesis and degradation, the latter
being ignored in metatranscriptomics. Accordingly, a popular
strategy to gain insights into the microbiome function has been
integration of DNA- or RNA-based information with high-
throughput measurements of microbial metabolic products and
proteins, i.e., metabolomics and metaproteomics.
3. Proteins and metabolites as microbiome functional
descriptors

Each microbial cell responds to the unique physicochemical
conditions of the host by adjusting its protein synthesis, metabo-
lism, and secretion of biomolecules that facilitate its adaptation
to the environment. Proteins carry out most functions in the cell
(e.g., catalysis of biochemical reactions, transport, maintenance of
cell structure), and protein amounts reflect the cell’s most recent
activities. Metaproteomics, the characterisation of the entire set
of proteins accumulated by all community members at a given
point in time [31], has emerged as the most relevant approach to
characterise gut microbiome function. In addition, metaproteomics
can simultaneously detect host and microbial proteins and aid in
the characterisation of host-microbiome interactions [32]. Besides
proteins, the collection of small molecules found in feces, the fecal
metabolome, can be seen as a recording of the recent chemical
communication between the microbial community and its host.
Metaproteomics and metabolomics thus provide insight into the
metabolic and physiological state of both the host and microbiome,
and give a direct description of their phenotypes (Fig. 2).

Functional characterisation of stool is an attractive option to
assess human health and disease due to the non-invasive sampling
nature and broad coverage of biomolecules reflecting different
physiological processes. Both metaproteomics and metabolomics
have been used in clinical research to discover biomarkers that
might facilitate early detection and diagnostics of various diseases.
For example, several studies demonstrated the potential of pro-
teins and peptides present in stool as biomarkers for colorectal
cancer and other bowel-related diseases in the adult population
[33]. In the pediatric population, a few metaproteomics studies
reported findings on promising protein biomarkers for gastroin-
testinal tract maturation [34,35]. Further, detection of metabolites
identified as key mediators of the interactions between the gut
microbiome and the host during early life is critical for disease pre-
vention. A potential biomarker for early prediction of disease risk is
12,13-diHOME, a linoleic acid metabolite produced by certain gut
bacteria that was elevated in neonates who developed asthma dur-
ing childhood [36]. On the other hand, indole-3-lactic acid has
been associated with beneficial microbiota in infants, decreased
inflammation in intestinal epithelial cells [37], and beneficial
immunoregulation [38]. However, the above-mentioned metabo-
lites were identified in small cohorts, and future studies must
address their validation on a larger number of clinical samples.
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Overall, although there are still limited numbers of metapro-
teomics and metabolomics studies of human diseases, the method-
ologies and available analytical tools have been recently greatly
refined and encourage further in-depth characterization of the
gut microbiome.
4. Mass spectrometry-basedmetaproteomics andmetabolomics

General principles. The combination of liquid chromatography
(LC) and mass spectrometry (MS) is a powerful analytical method
for large-scale identification and quantification of biomolecules.
LC–MS can be used in a global discovery mode to identify thou-
sands of compounds or in a targeted manner for detecting specific
analytes at levels of a few parts per billion [39]. In a prototypical
LC–MS experiment, a solution containing analytes of interest is
first separated on an LC column to reduce sample complexity.
Then, the LC effluent is directed to the mass spectrometer, where
it is nebulised, desolvated, and ionised by an ionisation source,
allowing small biomolecules to enter the gas phase as charged par-
ticles. By applying electromagnetic fields, the charged particles
migrate under a high vacuum through a series of mass analysers,
where they are sorted according to their mass-to-charge ratio
(m/z). The resulting peak patterns define a fingerprint of the origi-
nal sample. Tandem mass spectrometry (MS/MS), an analytical
setup where two or more MS acquisitions are arranged sequen-
tially, is especially useful for analysing complex biological mixtures
and when greater certainty of analyte identification is desired. In
the first MS, precursor ions of selected m/z are isolated from the
rest of the ions and fragmented by collision with an inert gas into
product ions, which are mass analysed in the second MS. This tran-
sition from precursor to product ions is specific for each compound
and distinguishes even minor changes in molecular structure [40].
Although this method provides a high degree of selectivity, some
highly similar isomers still cannot be distinguished, and additional
information (discussed in chapter 6 – Metabolite identification) or
alternative methods (nuclear magnetic resonance) are required for
structural elucidation.

Data acquisition. Data-dependent acquisition (DDA) and data-
independent acquisition (DIA) are the two standard modes used
in the untargeted identification of biomolecules based on high-
resolution mass spectrometry [41,42]. When using DDA, MS/MS
data acquisition occurs sequentially, and the resulting data are
used to search an existing database. The main DDA advantages
include 1) a simpler setup, 2) a need for less computational
resources, and 3) a more sensitive quantification than DIA. How-
ever, the main issue with DDA has been lower precision and repro-
ducibility and undersampling of low-abundance analytes
compared to DIA. In the DIA mode, MS/MS data acquisition occurs
in parallel across analytes, and the resulting MS spectra are highly
multiplexed. In contrast to DDA, all analytes are analyzed during
the second stage of tandem MS, resulting in no need for an a priori
knowledge of the sample composition. Moreover, DIA can quantify
analytes in complex mixtures over a large dynamic range, thereby
overcoming the challenge of undersampling when using DDA. One
of the current challenges of DIA is an unmet need for tools and soft-
ware that can be used to deconvolute the complex spectra pro-
duced. In this review, we will primarily discuss studies using the
DDA approach.

Data analyses. An LC–MS run produces raw data, which need to
be denoised, peak-picked, feature-detected, deisotoped, and
deconvoluted before analyte identification [43–45]. These prepro-
cessing steps are crucial as any errors produced during the initial
stage will propagate throughout the analysis. Data preprocessing
methods are constantly being improved [46,47] and are an integral
part of proteomics and metabolomics software packages, which



Fig. 2. Advantages and challenges of liquid chromatography-mass spectrometry (LC–MS) omics. Metaproteomics and metabolomics complement other meta-omic
approaches such as metagenomics that assess the diversity and functional potential of microorganisms but cannot observe their actual phenotypes. Further, metaproteomics
and metabolomics can identify proteins and metabolites originating from either the host or microbiome and give indications of their interactions. However, a wide range of
metabolites is common to the human host and gut microbes and thus not possible to discriminate by metabolomics. A significant advantage of LC–MS omics is their ability to
characterise cellular metabolism at the molecular level for different microbial species and provide system-level information for the host. Besides these advantages, five
challenges of LC–MS omics are listed. These include the chemical complexity of fecal samples, lack of standardisation, and especially bioinformatics and statistical challenges
associated with large datasets. Moreover, even if different omics analyses are done on the same sample, complex gene expression regulation processes will hinder direct
comparison between DNA abundance and the levels of transcripts and proteins, and consequently the omics data interpretation. Also, complex sample preparation protocols
and incomplete databases on proteins cleavage sites and other post-translational modifications are hindering the use of metaproteomics in the discovery of novel regulatory
mechanisms. In metaproteomics a formidable issue is the assignment of shared peptides to proteins that originate from different microbial species. Finally, both
metabolomics and metaproteomics face the challenge of low abundant molecules detection in complex mixtures. For the sake of clarity, the last two points are not illustrated
in the figure. Figure was created with Biorender.com.
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search the mass spectra against a database of candidate biomole-
cules and compare the experimental observations to theoretical
patterns (discussed in detail in chapters 5 and 6). However, due
to noisy data containing high background signals and incomplete
databases, analyte identification is prone to false positives and
mismatches. Statistical analyses that assign quality metrics are
therefore needed to ascertain the significance of analytes identifi-
cations. Several reviews have summarised recent metaproteomics
[48,49] and metabolomics [50,51] software and addressed in detail
issues associated with database size and completeness, demand for
computational power, and identification of false-positive matches.

Finally, all areas of mass spectrometry applications are cur-
rently being challenged when it comes to the standardisation of
analytical workflows [52] as well as data and method trans-
parency. Nevertheless, developments in the metagenomics com-
munity [53,54] predict that the potential of mass spectrometry
applications can be fully realised and LC–MS techniques more
widely adopted as long as the community guidelines [55] and
the FAIR, i.e., findable, accessible, interoperable, and reusable, prin-
ciples are followed for reporting of methods, data, and software
[56].
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5. Current challenges of stool-based metaproteomics

Sample storage and processing. Metaproteomics and metabolo-
mics approaches based on LC–MS technology share similar sample
collection and processing workflows, yet unique methodological
and computational challenges exist for both techniques (Fig. 2).
Among the biggest challenges of stool-based metaproteomics is
sample processing. In addition to carrying a complex microbial
community, the stool matrix comprises undigested food particles
and various host components (see chapter 6 for the macromolecu-
lar composition of feces). Therefore, an appropriate sample pro-
cessing protocol needs to be evaluated in the context of each
study’s aims and should consider unbiased methods for storage
of collected samples, microbial protein enrichment, and protein
extraction efficiency [57,58]. Sample storage is a crucial step in
any omic study because different storage temperatures introduce
alterations to microbial profiles [59,60]. Frozen intact stool mate-
rial is more stable than frozen extracted proteins [61] and thus rec-
ommended for long-term storage. Several studies tested
preservatives that maintain sample integrity at room temperature
when immediate freezing is not possible, and the results indicated



V.K. Pettersen, L.C.M. Antunes, A. Dufour et al. Computational and Structural Biotechnology Journal 20 (2022) 274–286
RNAlater as suitable for metaproteome preservation [62,63]. How-
ever, these studies only examined environmental samples, and the
effects of preservatives have not yet been characterised for stool-
derived metaproteomes.

Further, different enrichment methods, such as strategies based
on double filtering [64] and differential centrifugation [65], have
been applied to concentrate microbial cells from stool samples.
The differential centrifugation step was later shown to cause
non-specific removal of microbial cells and proteins [66]. Stool
without pretreatment thus likely provides the best representation
of the microbial proteins. Finally, differences in cell membranes
between microbes require combining chemical and physicome-
chanical methods to ensure proper disruption of different cell
types and consequently optimal metaproteome coverage [67].

Protein databases. Similar to proteomics, metaproteomics
aims to identify and quantify all proteins in a sample, but in
addition, each protein has to be correctly assigned to a micro-
bial species [55]. Proteins extracted from stool samples are first
digested into peptides whose smaller size is better suited for
LC–MS analysis. The most common approach for peptide identi-
fication is matching the experimental MS/MS spectra against
theoretical fragmentation patterns of peptides derived from in
silico digestion of a protein sequence database [48,68,69].
Currently, shared peptides originating from homologous pro-
teins remain a challenge when searching for protein IDs from
a specific species and this complexity is greatly enhanced when
profiling the microbiome.

The success of peptide identifications depends on the provided
database, making the protein database selection crucial in any pro-
teomic workflow [69]. Estimations for fecal samples suggest the
presence of 200,000 [55] to 1,000,000 [70] proteins, leading to
enormous sequence databases that bring associated bioinformatics
challenges. The larger the protein database is, the lower the sensi-
tivity of identifications, the higher the computational requirements
and the chance of false-positive matches. Hence, more tailored
databases give better results, and ideally, spectral searches should
be performed using matched metagenome or metatranscriptome
databases derived from the same sample. Although metagenome-
based databases have several drawbacks, such as being prone to
sequencing and assembly errors, often lacking useful sequence
annotation, and introduction of additional costs, the benefit of
increased protein identification rates outweighs these potential
pitfalls [69]. Alternatively, the use of 16S-guided metaproteome
databases is a practical solution. For example, a custom-made
library based on representative bacterial genera identified by 16S
rRNA sequencing [71] was compiled from reference proteomes
(http://www.uniprot.org/proteomes/) of species within these gen-
era and merged into one database together with the human
proteome.

Coverage. One of the obstacles hindering a wider use of
metaproteomics is low coverage of the expected metaproteome.
Currently, up to 60,000 protein groups have been identified in indi-
vidual metaproteomics studies [72,73], which might correspond
only to a fraction (�15-25%) of the expected proteins in the adult
gut microbiome [55,70]. The gut microbiome of an adult might
contain �1000 bacterial species and �10 million genes [74]. Using
protein abundances from metaproteomics analysis of a patient
cohort of pediatric inflammatory bowel disease [72], Zhang and
Figeys estimated that over 90% of gut microbiome-derived biomass
comes from less than 100 most abundant species [55], while the
rest of the species is identified only with one or two peptides. They
further emphasized the need for techniques that increase protein
identification for low abundance microbial taxa. Among these
methods is a combination of stable isotope labeling with activity-
based probe enrichment that allows for quantification of low-
abundance proteins with specific functionalities, and which was
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recently used in an animal study [75]. The gut microbiome of
children, and infants in particular, displays a lower species richness
and overall microbial diversity than adults [76], alluding that more
complete metaproteome coverage can be achieved even with
present-day metaproteomics workflows.

A case study recently demonstrated how low abundance micro-
bial taxa, fungal species in this example, affect microbiome dynam-
ics in a preterm infant [77]. Using a strategy of two bioinformatics
pipelines for deriving eukaryotic and prokaryotic metagenomes,
and creating a custom-built database composed of the concate-
nated metagenome-derived predicted proteomes, the authors
described unique interactions between the fungus Candida parap-
silosis and the bacterium Enterococcus faecalis within the infant
gut microbiome. Similarly, our recent findings from a gnotobiotic
study of germ-free mice colonised with defined consortia of bacte-
rial and fungal species showed that metaproteomics could describe
interkingdom interactions in the gut microbiome with high resolu-
tion [78]. The results from this animal study further highlighted
that genome-matched databases are critical for the correct assign-
ment of proteins to individual species. For 12 bacterial species with
sequenced genomes, which were used as templates for the data-
base construction, MS searches yielded relatively high coverage
of the bacterial proteomes. However, for the fungal strains that
did not have sequenced genomes and only general, species-
specific databases were available, decreased specificity of MS data
searches and lower coverage of the fungal proteomes were
achieved.

Bioinformatics. Dedicated bioinformatics software tools have
been developed and used to deal with the computing demands of
large database searches, including MetaLab [79], MetaProteomeA-
nalyzer [80], PEAKS [81], Galaxy-P [82], and ComPIL [83]. Two
approaches have proven particularly useful for improving the iden-
tification rate: combining multiple search engines that match the
theoretical spectra to the measured ones [52] and iterative search
strategies that significantly speed up the database search process
[84]. Another search strategy based on multi-staged filtering of
peptide-spectrum matches has been implemented in the ProteoS-
torm tool [85]. A percentage of the identified peptide-to-
spectrum matches will eventually be false positives, which need
to be distinguished from the correct matches. The proportion of
false-positive identifications is usually controlled by searching a
decoy database containing reversed or scrambled protein
sequences and calculating the false discovery rate threshold. How-
ever, the target-decoy approach is less sensitive in metaproteomics
because of the large search space and high sequence similarity
between many proteins, especially proteins from different taxa
with the same function [69]. Alternatives include the use of
machine learning approaches for modelling incorrect peptide-to-
spectrum matches [86,87]. These approaches distinguish correct
and incorrect peptide-to-spectrummatches using a classifier based
on learning algorithms from real data. Still, despite recent
advances in big data analyses and newly available software tools,
bioinformatics assessments of metaproteomics data remains a for-
midable challenge.

Protein and species inference. A nontrivial task in metapro-
teomics, which follows peptide identification and validation, is
peptide-to-protein-to-microbial species inference. Due to many
similar proteins resulting from closely related species and horizon-
tal gene transfer events within the microbiome, a peptide identifi-
cation can potentially be matched to several proteins from
different taxa. This is a major issue if metaproteomics data are used
for species quantification; for example, using peptides shared by
two microbial taxa will result in an overestimation of the taxon’s
abundance [88]. Therefore, the use of highly specific protein infer-
ence criteria is recommended if the aim is to accurately quantify
microbial taxa abundance.

http://www.uniprot.org/proteomes/
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Furthermore, longer peptides are more likely to be unique to a
single protein, while short peptides often match multiple proteins.
It is therefore advantageous to optimise the mass spectrometer
acquisition settings for preferential analysis of longer peptides
[89]. The protein inference problem can be further mitigated by
grouping together proteins inferred from the same set of identified
peptides. The proteins of the same group usually exhibit the same
function but have different taxonomic origins; therefore, the taxo-
nomic origin of the entire protein group can be described by the
lowest common ancestor within a phylogenetic tree [48]. Other
methods for taxonomical annotation of metaproteomic data
include the use of taxon-specific peptides, such as UniPep and Pro-
teoClade [90,91].

Post-translational modifications. Identification of post-
translational modifications (PTMs) is an aspect of metaproteomics
that can inform on regulatory mechanisms within different micro-
bial taxa or host cells. The study of PTMs using proteomics typi-
cally requires an enrichment or depletion step, and a limited
number of studies have profiled PTMs in the human gut environ-
ment from intestinal biopsies or stool samples. For example, a
pioneering study has used a peptide immuno-affinity enrichment
strategy to profile an abundant PTM in prokaryotes, lysine acetyla-
tion, in the gut microbiome [92]. The study identified lysine-
acetylated sites on both host and microbial proteins that were dif-
ferentially abundant in patients with Crohn’s disease and healthy
controls. Another form of PTMs is proteolytic processing of pro-
teins by proteases, which act in concerted networks to amplify reg-
ulatory signals and are hypothesized to be molecular effectors
involved in all aspects of biology, including microbiota homeosta-
sis [93]Dysregulated proteolysis is often implicated in the initia-
tion of inflammation but also persist in chronic inflammatory
diseases [94,95]. Using an N-terminomics approach that enriches
N-termini to determine protein cut by proteases, TAILS (terminal
amine isotopic labelling of substrates) was used to profile human
colonic mucosal biopsies where over 1642 human N-termini were
identified [96]. Using the bioinformatics software TopFIND [97],
cleavage peptide positions was compared to known proteolytic
processing preferences of human, bacterial, fungal and viral pro-
tease using the MEROPS database (https://www.ebi.ac.uk/mer-
ops/index.shtml). Interestingly, based on the reported site of
cleavage preferences, the predicted proteolytic activity was identi-
fied to be potentially from human proteases (63%), followed by
bacterial (27%), fungal (7%), and viral sources (3%) [96]. It is impor-
tant to mention that proteases cleavage sites are largely uncharac-
terized; therefore, such analysis is likely to change as more
information is added to the MEROPS database. Furthermore, little
is known about the key PTMs involved in microbiome homeostasis,
their provenance (human vs bacterial, fungal, or viral) and their
roles in promoting human pathologies.

Protein Annotation. Another important aspect of metapro-
teomics data analysis is protein functional annotation. With a
well-annotated metaproteomics dataset, one can access multiple
functional levels, from exploring broad classes of the metapro-
teome that give hints to overall functional changes to focused
pathway-level analysis within specific taxa (Fig. 2). Nevertheless,
proteins can often be assigned to multiple functional groups, which
further augments the existing challenge of assigning the identified
peptides to proteins sharing similar sequences but originating from
different species. A variety of metaproteomics software tools for
functional microbiome analysis is available and have been recently
reviewed [58] and compared [98]. The performance of these com-
putational tools differed to a large extent when tested on a single
dataset, indicating potential difficulties for cross-study compar-
isons of data acquired by different labs, with different sample
processing protocols and MS settings. Finally, bioinformatics tools
for taxonomic and functional analysis face a large number of
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unannotated sequences. This is partly because the quality of
annotations of sequence databases originating from metagenomic
projects might be low, and for most proteins there is missing
biochemical evidence of their function. Resources for proteins
functional annotations [e.g, Gene Ontology [99], eggNOG [100],
UniProt [101]], biochemical pathways [MetaCyc [102], KEGG
[103], neXtProt [104]] and interactions [STRING [105]], are essen-
tial for the use of metaproteomics to address biological questions.

In summary, the complexity and heterogeneity of stool samples
brings considerable wet lab challenges to the metaproteomics
field, but tailored protein databases, combined search algorithms,
and iterative workflows, improve protein identification. This was
demonstrated in a recent multi-lab comparison of metaproteomics
workflows, where the same samples were given to 7 different labs.
Different wet lab processing protocols introduced a variability at
the peptide level, which, however, largely disappeared at the pro-
tein level in downstream bioinformatic analysis [52]. Nonetheless,
there are still substantial bioinformatics limitations in metapro-
teomics related to the identification of false positives and func-
tional annotation of the data. Metaproteomics will benefit from
standardised bioinformatics pipelines that reliably process
metaproteome data within a short time frame and link protein
sequence to the taxonomic and biochemical information available
from community resources. Without a doubt, new efficient bioin-
formatics tools adapted to the complexity of microbiomes are the
key for more routine application of metaproteomics.
6. Current challenges of LC–MS-based metabolomics of stool
samples

Chemical complexity of feces. In addition to proteins, fecal matter
contains other biomolecules that reflect the process of nutrition to
which the gut microbiome significantly contributes. Feces contain
typically between 60 and 85% of water, depending on the fiber
intake, and the dry matter consists of microbial biomass (25–
54%), shredded epithelial cells and mucus, undigested food resi-
dues, macromolecules (fiber, protein, DNA, mucopolysaccharides)
and small molecules or metabolites [106]. The fecal metabolome
refers to the collection of these small molecules, i.e., sugars, organic
acids, amino acids, nucleotides, phenols, indoles, lipids, and hor-
mones, all of which might have roles as signaling molecules, meta-
bolic intermediates, or secondary metabolites [107]. Thus, the
metabolome can be interpreted as a molecular signature of the
host under certain physiological conditions and a record of the
interactions between the host and the gut microbiome. A recent
estimate suggested that gut bacterial products account for up to
90% of the fecal metabolome [107], reflecting the gut microbiota
composition and explaining on average �68% of its variance
[108]. Thus, the fecal metabolome is considered a functional read-
out of the microbiome [108]; however, some of the metabolites
will be common for the gut microbiota and the host as feces con-
tain a combined metabolic output of both.

Volatile metabolites. Currently, there are over 115,000 charac-
terised metabolites in the Human Metabolome Database [109], of
which 5.9% (6810) originate from feces and are accessible in the
Human Fecal Metabolome Database [107]. The annotation of
metabolites in the Human metabolome database is based on
CFM-ID, a web server for annotation, spectrum prediction and
metabolite identification from tandemmass spectra [110]. In addi-
tion, many of the assignments were performed using a combina-
tion of manual annotation and data mining software tools such
as PolySearch2 [111].

The composition of the fecal metabolome depends on the diet
[112], and although the majority of the metabolites is non-
volatile, some of the most abundant metabolites in human feces

https://www.ebi.ac.uk/merops/index.shtml
https://www.ebi.ac.uk/merops/index.shtml
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are short-chain fatty acids (SCFA) such as acetic, propionic, and
butyric acid [107]. SCFA are the best-known representatives of
almost 400 volatile organic compounds that have been identified
in human fecal samples [113]. SCFA are the end products of bacte-
rial fermentation in the gut and function as energy sources for
epithelial cells and as bioactive metabolites regulating the immune
system, intestinal barrier function [114], and microbial behavior
[115,116]. Despite SCFA’s importance, it is difficult to handle vola-
tile organic compounds because of their gaseous form, resulting in
their loss when using common sample preparation methods. Still,
several targeted metabolomics methods for SCFA detection and
quantification have been developed and successfully applied, using
chemical derivatization and a highly sensitive MS method of mul-
tiple reaction monitoring [117,118].

Methods standardisation. Recent functional investigations of the
gut microbiome document growing interest in stool metabolomics
[119,120]. However, standardised methods for collecting, process-
ing, and analysing fecal samples are still lacking, and their paucity
greatly limits study-to-study comparisons. There is inherent vari-
ability in fecal samples even within one individual that depends
on feeding status and bowel activity, reflected by dynamic changes
in metabolite composition over time [121]. Consequently,
multiple-day sampling and pooling have been proposed to min-
imise day to day variation in metabolite profiles [122]. In addition,
the fact that feces contain metabolically active microbial cells
makes their analysis sensitive to differences in collection methods,
as exposure to aerobic conditions and different temperatures can
change the metabolite composition of samples. Ethanol preserva-
tion is an alternative when immediate freezing of samples is not
possible, as shown for samples stored in 95% ethanol up to 4 days
that exhibited a metabolic profile similar to fresh samples [83].

The topographical position from which the fecal sample is taken
can also affect the metabolic profile, and therefore it is crucial to
homogenise the fresh sample before aliquoting [123]. Alternatively,
small molecule extraction can be performed using the entire fecal
sample to avoid missing metabolites present in unsampled areas.
One of the most critical steps in sample preparation is normalisa-
tion to account for feces water content. Fecal samples can have
up to 30% variation in water content, which is significant enough
to affect downstream statistical analysis and skew especially mod-
est metabolite differences between samples [106]. Finally, the
chemical diversity of the metabolome makes metabolite extraction
a formidable problem. A particular solvent can extract metabolites
of the same chemical class, and no single extractionmethod is opti-
mal for all metabolites [124]. If metabolite coverage is of utmost
importance, multiple extractions should be performed using sol-
vents of various polarity indices. Although this will increase cover-
age, it can also significantly increase financial and logistical
burdens. The points above, plus several other guidelines regarding
sample collection and preparation [107,125], must be considered
in the experimental design of metabolomics studies.

Quality control. In addition to inherent biological variation, ana-
lytical variation of LC–MS instruments can also cause issues if not
appropriately addressed. In general, LC–MS data are collected over
long periods of time and, although not a recommended practice,
are sometimes analysed in multiple batches. Consequently, LC–
MS and MS/MS data exhibit significant variability depending on
the instrument condition and operating environment. Shifts in m/
z values and retention times of molecular features between runs
might result in different spectral patterns, negatively impacting
metabolite identification or quantification. Therefore, quality con-
trol (QC) samples should be applied and used to model and correct
systematic measurement bias and between-batch errors [126]. In
targeted metabolomics, the QC sample often consists of a mixture
of the authentic chemical standards representing the target ana-
lytes. The selection of an appropriate QC sample for untargeted
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assays is more complex. It is generally recommended that the QC
sample reflects the aggregate metabolite composition of the bio-
logical samples in a given study, and a homogenous pooled QC
sample prepared from all biological samples under study should
be analyzed before injection of individual samples, after a fixed
number of samples have been injected, and also after injection of
the last sample [126]. Several software tools based on mathemat-
ical models for signal correction [127–129] and simulation of QC
sample data [130] have the potential to correct batch-to-batch
variations and instrumental drift. Of note, the use of pooled QC
samples is also valid for metaproteomics studies.

Metabolite identification. From the popular instrumental plat-
forms used for metabolomics, i.e., nuclear magnetic resonance
spectroscopy, LC–MS, and gas chromatography coupled to MS,
LC–MS approaches offer higher sensitivity and relatively broad
metabolite coverage. However, this sensitivity often results in
more laborious identification of analytes [107]. A standard
approach for metabolite identification in untargeted, discovery-
based analysis, analogous to the one used in (meta)proteomics, is
querying metabolomic databases for the molecular mass values
of the identified peaks using a tolerance window. Because metabo-
lomics databases lack genetic templates as those used in metapro-
teomics, the databases will likely be incomplete with missing
candidate matches for more rarely occurring compounds. More-
over, compared to peptides, small metabolites often lack common
building blocks and are built from both very frequently occurring
elements (C, H, O, N, S, and P) and trace elements (e.g., Na, K, Mg,
Zn, Fe, Ca, Mo, Cu, Co, and Mn). Even though MS analysis can accu-
rately determine the mass of a compound, this information alone is
not sufficient to differentiate isomers, and additional information,
including the fragmentation spectrum and retention time, is criti-
cal for structural elucidation of a mass measurement [131].

The use of standards for comparing analyte retention times and
mass fragmentation patterns assists in accurate biomolecules iden-
tification and especially quantification. Once the metabolite has
been confidently identified, an additional challenge posed is the
determination of its concentration in the sample studied. Given
that potential biomarkers of health and disease states will most
often be found in both conditions, though at different levels, accu-
rate quantification of promising targets is a desirable feature.
Although a regular MS run will provide semi-quantitative informa-
tion on a metabolite, such as peak area and signal intensity, due to
the variation between runs commonly seen in MS experiments,
more careful analyses are required to directly compare metabolite
concentrations in different samples. This is usually achieved using
metabolite standards containing deuterium, a heavy hydrogen iso-
tope. By spiking samples with known concentrations of the deuter-
ated standard and comparing the peaks of the standard and target
compounds, one can accurately determine the absolute concentra-
tion of the metabolite studied. Still, because of an impracticality for
untargeted analyses in which standards are not available for most
compounds, general approaches based on prediction models are
gaining importance [132].

In conclusion, high mass accuracy of state-of-the-art MS instru-
ments and complementary analysis of molecular patterns are
increasingly able to assign putative structures to the detected fea-
tures despite the inherent challenges that metabolomics faces. But
instrument advances can do little if the databases are not in con-
stant improvement. As mentioned above, only 6810 metabolites
in the Human Metabolome Database are annotated as being found
in feces. This is possibly orders of magnitude below the real chem-
ical diversity of the human gastrointestinal tract. Equally impor-
tant is the development and improvement of metabolomics
software tools, which still need to address many challenges associ-
ated with metabolite identification, diverse data types, and large
volumes of data [133–135].
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7. Gut microbiome establishment: Insights from
metaproteomics and metabolomics studies

Stool metaproteomics and metabolomics have been used to
study various diseases; yet, here we focus on their use for func-
tional characterisation of the early life gut microbiome (Table 1).
Understanding the establishment of the human gut microbiome
during infancy is paramount for modern medicine because of its
implications for long-term health [136,137]. Numerous reports
have demonstrated that mammalian systems are adapted to
receive specific microbial signals necessary for optimal physiolog-
ical development [138,139]. Specifically for humans, an infant gut
microbiome characterised by early bacterial colonisers from the
genera Bifidobacterium and Bacteroides, adapted to utilise human
milk oligosaccharides, appears to be a cornerstone of healthy
development. Perturbations of the microbiome at the earliest time
in life during maximal immune, metabolic, and neuroendocrine
development predispose infants to non-communicable diseases
caused by underlying defects in physiology [9,140] as well as more
frequent infections [141–143]. The biochemical processes that
govern the microbial dynamics during gut colonisation remain a
poorly understood yet exciting research frontier.

Initial colonisation. Integrative analysis of metagenomic data
from 34 longitudinal studies worldwide showed that gut micro-
biome maturation happens in an orchestrated manner, suggesting
that the timing of microbial succession is biologically determined
[144]. The gut microbiome of infants born at term and vaginally
is seeded with vertically transmitted microbes from the mother
and is initially dominated by facultative anaerobic bacteria (i.e.,
Streptococcus spp., Enterobacterales, Staphylococcus spp.), which
are soon replaced by a community dominated by Bacteroides and
especially Bifidobacterium during the lactation period [145,146]. A
common belief has been that the initial facultative anaerobes con-
sume oxygen and facilitate the subsequent engraftment of obligate
anaerobes. This view was recently questioned by a multi-omic
study that provided evidence of anaerobic fermentation of amino
acids as a mechanism for the initial growth of E. coli, the most com-
mon early colonizer [120]. A gnotobiotic animal study showed a
similar finding: establishment of the dominant intestinal anaerobe
Bacteroides thetaiotaomicron was dependent on the Bacteroides
inoculum size and preestablishment by bacteria capable or not of
consuming oxygen [147]. Another example of the versatile meta-
bolic capacities of facultative anaerobes from the order Enterobac-
terales is their ability to degrade fatty acids and lipids [148], which
constitute �50% of the infant’s first stool [119]. Additional transla-
tional research using functional omics needs to clarify whether the
presence of the very first microbial colonisers is driven by their
better survival in the environment [147] and increased capacity
to degrade host-derived components such as proteins [149] and
lipids [150], or a combination of these factors.

Foundation species. The strongest documented disruptors to the
gut microbiome development are birth by C-section, lack of breast-
feeding, and antibiotic use in infancy [141,151,152]. Alterations of
the microbiota composition by these adverse external factors have
also been documented at the metabolome level. For example, early
antibiotic exposure in preterm infants functionally altered the gut
metabolic output, including pathways related to vitamin biosyn-
thesis, bile acids, amino acid metabolism, and neurotransmitters
[153]. Similarly, different early life feeding methods, i.e., breast-
feeding, formula-feeding, or their combination, induced distinct
fecal metabolite profiles in infants [154]. The above reports illus-
trate how the metabolic output of the gut microbiome directly
depends on its composition [155], and adverse external factors
may affect the levels of most metabolites currently detectable, as
predicted in an animal study [156].
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A signature of C-section born infants is a lack of Bacteroides spp.,
delayed Bifidobacterium development, and an expansion of faculta-
tive anaerobes adapted to a more oxidative environment and with-
out the genomic capability to metabolize milk carbohydrates
[152]. Although several metagenomic studies compared fecal
microbiota composition of infants delivered vaginally and by C-
section, characterisation of the microbiota functions is largely
missing. Nevertheless, there is evidence for the functional benefits
of Bifidobacterium species, strict anaerobes from the phylum Acti-
nobacteria that are the founder species of the gut microbiome
associated with a protective immune system modulation [157].
Bifidobacterium persists at high levels during lactation because of
their unique genomic capacity to utilise human milk oligosaccha-
rides. In breastfed infants, high bifidobacterial levels lead to a high
SCFA concentration and a decrease in the gut pH [158–160], limit-
ing the growth of other bacteria, such as Enterobacterales [161].
Supplementation with Bifidobacterium strains has also been associ-
ated with altered fecal metabolome [162], lower levels of potential
pathogens such as Enterococcus, Enterobacter, and Klebsiella, and
reduced carriage of antimicrobial genes [163,164].

In addition to host management of the first gut microbiota
through breastfeeding, IgA – the most abundant immunoglobulin
isotype secreted into the gut, and received by the infant via breast-
milk – appears to play a key role in gut microbiota maturation
[165]. This was demonstrated in a metaproteomic investigation
that assessed gut microbiota maturation in newborn mice [166],
using an IgA-deficient (Rag2�/�) mouse genetic background. The
results confirmed the role of breastfeeding in modulating the
mouse gut microbiota in the first days of life, but at the same time
suggested other concurrent factors, related to the mother’s gut
microbiota, immune response, or regulation by the mucosal
immune system itself.

Preterm infants. The above-described gut colonisation process is
very different in infants born prematurely. Reports describing the
gut microbiome composition showed that premature infants dis-
play reduced alpha diversity, delayed colonization with obligate
anaerobic bacteria, and increased abundance of opportunistic
pathogens compared to term infants [167,168]. A recent metapro-
teomics study followed the fecal microbiome of preterm infants
during the first six weeks of life and brought additional informa-
tion on the physiology of the premature gut [34]. Compared to
term infants, gastrointestinal barrier related proteins were less
abundant in preterm infants’ feces, while bacterial oxidative stress
proteins of facultative anaerobes were increased. The authors
hypothesised that these findings might suggest the introduction
of oxygen into the gut lumen by respiratory support commonly
used in neonatal intensive care units. Previously, respiratory sup-
port was associated with delayed colonisation by strict anaerobes
[138], a hallmark of the preterm gut colonisation process. Subse-
quently, the aerobic environment might decrease the abundance
of strict anaerobes such as Bifidobacterium spp., the primary pro-
ducers of SCFA involved in the production of anti-inflammatory
cytokines and stimulation of the intestinal barrier function [37,38].

A study that combined metagenomics and metaproteomics has
given an ecological perspective on the premature infant gut colo-
nization process. This genome-resolved metaproteomics study
demonstrated that the contributions of individual organisms to
microbiome development depend on microbial community con-
text [35]. Furthermore, the microbial metaproteome was more
variable over time than the community composition, and geneti-
cally similar microbes colonizing different infants were found to
have distinct proteomes. These results indicated that microbiome
function is not only driven by the type of organisms present but
largely depends on microbial responses to the unique set of
physiological conditions in the infant’s gut. Similarly, the stool
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metabolome of preterm infants appears to be distinct between
individuals, without any apparent associations to health outcomes,
such as necrotizing enterocolitis and sepsis [169].

Studies describing preterm infants gut colonisation have domi-
nated the early life microbiome functional description because of
more straightforward sample collection logistics and availability
of detailed clinical data. Although these reports are specific for
the premature gut microbiome, there might be certain parallels
with the general microbial colonisation process in humans, regard-
less of gestational age. For example, a case study of one preterm
infant documented how bacterial activity transits toward more
complex metabolic functions over the first month of life [170].
Based on the identified proteins functional classification, the
authors predicted that the gut microbial community first focused
its resources on biomass growth, protein production, and lipid
metabolism. After this initial microbiome establishment during
the first two weeks, it switched to more complex metabolic func-
tions, such as carbohydrate metabolism. Several reports on the
preterm infant fecal metaproteome also documented low bacterial
load in the first weeks after birth, showing a time-dependent
increase in the relative abundance of microbial proteins while
the abundance of host- and dietary-derived proteins gradually
decreased [71,170,171]. A similar trend has also been observed
for term infants, although the observation was based on metapro-
teomes of only three infants [34]. Overall, these studies highlight
the strong interdependency between the human host and the gut
microbiome for both to reach maturity. Proteins that directly reg-
ulate gut colonisation and maturation will serve as valuable mark-
ers for intestinal barrier development and immune system
education.

Time course metaproteomics had also been applied to specific
actions of microbial eukaryotes within the gut microbiome [77].
This case study of low abundance microbial taxa characterised
fecal samples from a premature infant with a documented Candida
blood infection with the aim to describe the behaviour of the fungi
in the human gut. Metagenomic sequencing confirmed the pres-
ence of C. parapsilosis in the infant’s fecal sample, with indications
of robust establishment and active function within the gut micro-
biome. Further, protein-derived metabolic activities of bacteria,
fungi, and their shared activity showed distinct partitioning of
function and cooperation between eukaryotes and prokaryotes
within the community during early life. This study highlights the
importance of characterising interkingdom interactions within
the human microbiome, as these are essential components of the
relationship between the microbiome and its host.
8. Conclusions and outlook

Omics based on LC–MS are gradually gaining momentum to
identify with high precision functionalities of the gut microbiome.
LC–MS analyses of stool assist in unravelling interactions between
different microorganisms residing in the gut as well as those with
the host, offering insights beyond taxonomic composition and
genomic information. MS-based omics provide data that DNA
sequences cannot; that is which proteins and metabolites are pre-
sent and their quantitative information. In addition, identification
of post-translational modifications is only possible by
metaproteomics.

The combination of LC–MS techniques with DNA sequencing
applied on longitudinal human studies has already led to the
description of nuanced signatures of healthy and disease states.
Still, several methodological and bioinformatics challenges persist,
with stool sample chemical complexity, lack of standardised
method, and incomplete databases being the main issues con-
tributing to low metaproteome and metabolome coverages
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(Fig. 2). However, once the current challenges are overcome, it will
be possible to fully define the intertwined metabolic networks of
individual gut microbes and the human host.
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