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Abstract
The class of autoregressive (AR) processes is extensively used tomodel temporal dependence
in observed time series. Such models are easily available and routinely fitted using freely
available statistical software like R. A potential problem is that commonly applied estimators
for the coefficients of AR processes are severely biased when the time series are short. This
paper studies the finite-sample properties of well-known estimators for the coefficients of
stationary AR(1) and AR(2) processes and provides bias-corrected versions of these esti-
mators which are quick and easy to apply. The new estimators are constructed by modeling
the relationship between the true and originally estimated AR coefficients using weighted
orthogonal polynomial regression, taking the sampling distribution of the original estimators
into account. The finite-sample distributions of the new bias-corrected estimators are approx-
imated using transformations of skew-normal densities, combined with a Gaussian copula
approximation in the AR(2) case. The properties of the new estimators are demonstrated
by simulations and in the analysis of a real ecological data set. The estimators are easily
available in our accompanying R-package for AR(1) and AR(2) processes of length 10–50,
both giving bias-corrected coefficient estimates and corresponding confidence intervals.

Keywords Bias correction · Gaussian copula · Orthogonal polynomial regression ·
Sampling distribution · Skew-normal approximation

1 Introduction

The class of autoregressive (AR) processes is one of the most central and widely applied time
series models. These processes are simple and intuitive, expressing the current value of a time
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series as a linear combination of previous values and additional random noise. Specifically,
a pth order autoregressive process (AR(p)) can be defined by

xt − μ =
p∑

j=1

φ j (xt− j − μ) + wt (1)

where the set {φ j }pj=1 are fixed coefficients and {wt } is a Gaussian white noise process,

wt ∼ N (0, σ 2). Throughout this paper, the mean μ = E(xt ) is assumed to be unknown.
Originated by the famous Yule–Walker equations (Yule 1927; Walker 1931), the statistical
properties of AR models have been thoroughly studied and established, see e.g. Brockwell
and Davis (2002), Box et al. (2008) and Shumway and Stoffer (2017) for comprehensive
introductions. However, one problem still remains. Commonly used estimators for the AR
coefficients are severely biased for small sample sizes, e.g. having less than 50 observations
(Shaman and Stine 1988; Huitema andMcKean 1991; DeCarlo and Tryon 1993; Cheang and
Reinsel 2000).

The estimation bias for finite-sample AR processes is problematic in several fields of
applications in which realistic time series lengths are inherently short, e.g behavioral data
(Arnau and Bono 2001), economic time series (Patterson 2000; Kruse et al. 2018), and in
environmental and ecological research studies (Bence 1995; Ives et al. 2010). One example
is within population ecology, where the coefficient estimates of fitted AR processes give
intrinsic relevant ecological information characterizing population dynamics like density-
dependence, cyclical frequency and measures of synchrony (Moran 1953; Bjørnstad et al.
1995; Stenseth et al. 2003; Hugueny 2006; Cohen and Saitoh 2016). In general, the bias in
the parameter estimates for finite-samples affects forecast accuracy (Stine 1987; Kim 2003)
and even a small bias in the parameter estimates might have a severe influence in estimating
non-linear functions of the coefficients, e.g. the impulse response function (Patterson 2000).
The estimation bias could also make commonly used hypothesis tests to classify stationary
AR processes unreliable for finite-samples (Liu and Maharaj 2013) as such tests typically
rely on asymptotic distributions.

This paper studies the finite-sample properties of commonly applied estimators for the
coefficients of stationary AR(1) and AR(2) processes and provides bias-corrected versions
of such estimators. The AR(1) and AR(2) processes do have considerable practical impor-
tance (Box et al. 2008, p. 53), especially for short time series and various estimators for
the AR coefficients are easily available. The popular stats:::ar-function in R (R Core
Team 2020) implements the closed form solution given by the Yule–Walker equations as
its default. The ar-function also provides estimates using Burg’s method (Burg 1967) and
the ordinary least squares approach. The latter method is not considered further here as the
resulting coefficient estimates often fall outside the stationary area of the AR processes.
In addition, the stats:::ar-function implements the conditional maximum likelihood
estimator (MLE), maximizing the likelihood given initial values of x0, . . . , xp−1 in (1).
The R-package FitAR:::FitAR (McLeod and Zhang 2008) provides the exact maximum
likelihood estimator, where initial values are set using Burg’s method. All of the mentioned
estimators give very similar results for large sample sizes while the exact MLE has been
claimed to usually perform better than alternatives for short time series (McLeod and Zhang
2006; Box and Luceno 1997).

The upper panels of Fig. 1 illustrate the average coefficient estimates of AR(2) processes
of length n = 15 (left) and n = 30 (right), using the exactMLE, Burg’s method and the Yule–
Walker estimator. The results are based on generating 10,000 time series for each selected
combination of (φ1, φ2) within the triangular stationary area of such processes. The AR(2)
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Fig. 1 Mean estimates of selected pairs (φ1, φ2) based on 10,000 simulations. Upper panels: The estimates
using the exact MLE (black), Burg’s algorithm (red) and the Yule–Walker solution (blue) when n = 15
(left) and n = 30 (right). Lower panels: The corresponding corrected mean estimates found by our proposed
simulation-based approach

process has pseudo-periodic behavior for pairs of coefficients below the given parabolic
curve. In the lower part of this region, the bias of the exact MLE and Burg’s method is not too
severe but it increases with increasing values of φ2. The Yule–Walker approach clearly gives
the most biased results for both sample sizes. The average estimates using the conditional
MLE are not illustrated as these were not visually distinguishable from the exact MLE.

A number of methods to provide bias-corrected estimators for the AR coefficients have
been proposed in literature. These range from asymptotic-based formulas for the bias (Mar-
riott and Pope 1954; Kendall 1954; Shaman and Stine 1988; Tanaka 1984; Cordeiro and
Klein 1994) to methods using restricted maximum likelihood (Cheang and Reinsel 2000)
and bootstrapping (Thombs and Schucany 1990; Kim 2003). Andrews (1993) introduced a
median-unbiased correction for the least squares estimator of the AR(1) coefficient which
was generalized to give an approximate median-unbiased estimator of AR(p) processes in
Andrews and Chen (1994). This estimator is implemented in the R-package BootPR (Kim
2014), also including the estimators of Shaman and Stine (1988) and Roy and Fuller (2001).
The resulting estimates are not constrained to fall within the stationary area of the processes.

Our bias-correcting approach differs from previous suggestions in the sense that wemodel
the true AR coefficients as a function of original estimates, accounting for the sampling
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distribution of the original estimator. This is achieved by a brute-force simulation approach
where we generate AR(1) and AR(2) processes for a fine grid of underlying true values of the
coefficients. The relationship between the true and estimated coefficients is then described
using a weighted orthogonal polynomial regression model. In the AR(2) case, the regression
model is fitted based on a total of more than 59 million time series for a given sample
size n. The resulting bias-corrected average estimates are illustrated in the lower panels of
Fig. 1, again using the exact MLE, Burg’s method and the Yule–Walker solution as original
estimators. We do see a clear improvement in the bias properties for all of the methods.
Admittedly, the bias-corrected estimators will not be completely unbiased as the relationship
between the true and originally estimated coefficients cannot be modeled perfectly. This is
especially seen for coefficient combinations along the borders of the triangular area.

The given brute-force simulation approach makes it possible to also derive sampling
distributions for both the original and bias-corrected estimators. Specifically, we have fitted
skew-normal distributions to transformations of the originally estimated coefficients ofAR(1)
and AR(2) processes. The parameters of the skew-normal distribution are then modeled in
termsof the true underlyingARcoefficients, again using orthogonal polynomial regression. In
the AR(1) case, it is straightforward to obtain confidence intervals byMonte Carlo sampling,
both when the original and bias-corrected estimators are used. In the AR(2) case, confidence
intervals are found by combiningMonteCarlo sampling and aGaussian copula representation
to preserve correlation between the estimated AR coefficients.

This paper is structured as follows. Section 2 outlines our modeling approach giving
bias-corrected estimators of the first-lag autocorrelation coefficient of AR(1) processes and
derive their sampling distributions. In Sect. 3, the suggested approach is extended to give bias
correction and approximate sampling distributions in estimating the coefficients of AR(2)
processes. Section 4 illustrates the bias correction for AR(2) processes for a real ecological
data set, where the autoregressive coefficients represent direct and delayed density depen-
dence for a vole species. Concluding remarks are given in Sect. 5. The Appendix describes
our accompanying R-package which can be used to obtain the bias-corrected estimates and
95% confidence intervals for time series of length n = 10, 11, . . . , 50.

2 Finite-sample properties for AR(1) processes

The AR(1) model has a simple one-step dependence as defined by (1) where p = 1. The bias
in estimating the first-order autocorrelation coefficient φ1 = φ has been studied by several
authors, see e.g Krone et al. (2017) for a recent comparative simulation study of AR(1)
estimators in short time series. The bias of the exact MLE is illustrated for different sample
sizes in Fig. 2, giving empirical averages for 10,000 simulations for a fine grid of φ-values
in the stationary area (−1, 1).

A common way to explicitly construct an unbiased estimate for a parameter φ is simply
to subtract an estimate of the bias from the original estimator, providing a bias-corrected
estimator of the form

φ̂c = φ̂ − Ê(φ̂ − φ).

For example, the exactMLE can be corrected using the asymptotic bias−(1+3φ)/n (Tanaka
1984; Cordeiro and Klein 1994). Naturally, such a linear correction would not be accurate
enough for small sample sizes. In Arnau and Bono (2001), the ordinary autocorrelation
estimator for φ is bias-corrected by adding the absolute value of a polynomial fit to the
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Fig. 2 The estimated empirical
bias φ̂ − φ of the exact MLE for
AR(1) processes with length
n = 10 (black), n = 15 (red),
n = 20 (green), n = 30 (blue),
n = 40 (light blue) and n = 50
(pink)
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empirical bias. This has a slight resemblance to our approach, but an important difference is
that we do not try to estimate or model the bias. Wemodel the true parameter value φ directly
as a function of original estimates using a large number of simulations. Similarly, we provide
approximate sampling distributions bymodeling parameters of skew-normal approximations
as functions of the true values of φ.

2.1 Deriving bias-corrected estimators by simulation

Let φ̂ denote an original estimator for the first-lag autocorrelation coefficient of AR(1) pro-
cesses. Our goal is to construct a bias-corrected estimator for φ such that E(φ̂c) = φ for
all values of φ. To achieve this we model the relationship between the true and estimated
parameter values using a weighted orthogonal polynomial regression model, using the true
parameters as response variables. The coefficients of the regression model are calculated by
minimizing the weighted squared error between the corrected estimates and the true param-
eter values for a grid of true values used as a training set. This provides a predictive model
which can then be used to provide bias-corrected estimates for any original estimate φ̂. The
specific steps in constructing this bias-corrected estimator can be summarized as follows:

1. To avoid constraints on the support of φ, we first introduce a monotonic transformation

g(φ) = logit

(
φ + 1

2

)
, (2)

which has infinite support. This facilitates optimization and implies that our inverse
transformed bias-corrected estimate will always be within the stationary area of the
AR(1) process.

2. Let φ̂ denote an original estimator of φ. We model the true AR coefficient using an
orthogonal polynomial model

φ = f (φ̂,β) = g−1

(
K∑

k=0

βkhk(g(φ̂))

)
, φ̂ ∈ (−1, 1) (3)

where β = {βk}Kk=0 denotes a fixed set of regression coefficients while {hk(.)}Kk=0 repre-
sents a set of orthogonal polynomials of order k. Here, we choose to use the probabilists’
Hermite polynomials which are orthogonal with respect to the standard normal density.
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These polynomials are defined by

h0(x) = 1, h1(x) = x, hk+1(x) = xhk(x) − khk−1(x), k ≥ 1. (4)

3. To estimate β for a given sample size n, we generate a total of m = 10,000 time series
for a fine grid of φ-values, which can then be considered as our training set. Note that
the suggested estimator is a non-linear function of φ̂ implying that

E( f (φ̂,β)) �= f (E(φ̂),β).

This means that the optimization takes the estimated value for each time series into
account not just the average estimate of the m simulations for each φ. The regression
coefficients are thus found by solving the optimization problem

β̂ = argmin
β

l∑

r=1

1

s2r

⎛

⎝ 1

m

m∑

j=1

g−1

(
K∑

k=0

βkhk(g(φ̂r j ))

)
− φr

⎞

⎠
2

= argmin
β

l∑

r=1

1

s2r

⎛

⎝ 1

m

m∑

j=1

f (φ̂r j ,β) − φr

⎞

⎠
2

. (5)

The quantity φ̂r j represents the estimate of φr in simulation j . Specifically, we choose
the grid of true parameter values defined by φr ∈ (−0.95,−0.94, . . . , 0.95), implying
that l = 191. The sample variances s2r of the m parameter estimates of φr are used as
weights. This gives a unique set of regression coefficients β̂ for each sample size n and
for each original estimator φ̂, implying that β̂ accounts for the sampling distribution of
the estimator φ̂. The bias-corrected estimator is then given by φ̂c = f (φ̂, β̂) which is
used to predict the true value of φ for a new estimate φ̂.

In minimizing (5), we have chosen to exclude values of φ close to the edges of the
stationary interval in the training set. This is to avoid a severe inflation of the variance caused
by forcing the estimator to give unbiased estimates at the edges of the interval. Also, we have
chosen to use weighted regression where the weights s2r represents the ordinary unbiased
sample variances of the m = 10,000 estimates φ̂r . This choice was made to robustify the
given modeling approach to increasing sample variances close to the boundaries of the given
interval but this did not have any major impact on the optimized values for β.

In practice, the given approach can be used to find corrected estimates for any estimator
φ̂ giving values within the stationary range, not only the four estimators considered here.
The corrected estimates might be equal to ±1, but will never fall outside of the interval
[−1, 1]. Our implementation includes the exact and conditional MLEs, Burg’s algorithm and
the Yule–Walker solution. We have stored all the sets of regression coefficients for these
four estimators for AR(1) series of length n = 10, 11, . . . , 50. To facilitate use of the given
bias-corrected estimates we have provided an accompanying R-package, see the Appendix.

2.2 Bias-correcting curves

Figure 3 illustrates how the correctionworks forAR(1) processes of lengthn = 15 andn = 30
for a fine grid of estimated φ values in the interval (−1,1). The given curves correspond to
using the exact MLE, Burg’s algorithm and the Yule–Walker solution where the corrected
estimators are calculated using up to cubic Hermite polynomials (K = 3). For an original
estimate φ̂ given at the horizontal axis, we calculate the corresponding corrected estimate φ̂c
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Fig. 3 The computed correction curves when n = 15 (left) and n = 30 (right) for the exact MLE (black),
Burg’s method (red) and the Yule–Walker solution (blue)

at the vertical axis. Naturally, this gives a quite large bias-correction when n = 15, where
original estimates above 0.5 are corrected to a value close to 1. In the case of n = 30, we
notice that the correction curves are close to linear for an internal subset of the interval.

The original and the corresponding corrected average estimates for m = 10,000 simula-
tions are displayed in Fig. 4. Using the correction, we do get close to unbiased results both
when n = 15 and n = 30. The overall average bias and sample variance for the estimators
are given in Table 1. We also compute the overall root mean squared error (RMSE), which
in the case of the corrected estimator is defined by

RMSE(φ̂c) =
√√√√ 1

ml

l∑

r=1

m∑

j=1

(
φ̂c,r j − φr

)2

where φ̂c,r j is the corrected estimate of φr in simulation j . The RMSE for the original
estimator and the bias and variances are computed correspondingly.

The results illustrate the well-known bias-variance trade-off implying that a decrease
in the bias of an estimator will inherently cause an increase in the variance. Using the bias-
corrected estimators we get approximately unbiased results only causing a negligible increase
in RMSE, especially when n = 30. By increasing the order K of the Hermite polynomials,
the bias can be further decreased but this also increases the variance giving higher RMSE
and K = 3 was opted to be the best choice. In the minimization we could also have excluded
more of the φ-values at the ends of the unit interval, e.g. using φ ∈ (−0.9, 0.9). This would
reduce the variance but naturally also increase the bias close to the limits of the interval
(−1, 1).

2.3 Sampling distributions for the original and corrected estimators

Commonly applied estimators for the coefficients of AR(p) processes are asymptotically
normal (Hannan 1970) but the finite-sample distributions of these estimators have not been
thoroughly studied. Figure 5 illustrates the sampling distribution for the logit transformation
g(φ̂) where φ̂ is the exact MLE for AR(1) processes of length n = 30 and where the
underlying true values are φ ∈ (−0.9, 0.6, 0.9). The fitted curves are skew-normal densities
which are seen to give very good approximations to the given sampling distributions. These
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Fig. 4 The average original (dashed) and resulting corrected average estimates (solid) for 10,000 simulations,
generating time series of length n = 15 (left) and n = 30 (right). The estimators used include the exact MLE
(black), Burg’s method (red) and the Yule–Walker solution (blue)

Table 1 The average bias, variance and root mean square error for the original and bias-corrected estimators
of φ when n = 15 and n = 30

Method Original estimator Bias-corrected estimator

Bias Variance RMSE Bias Variance RMSE

n = 15 Exact MLE −0.080 0.055 0.263 −0.0015 0.084 0.286

Conditional MLE −0.080 0.055 0.263 −0.0015 0.084 0.286

Burg’s method −0.081 0.052 0.263 −0.0015 0.085 0.288

Yule–Walker −0.079 0.046 0.265 −0.0013 0.089 0.296

n = 30 Exact MLE −0.037 0.026 0.171 −0.0004 0.031 0.174

Conditional MLE −0.037 0.026 0.171 −0.0004 0.031 0.174

Burg’s method −0.038 0.025 0.172 −0.0005 0.031 0.175

Yule–Walker −0.038 0.024 0.175 −0.0005 0.032 0.178

The averages are computed based onm = 10,000 simulations for each value of φ ∈ (−0.95,−0.94, . . . , 0.95)

have been fitted using the function fGarch:::snormFit in R (Wuertz et al. 2020),
implementing the skew-normal density as defined by Fernandez and Steel (1998), i.e.

πsn(x) = 2

ξ + 1
ξ

(πG(x/ξ)H(x) + πG(xξ)H(−x)) . (6)

The functionπG(.) denotes the standard normal density while H(x) is the ordinary Heaviside
or unit step function. In addition to the skewness parameter ξ > 0, the skew-normal density
is parameterized in terms of a mean μ and standard deviation σ , using an input argument
(x − μ)/σ .

Based on the skew-normal density approximation for g(φ̂), we can derive finite-sample
distributions for the estimators φ̂ and the corresponding bias-corrected estimators φ̂c. Let
π̃sn(.) denote the skew-normal approximation for the logit transformation g(φ̂). The approx-
imate sampling distribution for the original estimator is easily expressed analytically by the
ordinary change of variable transformation

π̃(φ̂) = π̃sn(g(φ̂))

∣∣∣(1 + φ̂)−1 + (1 − φ̂)−1
∣∣∣ . (7)
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Fig. 5 Sampling distributions for g(φ̂) where φ̂ is the exact MLE. The dashed lines represent the true values
of g(φ) where φ = −0.9 (left), φ = 0.6 (middle) and φ = 0.9 (right)
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Fig. 6 Sampling distributions for φ̂ (upper panels) and φ̂c (lower panels) where φ̂ is the exact MLE. The
dashed lines give the true values of φ where φ = −0.9 (left), φ = 0.6 (middle) and φ = 0.9 (right)

Likewise, an approximation to the sampling distribution for the corrected estimator can be
derived numerically as

π̃(φ̂c) = π̃sn(s(φ̂c))

∣∣∣∣∣
ds(φ̂c)

dφ̂c

∣∣∣∣∣ , (8)

where s(φ̂c) represents a spline function approximating the monotonic relationship between
φ̂c and g(φ̂). The resulting sampling distributions for the original and corrected estimators
are shown in Fig. 6, where n = 30 and φ ∈ (−0.9, 0, 6, 0.9).

To calculate the sampling distributions in (7)–(8) for an estimator φ̂, we first need to
assess the relationships between the parameters of the skew-normal approximation and φ.
Using generic notation, let θ̂r = (θ̂1,r , θ̂2,r , θ̂3,r ) = (μ̂r , σ̂r , ln(ξ̂r )) denote the param-
eters of the skew-normal approximation to m = 10,000 samples of g(φ̂r ), for each
φr ∈ (−0.99,−0.98, . . . , 0.99). Each of the estimated skew-normal parameters are used
as response variables in separate orthogonal polynomial regression models

123



Statistical Inference for Stochastic Processes

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

φ

M
ea

n 
μ

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

φ

S
ta

nd
ar

d 
de

vi
at

io
n 

σ

−1.0 −0.5 0.0 0.5 1.0

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

φ

S
ke

w
ne

ss
 ξ

Fig. 7 The mean, standard deviation and skewness parameter of the skew-normal approximation for g(φ̂) as
smoothed functions (red) of φ, where φ̂ represents the exact MLE when n = 30

θ̂s,r =
K∑

k=0

bk,shk(g(φ̂r )), s = 1, 2, 3, r = 1, . . . , 199 (9)

The resulting estimates of the coefficients, {b̂k,s}, are found straightforwardly by ordinary
least squares, using a polynomial order of K = 3. Figure 7 illustrates the relationships
between each of the parameters of the skew-normal approximation to g(φ̂r ) and φr , where
φ̂r denotes the exact MLE for series of length n = 30. The red curves illustrate the smoothed
version of these curves which can then be used to predict the parameters of the skew-normal
approximation for a new value of g(φ̂). Especially, we notice that the skewness parameter is
quite close to 1 for the interior of the given interval, implying that the sampling distributions
for g(φ̂) are not very far from being Gaussian. The skewness increases as φ increases towards
the upper limit of the stationary area.

By storing the coefficients {b̂k,s} for all the four original estimators and each sample size
n, we can now calculate confidence intervals for φ for all cases using Monte Carlo simula-
tions. Given an estimate g(φ̂), we predict the parameters of the corresponding skew-normal
approximation and sample from this distribution. These samples are easily transformed to
give confidence intervals for φ, using the relevant percentiles for the distributions of φ̂

and φ̂c. To investigate the coverage probability of the resulting confidence intervals, we
performed a simulation study generating 10,000 AR(1) process with a uniformly drawn
coefficient, i.e. φ ∼ Uniform(−1, 1). The simulation study was performed for sample sizes
n = 10, 15, 20, 30, 40, 50, in which the coefficient φ was estimated using each of the four
original methods. We then calculated the bias-corrected estimates and found 95% equi-tailed
confidence intervals for all cases by Monte Carlo simulation. The results demonstrate that
the coverage probabilities for the original estimators are below the nominal level of 0.95
for all estimators and all sample sizes, see Table 2. Especially, the nominal level using the
Yule–Walker solution is below 0.90 for all sample sizes. Using the bias-corrected estimators,
the coverage properties are clearly better being quite close to the nominal level of 0.95 in all
cases. For the smaller sample sizes, this can partly be explained by the larger variance of the
bias-corrected estimators giving wider confidence intervals. For the large sample sizes, the
confidence lengths are approximately the same.

3 Finite-sample properties for AR(2) processes

In this section we extend the given model-based approach to construct bias-corrected estima-
tors for the pair of coefficients (φ1, φ2) of an AR(2) process. This is far more computationally
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Table 2 Coverage probabilities of 95% confidence intervals for φ using the original estimators φ̂ and the
respective bias-corrected versions φ̂c for a total of 10,000 simulations

n Exact MLE Conditional MLE Burg’s method Yule–Walker

φ̂ φ̂c φ̂ φ̂c φ̂ φ̂c φ̂ φ̂c

10 0.8092 0.9771 0.8097 0.9768 0.7798 0.9829 0.6692 0.9942

15 0.8326 0.9741 0.8330 0.9736 0.8012 0.9754 0.7198 0.9791

20 0.8463 0.9644 0.8468 0.9635 0.8233 0.9620 0.7415 0.9624

30 0.8617 0.9527 0.8608 0.9532 0.8460 0.9508 0.7814 0.9476

40 0.8728 0.9506 0.8773 0.9502 0.8621 0.9488 0.8088 0.9437

50 0.8813 0.9474 0.8878 0.9457 0.8722 0.9456 0.8234 0.9396

The true value of φ is randomly generated from (−1, 1). The confidence intervals are found by Monte Carlo
sampling after fitting a skew-normal approximation to g(φ̂)

expensive than in theAR(1) case aswe need to generate time series for a fine two-dimensional
grid of the coefficients in the triangular stationary area. For each pair of the true parameters,
we then fit weighted polynomial regression models to the generated time series and store
the resulting optimized regression coefficients. As previously, the original estimators used
include the exact and conditional MLE, Burg’s algorithm and the Yule–Walker solution for
AR(2) processes of length n = 10, 11, . . . , 50. We obtain approximate sampling distribu-
tions for the bias-corrected versions of these estimators by constructing Gaussian copulas
where the marginals are generated as transformations of skew-normal densities.

3.1 Modeling approach in two dimensions

The AR(2) process is defined by (1) where p = 2 and it is stationary within the triangular
area constrained by φ2 + |φ1| < 1 where |φ2| < 1. A more appealing parameterization of
this process is given by the partial autocorrelations,

ψ1 = φ1

1 − φ2
, ψ2 = φ2, (10)

as the stationary area of the AR(2) process is then defined by the square ψi ∈ (−1, 1),
i = 1, 2. The area in which the process has pseudo-periodic behavior is characterized by
ψ2
1 (1 − ψ2)

2 + 4ψ2 < 0.
We now extend the algorithm in Sect. 2 to construct bias-corrected estimators (φ̂c,1, φ̂c,2),

again taking the sampling distribution of the original pair of estimators (φ̂1, φ̂2) into account.
In this case we estimate the parameters of the regression model by minimizing the squared
error between the corrected and true partial autocorrelations. This is computationally ben-
eficial to avoid the triangular constraints on φ1 and φ2. Also, the correlation between ψ̂1

and ψ̂2 is much smaller than the corresponding correlation between the estimates of the
φ-coefficients. Naturally, this only makes a difference for the first coefficient as φ2 = ψ2.
The algorithm extending the weighted polynomial regression model to two dimensions can
be summarized as follows:
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1. Using the logit transformation in (2), the underlying true partial autocorrelations are
modeled by

ψi = f (ψ̂1, ψ̂2,β i ) = g−1

⎛

⎝
K∑

k=0

K−k∑

q=0

βk,q,i hk,q(g(ψ̂1), g(ψ̂2))

⎞

⎠ , i = 1, 2 (11)

where hk,q(g(ψ̂1), g(ψ̂2)) = hk(g(ψ̂1))hq(g(ψ̂2)) denotes the product of Hermite poly-
nomials of order k and q . Notice that the two partial autocorrelations are modeled
separately, giving separate sets of regression coefficients β i = {βk,q,i } for i = 1, 2.
However, each of the true partial autocorrelations need to be modeled in terms of the
estimated pair (ψ̂1, ψ̂2) as these parameters are not independent.

2. Due to the dependence, the regression coefficients β = {β1,β2} of the given predictors
for ψ1 and ψ2 are found simultaneously. This is achieved by solving the following
optimization problem:

β̂ = argmin
β

l∑

r=1

2∑

i=1

1

s2ri

⎛

⎝ 1

m

m∑

j=1

g−1

⎛

⎝
K∑

k=0

K−k∑

q=0

βk,q,i hk,q(g(ψ̂r j1), g(ψ̂r j2))

⎞

⎠−ψri

⎞

⎠
2

= argmin
β

l∑

r=1

2∑

i=1

1

s2ri

⎛

⎝ 1

m

m∑

j=1

f (ψ̂r j1, ψ̂r j2,β i ) − ψri

⎞

⎠
2

. (12)

The values (ψ̂r j1, ψ̂r j2) denote the original estimates for the r th pair of the partial auto-
correlations in simulation j while s2ri denotes the sample variances for them simulations
in each case. The value l denotes the total number of pairs of the partial autocorrelations
that are included in the minimization.

In solving (12), we needed to generate time series for a fine two-dimensional grid of the
parameter values (ψ1, ψ2) within the square defining the stationary area. The estimate β̂

is based on using the grid ψi ∈ (−0.95,−0.925, . . . , 0.95), i = 1, 2. This gives a total
of l = 772 = 5929 different combinations of the partial autocorrelations. For each pair
(ψ1, ψ2), we generated m = 10,000 times series of a specific length n implying that the
regression coefficients are estimated based on approximately 59 million time series. This
was repeated for all sample sizes n = 10, 11, . . . , 50, such that the total number of generated
time series is equal to 772 · 41 · 10,000 = 2,430,890,000 or approximately 2.43 billion time
series for a given value of K . We then saved the regression coefficients for each sample size
and for each of the original estimation methods providing bias-corrected estimators

ψ̂c,i = f (ψ̂1, ψ̂2, β̂ i ), i = 1, 2

which are then transformed by (10) to give estimates for the AR coefficients. As in the AR(1)
case, the estimated coefficients might fall at the border of the stationary area but not outside.

If run sequentially on an ordinary single-core laptop, the given brute-force simulation
approach to compute the bias correction would be computationally infeasible as it would
take approximately 5 years of CPU time. The computations were therefore done on the
Ibex cluster at KAUST (https://www.hpc.kaust.edu.sa/ibex), which reduced the time down
to about 2 days. The computation time could have been further reduced by lowering the
number of generated times series from m = 10,000 to e.g m = 3000 giving approximately
the same results. However, as the given calculations were done only once we chose to use a
large number of generated time series.
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Fig. 8 The mean estimated values of ψ1 (left) and ψ2 (right) when n = 15, using the exact MLE (upper) and
the bias-corrected estimator with K = 3 (lower)

3.2 Properties of the bias-corrected estimators

By using the partial autocorrelations in (12), the resulting corrected estimators for the AR(2)
coefficients are not completely unbiased. However, in addition to the numerical advantages,
we have noticed that this approach also gives smaller variance and RMSE compared to
performing the optimization with respect to the φ-coefficients. As in the AR(1) case, the
order K of the Hermite polynomials can be increased to slightly reduce the overall bias but
the variance and theRMSE then increase. In the subsequent analysiswe have therefore chosen
to use K = 3 as this gave the best overall results. The number of regression coefficients in (12)
is then equal to 10 for each of the parameters ψ1 and ψ2. Using for example K = 7, the
model in (12) would have a total of 36 terms for each of the parameters.

The estimated partial autocorrelations using the exact MLE and the corresponding bias-
corrected estimates are shown for sample sizes n = 15 and n = 30 in Figs. 8 and 9,
respectively. Visually, the corrected estimator is very accurate in estimating ψ2 but show
some bias in estimating ψ1, especially for the upper part of the square where the value of ψ1

is either underestimated or overestimated depending on the value of ψ2. The corresponding
bias forφ1 ismuch smaller than forψ1 as the given squared domain translates into a triangular
area.

To further study finite-sample properties, we have calculated the overall average bias,
variance and the RMSE of both the original and the bias-corrected versions. The calculations
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Fig. 9 The mean estimated values of ψ1 (left) and ψ2 (right) when n = 30, using the exact MLE (upper) and
the bias-corrected estimator with K = 3 (lower)

are based on taking the averages for them simulations for each of the l = 5929 combinations
of (ψ1, ψ2), which are easily transformed to give estimates for the AR coefficients by (10). In
calculating the overall averages we have added the results for both parameters. For example,
RMSE for the bias-corrected estimator is given by

RMSE((φ̂c,1, φ̂c,2)) =
√√√√ 1

2l

l∑

r=1

2∑

i=1

1

m

m∑

j=1

(φ̂c,r ji − φri )2.

The bias and the variance are calculated correspondingly. Table 3 summarizes the overall
average bias, variance and the RMSE for the original and bias-corrected estimators using
K = 3. The bias-corrected estimators do have a smaller bias and larger variance than the
original estimators, but the improved bias properties do not appear at the expense of any
significant increase in RMSE.When n = 15, the bias-corrected estimator only have a slightly
larger RMSE for the MLE’s, avoiding the rather large bias of the original estimators. When
n = 30, the RMSE is actually smaller for the bias-corrected versions versus all of the original
estimators.
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Table 3 Bias, variance and root mean square error for the original estimators of (φ1, φ2) and the corrected
estimator for n = 15 and n = 30

Method Original estimator Bias-corrected estimator

Bias Variance RMSE Bias Variance RMSE

n = 15 Exact MLE −0.127 0.068 0.311 −0.017 0.099 0.317

Conditional MLE −0.126 0.068 0.312 −0.017 0.099 0.318

Burg’s method −0.119 0.064 0.306 −0.018 0.102 0.323

Yule–Walker −0.124 0.054 0.334 −0.019 0.121 0.352

n = 30 Exact MLE −0.061 0.029 0.186 −0.005 0.034 0.182

Conditional MLE −0.061 0.029 0.186 −0.005 0.034 0.183

Burg’s method −0.061 0.029 0.188 −0.005 0.035 0.184

Yule–Walker −0.064 0.028 0.207 −0.006 0.040 0.199

These results are calculated using all the 10,000 simulations for each of the selected pairs in (φ1, φ2) within
a fine grid of the stationary area

3.3 Sampling distributions using a Gaussian copula representation

Similar to the AR(1) case, we move on to find approximate sampling distributions for the
estimators of the parameters of the AR(2) model. For each method and each sample size, we
have fitted skew-normal densities to m = 10,000 generated samples of g(ψ̂r ,1) and g(ψ̂r ,2)

where r = 1, . . . , l. Figure 10 illustrates the skew-normal approximation for a few selected
pairs of the transformed original estimators where the true underlying partial autocorrelations
are given byψ ∈ {(−0.6,−0.6), (0.6,−0.6), (0.6, 0.6)}. The skew-normal densities are seen
to give accurate approximations of the sampling distributions also in this case.

The next step is to find approximations of the sampling distributions for the original
non-transformed estimators (φ̂1, φ̂2) and the bias-corrected estimators (φ̂c,1, φ̂c,2). Similar
to the AR(1) case, we first need to assess the relationship between the parameter estimates
of the skew-normal approximations to g(ψ̂1) and g(ψ̂2) as a function of the true underlying
parameters. To sample from the resulting bivariate distribution, we also need to be able to
predict the correlation ρ = Cor(g(ψ̂1), g(ψ̂2)). The full set of estimated parameters is then
given by

θ̂r = {θ̂1,r , θ̂2,r , . . . , θ̂7,r } = {μ̂1,r , σ̂1,r , ln(ξ̂1,r ), μ̂2,r , σ̂2,r , ln(ξ̂2,r ), logit(ρ̂r )}

for r = 1, . . . , l. Using the same approach as in the AR(1) case, each of the seven parameters
θs,r ∈ θ̂r is used as response variable in separate orthogonal polynomial regression models
given by

θ̂s,r =
K∑

k=0

K−k∑

q=0

bk,q,shk,q(g(ψ̂r ,1), g(ψ̂r ,2)), s = 1, . . . , 7, r = 1, . . . , l (13)

The estimated coefficients {b̂k,q,s} are again found by ordinary least squares. Using K = 3,
this gives a set of 10 regression coefficients for each of the seven parameters, stored for all
methods and sample sizes.
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Fig. 10 The marginal sampling distributions for g(ψ̂1) and g(ψ̂2) for different combinations of (ψ1, ψ2),
where the AR coefficients were estimated using the exact MLE. The different combinations of true partial
autocorrelations include the pairs (−0.6,−0.6) (upper), (0.6,−0.6) (middle) and (0.6, 0.6) (lower). The
dotted vertical lines give the true values for g(ψ1) and g(ψ2)
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Table 4 Coverage for 95% confidence intervals for φ1 and φ2 found by sampling using a Gaussian copula
and transformations of skew-normal densities

n Method Original estimator Bias-corrected estimator

φ1 φ2 φ1 φ2

15 Exact MLE 0.8965 0.7454 0.9398 0.9637

Conditional MLE 0.8967 0.7474 0.9413 0.9656

Burg’s method 0.8940 0.7268 0.9485 0.9687

Yule–Walker 0.7896 0.5485 0.9507 0.9778

30 Exact MLE 0.9138 0.7815 0.9459 0.9443

Conditional MLE 0.9139 0.7819 0.9459 0.9459

Burg’s method 0.9100 0.7609 0.9500 0.9438

Yule–Walker 0.8335 0.6133 0.9360 0.9217

The results are based on 10,000 simulations where ψ1 and ψ2 are randomly generated from (−1, 1)

In generating samples for the original and bias-corrected estimators, we need to preserve
the correlation between the transformed partial autocorrelations. This can be done by con-
structing a two-dimensional Gaussian copula by

C(u1, u2) = 
ρ̂(F−1
sn (u1; μ̂1, σ̂1, ξ̂1)), F

−1
sn (u2; μ̂2, σ̂2, ξ̂2))).

The function 
ρ̂(.) denotes the joint cumulative distribution of a bivariate standard normal
vector with correlation between the components being equal to ρ̂. The functions Fsn(.)
represent the skew-normal cumulative distribution functions (cdf) of g(ψ̂1) and g(ψ̂2). By
the probability integral transform,

x = (F−1
sn (u1; μ̂1, σ̂1, ξ̂1), F

−1
sn (u2; μ̂2, σ̂2, ξ̂2))

represents samples from the given skew-normal densities where the uniformly distributed
variables u1 and u2 are generated from the inverse cdf of the standard normal marginals of
the bivariate distribution.

The resulting samples for (φ̂1, φ̂2) and (φ̂c,1, φ̂c,2) can be used to find confidence intervals
for (φ1, φ2).We performed a similar simulation study as in the AR(1) case, generating 10,000
AR(2) processes where the partial autocorrelation coefficients are drawn randomly from
(−1, 1). The coverage probabilities of the estimated 95% confidence intervals are given in
Table 4 for sample sizes n = 15 and n = 30. We do notice that the coverage probabilities
using the original estimators are smaller than the nominal level in all cases. In particular, the
coverage is very low for φ2 giving values below 0.80 also when n = 30. The confidence
intervals using the bias-corrected estimators have coverage probabilities quite close to the
nominal levels being within the interval 0.95 ± 0.03.

4 Application in population ecology

Wildlife ecological research studies are often characterized by small sample sizes (Bissonette
1999). This can be due to sparse distributions of the animal species of interest, and also the
research design in which data are collected by fieldwork. As expressed by Ives et al. (2010): “
While a time series covering 40 years might represent an ecologist’s entire career, such time
series are short for statistical purposes". The population density of specific animal species
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Fig. 11 Coefficient estimates fitting AR(2) processes to annual log-density estimates of Hokkaido vole pop-
ulations observed at 85 different sites. The left panel shows the estimates of (φ1, φ2) using the exact MLE
(black) and the bias-corrected estimates (red). The middle and right panels show the individual scatter plots
of the bias-corrected versus original estimates

often exhibit cyclical fluctuations which, to a great extent, are driven by the relationship
between the density and the carrying capacity of the environment. This is referred to as
density dependence as the population density itself regulates the growth rates of the species,
see e.g. Sinclair and Pech (1996). Both AR(1) and AR(2) processes have commonly been
used to estimate this type of intra-specific population dynamics of a species, among others in
modeling the population cycles of small rodents (Bjørnstad et al. 1995; Hansen et al. 1999;
Stenseth et al. 2003; Nicolau et al. 2020). This type of analysis calls for accurate estimation
of the AR coefficients as these are interpreted directly in terms of the strength of direct and
delayed intra-specific dependence.

To demonstrate the new bias correction for a real world example, we consider a dataset
on gray-sided voles (Myodes rufocanus), collected by the Japanese Forestry Agency at 85
different sites in the Hokkaido island, Japan (Saitoh et al. 1998). The dataset includes time
series for the raw counts of the voles at each site, collected during both spring and fall for a
total of 31 years (1962–1992). These data have been extensively studied in the literature and
AR(2) model approximations have been used to assess the strength of density dependence,
periodicities and synchrony of the vole populations (Stenseth et al. 2003; Hugueny 2006;
Cohen and Saitoh 2016). Here, we fit the AR(2) model to the log of the density estimates for
the annual fall time series derived by Cohen and Saitoh (2016) which account for differences
in sampling effort. The data were downloaded from the Supporting Information of Cohen and
Saitoh (2016), available at https://doi.org/10.1002/ecy.1575. Specifically, we used the log of
the density estimates given in the file App3BayesCountsParameterEstimates.csv in their Zip
archive.

The left panel of Fig. 11 illustrates the estimated AR(2) coefficients for the 85 time series
using the exactMLE (black) and the corresponding bias-corrected estimates (red).About two-
thirds (57/85) of the original pairs of estimates are within the pseudo-periodic area which
implies cyclic population dynamics where shorter periods imply stronger density dependence
(Stenseth et al. 2003). As expected, the difference between the original and bias-corrected
estimates are not very large for this dataset as the time series length is n = 31 years. However,
the bias correction is systematic in the sense that the estimates of φ1 and φ2 are mainly shifted
right and upwards, respectively. This is further illustrated in the middle and right panels of
Fig. 11 showing scatterplots of the corrected versus the original estimates. In correspondence
with our simulation results, the bias correction ofφ1 is quite small for estimates that are not too
close to the borders of the triangle, while φ2 is increasingly underestimated for larger values
of the parameter. The given bias-correction implies slightly weaker estimated direct density
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dependence implying longer periods and two of the series can no longer be considered to
be cyclic as the pairs of autoregressive coefficients fall outside of the pseudo-periodic area.
Overestimation of the strength of density dependence have been associated with ignoring
sampling variance (Stenseth et al. 2003) and ignoring the estimation bias could thus add to
this overestimation.

Further use of the given bias correction for AR processes in population dynamics could
include estimation of other ecologically interesting characteristics like the spectral density
function, measures of cyclical frequency and measures of spatial synchrony. A simple exam-
ple is the average length of the stochastic cycles for AR(2) processes

l = 2π

cos−1
(
φ1/(2

√−φ2
) .

This is a non-linear function of the coefficients, but for simplicity we can use the original and
bias-corrected estimates as plug-in estimates in this formula. For the 55 time series where
both the original and bias-corrected ML estimates were within the pseudo-periodic area, the
mean average cycle length increased slightly from l̄original = 4.1 to l̄corrected = 4.4 using the
bias-corrected estimates. Naturally, this analysis is quite simplistic as we have neither taken
sampling error nor spatial correlation between sites into account. It is well-known that spatial
heterogeneity in population densities might have important implications for the population
dynamics (Thorson et al. 2015), and a proper ecologically valid analysis of these time series
should take this into account. Also, a more thorough study of the implications of using
the bias-corrected estimator in estimating various characteristics of population dynamics
represents interesting topics for future research.

5 Concluding remarks

The simplicity and parsimonious parameterization of first and second order AR processes
make them attractive as plausible models for short time series. The AR(1) model reflects the
Markov property, providing an important extension to a temporal independence assumption.
The AR(2) process is more flexible and is particularly useful in modeling pseudo-periodic
dynamics. The bias involved in estimating the coefficients of short AR processes has been
well-known for decades but this still remains a practical problem even for the simple first
and second order models. The choice of estimator does make a difference for small sample
sizes and incautious use of commonly applied estimators might give misleading results. The
default choice using the ar-function in R gives the Yule–Walker estimates which are clearly
not optimal, neither for short nor long time series. As stated by Tjøstheim and Paulsen (1983),
“uncritical use of Yule–Walker estimates may be hazardous".

The main goal of this paper was to investigate the finite-sample properties of commonly
used estimators for the coefficients ofAR(1) andAR(2) processes andprovided bias-corrected
versions of these estimators. This was achieved by modeling the true parameter values in
terms of estimated values for a huge number of simulations, accounting for the sampling
distribution of the original estimators and different sample sizes. The model fitting step was
computationally expensive but needed to be done only once for each of the original estimators
and each sample size, providing the regression coefficients which are used to compute the
bias-corrected estimates.

The asymptotic behavior of the estimators of AR coefficients have been thoroughly stud-
ied in literature, while less effort has been made in studying their finite-sample properties.
The given simulation-based approach makes it possible to find skew-normal approximations
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to transformations of the coefficient estimates, in which the parameters of the skew-normal
distributions are modelled in terms of the estimated AR coefficients. This provides approx-
imate finite-sample distributions for both the original and bias-corrected estimators. These
distributions are then used to give approximate confidence intervals for the AR coefficients.

The given simulation-based approach cannot easily be generalized to higher order AR
processes, but this was never our intention. For short time series, it does make sense to
apply simple and well interpretable models like the AR(1) and AR(2) processes, avoiding
potential overfitting. Possible extensions of the given approach include studying finite-sample
properties of estimators for other parsimoniously parameterized models like moving average
(MA) processes of order 1 or 2 or the combined AR and MAmodel, ARMA(1,1). Naturally,
this requires that the simulations and the regression model fitting steps have to be repeated.
Even though this is computationally expensive, it is feasible with access to supercomputers,
especially as the optimization step only needs to be done once for each method and sample
size.
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Appendix: R-package

To make the presented methodology easily available, we include the R-package
ARbiascorrect which can be used to obtain the bias-corrected estimates and the result-
ing approximate 95% confidence intervals, in addition to 95% confidence intervals using the
original estimates. The package consists of only one function as defined below. The user can
either use the relevant time series as input or the parameter estimates found by one of the
original methods including the exact and conditional MLE, Burg’s algorithm or the Yule–
Walker solution. The R-package can be downloaded and installed from https://github.com/
pedrognicolau/ARbiascorrect, or installed directly in R through the devtools package by
running:

devtools::install_github("pedrognicolau/ARbiascorrect-v1")

The specifications of this package are as follows:

Description
Gives bias-corrected estimates and 95% confidence intervals for autoregressive coeffi-
cients of AR(1) and AR(2) processes, for sample sizes n = 10, 11, . . . , 50.
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Usage

biascorrect(phi = NULL, n = NULL,
method = c("mle", "cmle", "burg", "yw"),
order = NULL, x = NULL)

Arguments

phi Single value (AR1) or two-dimensional vector (AR2) containing the coefficient
estimates subject to bias correction. Not required if the time series x is used as input.
n Integer for the length of the time series. Needs to be between 10 and 50. Not
required if the time series x is used as input.
method Character string specifying the method used to estimate the autoregressive
coefficients. Needs to be either mle, cmle, burg or yw, specifying the exact MLE,
the conditional MLE, Burg’s method and the Yule–Walker solution, respectively.
order Order of the estimated autoregressive process. Needs to be provided if x is
used as input.
x The time series to be fitted by AR(1) or AR(2) in which order needs to be
specified. The default estimation method is the exact MLE if none is specified.

Value

phi.hat The original estimates of the AR coefficients
phi.correct The bias-corrected estimates
ci.hat The 95% confidence interval using the original estimates
ci.correct The 95% confidence interval using the bias-corrected estimates
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