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A B S T R A C T   

Kidney involvement confers significant morbidity and mortality in patients with systemic lupus erythematosus 
(SLE). The pathogenesis of lupus nephritis (LN) involves diverse mechanisms instigated by elements of the 
autoimmune response which alter the biology of kidney resident cells. Processes in the glomeruli and in the 
interstitium may proceed independently albeit crosstalk between the two is inevitable. Podocytes, mesangial 
cells, tubular epithelial cells, kidney resident macrophages and stromal cells with input from cytokines and 
autoantibodies present in the circulation alter the expression of enzymes, produce cytokines and chemokines 
which lead to their injury and damage of the kidney. Several of these molecules can be targeted independently to 
prevent and reverse kidney failure. Tertiary lymphoid structures with true germinal centers are present in the 
kidneys of patients with lupus nephritis and have been increasingly recognized to associate with poorer renal 
outcomes. Stromal cells, tubular epithelial cells, high endothelial vessel and lymphatic venule cells produce 
chemokines which enable the formation of structures composed of a T-cell-rich zone with mature dendritic cells 
next to a B-cell follicle with the characteristics of a germinal center surrounded by plasma cells. Following an 
overview on the interaction of the immune cells with kidney resident cells, we discuss the cellular and molecular 
events which lead to the formation of tertiary lymphoid structures in the interstitium of the kidneys of mice and 
patients with lupus nephritis. In parallel, molecules and processes that can be targeted therapeutically are 
presented.   

1. Introduction 

Systemic lupus erythematosus (SLE) is an autoimmune disease with 
impressive clinical heterogeneity which presents with manifestations 
from multiple organs. A multitude of pathogenic pathways have been 
identified originating from genetic, epigenetic, hormonal, environ-
mental and immunoregulatory factors and all converge at causing 
inflammation of tissues and organ damage [1,2]. Every aspect of the 
innate and adaptive immune response has been reported to be involved 
in patients with SLE and they contribute to the expression of the disease 
in distinct subsets of patients. The presence of a plethora of autoanti-
bodies has typified the disease while the production of those directed 
against nuclear antigens, small nuclear ribonucleoproteins, double- 

stranded DNA (dsDNA), and nucleosomes represent the hallmark of 
the disease [1,3]. Autoantibodies form soluble immune complexes (IC) 
with autoantigens (such as nucleosomes) released in abundance in the 
circulation of patients with SLE, that may deposit at basal membranes at 
various organs including the kidney and initiate inflammation. Auto-
antibodies may bind directly to kidneys antigens and form in situ IC as is 
typified by cationic anti-dsDNA antibodies which bind to the glomerular 
basement membrane [4–6]. In parallel the excessive production of cy-
tokines including type I interferon (IFN), interleukin (IL)-17 and IL-23 
further advance immune cell abnormalities or act directly on kidney 
resident cells to cause damage [7]. Last, but not least, autoreactive T 
cells infiltrate in kidney where they may form tertiary lymphoid struc-
ture (TLS) and cause organ damage. 
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Autoantibody or IC deposition within the kidney, along the action of 
cytokines and the infiltration of immune cells contribute to the devel-
opment of kidney inflammation in patients with SLE which manifests as 
lupus nephritis (LN) with significant morbidity and mortality [8,9]. 
After an update on the interaction of resident and immune kidney cells 
we will discuss in detail the formation of TLS in the renal interstitium 
and its effect on kidney function. 

2. Kidney resident cells 

2.1. Podocytes 

Podocytes are specialized cells on the visceral side of the Bowman's 
capsule that surround glomerular capillaries. They are part of the 
glomerular filtration machinery and are critical for maintaining renal 
function [10]. They express unique proteins including synaptopodin, 
nephrin [11], podocin [12] and Wilms' tumor protein [13], all of which 
are essential in the maintenance of their structure and function [14]. 
Genetic or acquired defects in the expression of key podocyte molecules 
leads invariably to their detachment and the development of renal 
failure [15]. Podocyte injury is notable in people with LN and accounts 
for the development of proteinuria and glomerular damage [16,17]. 

Podocytes are known to produce and express components of the 
complement pathway which along with the deposition and activation of 
complement from the circulation contributes to podocyte injury. Inhi-
bition of the complement pathway has been entertained in clinical trials 
to treat people with LN [18]. Further, podocytes express all Toll-like 
receptors (TLR) and Nod-like receptor protein-3 (NLRP3) and caspase- 
1 [19]. Homocysteine activates NLRP3 inflammasomes in the podo-
cytes of lupus-prone mice and patients with LN [20] and its suppression 
decreases proteinuria, histologic renal lesions, and podocyte foot- 
process effacement [16] suggesting that NLRP3 can be targeted 
therapeutically. 

Podocytes from lupus-prone mice and people with LN express 
increased levels of major histocompatibility molecules along with the 
costimulatory molecules CD80 and CD86 which are considered markers 
of cell injury but simultaneously they may activate passerby lympho-
cytes and contribute to their accumulation in the renal parenchyma. 
Reversely, breaches in Bowman's capsule, in human crescentic glomer-
ulonephritis may allow CD8+ T cells to reach the glomerular tuft and 
podocytes and cause their destruction [21]. 

Podocytes express the neonatal Fc receptor (FcRn)which enables the 
transfer of IgG from the capillary to the urine space. IgG from patients 
with LN enters podocytes using FcRn and causes upregulation of 
calcium/calmodulin-dependent protein kinase IV (CaMK4) which 
phosphorylates 14–3-3 β, the scaffold protein of synaptopodin, which 
upon its release is degraded. Synaptopodin is important in the mainte-
nance of podocyte structure [22]. In parallel, CaMK4 activates NFkB 
which suppresses the expression of nephrin, an important protein of the 
split diaphragm, by promoting the function of the transcriptional 
repressor SNAIL [23]. IgG from patients with active LN causes the 
upregulation of CaMK4 by virtue of being under-galactosylated [23]. 
Global deletion of Camk4 in MRLlpr lupus-prone mice effectively sup-
presses LN [24]. More importantly, podocyte-targeted delivery of a 
CaMK4 inhibitor suppresses all elements of LN and obviates the depo-
sition of IC [22], suggesting that maintenance of the structure and 
function of podocytes by suppressing the activity of CaMK4 IC are not 
deposit. This line of information bespeaks to importance of local factors 
in the development of organ damage and the value of cell/organ-specific 
delivery of drugs to limit organ damage in autoimmunity. 

2.2. Mesangial cells 

Mesangial cells and mesangial matrix make the renal corpuscle's 
vascular pole, and are important in removing aggregated proteins and 
small IC from the basement membrane [19]. They are involved in the 

pathogenesis of LN as mesangial cell proliferation and mesangial matrix 
are present invariably in the LN kidneys [25]. Mesangial cells express 
Toll-like receptors (TLRs) [25,26], and when stimulated with a TLR3 
ligand (dsRNA) they produce type I IFN [25] – a cytokine which is 
claimed to be important in the pathogenesis of SLE [25,27]. 

Antibodies to dsDNA bind to mesangial cells and activate inflam-
matory and fibrotic pathways, particularly those which involve the 
mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) 
signaling pathways, leading to the production of proinflammatory cy-
tokines [27,28]. Mesangial cells secrete interleukin (IL)-6, which on its 
own can drive the development of glomerulonephritis [29]. CaMK4 is 
requisite for the proliferation of mesangial cells and the production of 
cytokines. Specifically, mesangial cells from the lupus-prone MRLlpr 
mice which lack genetically CaMK4, do not proliferate in response to 
platelet-derived growth factor and they do not produce IL-6 [30]. 

2.3. Renal tubular epithelial cells 

Renal tubular epithelial cells are involved in the pathophysiology of 
LN. They secrete pathogenic cytokines, including type I IFN [31] and B- 
cell activating factor (BAFF) [32], both of which have significant roles in 
the development of SLE (Fig. 1). Furthermore, renal tubular epithelial 
cells from LN patients express the costimulatory molecule B7-H4, sug-
gesting that they can activate T cells. Addition of anti-dsDNA antibodies 
to renal tubular epithelial cells in culture leads to the sequential upre-
gulation of tumor necrosis factor (TNF) α, IL-1β, and IL-6 [33], which 
suggests the cells contribute to the inflammatory processes in the 
tubulointerstitium in LN [34]. Kidney tubular epithelial cells express 
apoptotic endonucleases [35] which apparently, when activated 
through yet unknown mechanisms, can cause cell death [36]. More 
recently, it was shown that tubular epithelial cells can produce CXCL12 
in response to IL-23 to promote interstitial and its genetic deletion only 
in these cells limited glomerulonephritis in lupus-prone mice [7]. 

BAFF, is a well-established B cell growth and differentiation factor 
which helps auto-reactive B cells to survive and escape peripheral 
tolerance [37,38]. BAFF blockade with an antibody (Benlysta) has been 
approved to treat with SLE [39] and LN [40]. BAFF is also expressed by 
tubular epithelial cells of people with proliferative LN and the levels of 
expression correlate with the histopathology-defined activity index 
[32]. BAFF may promote further differentiation of B cells which are 
present in the interstitial space of kidneys from patients with LN [41]. 
Further, BAFF has been claimed to promote the formation of TLS in the 
kidney by increasing the number of T cells positioned inside the 
glomeruli and increase inflammation in mice [42] which may explain 
the therapeutic effect of Benlysta in patients with LN [40]. Benlysta 
targets B cells maturation and signaling by inhibiting B cells survival, 
and reducing differentiation to Ig-producing plasma cells in patients 
with LN [43]. 

2.4. Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) are multipotent progenitor immu-
nomodulatory cells present in all tissues [44]. They seem to have a role 
in dendritic and T-cell suppression [45]. Previous studies have shown 
that when concentrations of proinflammatory cytokines are low, MSCs 
may have immunostimulatory potential [45,46]. MSCs are detectable 
within the pelvis wall and TLS in the kidneys of lupus-prone mice [47]. 
Stimulation of MSCs with inflammatory cytokines leads to the expres-
sion of TNF-α, IL-1β, CCL19 and ICAM [47]. Although unclear, MSCs 
seem to have a role similar to that of lymphoid tissue organizer (LTo) 
cells and that resident tissue specific MSCs function like lymphoid tissue 
inducer (LTi) cells. They can reprogram and start an early inflammatory 
cascade by interacting with T cells [47]. MSC differentiation and im-
mune cell accumulation causes an expansion of lymphatic vessels and 
therefore the formation of TLS [48]. 
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2.5. Macrophages 

Resident macrophages in the kidney normally are seen in the inter-
stitium surrounding the glomeruli [49]. Peripheral monocytes after 
entry to kidney tissue and differentiation to macrophages act as main 
players in inflammation, injury, and fibrosis in acute and chronic kidney 
disorders [50]. CD16+ or CD14+ macrophages are recruited to injured 
kidneys in the presence of cytokines and chemokines [50]. Several 
subtypes of macrophages (M1, M2a-c) [51] have been recorded present 
in LN tissues with unknown origin and function [49,50,52]. In general, it 
seems that if resident macrophages are exposed to endosomal TLR li-
gands and damage-associated molecular pattern molecules (DAMPs) 
[53], they transit from a resolution phase to an inflammatory phase. 
During the inflammation phase, macrophages switch their phenotype to 
M1 and express Ly6C/Gr1 and secret proinflammatory cytokines 
[54,55]. In contrast, during the repair or resolution phase they polarize 
into the M2 phenotype [56,57].Therefore, it seems that macrophages 
have dual functionality and display high plasticity during the course of 
kidney disease. 

3. Tertiary lymphoid structures 

The term ‘tertiary lymphoid’ was introduced by Picker and Butcher 
[58] to explain extra-lymphoid sites in non-lymphoid tissues. TLS have 
been referred to in many ways, including tertiary lymphoid organs, 
tertiary lymphoid tissues and ectopic lymphoid structures. The accu-
mulation of lymphocytes in peripheral non-lymphoid tissues, and the 
degree to which they become organized, varies according to the type 

and duration of antigenic inflammatory stimuli [59]. As a result, 
lymphoid aggregates range from loose collections, comprising a few T or 
B cells, to organized tissues displaying the hallmarks of TLS [60–63]. 

TLS are composed of a T-cell-rich zone with mature DCs next to a B- 
cell follicle with the characteristics of a germinal center surrounded by 
plasma cells. The minimal attributes needed to form functional TLS are 
not known, but TLS is defined as a lymphoid aggregate with organized 
stromal components consisting of follicular dendritic cells (FDCs) and 
fibroblastic reticular cells (FRCs), and characteristically, with high- 
endothelial venules (HEVs) and lymphatic vessels (LVs) [64,65]. A 
definition based on these criteria will exclude aggregates of B or T cells 
in response to inflammation lacking differentiated stromal compart-
ments (Box 1). 

TLS develop in various kidneys pathologies, including IgA ne-
phropathy [66], early-stage IgG4-related tubulointerstitial nephritis 
[67], acute kidney injury [68,69], cancer [70], pyelonephritis [71], 
transplantation and LN [41,72,73]. In lupus-prone mice, TLS are found 
close to the pelvic wall, next to large arteries and veins [74]. In auto-
immune diseases such as rheumatoid arthritis, Sjogren's syndrome, 
multiple sclerosis, diabetes, Hashimoto's thyroiditis, primary sclerosing 
cholangitis and primary biliary cirrhosis and myasthenia gravis, TLS 
may enable the in situ generation of autoreactive T and B cells and the 
production of autoantibodies that perpetuate the pathogenic process 
[63,70,75,76]. 

3.1. Crosstalk of kidney's immune cells with tertiary lymphoid structures 

T cells maintain immune homeostasis under physiologic conditions 

Fig. 1. Tertiary lymphoid structures in the kidney. Renal tubular epithelial cells secrete cytokines, including type I IFN, B-cell activating factor (BAFF), chemokine 
CCXL20 and IL23 which can attract lymphocytes to the kidney interstitium..IL-23 acts on tubular epithelial cells to increase the expression levels of CamK4 which 
suppresses the production of arginase 1, that leads to increased concentration of arginine in the tubulointerstitial environment which is necessary for the local growth 
of lymphocytes. Lymphocyte infiltration leads to tertiary lymphoid structure (TLS) formation that can be classified in three development phases. Immature TLS 
contain mainly T cells and fibroblasts. Premature TLS contains follicular dendritic cells (FDC), mature dendritic cells (DC) and small B cell follicle but lack of germinal 
center. Mature TLS has prominent FDSs, High endothelial venules (HEVs), lymphatic vessels (LVs) and germinal center. Created with BioRender.com. 
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and promote tolerance against self-antigens. In autoimmune kidney 
disorders malfunction of T-cell tolerance to autoantigens can lead to the 
generation of autoantibodies, inflammation, immune cell infiltration 
and development of different types of nephritis [77,78]. 

T cells may infiltrate the kidney tissue either because they have been 
activated in the periphery and express adhesion molecules or they may 
be naïve and become activated after they enter the kidney parenchyma 
by podocytes or tubular epithelial cells as discussed above. Activated 
cells express adhesion molecules such as CD44 which, when associated 
with phosphorylated esrin/rodesin/moiesin [79], binds to its ligand 
hyaluronic acid, the synthesis of which is increased in the kidneys of 
lupus-prone mice [80]. Since esrin/rodesin/moiesin is phosphorylated 
by Rho kinase, inhibition of its activity limits entry of T cells into the 
kidney [81]. Similarly, inhibition of hyaluronic acid synthesis decreases 
the entry of T cells in to the kidneys of lupus-prone mice [80] Interest-
ingly, the numbers of CD3+CD44+ cells in the peripheral blood of people 
with SLE correlate with kidney disease activity [82]. 

The majority of the cells in TLS are CD3+ T cells [74] and they 
include cytotoxic granule-expressing CD8+ T cells and CD4+ T cells that 
display a TH1 cell phenotype and CD4+ Treg cells [83–86]. It is assumed 
that mature dendritic cells (DCs) present antigen to CD4+ T cells in the 
T-cell zone of TLS [87], but DC-LAMP+ DCs have also been detected in 
the germinal centers, suggesting they have a role in antigen presentation 
to B cells [88]. B cells organize into germinal centers with plasma cells. 
B-cell areas contain CD21+ FDCs whereas T cell areas contain MIDC-8+

DCs [74]. 
Double-negative (DN) T cells are defined by the presence of T-cell 

receptor (TCR) αβ+ and the absence of CD4 and CD8 molecules. They are 
expanded in the peripheral blood of patients with SLE, provide help to B 
cells to produce autoantibody [89] and produce IL-17 [90]. It seems that 
they derive from CD8+ T cells [91,92] in response to stimulation with 
autoantigen and in the presence of IL-23 [93]. Mechanistically, the CD8 
locus is shut off though epigenetic modifications imposed by the 
repressor cAMP response-element modulator α (CREMα) [94]. More 
interestingly, DN T cells are present in the kidneys of patients with LN 
and they produce IL-17 [90] pointing to their direct contribution to 

kidney inflammation. 
The TH17 subset of αβ T cell are defined by the expression of lineage 

determining transcription factor RORγt. They promote autoimmune 
response in humans and mice by producing granulocyte-macrophage 
colony-stimulating factor (GM-CSF), IFNγ and IL-17, − 21 and − 22 
[95,96]. TH17 cells express C–C motif chemokine receptor type 6 
(CCR6) and are recruited to the kidney by C–C motif chemokine 20 
(CCL20), which is produced by mesangial cells after stimulation by IL-17 
(also produced by neutrophils or γδT cells) [97] and by TEC exposed to 
IL-23 [7]. TH17 cells present in the kidney secret IL-17 and promote 
inflammation by generating TLS [98], promote B-cell activation and loss 
of tolerance [99,100]. 

Follicular T-helper (TFH) cells are CD4+ T cell that express the 
transcription factor BCL6 and C-X-C motif chemokine receptor type 5 
(CXCR5). These cells migrate into germinal centers in response to C-X-C 
motif chemokine 13 (CXCL13). They also express three surface re-
ceptors, including the inducible T-cell costimulatory, CD40L, PD-1, and 
produce IL-21 to advance B-cell activation and differentiation of B cells 
into memory B cells and plasmablasts [101–103]. 

Levels of circulating TFH cells are increased in people with autoim-
mune diseases including SLE and studies in lupus-prone mice have 
confirmed they pathogenic role [102]. In SLE patients, the frequency of 
a subset of these cells – extrafollicular TH cells – correlates with levels of 
anti-dsDNA antibody and the quantity of plasmablast B cells. Extra-
follicular TH cells define a CCR6+ subset, which expresses CXCR5 but not 
BCL6 and can secrete IL-17 and facilitate immunoglobulin production by 
B cells [103,104]. 

Treg cells are TCRαβ+Foxp3+CD4+ T cells that develop in the thymus 
or the periphery. They display suppressive activity and control most 
immune responses through various mechanisms [105]. One of their best 
known roles in the kidney is the secretion of the anti-inflammatory 
cytokine IL-10 [106]. Some of the molecular events that lead to the 
dysfunction of Treg cells have been elucidated. The molecules involved 
include protein phosphatase 2A (PP2A), mammalian target of rapamy-
cin complex 1 (mTORC1), phosphatidylinositol 3,4,5-trisphosphate 3- 
phosphatase, dual-specificity protein phosphatase (PTEN), and calcium/ 

Box 1 
: Markers of cell populations in TLS  

• T cells: CD3 pan marker, CD8 or CD4-expressing subpopulations, oriented towards T helper 1 cell phenotype and CD4+ T regulatory cells 
(FOXP3)+.  

• B cells: CD20, B220 and the proliferation marker Ki67.  
• Plasma cells: CD269. Mist 1.  
• Macrophages: CD68.  
• Follicular dendritic cells (FDCs): CD21.  
• Dendritic cells (DCs): DC-LAMP+, MIDC-8+.  
• High endothelial venules (HEVs): peripheral node addressin (PNAd).  
• Lymphatic vessels: Lymphatic Vessel Endothelial Receptor 1 (LYVE1). 

TLS localization  

• TLS are mainly found in the medulla of kidneys. 

TLS identification  

• Haematoxylin and eosin (H&E) staining: H&E imaging is performed routinely in laboratories as a component of diagnostic. TLS can be easily 
detected in H&E slides/images. Expertise is required for a reliable assessment.  

• Periodic acid-Schiff (PAS) staining: PAS staining is used for analyzing the glomerulus and alteration in vessels in kidney biopsies, in which 
local immune cell infiltration as well as TLS can be recognized.  

• Multiplex immunohistochemistry (mIHC; chromogenic, immunofluorescent): mIHC is a precise staining method to identify different cell 
populations and evaluate the maturity in TLS.  

• Gene expression signature: Transcriptomics data for TLS assessment.  

S. Jamaly et al.                                                                                                                                                                                                                                  



Autoimmunity Reviews 20 (2021) 102980

5

calmodulin-dependent protein kinase IV (CaMK4). Targeting these may 
rescue or suppress Treg cell function and modulate kidney inflammation 
[107]. 

Analysis of T-cell clonotypes from various tissues of LN mice, as well 
as from the peripheral blood or kidneys of patients with SLE, has 
revealed expansion of a restricted subset of TCR repertoire, indicating a 
response to the defined number of autoantigens [93]. This repertoire 
remains stable for months or years [108,109]. In SLE patients, the clones 
in the peripheral blood are different from those in the kidney [110], 
suggesting that naive T cells are activated independently in the pe-
riphery and the kidney. 

Local production of antibodies is critical in TLS formation. Interest-
ingly, the kidney immune system-related TLS gene profile in lupus-prone 
mice is similar to that in lymph nodes during active stages of LN [74]. 
TLS provide the T- and B-cell survival factors IL-7 and BAFF which re-
cruit lymphocytes and favor the interaction between T and B cells in a 
confined environment [111]. Local B-cell activation has been demon-
strated in TLS by the expression of Activation Induced Cytidine Deam-
inase (AICDA), an enzyme responsible for class switch recombination 
and somatic hypermutation [112] and active proliferation. Local dif-
ferentiation of autoreactive plasma cells has also been observed [113]. 

In a model of pristane-induced murine SLE, B cells proliferate and 
class-switch within the TLS, and Sm/RNA antibody-producing plasma 
cells and plasmablasts produce locally autoantibodies [114,115]. 
Moreover, kidneys from LN patients contain germinal center-like 
structures containing FDCs. These centers may have a role in active 
local tissue-specific immune responses [41]. Identifying the events that 
initiate TLS formation should advance our understanding of kidney 
damage in patients with LN. BAFF and serum autoantibody levels 
correlate with TLS formeation in the kidneys [42] . Reducing the levels 
of BAFF reduced T-cell numbers in the glomeruli and prevented LN and 
the formation or maintenance of TLS [42]. 

Furthermore, the presence of FDCs, or the binding of IgG-ICs to 
FcγRIIB, may provide a source of intact antigen [41,116,117] for 
expansion and activation of B cells, and the production of lymphotoxin- 
α1β2, which may further promote the development of TLS [118,119]. 
Alternatively, CD11b+ myeloid cells secrete high level of BAFF and 
enhance the chemotactic ability of B cells by modulating chemokine- 
induced signaling [120], thus leading to cell aggregation and compart-
mentalization of TLS. Since increased levels of BAFF amplify local T-cell 
activation [121], they may promote the activity of TFH and prolong in 
situ germinal center responses of kidney TLS. Further, in patients with 
LN, only cell-to-cell interactions between TFH cells and B cells induce 
high levels of Bcl-6 and IL-21 in the interstitium [122]. This may 
represent the effect of BAFF which promotes the expression of ICOSL on 
activated B cells [123] and induces the formation of TFH cells [124,125]. 
Thus, renal TLS may form in LN due to hematopoietic cell infiltration 
into the kidney, but high BAFF levels are required to form or maintain 
correctly compartmentalized TLS. This suggests that the high level or 
prolonged production of BAFF may be a key event in the formation of 
compartmentalized TLS. 

3.2. Molecular cues for the formation of tertiary lymphoid structures 

CXCL13 which is produced by fibroblastic stromal cells, is a crucial 
chemokine for B and lymphoid-tissue inducer (LTi) cells. Mice lacking 
CXCL13 do not form lymph nodes except for the facial, cervical and 
mesenteric ones [126]. Induction of TLS formation [127] in mice can be 
accomplished by overexpressing CXCL13 driven by the rat insulin pro-
moter (RIP), which is active in the pancreas and the kidney. This leads to 
the formation of TLS that are characterized by segregated B- and T-cell 
zones, the presence of conventional DCs, and a dense network of stromal 
cells and high endothelial venules (HEV)-type blood vessels [128]. 
CXCL12 (or stromal cell-derived factor 1 (SDF1)) is expressed by stromal 
cells of the bone marrow and is critical in bone-marrow hematopoiesis 
and B-cell development [129]. CXCL12 is expressed by HEVs in 

secondary lymphoid organs (SLO) and acts as an essential B-cell 
recruitment chemokine, while the T cells are mostly unresponsive [130] 
(Table 1). 

Tubular epithelial cells from lupus-prone mice can express IL-23 
receptors and produce the chemokine CCL20 which can attract lym-
phocytes to the kidney interstitium (Fig. 1) [7]..Further, IL-23 acting on 
tubular epithelial cells can suppress the production of arginase 1 which 
catabolizes arginine and therefore leads to increased concentrations of 
arginine which is necessary for the local growth of lymphocytes [7]. 
Through the first mechanism tubular epithelial cells are capable to 
produce proinflammatory chemokines to attract lymphocytes which can 
be activated locally. Through the second mechanism, tubular epithelial 
cells can display immunosuppressive capacities which can be obviated 
in the presence of IL-23 and possibly other stimulants. 

CCL19 and CCL21 are expressed by HEVs and some stromal cells. 
They are the ligands for CCR7 present on T cells, DCs and LTi cells. Plt 
mice that lack the CCL19 gene and CCL21 expressed by lymphoid tissue 
in lymphatic vessels revealed a critical role for CCR7 and CCL19/CCL21 
in T-cell homing. In the RIP-overexpression model, CCL21 proved to be 
more effective than CCL19 in inducing TLS formation [131,132]. 
However, even with CCL21 overexpression there is no clear formation of 
B-cell follicles [131]. CCL28 has a role in the recruitment and homing of 
B and T cells and promotes adaptive immune responses [133–135]. 
Signals from the interaction between CCL28 and CCR3/CCR10 drive 
these processes and attract various immune cells from the local neigh-
borhood [135,136]. Recently, the recruitment of Treg cells by CCL28 has 
been observed, demonstrating that it has a role in the modulation of the 
immune system, maintaining tolerance to self-antigens, and preventing 
the development of autoimmune diseases [137,138] (Table 1). 

Members of the TNF superfamily (TNFSF), namely TNFα, lympho-
toxin (LT) α and β, and their signaling receptors TNFRI/II and LTβR, 
were suggested to promote the formation of TLS. Also, ectopic expres-
sion of TNFα or LTα, but not LTβ, under the control of RIP led to the 
formation of TLS [139,140]. The most substantial effect was seen when 
LTα and LTβ were co-expressed, resulting in invasive leukocyte accu-
mulation in the pancreatic islets, and significantly larger TLS than those 
formed in LTα transgenic mice [139]. TNFR-I is the fundamental regu-
lator of lymphoid tissue organogenesis and germinal-center formation, 

Table 1 
Molecular cues for the formation of TLS.  

Gene name TLS related function in kidney Reference 

CXCL12 Mainly secreted by HEV; B-cell recruitment [129,130] 
CXCL13 Mainly secreted with fibroblastic stromal cells; B 

and LTi cells chemotaxis; cells and vessels 
regulation in TLS, proliferation and formation in 
TLS 

[126–128] 

IL4 Stimulation of T cells, induced expression of LTαβ [47] 
IL6 Perivascular accumulation of B cells and mature 

plasma B cells 
[146] 

IL7 Stimulation of CD4+T cells, induced expression of 
LTαβ 

[131] 

IL17 Increase the inflammatory and homeostatic 
chemokine production 

[147] 

IL23 Secreted with tubular epithelial cells; Suppresses 
the production of arginase 1; local growth of 
lymphocytes 

[7] 

CCL19 AND 
CCL21 

Mainly secreted with HEVs and some stromal cells; 
Ligands for CCR7 on T cells, DCs and LTi cells; T- 
cell homing and inflammatory response 

[131,132] 

CCL28 Homing of B and T cells; promotes adaptive 
immune responses 

[133–138] 

TNF 
superfamily 

Leukocyte accumulation, germinal-center 
formation 

[139–145] 

BAFF Increases T-cell-driven cytokines such as IL-17, IL-4 
and IFNγ, Promote accumulation of TFH cells 

[42,124] 

HEV: High endothelial venules; LTi: lymphoid-tissue inducer; LT: Lymphotoxin; 
TNF: Tumor necrosis family; BAFF: B-cell activating factor; TFH: T follicular 
helper cells; DC: Dendritic cells. 
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rather than TNFR-II [141], and it mediates LTα-induced pancreatic TLS 
[142]. Activation of TNFR-I and LTβR has also been implicated in aortic 
TLS, in which aberration of LTβR signaling leads to the suppression of 
CCL21 and CXCL13 expression, with the consequence of reduced HEV 
formation and disrupted TLS development [143,144] (Fig. 2). 

While an effect of LTα, alone or with LTβ, appears clear, the role of 
TNFα is disputed. In some inflammatory diseases, including those 
involving TLS, TNFα has an anti-inflammatory activity [144]; insulitis in 
NOD mice and lupus in New Zealand mice improve after injection of 
TNFα [144,145]. 

Transgenic overexpression of IL-6 and IL-6R leads to perivascular 
accumulation of B cells and mature plasma B cells [146]. IL-1β produced 
by MSCs is overexpressed in lupus-prone mice and may contribute to 
TLS formation [47]. Stimulation of T cells with IL-4 or IL-7 induced 
expression of LTαβ; IL-7 was most potent for CD4+ T cells [131]. The IL- 
17 gene family is vital in defense against pathogens and has been 
implicated in various chronic inflammatory scenarios. Like members of 
the TNFRSF, IL-17 receptor signals through NF-κB and IL-17 T cells are 
induced by IL-6, TGFβ and IL-23, but inhibited by IL-27. IL-17 is, 
therefore, an essential mediator for lipopolysaccharide-induced iBALT 
[147]. IL-7R is expressed by LTi cells and along with CXCR5) IL-7 pro-
motes their formation in SLOs [126]. 

BAFF may promote tissue injury by affecting the quality and quantity 
of T-cell-driven cytokines such as IL-17, IL-4 and IFNγ. Increased levels 
of BAFF in the kidneys may prompt glomerular damage by invading T 
cells inside the glomeruli, or by inducing the formation of TH17 cells. It 
is unclear whether the position of the T cells is a parallel or codependent 
process that promotes glomerulonephritis and tubulointerstitial 
nephritis. It has been shown that blocking T-cell co-stimulation [148] or 
neutralizing IFNγ and IL-4 [149,150], leads to an improvement or delay 
in renal pathology. Comparably, T-cell infiltration and aggregation have 
been found in kidney biopsies from SLE patients [151]. Immune-cell 
infiltration into tubulointerstitial areas in SLE is associated with LN 
[41], suggesting that the position of T cells within the kidney is vital in 
the disease. 

3.3. Vessels in tertiary lymphoid structures 

TLS are similar to lymph nodes in terms of structure, vasculature, 
cellular composition and chemokine profile. Immune cells include T- 
and B-cell zones and antigen-presenting cells, including FDCs and 
mature DCs. The vessels in TLS mainly divide to lymphatic and blood 
vessels (Fig. 3). 

Renal lymphatic vessels (LVs) are considered part of the interstitium 
because they do not have a basement membrane, and they are blind- 
ended and lack pericytes [152]. Lymphatic capillaries express PROX-1, 
LYVE-1, CCL21, podoplanin, VEGFR-2 and VEGFR-3 [153]. The 
lymphatic vessels of TLS express lymphatic markers such as LYVE-1, 
PROX-1, podoplanin (in both mice and humans) and D2–40 (in 
humans) [154], as reported by various studies of chronic kidney rejec-
tion [155,156], cardiac allografts [157], transgenic mouse models [158] 
and a mouse model of age-related primary Sjögren's-like disease [159]. 
Nevertheless, there is still much to be elucidated. 

It is not known whether TLS vessels carry out the same functions as 
those in lymph nodes. It seems that they contribute to fluid drainage, but 
this has not been fully explored. It is also not known whether LVs carry 
antigen and cells within the TLS and cells away from TLS, like afferent 
and efferent vessels in lymph nodes. That TLS LVs frequently contain 
cells [159,160], suggests they have a role as transporters through the 
expression of CCL21, which interacts with CCR7-expressing cells. 
However, LVs in some TLSs accumulate cells, suggesting that they do not 
facilitate cellular drainage and have impaired efferent function. 

Lymph node resident cells express sphingosine-1 phosphate (S1P) 
and its interaction with the S1P1 receptor on lymphocytes is important 
for their egression from the lymph nodes. FTY720 (fingolimod) is an 
S1P1 agonist that causes its internalization and accumulation of lym-
phocytes in lymph nodes [161], thus functions as an immunosuppres-
sant. When NOD mice with pancreatic TLS are treated with FTY720, 
they do not go on to develop islet destruction and diabetes [162]. 
FTY720 inhibits disease progression only at the time that the mice 
exhibit TLS [163]. Their pancreatic TLS were associated with high 
insulitis scores after FTY720 treatment, indicating that cells are trapped 

Fig. 2. Schematic demonstration of TLS formation: During chronic inflammation kidney resident immune cells release inflammatory cytokines and interleukins 
which act on resident stromal cell. Stromal cells release vascular endothelial growth factor (VEGFC), adhesion molecules (ICAM-1) and chemokines that recruit 
immune cells and generate high endothelial venules (HEV) and lymphatic vessels. Mature TLS consists of follicular dendritic cells (FDCs) and a germinal center (GC) 
of proliferating B cells, surrounded by T cells, HEVs and mature dendritic cells (DC). Created with BioRender.com. 
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within them. Islet destruction and diabetes occurred within days of 
stopping FTY720 treatment [162,164]. Thus, it seems that the S1P 
gradient affects lymphocyte trafficking in TLS LVs. It is possible that 
fingolimod may force TLS to dissolve in patient and mice with lupus. 

LVs transport soluble or cell-associated antigens into lymph nodes. 
Plasmalemma vesicle-associated protein (PLVAP) is expressed by blood 
vessels lymphatic endothelial cells in the lymphatic sinus in lymph 
nodes. PLVAP-positive lymphatic endothelial cells contribute to the 
sieving of lymphocytes and high-molecular-weight antigens entering the 
lymph nodes [165]. Since TLS contain a conduit system [166], it is 
reasonable to question whether LVs in TLS and lymph nodes function 
similarly. Antigen transport may be less critical than in SLOs because the 
antigen is an actual component of TLS. However, since antigen- 
presenting cells are usually present in TLS, this is debatable. 

As noted above, LVs in lymph nodes present self-antigens [167–169] 
either directly through the expression of major histocompatibility 
complex (MHC) molecules or through antigen on ‘classical’ antigen- 
presenting cells. Presentation of self-antigen by LVs [167] may facili-
tate induction of either tolerance or T-cell activation in lymph nodes or 
TLS. Studies investigating the ability of TLS LVs to present antigen and 
induce either of these outcomes have not been conducted. 

HEVs are specialized peripheral-node addressin (PNAd)-positive 
blood vessels with a distinct structure. HEVs appear to have a role in the 
transport of blood-borne lymphocytes into TLS. This phenomenon is a 
kind of specialized infiltration that mainly memory T cells with a low 
expression of L-selectin (possibly due to the expression of PNAd) can 
enter to the kidney [139]. An experimental study in mice deficient in 
either LTα or LTβLN found that the development of PNAd-expressing 
HEVs is stunted, leading to a reduction in the size and cellularity of 
lymphoid infiltrates [139]. Thus, LTβR signaling may be required for the 
organized lymphoid aggregation and HEV formation. 

4. Conclusions and open questions 

Although immune responses generated in SLOs can be generate 
protection against pathogens, auto-immune responses in TLS may be 
destructive. The germinal centers in TLS have similar characteristic of 
germinal center in SLOs and provide a ground for immune call clonal 
expansion and somatic hypermutation [41]. Although the presence of 
immune complexes has been considered important in the formation of 
TLS, more recent evidence suggests that under the influence of cytokines 
tubular epithelial cells can produce cytokines able to attract T cells [7]. 

B cells present in TLS have been shown to have undergone somatic 
hypermutation [41] and therefore the local production of autoanti-
bodies and the possible formation of in situ ICs is certain. Th17 cells have 
been shown to be present in the kidneys of people and mice with lupus 
indicating the direct contribution of these cells in the inflammatory 
response and kidney damage [101,170–172]. The fact that the TCR 
repertoire of kidney infiltrating cells in mice and people with lupus is 
restricted [93] indicates that kidney-specific antigens, still at large, are 
being recognized. Th17 cells are vital in TLS formation in the propa-
gation of inflammation in the central nervous system and the neonatal 
lungs [173–175]. A similar role can be projected for the cells in the 
establishment and maintenance of inflammation in LN. 

The presence of Treg cells in the kidney TLS and their possible 
function is unknown. It is possible that they are excluded through un-
known mechanisms or if present they become bereft of their expected 
function. It is known that Treg cells in the presence of an inflammatory 
environment lose their regulatory function [78]. 

Although it has been claimed that the intensity of the interstitial 
inflammation represents an ominous sign of renal function it is still 
unknown how TLS contributes to kidney damage. It is possible that T 
cells destroy kidney resident cells, like it has been shown for podocytes 
[21], through direct cytotoxicity or my compromising the function of 
kidney cells though the action of cytokines as it was shown for IL-23 [7] 
and BAFF [123]. 

Fig. 3. Tertiary lymphoid strucures (TLS) in the kidney of the MRL.lpr lupus-prone mouse: The section is from a 12-week old MRL.lpr mouse stained with Periodic 
Acid-Schiff. TLSs appear as dark blue areas mostly in the inner medulla or the cortex and close to arteries and veins. 
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Completely unchartered is the field of the contribution of TLS to the 
development of kidney fibrosis which is irreversible and defines the end 
of function. Cytokines produced by the infiltrating cells along with the 
contribution of other factors produced by kidney resident cells may 
promote collagen production by fibroblasts. 

Upcoming technologies including single cell RNA sequencing [176] 
and spatial transcriptomics will enable the characterization of the in-
teractions between cells comprising the TLS and kidney resident cells. 
They may also allow the characterization of subsets among patients with 
LN, as it is certain that LN is clinically and pathogenetically heteroge-
neous. The efforts to reverse kidney pathology by delivering drugs to 
kidney resident cells (podocytes [22], tubular epithelial cells [7]) should 
allow more effective restoration of the function of kidney cells while side 
effects resulting from the systemic administration are obviated. 
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