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Abstract

Wedescribe the emergence of topological singularities in periodicmedia within
the Ginzburg–Landau model and the core-radius approach. The energy functionals
of both models are denoted by Eε,δ , where ε represent the coherence length (in the
Ginzburg–Landau model) or the core-radius size (in the core-radius approach) and
δ denotes the periodicity scale. We carry out the �-convergence analysis of Eε,δ

as ε → 0 and δ = δε → 0 in the | log ε| scaling regime, showing that the �-limit
consists in the energy cost of finitely many vortex-like point singularities of integer
degree. After introducing the scale parameter

λ = min
{
1, lim

ε→0

| log δε|
| log ε|

}

(upon extraction of subsequences), we show that in a sense we always have a
separation-of-scale effect: at scales smaller than ελ we first have a concentration
process around some vortices whose location is subsequently optimized, while for
scales larger than ελ the concentration process takes place “after” homogenization.
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Introduction

Phase transitions mediated by the formation of topological defects characterize
several physical phenomena such as superfluidity, superconductivity and plastic-
ity (see [7,30,31,35–38]). The study of such topological defects has become an
extremely active research field in mathematics after the progress achieved in the
analysis of the Ginzburg Landau (GL) energy functional in recent decades (see e.g.
[13,42]). In [3] it has been proved that the GL functional, originally introduced to
model the phenomenology of phase transitions in Type-II superconductors through
the formation of vortex singularities of a complex order parameter, provides a good
variational description for the emergence of vortices in XY spin systems and of
screw dislocations in crystal plasticity (see also [2,4,9,24,39]). The results ob-
tained in [3] suggest to exploit the GL theory for a phenomenological alternative
description of several material-dependent variational models, opening the way to
a number of new mathematical problems involving the analysis of this functional.
For instance, in themodeling ofmaterials, one needs to suitablymodify it to include
the usual kinematic constraints and material constants which are specific of crystal
structures. As a first step in this direction, here we study a variant of the GL energy
functional to include heterogeneities of the medium.

The Ginzburg–Landau model. Before describing the case of heterogeneous
media, we briefly recall the analysis in the homogeneous case. Let � ⊂ R

2 be an
open bounded set and let ε denote the coherence length of the GL energy (propor-
tional to the length scale of the core of a screw dislocation in a plastic crystal or to
the lattice spacing in a XY spin system). Let a > 0 and let GLε : H1(�;R2) → R

be the Ginzburg–Laundau functional defined as

GLε(v) := a
∫

�

|∇v(x)|2 dx + 1

ε2

∫

�

(
1− |v(x)|2)2 dx . (0.1)

The asymptotic behavior of GLε as ε → 0 has been studied in order to give an
energetic description of the onset of vortices (see for instance [13,42]). A proto-
typical vortex of degree z ∈ Z\{0} at a point x0 ∈ � can be thought of as the
point singularity of a vectorial order parameter v̄ε : � → R

2 which, outside the
ball of radius ε centered at x0, winds around the center as ( x−x0|x−x0| )

z . The energy
of v̄ε diverges at order | log ε| as ε → 0. As a consequence, to detect the effective
energy cost of finitely many vortex singularities, one needs to study the GLε energy
at a logarithmic scaling; that is, to consider the asymptotic behavior of function-
als GLε(v)

| log ε| . It has been proved in [1,33] that a sequence {vε}ε, along which these
energy functionals are equi-bounded, has Jacobians Jvε that, up to a subsequence,
converge in the flat sense (see Section 1) to an atomic measure μ = ∑n

i=1 ziδxi

whose support represents the position of the limiting vortices. The �-limit of GLε| log ε|
at μ with respect to this convergence is then given by 2πa

∑n
i=1 |zi | (supposing
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xi �= x j if i �= j). This value can be rewritten as 2πa|μ|(�) and seen as a functional
depending on the total variation |μ|(�) of μ in �.

Now, if more in general � is regarded as a reference configuration of a het-
erogeneous material, described by periodic heterogeneities at a length scale δε, we
may consider the energies GLε : H1(�;R2) → R defined as

GLε(v) :=
∫

�

a
( x

δε

)
|∇v(x)|2 dx + 1

ε2

∫

�

(
1− |v(x)|2)2 dx, (0.2)

where a : R2 → [α, β] (0 < α < β) is a (0, 1)2-periodic function describing the
material properties of the medium. Note that the energy GLε is controlled from
(above and) below by a multiple of the GL energy GLε (0.1). Therefore, setting

X (�) :=
{

μ =
n∑

i=1

ziδxi : n ∈ N, zi ∈ Z\{0}, xi ∈ �

}
,

the following compactness result holds true:

Theorem 0.1. Let {vε}ε ⊂ H1(�;R2) be such that GLε(vε) ≤ C | log ε|. Then,

there exists μ ∈ X (�) such that, up to subsequences, Jvε
flat→ πμ.

Assuming that δε → 0 as ε → 0, we expect the effective limiting energy at the
vortex scaling to be a homogeneous energy combining both homogenization and
concentration effects. As these effects depend on the mutual rate of convergence of
the vanishing parameters ε and δε, different regimes are possible. Heuristically, at
some extreme regimeswewill have “separation of scales”. For illustrative purposes,
assume that δ = δε = ελ for some λ ∈ (0, 1). In order to estimate the contribution
of the energy at scales between ε and δ, we can roughly assume that, first, ε → 0
for δ fixed and, then, δ → 0. In such a case, the limit as ε → 0 with δ fixed gives an
energy of the form 2π

∑n
i=1 |zi |a

( xi
δ

)
. The optimization of the location of vortices

at minimum points for a (we may assume here that a is continuous), which tend to
be dense as δ → 0, finally provides a limit of the form

2π min a
n∑

i=1

|zi |.

Conversely, at scales ε 	 δ, we expect that the scaling factor ε can be considered
as fixed and a homogenization process may be first performed with δ → 0. In this
case, moreover, since the potential term in (0.2) forces vε to have modulus equal to
one as ε → 0, (neglecting for a moment the effect of singularities) we may regard
the homogenization process to be restricted to the first part of the energy in (0.2),
which can be written as

Gδ(u) :=
∫

�

a
( x

δ

)
|∇u|2 dx, (0.3)

where u is the lifting of v; i.e., v = eıu . The homogenization of functionals of this
form has been extensively studied in terms of �-convergence (see [19]) and it has
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been shown that Gδ
�−→ G0 as δ → 0, where

G0(u) :=
∫

�

〈Ahom∇u,∇u〉 dx, (0.4)

and A
hom is the two-by-two symmetric matrix defined by

〈Ahomξ, ξ 〉 := inf

{∫

(0,1)2
a(y)|ξ + ∇ϕ(y)|2 dy : ϕ ∈ W 1,∞

per

(
(0, 1)2

)}
.

(0.5)

At this point, the subsequent analysis involves the study of the �-limit as ε → 0 of
a homogeneous but anisotropic energy functional related to G0 at scale | log ε|. The
validity of this separation of scales can be formalized by using a coarea formula-type
argument, which shows that the �-convergence of GLε can be obtained working
within another well-known framework in the analysis of topological singularities;
i.e., the so-called core-radius approach. The latter approach consists in computing
the gradient term in the energy outside small regions—the cores—around the sin-
gularities, and allows to directly work with S1-valued order parameters (see e.g.
[5,13]), and thus reduces to considering energies (0.8) below. In this framework,
we may describe the energy around a vortex of degree z at scales larger than δε by
an asymptotic formula of the type

ψ(z) = lim
R
r →+∞

1

log R
r

min
{∫

BR\Br

〈Ahom∇u,∇u〉 dx : u ∈ SBV 2(BR\Br ),

eıu ∈ H1(BR\Br ;S1), deg (eıu; Br ) = z
}
,

(0.6)

from which the �-limit is obtained by locally optimizing the degree (possibly
approximating a vortex by more vortices). A computation eventually allows to
conclude that the limit energy has the form

2π
√
detAhom

n∑
i=1

|zi |.

The final form of the �-limit for δε = ελ with λ ∈ (0, 1) is then

2π
(
(1− λ)min a + λ

√
detAhom

) n∑
i=1

|zi | ;

we prove actually that this is the case when

λ := lim
ε→0

| log δ|
| log ε| ∧ 1. (0.7)

Indeed, we have the following result which is proven in Section 6.2 in the case
λ = 1 and in Section 7.2 for λ ∈ [0, 1):
Theorem 0.2. The following �-convergence result holds true:
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(i) (�-liminf inequality) Let {vε}ε ⊂ H1(�;R2) be such that Jvε
flat→ πμ for some

μ ∈ X (�). Then

lim inf
ε→0

GLε(vε)

| log ε| ≥ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {vε}ε ⊂
H1(�;R2) such that Jvε

flat→ πμ and

lim sup
ε→0

GLε(vε)

| log ε| ≤ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

Note that, since in the logarithmic regime, the GLε energies concentrate at any
scale between ε and 1, their behavior is very different from that of the corresponding
scalar version, the inhomogeneous Cahn–Hilliard functionals given (after scaling)
by

CHε(u) := ε

∫

�

a
( x

δε

)
|∇u(x)|2 dx + 1

ε

∫

�

(
1− |u(x)|2)2 dx u ∈ H1(�),

which concentrate at scale ε producing sharp-interface models. In that case sepa-
ration of scale occurs for ε � δε and δε � ε, while in the critical regime δε ∼ ε

the effective surface tension is described by an optimal-profile problem depending
on K := limε→0 δε/ε (see [6]). In a sense, in the GL case we do not have a criti-
cal behavior and we always have separation of scales. The parameter λ above can
be seen as describing a threshold scale above and below which the two types of
separation of scales take place.

The core-radius approach. The analysis in Theorem 0.2, can be provided,
and somehow deduced, from the corresponding analysis within the core-radius
approach, which amounts to considering energies of the form

Fε,δε (μ;w) :=
∫

�ε(μ)

a
( x

δε

)
|∇w(x)|2 dx (0.8)

defined for μ = ∑n
i=1 ziδxi ∈ X (�) and w ∈ AFε(μ), with

AFε(μ) := {
w ∈ H1(�ε(μ);S1) : deg(w, ∂ Bε(xi )) = zi

for every i = 1, . . . , n
}
, (0.9)

where �ε(μ) := �\⋃n
i=1 Bε(xi ). As the Jacobians in the GL theory, μ is the

relevant parameter to keep track of energy concentration. Therefore, we let the
functional depend only on μ by setting

Fε(μ) := inf
w∈AF ε(μ)

Fε,δε (μ;w). (0.10)

In order to make the core-radius functionals non-trivial, we define Fε only on the
set

Xε(�) :=
{

μ =
n∑

i=1

ziδxi ∈ X (�) : min
i �= j

{
1

2
|xi − x j |, dist(xi , ∂�)

}
≥ 2ε

}
.
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(0.11)

In view of the classical results on the core-radius approach functional (see for in-
stance [5, Theorem 3.2]), the functionals Fε satisfy compactness properties anal-
ogous to those established in Theorem 0.1.

Theorem 0.3. Let {με}ε ⊂ X (�) be such that με ∈ Xε(�) for every ε > 0 and that
Fε(με) ≤ C | log ε|. Then, there exists μ ∈ X (�) such that, up to subsequences,

με
flat→ μ.

The analog of Theorem 0.2 for the core-radius approach is provided by the next
result, which is proven in Section 6.1 for λ = 1 and in Section 7.1 for λ ∈ [0, 1).
Theorem 0.4. The following statements hold true:

(i) (�-liminf inequality) For any family {με}ε ⊂ X (�) such that με ∈ Xε(�) for

every ε > 0 and με
flat→ μ with μ ∈ X (�) we have

lim inf
ε→0

Fε(με)

| log ε| ≥ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {με}ε ⊂
X (�) with με ∈ Xε(�) for every ε > 0 such that με

flat→ μ and

lim sup
ε→0

Fε(με)

| log ε| ≤ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

Within the core-radius approach, in the case λ = 1 treated in Section 6.1, we carry
out the �-convergence analysis for more general quadratic functionals than the one
in (0.8). Specifically, let f : R2 × R

2×2 → [0,+∞) be a Carathéodory function
satisfying the following assumptions:

f (·, M) is (0, 1)2-periodic for everyM ∈ R
2×2; (P)

there exist two constants α, β with 0 < α ≤ β such that (G)

α|M |2 ≤ f (y, M) ≤ β|M |2, for every M ∈ R
2×2 and for almost every y ∈ R

2 ;

f (y, ·)is homogeneous of degree 2 for almost every y ∈ R
2. (H)

We set

Fδ(w; E) :=
∫

E
f
( x

δ
,∇w(x)

)
dx, w ∈ H1(E;S1), (0.12)

and, with a little abuse of notation, we define

Fε(μ) := inf
w∈AF ε(μ)

Fδε (w;�ε(μ)). (0.13)
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In [8] it has been proved that, as δ → 0, the functionals Fδ �-converge to the
homogenized functional Fhom(·; E) : H1(E;S1) → [0,+∞) defined as

Fhom(w; E) :=
∫

E
T fhom(w(x),∇w(x)) dx .

In the formula above the energy density T fhom is the tangential homogenization of
the function f (see formula (1.6)).

Note that, in view of assumption (G), the analog of Theorem 0.3 holds true
also in this case. Next result concerns the asymptotic limit of the functionalsFε in
(0.13).

Theorem 0.5. If lim
ε→0

| log δε|
| log ε| ≥ 1, then the following �-convergence result holds

true:

(i) (�-liminf inequality) For any family {με}ε ⊂ X (�) such that με ∈ Xε(�) for

every ε > 0 and με
flat→ μ with μ ∈ X (�) we have

lim inf
ε→0

Fε(με)

| log ε| ≥ F0(μ).

(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {με}ε ⊂
X (�) with με ∈ Xε(�) for every ε > 0 such that με

flat→ μ and

lim sup
ε→0

Fε(με)

| log ε| ≤ F0(μ).

In the statement above F0 : X (�) → [0,+∞) is the functional defined as

F0(μ) :=
n∑

i=1

�(zi ; T fhom) for every μ =
n∑

i=1

ziδxi ∈ X (�), (0.14)

where �(z ; T fhom), introduced in (2.9), is the asymptotic energy cost of a singu-
larity of degree z in a homogeneous medium whose energy is Fhom. The function
�(z ; T fhom) is obtained via an asymptotic cell-problem formula and a relaxation
procedure. Loosely speaking, we first introduce the minimal Fhom energy in an
annulus around a singularity with degree z and we show that such a quantity ad-
mits a finite limit, denoted by ψ(z; T fhom), when the quotient of the radii goes to
+∞. Then �(·; T fhom) is obtained as the relaxation of the function ψ(· ; T fhom)

on Z (see formula (2.9)), accounting for the fact that a singularity of degree z
can be approximated by a family of singularities of degree z j with

∑
j z j = z.

In the simple case f (x, M) = a(x)|M |2 with a ∈ [α, β], we actually prove that
�(z ; T fhom) = 2π

√
detAhom|z| (see Proposition 2.3).

Main technical issues. Although suggested by the heuristics, the computation
of the �-limits described above is highly non-trivial and needs several new ideas
in order to combine techniques from GL and homogenization theories. We briefly
outline some of the most relevant technical issues.
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Using a scaling argument, in Proposition 3.2 we show that ψ(·; T fhom) is also
the asymptotically minimal Fε energy on “fat” annuli around a vortex of degree
z. Here, “fat” means thick enough to contain infinitely many δε-periodicity cells.
Such a property allows to apply the homogenization result in [8] that we show to
hold even if the functionals are subject to a degree constraint (see Theorem 1.5 &
Corollary 1.6).

A further technical aspect of our analysis is the use, in the proof of the lower
bound, of a refinement of the celebrated ball construction introduced in [32,40].
Thismethod allows us to find a one-parameter familyBε(t) of growing andmerging
balls, that in turn identify a family of annuli where the energy concentrates. In our
case, using a strategy similar to [25], we stop the process at an appropriate “time”
tε at which the constructed family of annuli is “fat” enough to apply the analysis
described above and to obtain the desired lower bound.

Conclusions and open questions. We conclude the introduction with a few
comments and remarks about perspectives. A natural follow-up of our results is
the extension of our analysis to GL energies with more general integrands in the
leading term as those considered in the core-radius approach. A necessary first step
in this direction is the proof of a homogenization result for energies defined on
maps taking values in a tubular neighborhood of S1. More specifically, one could
relax the S1-constraint in the functionals Fδ(·; E) in (0.12), assuming the latter
to be defined on H1(E; B1+τ\B1−τ ) for some τ ∈ (0, 1), and then study their
asymptotic behavior when both δ and τ tend to 0. Another possible extension of
our model is the analysis of the case of energy density f satisfying mild coercivity
assumptions. This would allow to analyze for instance the problem of topological
singularities in presence of soft inclusions of the inhomogeneous material. In this
respect, an analysis on the behavior of minimizers of GL functionals in perforated
domains has been carried out in [12]. Another challenging issue is to look at a
higher-order description of the functionals GLε and Fε, that in the homogeneous
case leads to the so-called renormalized energy governing the dynamics of the
singularities (see for instance [41] for the GL theory and [4] for discrete models
exhibiting topological singularities). In our case of vanishing inhomogeneities we
expect the corresponding renormalized energy to depend on the function T fhom.
Furthermore, we believe that some of the techniques developed in this paper can
also be used to make progress in studying stochastic homogenization problems in
concentration theory, as for instance those in which the energy density f is replaced
by a stationary random potential.

We finally note that inhomogeneities in the GL theory can also be introduced
in the potential term; e.g., considering energies of the form

GLε(v) :=
∫

�

|∇v(x)|2 dx + 1

ε2

∫

�

(
a
( x

δε

)
− |v(x)|2

)2
dx . (0.15)

For some homogenization results for energies (0.15) see [10,11,28,29] and the
references therein. The results obtained in those papers differ from ours, since the
energy in (0.15) describes a different physical system, namely Type II supercon-
ductors in presence of small impurities. Note that a complete study of energies of
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the form (0.15) may require a very complex multi-scale analysis even in the scalar
case (see e.g. [20,22,27]).

1. Notation and Preliminary Results

Basic notation. Given two vectors x, y ∈ R
2, x · y denotes their scalar product. As

usual, the norm of x is denoted by |x | = √
x · x . For every r > 0 and x ∈ R

2, Br (x)

denotes the open ball of radius r centered at x . For x = 0 we also write Br in place
of Br (0).S1 denotes the boundary of B1, namely the unit circle inR2. Given a ∈ R,
�a� := max{z ∈ Z : z ≤ a} and �a� := min{z ∈ Z : z ≥ a} denote the integer
parts of a from below and from above, respectively. The imaginary unit is denoted
by ι ∈ C and the complex number eιa = cos a + ι sin a ∈ C is identified with the
Euclidean vector (cos a, sin a) ∈ R

2. The identification extends to all S1-valued
maps that can be viewed as complex functions as well, if needed. In particular, for
every z ∈ Z, by (x/|x |)z wemean the complex function obtained by taking the z-th
complex power of the function x/|x |. We say that a family {gη}η converges to g0

as η → 0 in the topology T , and we write gη
T−→ g0 whenever gηn

T−→ g0 for
any null sequence {ηn}n∈N. With a little abuse of terminology the family {gη}η is
still called a sequence. The letter C denotes a positive constant whose value may
change each time we write it.
Weak star and flat convergence. Let � ⊂ R

2 be an open and bounded set with
Lipschitz boundary. Cc(�) denotes the space of continuous functions compactly
supported in� endowed with the supremum norm.We say that a sequence {μn}n∈N
of measures converges weakly star in � to a measure μ, and we write μn

∗
⇀ μ if

for any ϕ ∈ Cc(�)

〈μn, ϕ〉 → 〈μ, ϕ〉 as n → +∞.

C0,1(�) denotes the space of Lipschitz continuous functions on � endowed with
the norm

‖ψ‖C0,1 := sup
x∈�

|ψ(x)| + sup
x,y∈�
x �=y

|ψ(x) − ψ(y)|
|x − y| ,

and we let C0,1
c (�) be its subspace of functions with compact support. The norm

in the dual of C0,1
c (�) will be denoted by ‖ · ‖flat and referred to as flat norm, while

flat→ denotes the convergence with respect to this norm.
Jacobian, current, degree. Given v = (v1, v2) ∈ H1(�;R2), the Jacobian Jv of
v is the L1 function defined as follows:

Jv := det∇v.

For every v ∈ H1(�;R2), we can interpret Jv as an element of the dual ofC0,1
c (�)

by setting

〈Jv,ψ〉 :=
∫

�

Jv ψ dx, for any ψ ∈ C0,1
c (�).
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Notice that Jv can be written in a divergence form as Jv = div (v1v2x2 ,−v1v2x1),

i.e., for any ψ ∈ C0,1
c (�),

〈Jv,ψ〉 = −
∫

�

(
v1v2x2ψx1 − v1v2x1ψx2

)
dx . (1.1)

Equivalently, we have Jv = curl (v1∇v2) and Jv = 1
2curl j (v), where

j (v) := v1∇v2 − v2∇v1

is the so-called current associated to v.
Let A ⊂ � be an open set with Lipschitz boundary, and let h ∈ H

1
2 (∂ A;R2)

with |h| ≥ c > 0. The degree of h is defined as

deg(h, ∂ A) := 1

2π

∫

∂ A

h

|h| ·
∂

∂τ

(
h2

|h| ,−
h1

|h|
)

dH1,

where τ is the tangent field to ∂ A and the product in the above formula is understood

in the sense of the duality between H
1
2 and H− 1

2 . In [16,21] it is proven that the
definition above is well-posed, it is stable with respect to the strong convergence in

H
1
2 (∂ A;R2\Bc) and that deg(h, ∂ A) ∈ Z. Moreover, if v ∈ H1(A;R2\Bc) then

deg(v, ∂ A) = 0 (here and in what follows we identify v with its trace). Finally, if
v ∈ H1(A;R2) and |v| = 1 on ∂ A, by Stokes’ theorem (and by approximating v

with smooth functions) one has that
∫

A
Jv dx = 1

2

∫

A
curl j (v) dx := 1

2

∫

∂ A
j (v) · τ dH1 = π deg(v, ∂ A).

(1.2)

Note that any v ∈ H1(A;R2\Bc) can be written in polar coordinates as v(x) =
ρ(x)eιu(x) on ∂ A with |ρ| ≥ c. The function u is said to be a lifting of v. By
[14] (see also [15, Theorem 3 and Remark 3]), if A is simply connected, then

deg(v, ∂ A) = 0 and the lifting can be selected in H
1
2 (∂ A) with the map v �→ u

continuous. For A not necessarily simply connected, if� is a connected component
of ∂ A and the degree of v on � is equal to z ∈ Z, then the lifting jumps on � by

2π z, but it can be locally selected to belong to H
1
2 . For 0 < r < R and ξ ∈ R

2,
let Ar,R(ξ) := BR(ξ)\Br (ξ) be the annulus of radii r and R centered at ξ , and
let v ∈ H1(Ar,R(ξ);S1). Then for every cut L such that Ar,R(ξ)\L is a simply
connected set, there exists a lifting u ∈ H1(Ar,R(ξ)\L) of v. Hence, j (v) = ∇u
and from (1.2) it follows that

deg(v, ∂ Br (ξ)) = 1

2π

∫

∂ Br (ξ)

∇u · τ dH1.

We introduce a notion of modified Jacobian (a variant of the notion introduced
in [1]), which we will use in our�-convergence results. Given 0 < ζ < 1 we define
for ρ ∈ [0,+∞) the function Tζ (ρ) := min

{
ρ
ζ
, 1

}
. If v ∈ H1(�;R2) we set

vζ := Tζ (|v|) v

|v| and Jζ v := Jvζ . (1.3)
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Note that, for every v := (v1, v2) and w := (w1, w2) belonging to H1(�;R2) it
holds

Jv − Jw = 1

2

(
J
(
v1 − w1, v2 + w2) − J

(
v2 − w2, v1 + w1)). (1.4)

Gathering together (1.1) and (1.4) one deduces

Lemma 1.1. There exists a universal constant C > 0 such that for any v,w ∈
H1(�;R2) it holds that

‖Jv − Jw‖flat ≤ C ‖v − w‖2(‖∇v‖2 + ‖∇w‖2).
As a corollary of Lemma 1.1 we obtain the following proposition:

Proposition 1.2. Let {vε}ε be a sequence in H1(�;R2) such that GLε(vε) ≤
C | log ε|, and let η ∈ (0, 1

2 ). Then there exists Cη > 0 such that

sup
ζ∈(η,1−η)

‖Jvε − Jζ vε‖flat ≤ Cη ε| log ε|, sup
ζ∈(η,1−η)

|Jζ vε|(�) ≤ Cη| log ε|.

Periodic homogenization of energies defined on S1-valued maps. In the follow-
ing paragraphwe state someuseful propositions regarding periodic homogenization
of energy functionals defined on maps fromR

2 to S1. The propositions below have
been proven in [8] in the more general case of manifold-valued maps defined on
R

d with d ∈ N. We specialize them here in the S1-version that we exploit in the
following sections.

Let f : R2×R
2×2 → [0,+∞) be a Carathéodory function satisfying assump-

tions (P) and (G). For every δ > 0 and for every open bounded set E ⊂ R
2 we

define the functional Fδ(·, E) : L2(E;R2) → [0,+∞] as

Fδ(v; E) =
⎧⎨
⎩

∫

E
f
( x

δ
,∇v

)
dx if v ∈ H1(E;S1),

+∞ otherwise.
(1.5)

For every s = (s1, s2) ∈ S1 we set s⊥ = (−s2, s1) and Ts(S1) = Rs⊥ = {λs⊥ :
λ ∈ R} denotes the tangent space of S1 at the point s. We also introduce the set

T S1 := {(s, M) : s ∈ S1, M = s⊥ ⊗ ξ, ξ ∈ R
2}

and for every (s, M) = (s, s⊥ ⊗ ξ) ∈ T S1 we define

T fhom(s, M) := lim
t→+∞ inf

{
1

t2

∫

t Q
f (y, M + ∇φ(y)) dy : φ ∈ W 1,∞

0

(
t Q;Ts

(
S1))

}

= lim
t→+∞ inf

{
1

t2

∫

t Q
f (y, s⊥ ⊗ (ξ +∇ϕ(y))) dy : ϕ ∈ W 1,∞

0 (t Q)

}
,

(1.6)

where Q := (0, 1)2. By [8, Proposition 2.1], we have that the definition above
is well-posed. The function T fhom is called the tangential homogenization of the
function f .



570 R. Alicandro, A. Braides, M. Cicalese, L. De Luca & A. Piatnitski

The function T fhom is a tangentially quasi-convex function according to the
following definition. We say that a Borel function h : T S1 → [0,+∞) is tangen-
tially quasi-convex if for all (s, M) ∈ T S1 and all ϕ ∈ W 1,∞

0 (Q; Ts(S1)) it holds
that

h(s, M) ≤
∫

Q
h(s, M + ∇φ(y)) dy. (1.7)

We note that the function T fhom satisfies the following property:

α|M |2 ≤ T fhom(s, M) ≤ β|M |2 for every (s, M) ∈ T S1. (1.8)

Moreover, if f (x, ·) is 2-homogeneous for almost every x ∈ R
2; i.e., if f (x, λM) =

λ2 f (x, M) for almost every x ∈ R
2 and every M ∈ R

2×2, λ ∈ R, then also T fhom
satisfies that

T fhom(s, λM) = λ2 T fhom(s, M) for every (s, M) ∈ T S1, λ ∈ R.

We define the functional Fhom(·; E) : L2(E;R2) → [0,+∞] as

Fhom(v; E) =
⎧
⎨
⎩

∫

E
T fhom(v(x),∇v(x)) dx if v ∈ H1(E;S1),

+∞ otherwise.
(1.9)

The following theorem has been proven in [8, Theorem 1.1]:

Theorem 1.3. Let E ⊂ R
2 be open and bounded and let {Fδ(·; E)}δ be the sequence

of functionals defined in (1.5). Then, as δ → 0, {Fδ(·; E)}δ �-converge with respect
to the strong convergence in L2(E;R2) to the functional Fhom(·; E) in (1.9).

Remark 1.4. Note that if f is of the form

f (y, M) = a(y)|M |2 for some Q-periodic measurable function a : R2 → [α, β],
(1.10)

then for every (s, M) = (s, s⊥ ⊗ ξ) ∈ T S1 we have that f (y, M) = a(y)|ξ |2.
Therefore, by (1.6) and by standard homogenization results of quadratic forms (see
[19, Theorem 14.7]),

T fhom(s, M) = 〈Ahomξ, ξ 〉,
where Ahom is the symmetric matrix defined in (0.5).

For every 0 < r < R and for every x ∈ R
2 we set Ar,R(x) := BR(x)\Br (x) and

Ar,R := Ar,R(0). Moreover, for every z ∈ Z\{0} we define
Ar,R(z) := {w ∈ H1(Ar,R;S1) : deg(w, ∂ Br ) = z}.

Given z ∈ Z\{0}, for every δ > 0 we define the functionals Fz
δ (·; Ar,R) :

H1(Ar,R;R2) → [0,+∞] as

Fz
δ (v; Ar,R) :=

{
Fδ(v; Ar,R) if v ∈ Ar,R(z),

+∞ otherwise,
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and Fz
hom : H1(Ar,R;R2) → [0,+∞] as

Fz
hom(v; Ar,R) :=

{
Fhom(v; Ar,R) if v ∈ Ar,R(z).

+∞ otherwise,
(1.11)

The next result is a consequence of Theorem 1.3.

Theorem 1.5. Let z ∈ Z\{0} and let Fz
δ (·; Ar,R) be the functional defined in

(1.11)s. Then Fz
δ (·; Ar,R) �-converge with respect to the strong convergence in

L2(Ar,R;R2) to the functional Fz
hom(·; Ar,R) as δ → 0.

Proof. By coercivity, the desired�-convergence is equivalent to the�-convergence
in Theorem 1.3 performed with respect to the weak topology in H1(Ar,R;R2). It
is then enough to prove that the constraint deg(v, ∂ Br ) = z is closed with respect
to that convergence. Let {vδ}δ ⊂ Ar,R(z) be such that vδ ⇀ v0 in H1(Ar,R;R2)

for some v0 ∈ H1(Ar,R;S1). By standard Fubini arguments, for almost every
r < ρ < R, we have that the trace of wδ on ∂ Bρ is bounded in H1(∂ Bρ;S1) and
hence (up to a not relabeled subsequence) it weakly converges to a function gρ .
Since ‖vδ − v0‖L2(Ar,R;R2) → 0, we get that gρ = v0 for a.e. ρ ∈ (r, R). By the
very definition of degree in (1.2), deg(v0, ∂ Br ) = z and hence v0 ∈ Ar,R(z). ��
The following corollary holds true as a consequence of (G), (1.8), Theorem 1.5 and
thanks to the property of convergence ofminima in�-convergence (see [17,18,23]):

Corollary 1.6. Let z ∈ Z\{0}. Then, for every 0 < r < R, it holds that

lim
δ→0

inf
w∈Ar,R(z)

Fδ(w; Ar,R) = min
w∈Ar,R(z)

Fhom(w; Ar,R).

2. The Effective Energy of a Singularity

In this section we introduce and discuss the properties of the minimal energy
cost �(z; h) of a vortex like singularity of degree z for a homogeneous quadratic
functional of energy density h defined on S1-valued maps. The function �(·; h) is
crucial in order to determine the �-limits for both the cases δε � ε and δε 	 ε,
choosing h = T fhom, with T fhom defined in (1.6). On the one hand (see Section 7)
for δε � ε, �(z; T fhom) turns out to be the effective energy cost of a singularity of
degree z (see Theorems 6.1 and 6.2). On the other hand (see Section 7) for δε 	 ε,
recalling the definition of λ in (0.7), we have that λ�(z; T fhom) is the effective
energy cost of a singularity of degree z on scales of order between δε and 1 (see
Theorems 7.1 and 7.2).

Let h : T S1 → [0,+∞) be a continuous function, tangentially quasi-convex
according to (1.7), and such that

h(s, λM) = λ2 h(s, M), for every (s, M) ∈ T S1 and ∀ λ ∈ R. (2.1)

Assume, moreover, that there exist α, β such that 0 < α ≤ β and

α|M |2 ≤ h(s, M) ≤ β|M |2, for every (s, M) ∈ T S1. (2.2)
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For every open bounded set E ⊂ R
2 we define the functional H(·; E) : H1

(E;S1) → [0,+∞) as

H(w; E) :=
∫

E
h(w(x),∇w(x)) dx .

Given z ∈ Z\{0} and 0 < r < R we set

ψr,R(z; h) := 1

log R
r

min
w∈Ar,R(z)

H(w; Ar,R). (2.3)

Making the change of variable y = x
r and considering the 2-homogeneity (2.1)

of the function h we conclude that, for every w ∈ H1(Ar,R;S1), the following
relation holds:

H(w; Ar,R) =
∫

Ar,R

h(w(x),∇w(x)) dx =
∫

A
1, R

r

h(ŵ(y),∇ŵ(y)) dy

= H
(
ŵ; A1, R

r

)
.

(2.4)

Here ŵ(y) := w(r y). Gathering together (2.4) and (2.3) we deduce that

ψr,R(z; h) = ψ1, R
r
(z; h). (2.5)

Proposition 2.1. Let h : T S1 → [0,+∞) be a Carathéodory function satisfying
(2.2) and (2.1). For z ∈ Z\{0} and 0 < r < R let ψr,R(z, h) be the function defined
in (2.3). Then there exists the limit

ψ(z; h) := lim
R
r →+∞

ψr,R(z; h). (2.6)

Proof. In view of (2.5), it is enough to prove the inequality

lim sup
R→+∞

ψ1,R(z; h) ≤ lim inf
R→+∞ψ1,R(z; h). (2.7)

For ρ ∈ R with 1 < ρ < R we define K R,ρ := � log R
log ρ

� and note that

A1,R ⊃
K R,ρ⋃
k=1

Aρk−1,ρk .

Denoting by wR a minimizer of (2.3), letting k̄ = k̄R,ρ ∈ {1, . . . , K R,ρ} be such
that

H
(
wR; A

ρ k̄−1,ρ k̄

) ≤ H
(
wR; Aρk−1,ρk

)
for all k = 1, . . . , K R,ρ̄ ,
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and setting ŵρ,k̄(y) := wR(ρ k̄−1y), we obtain

min
w∈A1,R(z)

H(w; A1,R) ≥
K R,ρ∑
k=1

H
(
wR; Aρk−1,ρk

) ≥ K R,ρ H
(
wR; A

ρ k̄−1,ρ k̄

)

= K R,ρ H
(
ŵρ,k̄; A1,ρ

)
,

where the last equality follows by (2.1). By the definition of K R,ρ we conclude
that

ψ1,R(z; h) ≥ K R,ρ

log ρ

log R
ψ1,ρ(z; h) ≥

(
1− log ρ

log R

)
ψ1,ρ(z; h).

The inequality above yields (2.7) on taking first the limit as R → +∞ and then as
ρ → +∞. ��
Note that

2πα|z|2 ≤ ψ(z; h) ≤ 2πβ|z|2 for every z ∈ Z, (2.8)

where α and β are the constants appearing in (2.2). We define the function�(·; h) :
Z → [0,+∞) as

�(z; h) := inf

{
L∑

l=1

ψ(zl; h) :
L∑

l=1

zl = z, L ∈ N, zl ∈ Z

}
. (2.9)

Remark 2.2. It follows from (2.8) that the infimum in problem (2.9) is actually a
minimum and

2πα|z| ≤ �(z; h) ≤ 2πβ|z| for every z ∈ Z. (2.10)

Moreover, by definition, the function �(·; h) is sub-additive; i.e.,

�(z1 + z2; h) ≤ �(z1; h) + �(z2; h) for every z1, z2 ∈ Z.

Such a property implies that the functional F (·; h) : X (�) → [0,+∞) defined
by

F (μ; h) :=
n∑

i=1

�(zi ; h) for every μ =
n∑

i=1

ziδxi

is lower semi-continuous with respect to the flat convergence, while (2.10) yields

2πα|μ|(�) ≤ F (μ; h) ≤ 2πβ|μ|(�).

In thenext propositionwe show that if f is of the form in (1.10), then�(z; T fhom)

equals |z| up to a constant pre-factor.

Proposition 2.3. Let f : R2 × R
2×2 → [0,+∞) satisfy (1.10). Then

�(z; T fhom) = 2π
√
detAhom|z| for every z ∈ Z, (2.11)

where A
hom is defined in (0.5).
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Proof. For r, R ∈ R, 0 < r < R, let L := {(0, x2) : −R ≤ x2 ≤ −r} be a cut of
the annulus Ar,R . Then the domain Ar,R\L is simply connected. We set

A L
r,R(z) := {u ∈ SBV 2(Ar,R) ∩ H1(Ar,R\L) : eιu ∈ Ar,R(z)}.

By Remark 1.4 and by (2.3) we have

ψr,R(z; T fhom) = 1

log R
r

min
u∈A L

r,R(z)

∫

Ar,R

〈Ahom∇u(x),∇u(x)〉 dx

= 1

log R
r

min
u∈A L

r,R(z)

∫

Ar,R

|
√
Ahom∇u(x)|2 dx,

(2.12)

where the last equality follows from the fact thatAhom is symmetric and hence so is√
Ahom. Setting û(y) := u(

√
Ahom y),wehave that∇û(y) := √

Ahom∇u(
√
Ahom y).

Thus the change of variables x = √
Ahom y in (2.12) yields

ψr,R(z; T fhom) =
√
detAhom

log R
r

min
û∈Â L

r,R(z)

∫

(
√
Ahom)−1(Ar,R)

|∇û(y)|2 dy, (2.13)

where we have set

Â L
r,R(z) :=

{
û ∈ SBV 2((

√
Ahom)−1(Ar,R)) ∩ H1((

√
Ahom)−1(Ar,R\L)) :

û = u ◦
√
Ahom, u ∈ A L

r,R(z)
}

.

For sufficiently large R/r there exist 0 < λ < � that depend only on Ahom and do
not depend on r and R such that Aλr,�R ⊂ (

√
Ahom)−1(Ar,R) so that, by (2.13),

ψr,R(z; T fhom) =
√
detAhom

log R
r

min
u∈A L

λr,�R(z)

∫

Aλr,�R

|∇û(y)|2 dy + O

(
1

log R
r

)

= 2π
√
detAhom|z|2 + O

(
1

log R
r

)
.

It follows thatψ(z) = 2π
√
detAhom|z|2, whence (2.11) follows from the definition

of � in (2.9). ��

3. Asymptotic Analysis on Annuli

In this sectionwe prove some auxiliary results on the asymptotic behavior of the
minimal energy on an annulus when its inner and outer radii are powers of ε. Such
results will be crucial in the proofs of the �-convergence theorems in Sections 7
and 7. The next lemma states that the minimum in (2.3) for H = Fδ changes by at
most a multiple of z2 if the competitors are chosen with fixed trace (x/|x |)z instead
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of fixed degree z, thus belonging to a new appropriate set of admissible functions
defined as

Ãr,R(z) :=
{
w ∈ Ar,R(z) : w(x) =

(
x

|x |
)z

on ∂ Br ∪ ∂ BR

}
. (3.1)

Lemma 3.1. Let 0 < 2r ≤ R and let Fδ(·, Ar,R) be the functional defined in (1.5)
for E = Ar,R and with f satisfying condition (G). Then, there exists a constant
C̄ = C̄(α, β) > 0 such that, for every z ∈ Z\{0},

inf
w∈A r,R(z)

Fδ(w; Ar,R) ≤ inf
w∈Ã r,R(z)

Fδ(w; Ar,R) ≤ inf
w∈A r,R(z)

Fδ(w; Ar,R) + C̄z2.

(3.2)

Proof. The first inequality in (3.2) follows from the inclusion Ãr,R(z) ⊂ Ar,R(z).
Hence, it is enough to show that for every w ∈ Ar,R(z) there exists ŵ ∈ Ãr,R(z)
such that

Fδ(ŵ; Ar,R) ≤ Fδ(w; Ar,R) + C̄z2, (3.3)

for some constant C̄ depending only on the constants α and β in (G). Set K :=
� log R−log r

log 2 � and Ak := A2k−1r,2kr for k = 1, 2, . . . , K . We have that

Ar,R =
K⋃

k=1

Ak ∪ A2K r,R .

Since K ≥ log R−log r
log 2 − 1, in view of (G), we notice that

Fδ

(( x

|x |
)z; A2K r,R

)
≤ βz2

∫

A2K r,R

1

|x |2 dx = 2πβz2 log
R

2K r
≤ 2πβz2 log 2.(3.4)

We first consider the case where there is at most one annulus Ak such that

Fδ

((
x

|x |
)z

; Ak

)
≥ Fδ(w; Ak). (3.5)

Then, in view of (G), we have

Fδ

((
x

|x |
)z

; Ak

)
≤ βz2

∫

Ak

1

|x |2 dx = 2πβz2 log 2,

whence, using also (3.4), we deduce Fδ

((
x
|x |

)z ; Ar,R

)
≤ Fδ(w; Ar,R) + C̄z2,

which proves (3.3) for ŵ(x) = (x/|x |)z .
From now on, we can assume that (3.5) is satisfied by at least two of the annuli

Ak . We let k1 and k2 denote the smallest and the largest k ∈ {1, . . . , K } satisfying
(3.5). Let moreover L := {(0, x2) : −R ≤ x2 ≤ −r} be a cut of the annulus Ar,R

such that the domain Ar,R\L is simply connected. By [14], there exists a lifting
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u ∈ H1(Ar,R\L;R) of w in Ar,R\L . Moreover, since deg(w, ∂ Bρ) = z for every
ρ ∈ [r, R], we have that the function u jumps by 2π z across L . By the properties
of the lifting,

‖∇u‖L2(E;R2) = ‖∇w‖L2(E;R2×2) for every open set E ⊂ Ar,R . (3.6)

Furthermore, setting

θ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan x2
x1

if x1 > 0,
π
2 if x1 = 0, x2 > 0,

π + arctan x2
x1

if x1 < 0,
3
2π if x1 = 0, x2 < 0,

(3.7)

for every x ∈ R
2\{0}, the function zθ ∈ SBV 2(Ar,R) is a lifting of ( x

|x | )
z . Using

the complex notation we set ŵ := eι̂u , where the lifting û is defined as

û(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zθ(x) if r ≤ |x | ≤ 2k1−1r,
(1− σ1(|x |))zθ(x) + σ1(|x |)u(x) if 2k1−1r ≤ |x | ≤ 2k1r,
u(x) if 2k1r ≤ |x | ≤ 2k2−1r,
σ2(|x |)zθ(x) + (1− σ2(|x |))u(x) if 2k2−1r ≤ |x | ≤ 2k2r,
zθ(x) if 2k2r ≤ |x | ≤ R.

(3.8)

In the formula above, for i = 1, 2 the function σi : [2ki−1r, 2ki r ] → [0, 1] is
defined by

σi (ρ) := 1

2ki−1r
(ρ − 2ki−1r)

and satisfies σ ′
i (ρ) = 1

2ki−1r
and ‖σi‖L∞ ≤ 1.

Note that ŵ ∈ Ãr,R(z). By the definition of k1 and by (3.4), we have that

Fδ(ŵ; Ar,2k1−1r ∪ A2k2r,R) = Fδ

((
x

|x |
)z

; Ar,2k1−1r ∪ A2k2r,R

)

≤ Fδ

(
w; Ar,2k1−1r ∪ A2k2r,R

) + Cz2.

Therefore, in view of (3.8) it is enough to prove that the energy of ŵ on Ak1 and
Ak2 is bounded from above by C̄ |z|2 for some constant C̄ > 0 depending only on α

and β. We prove this fact only for the annulus Ak1 , being the proof for Ak2 similar.
To this end, note that in Ak1 one has that

|∇ŵ|2 = |∇û|2 ≤ 3|σ ′
1|2|u − zθ |2 + 3|σ1|2|∇u − z∇θ |2 + 3z2|∇θ |2

≤ C

22(k1−1)r2
(|u|2 + z2|θ |2) + C

(|∇u|2 + z2|∇θ |2). (3.9)
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Set lk1 := −
∫

Ak1
u dx . Up to adding an integer multiple of 2π , we can always assume

that |lk1 | ≤ 2π and estimate ‖lk1‖2L2(Ak1 )
≤ (2π)222k1r2. Hence

‖u‖2L2(Ak1 )
≤ 2‖u − lk1‖2L2(Ak1 )

+ 2‖lk1‖2L2(Ak1 )

≤ C22k1r2‖∇u‖2L2(Ak1 ;R2)
+ C22k1r2

≤ C22k1r2z2‖∇θ‖2L2(Ak1 ;R2)
+ C22k1r2 ≤ Cz222k1r2,

(3.10)

where the second inequality is a consequence of the Poincaré-Wirtinger inequality
applied to the domain Ak1\L (notice that this can be done up to passing to a
diffeomorphic rectangle), and the third inequality follows on gathering together
(3.5), (3.6), and (G). Note that all the constants appearing in (3.10) depend only on
α and β. By integrating (3.9) and using (3.10), (3.5), (3.6) and (G), we deduce that

Fδ(ŵ; Ak1) ≤ C‖∇ŵ‖2L2(Ak1 ;R2×2)

≤ C

22(k1−1)r2

(
‖u‖2L2(Ak1 )

+ z2‖θ‖2L2(Ak1 )

)

+ C
(
‖∇u‖2L2(Ak1 ;R2)

+ z2‖∇θ‖2L2(Ak1 ;R2)

)

≤ C 22k1 z2

22(k1−1)
+ Cz2‖∇θ‖2L2(Ak1 ;R2)

=: C̄z2,

thus concluding the proof of (3.3). ��

In the next proposition we show that in the | log ε| regime, to some extent,
the homogenization process commutes with the minimization process defining
ψ(z; T fhom).

Proposition 3.2. Let Fδε be defined in (0.12) with f satisfying assumptions (P),
(G), (H), and let T fhom be defined in (1.6). Then for any s1 and s2 such that
0 ≤ s1 < s2 < 1 and limε→0

δε

εs2 = 0 we have

lim
ε→0

1

| log ε| inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 ) = (s2 − s1)ψ(z; T fhom), (3.11)

where ψ(z; T fhom) is the function defined in (2.6) with h = T fhom.

Proof. We first show that
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lim inf
ε→0

1

| log ε| inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 ) ≥ (s2 − s1)ψ(z; T fhom).

(3.12)

To this end, we fix R > 1, set Kε,R = �(s2 − s1)
| log ε|
log R �, and note that Aεs2 ,εs1 ⊃

⋃Kε,R
k=1 ARk−1εs2 ,Rkεs2 . Let moreover wε ∈ Aεs2 ,εs1 (z) be such that

Fδε (wε; Aεs2 ,εs1 ) ≤ inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 ) + C, (3.13)

for some constant C (independent of ε) and let k̄ = k̄ε,R ∈ {1, . . . , Kε,R} be such
that

Fδε

(
wε; ARk̄−1εs2 ,Rk̄εs2

) ≤ Fδε

(
wε; ARk−1εs2 ,Rkεs2

)
, for all k = 1, . . . , Kε,R .

Therefore

Fδε

(
wε; Aεs2 ,εs1

) ≥
Kε,R∑
k=1

Fδε

(
wε; ARk−1εs2 ,Rkεs2

) ≥ Kε,R Fδε

(
wε; ARk̄−1εs2 ,Rk̄εs2

)
.

(3.14)

By the change of variable y = R1−k̄ε−s2x , w′
ε,k̄

(y) := wε(Rk̄−1εs2 y) and by
property (H), we have

Fδε

(
wε; ARk̄−1εs2 ,Rkεs2

) = F
δε R1−k̄ε−s2

(
w′

ε,k̄
; A1,R

)
. (3.15)

Therefore, since by assumption δε R1−k̄ε−s2 ≤ δεε
−s2 → 0 as ε → 0, by using

(3.13), (3.14), (3.15), and Corollary 1.6, we deduce that

lim inf
ε→0

1

| log ε| inf
w∈Aεs2 ,εs1 (z)

Fδε

(
w; Aεs2 ,εs1

)

≥ lim inf
ε→0

1

| log ε| Fδε

(
wε; Aεs2 ,εs1

)

≥ lim inf
ε→0

Kε,R

| log ε| inf
w∈A1,R(z)

F
δε R1−k̄ε−s2 (w; A1,R)

≥ lim
ε→0

( s2 − s1
log R

− 1

| log ε|
)
lim inf

ε→0

inf
w∈A1,R(z)

F
δε R1−k̄ε−s2 (w; A1,R)

= s2 − s1
log R

min
w∈A1,R(z)

Fhom(w; A1,R)

= (s2 − s1)ψ1,R(z; T fhom).

Formula (3.12) follows from the estimate above as R → +∞ thanks to Proposition
2.1 applied to h = T fhom. To conclude the proof of (3.11) we are left to show that
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lim sup
ε→0

1

| log ε| inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 ) ≤ (s2 − s1)ψ(z; T fhom).

(3.16)

To this end, we take R > 1 and set Jε,R := �(s2 − s1)
| log ε|
log R �. We observe that

inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 ) ≤
Jε,R∑
j=1

inf
w∈ÃR j−1εs2 ,R j εs2 (z)

Fδε (w; AR j−1εs2 ,R j εs2 ).

(3.17)

We also note that for every R > 1, thanks to Corollary 1.6, there exists a modulus
of continuity ω such that

inf Fδ(w; A1,R) ≤ min Fhom(w; A1,R) + ω(δ).

We set δε, j := δε

R j−1εs2
for every j = 1, . . . , Jε,R and ω(δε,j̄ ) := max j=1,...,Jε,R

ω(δε, j ). Note that δε,j̄ ≤ δε,1 = δε

εs2 → 0 as ε → 0. Therefore, ω(δε,j̄ ) depends
only on ε and R and ω(δε,j̄ ) vanishes as ε → 0. For every j = 1, . . . , Jε,R , using
the change of variable y = x

R j−1εs2
, applying Lemma 3.1with δ = δε, j (see formula

(3.2)) and Corollary 1.6, we have that

inf
w∈ÃR j−1εs2 ,R j εs2 (z)

Fδε (w; AR j−1εs2 ,R j εs2 ) = inf
w∈Ã1,R(z)

Fδε, j (w; A1,R)

≤ inf
w∈A1,R(z)

Fδε, j (w; A1,R) + C̄z2

≤ min
w∈A1,R(z)

Fhom(w; A1,R) + ω(δε,j̄ )

+ C̄z2,

(3.18)

where the constant C̄ > 0 is given in Lemma 3.1. By combining (3.18) with (3.17)
we get that

lim sup
ε→0

1

| log ε| inf
w∈Aεs2 ,εs1 (z)

Fδε (w; Aεs2 ,εs1 )

≤ s2 − s1
log R

min
w∈A1,R(z)

Fhom(w; A1,R) + s2 − s1
log R

C̄z2

= (s2 − s1)ψ1,R(z; T fhom) + s2 − s1
log R

C̄z2,

whence (3.16) follows by taking the limit as R → +∞ and using Proposition 2.1
with h = T fhom. This concludes the proof of (3.11). ��
Remark 3.3. Note that (3.11) holds true also if the center of the annulus is a point
ξε depending on ε, since all the estimates in the previous proof do not depend on
the center of the annulus.
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4. The Ball Construction

In this section we present the so-called ball construction introduced in [32,40],
which provides lower bounds of the Dirichlet energy in the presence of topological
singularities. We slightly revisit it, following the approach by Sandier [40] and
adopting the notation in [26] (see also [5]).

Let B = {Br1(x1), . . . , Brn (xn)} be a finite family of open balls in R
2 with

disjoint closure B̄ri (xi ) ∩ B̄r j (x j ) = ∅ for i �= j and let μ = ∑n
i=1 ziδxi with

zi ∈ Z\{0}.
Let moreover E(B, μ, ·) be an increasing set-function defined on open subsets

of R2 satisfying the following properties:

(i) E(B, μ, E1 ∪ E2) ≥ E(B, μ, E1) + E(B, μ, E2) for all E1, E2 open disjoint
subsets of R2;

(ii) for any annulus Ar,R(x) = BR(x)\B̄r (x) with Ar,R(x) ∩ ⋃
i B̄ri (xi ) = ∅, it

holds

E(B, μ, Ar,R(x)) ≥ 2πα|μ(Br (x))| log R

r
, (4.1)

for some constant α > 0.

Remark 4.1. Let w ∈ H1
loc(R

2\⋃
B∈B B;S1) be such that μ = ∑

B∈B deg
(w, ∂ B)δxB , where xB is the center of B. Then, an explicit example of admissible
functional E(B, μ, ·) is given by

E(B, μ, A) := α

∫

A\⋃
B∈B B

|∇w|2 dx,

for every open set A ⊂ R
2. For further details see Remark 5.1.

For every ball B ⊂ R
2, let r(B) denote the radius of the ball B; moreover, for

every familyB of balls in R2 we set

Rad(B) :=
∑
B∈B

r(B).

Proposition 4.2. There exists a one-parameter family of open balls B(t) with t ≥ 0
such that, setting U (t) := ⋃

B∈B(t) B, the following conditions are fulfilled:

(1) B(0) = B ;
(2) U (t1) ⊂ U (t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are pairwise disjoint;
(4) for any 0 ≤ t1 < t2 and for any open set U ⊂ R

2,

E(B, μ, U ∩ (U (t2)\U (t1))) ≥ 2πα
∑

B∈B(t2)
B⊂U

|μ(B)| log 1+ t2
1+ t1

; (4.2)

(5) Rad(B(t)) ≤ (1+ t)Rad(B).
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Proof. In order to construct the family B(t), we closely follow the strategy of
Sandier and Jerrard in [32,40]. It consists in letting the balls alternatively expand
and merge into each other as follows. In the expansion phase the balls expand,
without changing their centers, in such a way that, at each (artificial) time t the
radius ri (t) of the ball centered at xi satisfies

ri (t)

ri
= 1+ t for all i. (4.3)

The first expansion phase stops at the first time T1 when two balls bump into each
other. Then the merging phase begins. It consists in identifying a suitable partition
{S1

j } j=1,...,Nn of the family
{

Bri (T1)(xi )
}
, and, for each subclass S1

j , in finding a ball

Br1j
(x1j ) which contains all the balls in S1

j such that the following properties hold:

(P1) Br1j
(x1j ) ∩ Br1l

(x1l ) = ∅ for all j �= l;

(P2) r1j ≤ ∑
B∈S1j

r(B).

After the merging phase another expansion phase begins: we let the balls
{

Br1j
(x1j )

}

expand in such a way that, for t ≥ T1, for every j we have that

r1j (t)

r1j
= 1+ t

1+ T1
. (4.4)

Again note that r1j (T1) = r1j . We iterate this procedure thus obtaining a discrete
set of merging times {T1, . . . , TK } with K ≤ n and a family B(t) for all t ≥ 0.
More precisely, B(t) is given by {Br j (t)(x j )} j for t ∈ [0, T1); for t ∈ [Tk, Tk+1),
B(t) can be written as {Brk

j (t)
(xk

j )} j for all k = 1, . . . , K − 1, while it consists of a

single expanding ball for t ≥ TK . By construction, we clearly have properties (1),
(2) and (3). Moreover, (5) is a consequence of (4.3), (4.4) and property (P2).

It remains to show property (4). We preliminarily note that, by (2), for every
open set U ⊂ R

2

∑
B∈B(τ1)

B⊂U

|μ(B)| ≥
∑

B∈B(τ2)
B⊂U

|μ(B)| for any 0 < τ1 < τ2. (4.5)

Let t1 < t̄ < t2. In view of (4.5) and since E is an increasing set-function satisfying
property (i), if we show that (4) holds true for the pairs (t1, t̄) and (t̄, t2), then (4)
follows also for t1 and t2. Therefore, we can assume without loss of generality that
Tk /∈]t1, t2[ for any k = 1, . . . , K .

Let t1 < τ < t2 and let B ∈ B(τ ). Then there exists a unique ball B ′ ∈ B(t1)
such that B ′ ⊂ B. By construction, μ(B) = μ(B ′) and by (4.1) we have that

E(B, μ, B\B̄ ′) ≥ 2πα|μ(B)| log 1+ τ

1+ t1
,
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which, summing up over all B ∈ B(τ ) with B ⊂ U , and using (4.5), yields

E(B, μ, U ∩ (U (t2)\U (t1))) ≥ 2πα
∑

B∈B(τ )
B⊂U

|μ(B)| log 1+ τ

1+ t1
≥ 2πα

∑
B∈B(t2)

B⊂U

|μ(B)| log 1+ τ

1+ t1
.

Property (4) follows by letting τ → t2. ��
We recall the following well-known lemma (see e.g., [26, Lemma 2.2]) for the
reader’s convenience:

Lemma 4.3. Let B be a family of pairwise disjoint balls in R
2 and let C be the

family of balls in B which are contained in �. Let moreover ν1, ν2 be two Radon
measures supported in � with

supp ν1 ⊂
⋃
B∈C

B, supp ν2 ⊂
⋃

B∈B
B and ν1(B) = ν2(B) for any B ∈ C .

Then, there exists a constant C > 0 such that

‖ν1 − ν2‖flat ≤ C Rad(B)(|ν1| + |ν2|)(�).

5. General �-Liminf Inequality

In this section we state and prove an asymptotic lower-bound estimate for
general core-radius approach functionals (see Propositions 5.2 and 5.4); such results
will be instrumental for the proofs of the �-liminf inequalities in Theorems 0.5, 0.4
and 0.2.

We introduce the increasing set-function E satisfying the assumptions (i) and
(ii) in Section 4 as follows. Let B = {Br1(x1), . . . , BrN (xn)} be a finite family of
open balls in R

2 with B̄ri (xi ) ∩ B̄r j (x j ) = ∅ for i �= j , and let μ = ∑n
i=1 ziδxi

with zi ∈ Z\{0}.
If Ar,R(x) is an annulus that does not intersect any Bri (xi ), we set

G(B, μ, Ar,R(x)) := 2πα|μ(Br (x))| log
( R

r

)
, (5.1)

with α as in assumption (G). For every open set A ⊂ R
2 we set

E(B, μ, A) := sup
∑

j

G(B, μ, A j ), (5.2)

where the supremum is taken over all finite families of disjoint annuli A j ⊂ A that
do not intersect any Bri (xi ). Note that, if A is an annulus that does not intersect any
Bri (xi ), then E(B, μ, A) = G(B, μ, A).
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Remark 5.1. The convenience of introducing E in (5.2) to prove a lower-bound
inequality for (an appropriate scaling of) the functional Fδε in (0.12) will be clear in
the following sections. However, the following simple observation already points
in the right direction. Let �(B) = �\⋃

B∈B B, w ∈ H1(�(B);S1) and μ :=∑
B∈C deg(w, ∂ B)δxB where C denotes the family of balls in B that are contained

in�, and xB is the center of B. Then, by Jensen’s inequality and by the lower bound
in (G), we deduce that

E(B, μ, U ) ≤
∫

U∩�̃

α|∇w|2 dx ≤ Fδε (w;U ∩ �(B)) (5.3)

for every open set U ⊂ �.

For every μ ∈ X (�) and for every family of pairwise disjoint balls B such that
suppμ ⊂ ⋃

B∈B B, we set

AF(μ,B) := {w ∈ H1(�(B);S1) : deg(w, ∂ B) = μ(B) for every B ∈ B}.

In addition, we set

Fε(μ,B) := inf
w∈AF(μ,B)

Fδε (w;�(B)), (5.4)

where Fδε is defined in (0.12) and f satisfies (P), (G), (H).
Note that if μ = ∑n

i=1 ziδxi ∈ Xε(�) for some ε > 0, setting Bε =
{Bε(xi )}i=1,...,n , we have that AF(μ,Bε) coincides with the set AFε(μ) defined
in (0.9) and that Fε(μ,Bε) = Fε(μ). We are now in a position to state the first
main result of this section, concerning the case | log δε| � | log ε|.
Proposition 5.2. Let {με}ε ⊂ X (�) be such that

|με|(�) ≤ C | log ε| (5.5)

and με
flat→ μ for some μ ∈ X (�). For every ε > 0 let Bε be a finite family of

pairwise disjoint open balls such that suppμε ⊂ ⋃
B∈Bε

B and

Rad(Bε) ≤ Cε| log ε|. (5.6)

If lim
ε→0

| log δε|
| log ε| ≥ 1, then

lim inf
ε→0

1

| log ε|Fε(με,Bε) ≥ F0(μ),

where Fε is defined in (0.12) and (5.4), F0 is defined in (0.14) and �(·; T fhom) is
defined in (2.9) for h = T fhom.
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Proof. For every ε > 0, let wε ∈ AF(με,Bε) be such that

Fδε (wε;�(Bε)) ≤ Fε(με,Bε) + C (5.7)

for some constant C independent of ε. We can assume without loss of generality
that

Fδε (wε;�(Bε)) ≤ Fε(με,Bε) + C ≤ C | log ε|. (5.8)

Moreover, by a standard localization argument in �-convergence, we can assume
that μ = z0δx0 for some z0 ∈ Z\{0} and x0 ∈ �. We divide the proof into three
steps. In Step 1, using the ball-construction procedure introduced in Section 4,
we show that the sequence {με}ε is flat-equivalent to a sequence {με(p)}ε having
uniformly bounded total variation. In Step 2, we show how to modify the functions
wε in order to get rid of the balls containing “short” dipoles far from the limiting
singularity. In such a way, we can bound Fδε (wε;�(Bε)) from below by the energy
of the modified functions ŵε, up to a bounded error. Therefore, referring again to
the ball construction of Section 4, it is sufficient to consider the family of balls that
contains the support of με(p), and estimate the energy of ŵε in the complement
to this family. This is done in Step 3, where the analysis developed in Section 3 is
used in order to get the desired lower bound.

Step 1. In view of (5.8), by exploiting assumption (G) and by applying (5.3)
with U = �, we have that

E(Bε, με,�) ≤ α

∫

�(Bε)

|∇wε|2 dx ≤ C | log ε|, (5.9)

where E is defined in (5.1) and (5.2). For every ε > 0, let Bε(t) be a time-
parametrized family of balls introduced as in Proposition 4.2, starting from Bε =:
Bε(0). For every t ≥ 0, we setRε(t) := Rad(Bε(t)), Cε(t) := {B ∈ Bε(t) : B ⊂
�} and Uε(t) := ⋃

B∈Bε(t) B. Moreover, for any 0 < p < 1 we set

tε(p) := 1

R1−p
ε (0)

− 1 and με(p) :=
∑

B∈Cε(tε(p))

με(B)δxB .

By (5.9), applying (4.2) with U = �, t1 = 0 and t2 = tε(p), and using (5.6), we
obtain

C | log ε| ≥ E(Bε, με,� ∩ (Uε(tε(p))\Uε(0)))

≥ 2πα
∑

B∈Cε(tε(p))

|με(B)|(1− p)| logRε(0)|

= 2πα(1− p)|με(p)|(�)| logRε(0)| ≥ C(1− p)|με(p)|(�)| log ε|
for sufficiently small ε. Therefore, we have

|με(p)|(�) ≤ C p, (5.10)
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for some constant C p > 0 depending on p (and independent of ε). By Proposition
4.2(5) and (5.6), we have that

Rε(tε(p)) ≤ Rp
ε (0) ≤ Cε p| log ε|p,

whence, by applying Lemma 4.3 with ν1 = με(p) and ν2 = με, we deduce that

‖με − με(p)‖flat ≤ CRε(tε(p))(|με| + |με(p)|)(�) ≤ Cε p| log ε|1+p → 0

as ε → 0.

This relation, with (5.10) and the fact that με
flat→ μ, yield that

με(p)
∗
⇀ μ = z0δx0 , for every 0 < p < 1. (5.11)

Step 2. Let c > 1 be such that log c <
p
2
| logRε(0)|
|με |(�)+1 . Note that, since | logRε(0)| ≥

C | log ε| and |με|(�) ≤ C | log ε|, we are allowed to take the constant c in the
previous inequality independent of ε. By Lemma 5.3 below (applied with p1 = p
and p2 = p

2 ) there exist tε(p) ≤ t̂ε,1 < t̂ε,2 ≤ tε(
p
2 ) with (1 + t̂ε,2) = c(1 + t̂ε,1)

such that no merging occurs in the interval [t̂ε,1, t̂ε,2) and

∫

�∩(U (t̂ε,2)\U (t̂ε,1))
|∇wε|2 dx ≤ log c

∫
�(Bε)

|∇wε|2 dx
p
2 | logRε(0)| − log c(|με|(�) + 1)

≤
log c
α Fδε

(wε;�(Bε))
p
2 (| log ε| − log | log ε| + C) − log c (C | log ε| + 1)

≤ C,

(5.12)

where the last but one inequality follows from (5.6) and (5.5), whereas the last
inequality is a consequence of (5.8). We classify the balls in Cε(t̂ε,1) into two
subclasses; namely,

C=0
ε (t̂ε,1) :=

{
B ∈ Cε(t̂ε,1) : με(B) = 0

}
and C �=0

ε (t̂ε,1)

:= {
B ∈ Cε(t̂ε,1) : με(B) �= 0

}
. (5.13)

We first consider the balls in C=0
ε (t̂ε,1). For every such ball B we let B̂ denote the

only ball in Cε(t̂ε,2) containing B. Note that, the center xB of B is the same as the
center of B̂. By (5.12), we have that

∑

B∈C=0
ε (t̂ε,1)

∫

B̂\B
|∇wε|2 dx ≤ C.

Nowwe extend the functionwε to a function ŵε ∈ H1(�(Bε)∪⋃
B∈C=0

ε (t̂ε,1) B;S1)

in such a way that

‖∇ŵε‖L2(B̂;R2×2)
≤ Ĉ‖∇wε‖L2(B̂\B;R2×2)

(5.14)

for every B and B̂ as above, for some universal constant Ĉ . We consider B =
BR(ξ) and B̂ = BcR(ξ) two balls as above. Since deg(wε, ∂ BR(ξ)) = deg(wε,
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∂ BcR(ξ)) = 0, by arguing as in [14] (see also [15]), there exists a lifting u
AR,cR(ξ)
ε ∈

H1(AR,cR(ξ)) of wε in AR,cR(ξ). Let Uε : A R
c ,R(ξ) → R be the extension

by reflection of the function u
AR,cR(ξ)
ε to the annulus A R

c ,R(ξ); i.e., Uε(x) :=
u

AR,cR(ξ)
ε (ξ − c(x − ξ) + (1 + c)R x−ξ

|x−ξ | ). We let Ūε denote the average of Uε on

A R
c ,R(ξ). Let η : [ R

c , R] → R be the cut-off function defined by η(ρ) = cρ−R
R(c−1) .

We define the function û B̂
ε : BcR(ξ) → R as

û B̂
ε (x) :=

⎧⎪⎨
⎪⎩

u
AR,cR(ξ)
ε if x ∈ AR,cR(ξ),

η(|x − ξ |)Uε(x) + (1− η(|x − ξ |))Ūε if x ∈ A R
c ,R(ξ),

Ūε if x ∈ B R
c
(ξ).

By the Poincaré–Wirtinger inequality and by the definition ofUε we have that there
exists a constant Ĉ (independent of ε) such that

∫

A R
c ,R

(ξ)

|∇û B̂
ε |2 dx =

∫

A R
c ,R

(ξ)

|∇(η(|x − ξ |)(Uε(x) − Ūε))|2 dx

≤ 2
c2

R2(c − 1)2

∫

A R
c ,R

(ξ)

|Uε(x) − Ūε(x)|2 dx

+ 2
∫

A R
c ,R

(ξ)

|∇Uε|2 dx

≤C
∫

A R
c ,R

(ξ)

|∇Uε|2 dx ≤ Ĉ
∫

A R
c ,R

(ξ)

∣∣∇u
AR,cR(ξ)
ε

∣∣2 dx .

Therefore, setting

ŵε(x) :=
{

eιû B̂
ε (x) if x ∈ B̂ for some B̂ ∈ C=0

ε (t̂ε,1),
wε(x) elsewhere in �(Bε),

we have that ŵε ∈ H1(�(Bε)∪⋃
B∈C=0

ε (t̂ε,1) B;S1) and satisfies (5.14). Then from
(5.12) and (5.14) we deduce that

∑

B∈C=0
ε (t̂ε,1)

∫

B
|∇ŵε|2 dx ≤ C. (5.15)

Step 3. We now focus on the balls in C �=0
ε (t̂ε,1). In view of the ball construction in

Section 4 and of (5.10), we have that �C �=0
ε (t̂ε,1) ≤ C p. Therefore, up to extracting

a subsequence, we may assume that �C �=0
ε (t̂ε,1) = L for every ε > 0 and for some

L ∈ N. For every l = 1, . . . , L , let xl
ε be the center of the l-th ball Bl

ε in C
�=0
ε (t̂ε,1).

Up to a further subsequence, we can assume that the points xl
ε converge to some

points in the finite set {ξ0 = x0, ξ1, . . . , ξL ′ } ⊂ �̄, where L ′ ≤ L . Let ρ > 0
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be such that B2ρ(x0) ⊂⊂ � and B2ρ(ξ j ) ∩ B2ρ(ξk) = ∅ for all j �= k. Then
xl
ε ∈ Bρ(ξ j ) for some j = 1, . . . , L ′ and for ε small enough. We set

μ̃ε :=
∑

xl
ε∈Bρ(x0)

με(Bl
ε)δxl

ε
.

By construction, we have that

|μ̃ε|(�) ≤ |με(p)|(�) and ‖μ̃ε − με(p)‖flat → 0, (5.16)

which, in view of (5.10) and (5.11), implies that, up to a subsequence, μ̃ε
∗
⇀ μ =

z0δx0 . Therefore, for sufficiently small ε,

μ̃ε(B2ρ(x0)) =
∑

xl
ε∈Bρ(x0)

με(Bl
ε) = z0. (5.17)

Thanks to (5.15) and the assumption (G), we have that

Fδε (wε;�(Bε)) ≥
∫

�(Bε)\∪B∈C=0
ε (t̂ε,1)

B
f
( x

δε

,∇wε

)
dx

≥
∫

�(Bε)∩B2ρ(x0)
f
( x

δε

,∇ŵε

)
dx − C.

(5.18)

It remains to prove the lower bound for the right-hand side of (5.18). To this end,
we take 0 < p′ < p such thatRε(t̂ε,1) ≤ ε p′ (note that such p′ always exists since,
by Lemma 5.3, Rε(t̂ε,1) < R

p
2
ε (0) ≤ Cε

p
2 | log ε| p

2 ), choose 0 < p̄ < p′ and let
gε : [ p̄, p′] → {1, . . . , L} denote the function which associates to any q ∈ [ p̄, p′]
the number gε(q) of connected components of the set

⋃L
l=1 Bεq (xl

ε). For every
ε > 0, the function gε is monotonically non decreasing so that it can have at most
L̂ ≤ L discontinuities. Let q j

ε , for j = 1, . . . , L̂ , denote the discontinuity points
of gε and assume that

p̄ ≤ q1
ε < · · · < q L̂

ε ≤ p′.

There exists a finite set % = {q1, q2, . . . , q L̃} with qi < qi+1 and L̃ ≤ L̂ such
that, up to a subsequence, {q j

ε }ε converges to some point in %, as ε → 0 for every
j = 1, . . . , L̂ . Without loss of generality we may assume that q1 = p̄, and that
q L̃ = p′. Let λ > 0 be such that 4λ < min{qi+1 − qi : i ∈ {1, 2, . . . , L̃ − 1}} and
let ε be so small that for every j = 1, . . . , L̂ , |q j

ε −qi | < λ for some qi ∈ %. Then,
the function gε is constant in the interval [qi +λ, qi+1−λ], its value being denoted
by Mi

ε. For every i = 1, . . . , L̃ −1 we construct a family of Mi
ε ≤ L̃−1 annuli that

we let Ci,m
ε := B

εqi+λ(ym
ε )\B

εqi+1−λ(ym
ε ) with ym

ε ∈ Bρ(x0) and m = 1, . . . , Mi
ε.

The annuli Ci,m
ε can be taken pairwise disjoint for all i and m and such that

⋃

xl
ε∈Bρ(x0)

Bl
ε ⊂

Mi
ε⋃

m=1

B
εqi+1−λ(ym

ε )
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for all i = 1, . . . , L̃−1. Note that, for ε small enough,Ci,m
ε ⊂ B2ρ(x0) for all i and

m. By (5.16) we have that |με(B
εqi+1−λ(ym

ε ))| ≤ C for every i = 1, . . . , L̃ − 1 and

m = 1, . . . , Mi
ε. Therefore, up to passing to a further subsequence, we can assume

that Mi
ε = Mi (since Mi

ε ≤ L̃ − 1) and that με(B
εqi+1−λ(ym

ε )) = zi,m ∈ Z\{0},
with Mi and zi,m independent of ε. Finally, in view of (5.17), we have that

Mi∑
m=1

zi,m = z0. (5.19)

Observe that the assumption limε→0
| log δε |
| log ε| ≥ 1 implies that limε→0

δε

εqi+1−λ
= 0

for every i . Hence, we can apply Proposition 3.2 with s1 = qi +λ < qi+1−λ = s2
(see also Remark 3.3) to get that for every i and m there exists a modulus of
continuity ω such that

1

| log ε|
∫

Ci,m
ε

f
( x

δε

,∇ŵε

)
dx ≥ (qi+1 − qi − 2λ)ψ(zi,m; T fhom) − ω(ε).

Summing the previous inequality over m and i and using (5.18) yields

1

| log ε| Fδε (wε;�(Bε)) ≥
L̃−1∑
i=1

Mi∑
m=1

(qi+1 − qi − 2λ)ψ(zi,m; T fhom) − ω(ε)

≥
L̃−1∑
i=1

(qi+1 − qi − 2λ)�(z0; T fhom) − ω(ε)

= (p′ − p̄ − 2(L̃ − 1)λ)�(z0; T fhom) − ω(ε),

(5.20)

where the second inequality follows from (5.19) and from the definition of � in
(2.9). Then, the claim follows by (5.20) taking the limits as ε → 0, λ → 0, p̄ → 0,
and p, p′ → 1 and using (5.7). ��
We turn to the technical lemma that has been exploited in the proof of Proposition
5.2 above (see formula (5.12)). For every p ∈ (0, 1) let t (p) := 1

Rad1−p(B)
− 1.

Lemma 5.3. Let μ ∈ X (�) and let B be a finite family of pairwise disjoint open
balls such that suppμ ⊂ ⋃

B∈B B and Rad(B) < 1. Assume that 0 < p2 <

p1 < 1, and c > 1 be such that log c < (p1 − p2)
| logRad(B)|
|μ|(�)+1 . Assume also

that B(t) is a time-parametrized family of balls constructed as in Proposition 4.2,
starting from B =: B(0), and U (t) := ⋃

B∈B(t) B for every t ≥ 0. Then, there exist
t̂1, t̂2 ∈ [t (p1), t (p2)) with 1+ t̂2 = c(1+ t̂1) such that no merging occurs in the
interval [t̂1, t̂2) and

∫

�∩(U (t̂2)\U (t̂1))
|∇w|2 dx ≤ log c

∫
�(B)

|∇w|2 dx

(p1 − p2)| logRad(B)| − log c(|μ|(�) + 1)
,

for every w ∈ AF(μ,B).
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Proof. We set J := �(p1− p2)
| logRad(B)|

log c � and t̂ j := c j (1+ t (p1))− 1 for every

j = 0, 1, . . . , J . Note that 1+t̂ j+1

1+t̂ j = c for every j = 0, 1, . . . , J − 1. We let J
denote the set of indices in {0, 1, . . . , J − 1} for which no merging occurs in the
interval [t̂ j , t̂ j+1). Since the number of merging times is bounded from above by
|μ|(�), we have �J ≥ J − |μ|(�) ≥ (p1 − p2)

| logRad(B)|
log c − |μ|(�) − 1. For

every j ∈ J and for every ball B(t̂ j ) ∈ B(t̂ j ), B(t̂ j+1) denotes the unique ball
in B(t̂ j+1) such that B(t̂ j ) ⊂ B(t̂ j+1). By the mean-value theorem, there exists
k ∈ J such that

∫

�(B)

|∇w|2 dx ≥
∑
j∈J

∑

B(t̂ j )∈B(t̂ j )

∫

�∩(B(t̂ j+1)\B̄(t̂ j ))

|∇w|2 dx

≥ �J
∫

�∩(U (t̂ k+1)\Ū (t̂ k))

|∇w|2 dx

≥
(
(p1 − p2)

| logRad(B)|
log c

− |μ|(�) − 1
)

∫

�∩(U (t̂ k+1)\Ū (t̂ k))

|∇w|2 dx,

from which the claim follows setting t̂1 := t̂ k and t̂2 := t̂ k+1. ��
As for the general case (0.7), we restrict our analysis to functionals of the form

Fδ(w; E) :=
∫

E
a
( x

δ

)
|∇w|2 dx, w ∈ H1(E;S1). (5.21)

In such a case the main result is

Proposition 5.4. Let Fδε , Fε be defined in (5.21), (5.4), respectively, where a is a
measurable (0, 1)2-periodic function satisfying a(x) ∈ [α, β] ⊂ (0,+∞) for a.e.
x ∈ R

2. Let {με}ε ⊂ X (�) be such that

|με|(�) ≤ C | log ε| (5.22)

and με
flat→ μ for some μ ∈ X (�). For every ε > 0 let Bε be a finite family of

pairwise disjoint open balls such that suppμε ⊂ ⋃
B∈Bε

B and

Rad(Bε) ≤ Cε| log ε|. (5.23)

If λ := lim
ε→0

| log δε|
| log ε| < 1, then

lim inf
ε→0

1

| log ε|Fε(με,Bε) ≥ 2π

((
1− λ)ess inf a + λ

√
detAhom

)
|μ|(�),

where A
hom is defined in (0.5).
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Proof. The proof closely resembles the one of Proposition 5.2; here we only high-
light the main changes that are needed to prove the different lower bound in the
regime λ < 1.

Let wε ∈ AFε(με,�(Bε)) be such that

Fδε (wε;�(Bε)) ≤ Fε(με,Bε) + C (5.24)

for some constant C independent of ε. By a standard localization argument in
�-convergence, we can assume that μ = z0δx0 for some z0 ∈ Z\{0} and x0 ∈ �.

For every ε > 0, let Bε(t) be a time-parametrized family of balls introduced as
in Proposition 4.2, starting from Bε =: Bε(0). For every t ≥ 0, we set Rε(t) :=
Rad(Bε(t)), Cε(t) := {B ∈ Bε(t) : B ⊂ �} and Uε(t) := ⋃

B∈Bε(t) B. For every
0 < p < 1 we set

tε(p) := 1

R1−p
ε (0)

− 1 and με(p) :=
∑

B∈Cε(tε(p))

με(B)δxB .

Fix λ < p < 1. By arguing as in the proof of (5.10) and (5.11), we have that

|με(p)|(�) ≤ C p and με(p)
∗
⇀ μ = z0δx0 as ε → 0. (5.25)

Following the reasoning in the proof of Proposition 5.2 we have that for every
0 < η < p−λ there exists tε(p) ≤ t̂ε,1 ≤ tε(p−η) and a amap ŵε ∈ H1(�(Bε)∪⋃

B∈C=0
ε (t̂ε,1);S1) (with C=0

ε (t̂ε,1) defined in (5.13)) satisfying (5.15).

Recalling the definition of C �=0
ε (t̂ε,1) in (5.13), we set μ(t̂ε,1) := ∑

B∈C �=0
ε (t̂ε,1)

με(B)δxB . In view of the ball construction in Section 4 and of (5.25), we have that

�C �=0
ε (t̂ε,1) ≤ C p. Therefore, up to extracting a subsequence we may assume that

�C �=0
ε (t̂ε,1) = L for every ε > 0 and for some L ∈ N. For every l = 1, . . . , L ,

let xl
ε be the center of the l-th ball Bl

ε in C �=0
ε (t̂ε,1). Up to a further subsequence,

we can assume that the points xl
ε converge to some points in the finite set {x0 =

ξ0, ξ1, . . . , ξL ′ } ⊂ �̄, where L ′ ≤ L . Let ρ > 0 be such that B2ρ(x0) ⊂⊂ � and
B2ρ(ξ j ) ∩ B2ρ(ξk) = ∅ for all j �= k. Then xl

ε ∈ Bρ(ξ j ) for some j = 1, . . . , L ′
and for ε small enough. Setting

μ̃ε :=
∑

xl
ε∈Bρ(x0)

με

(
Bl

ε

)
δxl

ε
,

by construction, we have that

|μ̃ε|(�) ≤ |με(p)|(�) and ‖μ̃ε − με(p)‖flat → 0, (5.26)

which, in view of (5.25), implies that, up to a subsequence,

μ̃ε
∗
⇀ μ = z0δx0 .

Therefore, for sufficiently small ε,

μ̃ε(B2ρ(x0)) =
∑

xl
ε∈Bρ(x0)

με

(
Bl

ε

) = z0, (5.27)
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and, by arguing as in the proof of (5.18), we obtain

Fδε (wε;�(Bε)) ≥
∫

�(Bε)∩B2ρ(x0)
a
( x

δε

)
|∇ŵε|2 dx − C. (5.28)

It remains to prove the lower bound for the right-hand side of (5.28). To this end,
we take λ < p′ < p such that Rad(t̂ε,1) ≤ ε p′ (note that such p′ always exists
since Rε(t̂ε,1) < Rp−η

ε (0) ≤ Cε p−η| log ε|p−η for every η < p − λ), choose
0 < p̄ < λ < p′ and let gε : [ p̄, p′] → {1, . . . , L} denote the function which
associates to any q ∈ [ p̄, p′] the number gε(q) of connected components of the set⋃L

l=1 Bεq (xl
ε). For every ε > 0, the function gε is monotonically non decreasing

so that it can have at most L̂ ≤ L discontinuities. Let q j
ε for j = 1, . . . , L̂1 and κ

j
ε

for j = 1, . . . , L̂2 denote the discontinuity points of gε in [ p̄, λ] and in in [λ, p′],
respectively. Assume that

p̄ ≤ q1
ε < · · · < q L̂1

ε ≤ λ ≤ κ1
ε ≤ · · · ≤ κ L̂2

ε ≤ p′.

There exists a finite set %1 = {q1, . . . , q L̃1} (resp., %2 = {κ1, . . . , κ L̃2}) with
qi < qi+1 (resp., κ i < κ i+1), and L̃1 ≤ L̂1 (resp., L̃2 ≤ L̂2) such that, up to
a subsequence, {q j

ε }ε converges to some point in %1, as ε → 0 for every j =
1, . . . , L̂1 (resp., {κ j

ε }ε converges to some point in %2, as ε → 0 for every j =
1, . . . , L̂2). Without loss of generality we may assume that q1 = p̄, q L̃1 = λ = κ1,
and κ L̃2 = p′. Let η > 0 be such that 4η < min{qi+1 − qi : i ∈ {1, . . . , L̃1}}
and 4η < min{κ i+1 − κ i : i ∈ {1, . . . , L̃2}} and let ε be so small that for every
j = 1, . . . , L̂1, |q j

ε − qi | < η for some qi ∈ %1 and for every j = 1, . . . , L̂2,
|κ j

ε − κ i | < η for some si ∈ %2. Then, the function gε is constant in the intervals
[qi + η, qi+1 − η] and in the intervals [κ i + η, κ i+1 − η], and in both cases we let
its value be denoted by Mi

ε. For every i = 1, . . . , L̃1−1 (resp., i = 1, . . . , L̃2−1)
we construct a family of Mi

ε ≤ L̃1−1 (resp., Mi
ε ≤ L̃2−1) annuli that are denoted

by Ci,m
ε := B

εqi+η (ym
ε )\B

εqi+1−η (ym
ε ) (resp., Ci,m

ε := B
εκi+η (ym

ε )\B
εκi+1−η (ym

ε ))

with ym
ε ∈ Bρ(x0) and m = 1, . . . , Mi

ε. The annuli Ci,m
ε can be taken pairwise

disjoint for all i and m and such that

⋃

xl
ε∈Bρ(x0)

Bl
ε ⊂

Mi
ε⋃

m=1

B
εqi+1−η

(
ym
ε

)
and

⋃

xl
ε∈Bρ(x0)

Bl
ε ⊂

Mi
ε⋃

m=1

B
εκi+1−η

(
ym
ε

)
.

Note that, for ε small enough, Ci,m
ε ⊂ B2ρ(x0) for all i and m and, by (5.26), we

get ∣∣με

(
B

εqi+1−η

(
ym
ε

))∣∣ ≤ C and |με

(
B

εκi+1−η

(
ym
ε

))∣∣ ≤ C.

Therefore, up to passing to a further subsequence, we can assume that Mi
ε = Mi

and that με(B
εqi+1−η (ym

ε )) = zi,m ∈ Z\{0} and με(B
εκi+1−η (ym

ε )) = zi,m ∈ Z\{0},
with Mi and zi,m independent of ε. Finally, in view of (5.27), we have that

Mi∑
m=1

zi,m = z0. (5.29)
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For every i = 1, . . . , L̃2 − 1 and for every m = 1, . . . , Mi we have that

∫

Ci,m
ε

a
( x

δε

)
|∇ŵε|2 dx ≥ 2πess inf a

(
κ i+1 − κ i − 2η

)| log ε||zi,m |2

≥ 2πess inf a
(
κ i+1 − κ i − 2η

)| log ε||zi,m |

which, summing over m and over i , dividing by | log ε| and using (5.29), yields

1

| log ε|
L̃2−1∑
i=1

Mi∑
m=1

∫

Ci,m
ε

a
( x

δε

)
|∇ŵε|2 dx ≥ 2π ess inf a

L̃2−1∑
i=1

(κ i+1 − κ i − 2η
)|z0|

≥ 2π ess inf a
(
κ L̃2 − κ1 − 2ηL̃2

)|z0|
= 2π ess inf a

(
p′ − λ − 2ηL̃2

)|z0|.
(5.30)

Moreover, since qi + η < q L̃1−1 + η < λ for every i = 1, . . . , L̃1 − 1, by (7.1),
we have that limε→0

δε

εqi+η
= 0 for every i = 1, . . . , L̃1 − 1. Therefore, we can

apply Proposition 3.2 with s1 = qi +η < qi+1−η = s2 (see also Remark 3.3) and
Proposition 2.3 to get that for every i and m there exists a modulus of continuity ω

such that

1

| log ε|
∫

Ci,m
ε

a
( x

δε

)
|∇ŵε|2 dx ≥ 2π

(
qi+1 − qi − 2η

)√
detAhom|zi,m |2 − ω(ε)

≥ 2π
(
qi+1 − qi − 2η

)√
detAhom|zi,m |2 − ω(ε).

Summing the previous inequality over m and i and using (5.29) yields

1

| log ε|
L̃1−1∑
i=1

Mi∑
m=1

∫

Ci,m
ε

a
( x

δε

)
|∇ŵε|2 dx ≥ 2π

√
detAhom

(
q L̃1 − p̄ − 2ηL̃1

)|z0| − ω(ε)

= 2π
√
detAhom(λ − p̄ − 2ηL̃1)|z0| − ω(ε).

(5.31)

By (5.28), summing (5.30) and (5.31), the claim follows taking the limits as ε → 0,
η → 0, p̄ → 0 and p, p′ → 1 and using (5.24). ��

6. The Case limε→0
| log δε |
| log ε| ≥ 1

This section is devoted to the proofs of Theorems 0.5 and 0.2 in the case λ = 1.
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6.1. The Core-Radius Approach

For the reader’s convenience, we re-state Theorem 0.5 and recall that Xε(�) is
defined in (0.11).

Theorem 6.1. Let Fδε , Fε be defined in (0.12), (0.13), respectively, with f satisfy-
ing (P), (G), (H). Let moreover F0 be defined by formula (0.14) with �(·; T fhom)

given by (2.9) and, in the latter formula, h = T fhom. If lim
ε→0

| log δε|
| log ε| ≥ 1, then the

following statements hold true.

(i) (�-liminf inequality) For any {με}ε ⊂ X (�) such that με ∈ Xε(�) for each

ε > 0 and με
flat→ μ with μ ∈ X (�) the following inequality holds:

lim inf
ε→0

Fε(με)

| log ε| ≥ F0(μ).

(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {με}ε ⊂
X (�) with με ∈ Xε(�) for every ε > 0 such that με

flat→ μ and

lim sup
ε→0

Fε(με)

| log ε| ≤ F0(μ).

Proof of (i). For every ε > 0 we set Bε := {Bε(x) : x ∈ supp (με)} and choose
wε ∈ AFε(με) in such a way that

Fδε (wε;�ε(με)) ≤ Fε(με) + C

for some constant C independent of ε. We can assume without loss of generality
that

α

∫

�ε(με)

|∇wε|2 dx ≤ Fδε (wε;�ε(με)) ≤ Fε(με) + C ≤ C | log ε|, (6.1)

where the first inequality is a consequence of assumption (G).
In view of (6.1), by applying (5.3) with U = �, we have that

E(Bε, με,�) ≤ C | log ε|, (6.2)

where E is defined in (5.1)–(5.2). By (6.2) and the Jensen inequality, considering
the definition of Xε(�), we get

C | log ε| ≥ E(Bε, με,�) ≥ 2πα log 2
∑

B∈Bε

|με|(B) = 2πα log 2 |με|(�),

(6.3)

whence we deduce that

Rad(Bε) ≤ ε|με|(�) ≤ Cε| log ε| → 0 as ε → 0. (6.4)

The claim follows by Proposition 5.2 whose assumptions are fulfilled in view of
(6.3) and (6.4).
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Proof of (ii). Let F̃0 : X (�) → [0,+∞) be the functional defined by

F̃0(μ) :=
n∑

i=1

ψ(zi ; T fhom) for every μ =
n∑

i=1

ziδzi ∈ X (�)

and note that the functional F0 in (0.14) is the lower semicontinuous envelope of
F̃0 with respect to the flat convergence. Hence, given μ = ∑n

i=1 ziδxi ∈ X (�), it
is enough to construct wε ∈ AFε(μ) such that

lim sup
ε→0

1

| log ε| Fδε (wε;�ε(μ)) ≤ F̃0(μ) =
n∑

i=1

ψ(zi ; T fhom). (6.5)

For this purpose, we take ρ > 0 such that B2ρ(xi ) ⊂ � for every i = 1, . . . , n, and
B2ρ(xi ) ∩ B2ρ(x j ) = ∅ for every i, j = 1, . . . , n with i �= j . Since, by assumption,
limε→0

| log δε |
| log ε| ≥ 1, then for any s with 0 < s < 1 it holds true that

lim
ε→0

δε

εs
= 0.

We set ρ̄ := min{ρ, 1
2 } and for every i = 1, . . . , n, we letwi

ε,s ∈ Ãεs ,2ρ̄ (zi ) (where
Ãεs ,2ρ̄ (zi ) is defined in (3.1)) be such that

Fδε

(
wi

ε,s; Aεs ,2ρ̄
) ≤ inf

w∈Ãεs ,2ρ̄ (zi )

Fδε (w; Aεs ,2ρ̄ ) + C, (6.6)

for some constant C independent of ε. By arguing as in the proof of Lemma 3.1, we

can write wi
ε,s = eιui

ε,s for some function ui
ε,s ∈ SBV 2(Aεs ,2ρ̄ (xi )) with ui

ε,s(·) =
ziθ(·) on ∂ Bεs ∪∂ B2ρ̄ (where θ is defined in (3.7)). Let furthermore σ : [ρ̄, 2ρ̄] →
[0, 1] be the function defined by σ(r) := 1

ρ̄
(r − ρ̄) and set �(·) := ∑n

k=1 zkθ(· −
xk). We define the function wε,s : �ε(μ) → S1 as wε,s := eιuε,s where

uε,s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi θ(x − xi ) if x ∈ Aε,εs (xi ) for some i,

ui
ε,s(x) if x ∈ Aεs ,ρ̄ (xi ) for some i,

(1− σ(|x − xi |)zi θ(x − xi ) + σ(|x − xi |)�(x) if x ∈ Aρ̄,2ρ̄ (xi ) for some i,

�(x) elsewhere.

(6.7)

The function wε,s belongs to AFε(μ). By property (G), for every i = 1, . . . , n
there exists a constant C = C(β, ρ̄,�, {zi }i ) > 0 such that

Fδε (wε,s; Aε,εs (xi )) ≤ β

∫

Aε,εs (xi )

|∇wε,s |2 dx = 2πβ|zi |2(1− s)| log ε|,
(6.8)

Fδε (wε,s;�2ρ̄ (μ)) ≤ β

∫

�2ρ̄ (μ)

|∇wε,s |2 dx ≤ C,

(6.9)
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and

Fδε (wε,s; Aρ̄,2ρ̄ (xi )) ≤ β

∫

Aρ̄,2ρ̄ (xi )

|∇wε,s |2 dx

≤ C
n∑

k=1
k �=i

|zk |2
∫

Aρ̄,2ρ̄ (xi )

|σ ′(|x − xk |)|2|θ(x − xk)|2 dx

+ C
n∑

k=1

|zk |2
∫

Aρ̄,2ρ̄ (xi )

|∇θ(x − xk)|2 dx ≤ C.

(6.10)

In addition, since 2ρ̄ ≤ 1, by (6.6), Lemma 3.1 and Proposition 3.2, there exists a
modulus of continuity ω such that, for every i = 1, . . . , n, we have

1

| log ε| Fδε (wε,s; Aεs ,ρ̄ (xi )) ≤ 1

| log ε| Fδε (wε,s; Aεs ,2ρ̄ (xi ))

≤ 1

| log ε| inf
w∈Aεs ,2ρ̄ (xi )

Fδε (w; Aεs ,2ρ̄ (xi )) + ω(ε)

=
(

s − | log(2ρ̄)|
| log ε|

)
ψ(zi ; T fhom) + ω(ε).

(6.11)

Finally, due to (6.8), (6.9), (6.10) and (6.11) we can choose ω in such a way that

1

| log ε| Fδε (wε,s;�ε(μ)) ≤ s
n∑

i=1

ψ(zi ; T fhom) + 2πβ(1− s)
n∑

i=1

|zi |2 + ω(ε).

(6.12)

Suitably choosing sε → 1 as ε → 0, we have thatwε = wε,sε satisfies the relations
in (6.5). ��

6.2. The Ginzburg–Landau Model

This subsection is devoted to the proof of Theorem 0.2 in the case λ = 1. Here
we prove such a result under slightly more general assumptions on the potential
term. More specifically, we consider W ∈ C0([0,+∞)) such that W (τ ) ≥ 0,
W−1(0) = {1} and

lim inf
τ→1

W (τ )

(1− τ 2)
> 0, lim inf

τ→+∞ W (τ ) > 0.

and, we define GLW
ε : H1(�;R2) → R as

GLW
ε (v) :=

∫

�

a
( x

δε

)
|∇v(x)|2 dx + 1

ε2

∫

�

W (|v(x)|) dx . (6.13)

We prove the following result, which is a slight generalization of Theorem 0.2
in the case λ = 1:
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Theorem 6.2. Let GLW
ε be defined in (6.13) where a is a measurable (0, 1)2-

periodic function satisfying a(x) ∈ [α, β] for a.e. x ∈ R
2. Let moreover A

hom

be the symmetric matrix defined in (0.5). If limε→0
| log δε |
| log ε| ≥ 1, then the following

�-convergence result holds true:

(i) (Compactness) Let {vε}ε ⊂ H1(�;R2) be such that GLW
ε (vε) ≤ C | log ε|.

Then, there exists μ ∈ X (�) such that, up to subsequences, Jvε
flat→ πμ.

(ii) (�-liminf inequality) Let {vε}ε ⊂ H1(�;R2) be such that Jvε
flat→ πμ for some

μ ∈ X (�). Then

lim inf
ε→0

GLW
ε (vε)

| log ε| ≥ 2π
√
detAhom|μ|(�).

(iii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {vε}ε ⊂
H1(�;R2) such that Jvε

flat→ πμ and

lim sup
ε→0

GLW
ε (vε)

| log ε| ≤ 2π
√
detAhom|μ|(�). (6.14)

Proof. Since α ≤ a a.e., the compactness property (i) is a corollary of classical
results in the variational analysis of the classical GL functional (see for instance
[5, Theorem 4.1]).

Proof of (ii). The strategy of the proof is to bound from below GLW
ε (vε) with

Fε(με,Bε) defined in (5.4) for a suitable choice of με and Bε satisfying the as-
sumptions of Proposition 5.2. Without loss of generality we can assume that

GLW
ε (vε) ≤ C | log ε| (6.15)

andby the standarddensity argumentswecan also assume that {vε}ε ⊂ H1(�;R2)∩
C1(�;R2). For every 0 < γ1, γ2 < 1

2 and for every ε > 0 we set

Kε,γ1,γ2 := {|vε| ≤ 1− γ1} ∪ {|vε| ≥ 1+ γ2} and �ε,γ1,γ2 := ∂Kε,γ1,γ2\∂�.

Since a ≥ α a.e., by Young’s inequality we have that

C | log ε| ≥
∫

�

α|∇|vε||2 + 1

ε2
W (vε) dx ≥ 2

√
α

ε

∫

�

√
W (|vε|)|∇|vε|| dx .

(6.16)

For every t ∈ R we set

h(t) =
∫ 1

t

√
W (s) ds

and we define the function v̂ε : � → R
+ as v̂ε(x) = h(|vε(x)|). Note that v̂ε ∈

H1(�) and that |∇v̂ε| = √
W (|vε|)|∇|vε||, so that by (6.16), the coarea formula

and the mean-value theorem, for every τ̄ ∈ (0, 1) there exists τ̄ε ∈ ( τ̄
2 , τ̄ ) such that

Cε| log ε| ≥
∫ τ̄

τ̄
2

H1({v̂ε = τ }) dτ ≥ τ̄

2
H1({v̂ε = τ̄ε}). (6.17)
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We set γ ε
1 := 1− h−1(τ̄ε) and γ ε

2 := h−1(−τ̄ε)− 1 and note that, by construction,
there exists γ τ̄ ∈ (0, 1) such that γ τ̄ → 0 as τ̄ → 0 and there exists a constant
0 < c < 1 (independent of τ̄ ) such that γ ε

1 , γ ε
2 ∈ (cγ τ̄ , γ τ̄ ). Moreover, we have

that

{v̂ε < τ̄ε} = {h−1(τ̄ε) < |vε| < h−1(−τ̄ε)} = {1− γ ε
1 < |vε| < 1+ γ ε

2 }
= �\Kε,γ ε

1 ,γ ε
2

and from the regularity of the function vε it follows that

{v̂ε = τ̄ε} = ∂{v̂ε < τ̄ε}\∂� = ∂(�\Kε,γ ε
1 ,γ ε

2
)\∂� = ∂Kε,γ ε

1 ,γ ε
2
\∂� = �ε,γ ε

1 ,γ ε
2
.

Therefore, by (6.17), we obtain that

H1(�ε,γ ε
1 ,γ ε

2
) ≤ Cτ̄ ε| log ε|. (6.18)

By (6.15), we have that

Cε2| log ε| ≥
∫

Kε,γ ε
1 ,γ ε

2

W (|vε|) dx ≥ Cτ̄ |Kε,γ ε
1 ,γ ε

2
|. (6.19)

As a result, thanks to the Lipschitz regularity of ∂� and to (6.18), we have that

H1(∂Kε,γ ε
1 ,γ ε

2

) ≤ Cτ̄H1(�ε,γ ε
1 ,γ ε

2

) ≤ Cτ̄ ε| log ε|. (6.20)

Note that, by definition of Hausdorff measure, since ∂Kε,γ ε
1 ,γ ε

2
is compact, it is

always contained in a finite union of balls Bri (yi ) such that
∑

i ri ≤ H1(∂Kε,γ ε
1 ,γ ε

2
).

Moreover, after a merging procedure, we can always assume that such balls are
disjoint. In view of (6.19), for ε small enough, we have that Kε,γ ε

1 ,γ ε
2
is contained

in the union of such balls. Therefore thanks to the previous argument, by (6.20),
we have proved that there exists a family of balls, that are denoted by B′

ε, whose
union contains Kε,γ ε

1 ,γ ε
2
and such that

Rad
(
B′

ε

) ≤ Cτ̄H1(∂Kε,γ ε
1 ,γ ε

2

) ≤ Cτ̄ ε| log ε|. (6.21)

For every ε > 0, let B′
ε(t) be a time parametrized family of balls constructed as

in Proposition 4.2 starting from B′
ε(0) := B′

ε. Set Bε := B′
ε(1), Cε := {B ∈ Bε :

B ⊂ �} and με := ∑
B∈Cε

deg(vε, ∂ B)δxB , where xB denotes the center of the
ball B. Note that

1− γ τ̄ < |vε| < 1+ γ τ̄ in �(B′
ε) ⊃ �(Bε). (6.22)

Now we consider the function wε : �(B′
ε) → R

2 defined as wε(x) := vε(x)
|vε(x)| , and

we note thatwε ∈ H1(�(B′
ε);S1). Moreover, considering (1.10), (6.22), using the
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relation |∇vε|2 = |vε|2
∣∣∣∇ vε|vε |

∣∣∣
2 + |∇|vε||2 and applying Proposition 4.2(4) with

t1 = 0, t2 = 1, and U = �, we obtain that

C | log ε| ≥
∫

�(B′
ε)

α|∇vε|2 dx ≥
∫

�(B′
ε)

α|vε|2
∣∣∣∇ vε

|vε|
∣∣∣
2
dx ≥ α(1− γ τ̄ )2

∫

�(B′
ε)

|∇wε|2 dx

≥ 2πα(1− γ τ̄ )2|με|(�) log 2,

from which we deduce that

|με|(�) ≤ Cτ̄ | log ε|. (6.23)

Furthermore, by Proposition 4.2(5) and by (6.21) it follows that

Rad(Bε) ≤ 2Rad(B′
ε) ≤ Cτ̄ ε| log ε|. (6.24)

Now we show that

με
flat→ μ. (6.25)

By (1.2) deg(vε, ∂ B) = deg(wε, ∂ B) for every B ∈ Cε. Hence, recalling the notion
of modified Jacobian introduced in (1.3), we have that

(J1−γ ε
1
vε − πμε)(B) = 0 for every B ∈ Cε. (6.26)

Using the triangle inequality, Proposition 1.2, (6.23), (6.24) and (6.26) we also have
that

‖Jvε − πμε‖flat ≤ ‖Jvε − J1−γ ε
1
vε‖flat + ‖J1−γ ε

1
vε − πμε‖flat

≤ Cτ̄ ε| log ε| + 2 sup
‖ϕ‖

C0,1
c (�)

≤1

∑
B∈Bε

|με|(B)oscB(ϕ)

≤ Cτ̄ ε| log ε| + 2Rad(Bε)|με|(�)

≤ Cτ̄ ε| log ε| + 2Cτ̄ ε| log ε|2.

(6.27)

Eventually, (6.25) follows from (6.27) and from the assumption Jvε
flat→ πμ apply-

ing the triangle inequality.
Thanks to (1.10) and (6.22), we get that

GLW
ε (vε) ≥

∫

�(Bε)

a
( x

δε

)
|∇vε|2 dx ≥

∫

�(Bε)

a
( x

δε

)
|vε|2

∣∣∣∇ vε

|vε|
∣∣∣
2
dx

≥ (1− γ τ̄ )2
∫

�(Bε)

a
( x

δε

)
|∇wε|2 dx ≥ (1− γ τ̄ )2Fε(με,Bε),

(6.28)

where Fε is defined in (5.4) with f ( x
δε

,∇w(x)) = a( x
δε

)|∇w(x)|2. Thanks to
(6.23), (6.24), (6.25) and (6.28) we are in a position to apply Proposition 5.2,
obtaining

lim inf
ε→0

GLW
ε (vε)

| log ε| ≥ (1− γ τ̄ )2F0(μ) =
√
detAhom|μ|(�),



Topological Singularities in Periodic Media 599

where the last equality follows by Proposition 2.3. The claim follows letting τ̄ → 0.
Proof of (iii). We prove the claim under more general assumptions on the func-

tional GLW
ε . Specifically, let f be a function satisfying (P), (G), (H) and define the

energy functional GLW, f
ε : H1(�;R2) → [0,+∞) as

GLW, f
ε (v) :=

∫

�

f
( x

δε

,∇v(x)
)
dx + 1

ε2

∫

�

W (|v(x)|) dx .

We prove that for every μ = ∑n
i=1 ziδxi ∈ X (�) there exists a sequence {vε}ε ⊂

H1(�;R2) such that Jvε
flat→ πμ and

lim sup
ε→0

GLW, f
ε (vε)

| log ε| ≤ F0(μ), (6.29)

where F0 is defined in (0.14). In view of Proposition 2.3 we have that (6.14) is a
consequence of (6.29).

By arguing as in the proof of Theorem 6.1 (iii), we may reduce to the case
�(zi ; T fhom) = ψ(zi ; T fhom) for every i = 1, . . . , n. Let ρ > 0 be such that
B2ρ(xi ) ⊂ � for every i = 1, . . . , n and B2ρ(xi ) ∩ B2ρ(x j ) = ∅ for every i, j =
1, . . . , n with i �= j . For every 0 < s < 1, since by assumption lim supε→0

δε

ε
is

finite, we have that limε→0
δε

εs = 0. Finally, we set �ε(μ) := �\⋃n
i=1 Bε(xi ) and

we let us
ε be the function defined in (6.7). For every ε > 0 we set

vε,s(x) :=
{

eιus
ε(x) if x ∈ �ε(μ),

|x−xi |
ε

(
x−xi|x−xi |

)zi
if x ∈ Bε(xi ) for some i,

and we note that vε,s ∈ H1(�;R2) and that Jvε,s = πμ for every ε > 0.
In addition, for almost every x ∈ �ε(μ) we have that |vε,s(x)| = 1, hence
W (|vε,s(x)|) = 0. The latter yields

∫

�

W (|vε,s |) dx =
n∑

i=1

∫

Bε(xi )

W (|vε,s |) dx ≤ nCπε2 (6.30)

by the continuity of W . Furthermore, by the definition of vε,s , we have that

n∑
i=1

∫

Bε(xi )

f
( x

δε

,∇vε,s

)
dx ≤ β

n∑
i=1

∫

Bε(xi )

|∇vε,s |2 dx ≤ 2β
n∑

i=1

π(1+ |zi |2).

(6.31)

Gathering together (6.30), (6.31) and (6.12), we eventually obtain that

1

| log ε|GLW, f
ε (vε) ≤ 1

| log ε|
∫

�ε(μ)

f
( x

δε

,∇vε,s

)
dx + o(1)

≤ s
n∑

i=1

ψ(zi ; T fhom) + 2πβ(1− s)
n∑

i=1

|zi |2 + o(1),

which, suitably choosing sε → 1 as ε → 0 and setting vε := vε,sε , gives (6.29).
��
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7. The Case lim
ε→0

| log δε|
| log ε| ∈ [0, 1)

This section is devoted to the proofs of Theorems 0.4 and of 0.2. We will prove
the above �-convergence results under the assumption that

lim
ε→0

δε = 0, λ := lim
ε→0

| log δε|
| log ε| ∈ [0, 1). (7.1)

7.1. The Core-Radius Approach

For the reader’s convenience, we re-state Theorem 0.4 in the case λ ∈ [0, 1)
and we recall that Xε(�) is defined in (0.11).

Theorem 7.1. Let Fδε , Fε be defined in (5.21), (0.13), respectively, with f of the
form (1.10), where a is a measurable (0, 1)2-periodic function satisfying a(x) ∈
[α, β] ⊂ (0,+∞) for a.e. x ∈ R

2. Let moreover A
hom be the matrix defined in

(0.5). If (7.1) is satisfied, then the following statements hold true.

(i) (�-liminf inequality) For any family {με}ε ⊂ X (�) such that με ∈ Xε(�) for

every ε > 0 and με
flat→ μ with μ ∈ X (�) we have

lim inf
ε→0

Fε(με)

| log ε| ≥ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {με}ε ⊂
X (�) with με ∈ Xε(�) for every ε > 0 such that με

flat→ μ and

lim sup
ε→0

Fε(με)

| log ε| ≤ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

Proof of (i). For every ε > 0 we set Bε := {Bε(x) : x ∈ supp (με)} and choose
wε ∈ AFε(με) in such a way that

Fδε (wε;�ε(με)) ≤ Fε(με) + C (7.2)

for some constant C independent of ε. We can assume without loss of generality
that

α

∫

�ε(με)

|∇wε|2 dx ≤ Fδε (wε;�ε(με)) ≤ Fε(με) + C ≤ C | log ε|. (7.3)

By arguing as in the first part of the proof of Theorem 6.1(ii) we get that |με|(�) ≤
C | log ε| and hence Rad(Bε) ≤ Cε| log ε|. Therefore, Proposition 5.4 yields the
claim.

Proof of (ii). By standard density arguments in the Ginzburg–Landau theory,
we can reduce to the case that μ = ∑n

i=1 ziδxi with |zi | = 1. We set m := ess inf a
and for every η ∈ (0, 1) let

Eη := {y ∈ [0, 1)2 : a(y) ≤ m + η}.
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By the very definition of ess inf we have that |Eη| > 0 for every η and there exists
yη ∈ Eη having density 1 in Eη; i.e.,

lim
r→0

|Eη ∩ Br (yη)|
r2

= 1. (7.4)

For every i = 1, . . . , n we set

xδε,η
i := δε

⌊ xi

δε

⌋
+ δε yη. (7.5)

Since δε → 0 as ε → 0 we have that xδε,η
i → xi as ε → 0 for every i = 1, . . . , n.

Therefore, setting

με,η :=
n∑

i=1

ziδxδε,η
i

, (7.6)

we have that

με,η
flat→ μ as ε → 0. (7.7)

Now we prove that for every 0 < s < 1 there exists a functionwε,η,s ∈ AFε(με,η)

such that

lim sup
ε→0

1

| log ε| Fδε (wε,η,s;�ε(με,η)) ≤ 2π
(
(1− sλ)(m + η) + λs

√
detAhom

)

|μ|(�)

+ 2πβ(1− s)λ|μ|(�).

(7.8)

We fix ρ > 0 such that B2ρ(xδε,η
i ) ⊂ � for every i = 1, . . . , n and B̄2ρ(xδε,η

i ) ∩
B̄2ρ(xδε,η

j ) �= ∅ for every i, j = 1, . . . , n with i �= j . Let ρ̄ := min{ρ, 1
2 }.

Furthermore, for every 0 < s < 1, we let wi
δε,s

∈ Ãδs
ε,2ρ̄ (zi ) be such that

Fδε (w
i
δε,s; Aδs

ε,2ρ̄ ) ≤ inf
w∈Ãδs

ε ,2ρ̄

Fδε (w; Aδs
ε,2ρ̄ ) + C. (7.9)

By arguing as in the proof of Lemma 3.1, we can write wi
δε,s

= eιui
δε,s for some

function ui
δε,s

∈ SBV 2(Aδs
ε,2ρ̄ (xi )) with ui

δε,s
(·) = ziθ(·) on ∂ Bδs

ε
∪ ∂ B2ρ̄ (where

θ is defined in (3.7)).
Let θ be the function defined in (3.7) and let �(·) := ∑n

k=1 zkθ(· − xk). Let
furthermore σ : [ρ̄, 2ρ̄] → [0, 1] be the function defined by σ(r) := 1

ρ̄
(r − ρ̄).

For every i = 1, . . . , n we set

ui
ε,η,s(x) :=

⎧
⎪⎨
⎪⎩

zi θ
(
x − xδε,η

i

)
if x ∈ Aε,δs

ε

(
xδε,η

i

)
,

ui
δε,s

(x) if x ∈ Aδs
ε ,ρ̄

(
xδε,η

i

)
,

(1− σ
(|x − xδε,η

i |)zi θ
(
x − xδε,η

i

) + σ
(|x − xδε,η

i |)�(x) if x ∈ Aρ̄,2ρ̄
(
xδε,η

i

)
,
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and we define the function wε,η,s : �ε(με,η) → S1 as wε,η,s := eιuε,η,s where

uε,η,s(x) =
{

ui
ε,η,s(x) if x ∈ Aε,2ρ̄

(
xδε,η

i

)
for some i

�(x) elsewhere.
(7.10)

Note that wε,η,s ∈ AFε(με,η).
Let i = 1, . . . , n. By (1.10), using the change of variable x = δε y + δε� xi

δε
�

and the 1-homogeneity of the function a, we have

Fδε

(
wε,η,s; Aε,δs

ε

(
xδε,η

i

)) =
∫

A ε
δε

,δ
s−1
ε

(yη)

a(y)

|y − yη|2 dy

=
∫

A ε
δε

,δ
s−1
ε

(yη)∩Eη

a(y)

|y − yη|2 dy

+
∫

A ε
δε

,δ
s−1
ε

(yη)\Eη

a(y)

|y − yη|2 dy

≤ 2π(m + η)
(| log ε| − s| log δε|

)

+β

∫

A ε
δε

,δ
s−1
ε

(yη)\Eη

1

|y − yη|2 dy. (7.11)

We now estimate the last integral in (7.11). To this end, let γ ∈ (0, 1). We note that

∫

A
γ,δ

s−1
ε

(yη)\Eη

1

|y − yη|2 dy ≤ 2π log
δs−1
ε

γ
= 2π(1− s)| log δε| + 2π | log γ |.

(7.12)

Let moreover I := � | log ε|−| log δε |−| log γ |
log 2 � and for every i = 0, 1, . . . , I we set

ri := 2i ε
δε
; then, using (7.4), we get

∫

A ε
δε

,γ (yη)\Eη

1

|y − yη|2 dy ≤
I∑

i=1

∫

Ari−1,ri (yη)\Eη

1

|y − yη|2 dy ≤
I∑

i=1

4
|Bri (yη)\Eη|

r2i

≤
( | log ε| − | log δε| − | log γ |

log 2
+ 1

)
Cη(γ ),

(7.13)

where limγ→0 Cη(γ ) = 0 for every η.
By (7.11), (7.12) and (7.13), using (7.1), we deduce that

lim sup
ε→0

1

| log ε| Fδε

(
wε,δε,s; Aε,δs

ε

(
xδε,η

i

))

≤ 2π(1− sλ)(m + η) + 2πβ(1− s)λ + β
1− λ

log 2
Cη(γ ). (7.14)
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In addition, since 2ρ̄ ≤ 1, by (7.9), Lemma 3.1, Proposition 3.2 (applied with
ε = δε and s2 = s) and (7.1), there exist moduli of continuity ω1, ω2 such that for
every i = 1, . . . , n we have

1

| log ε| Fδε

(
wε,η,s; Aδε

s ,ρ̄

(
xδε,η

i

)) = | log δε|
| log ε|

1

| log δε| Fδε

(
wi

δε,s, Aδε
s ,ρ̄

(
xδε,η

i

))

≤(λ + ω1(ε))
1

| log δε| inf
w∈Aδs

ε ,2ρ̄ (xi )
Fδε (w; Aδs

ε ,2ρ̄ (xi )) + ω2(ε)

=(λ + ω1(ε))
(

s − | log(2ρ̄)|
| log δε|

)
2π

√
detAhom + ω2(ε),

(7.15)

where the last equality follows by (1.10) and (2.11). By (7.14), (7.15), recalling
(6.9) and (6.10) we have that

lim sup
ε→0

1

| log ε| Fδε
(wε,η,s ;�ε(με,η)) ≤2π

(
(1− sλ)(m + η) + λs

√
detAhom

)
|μ|(�)

+
(
2πβ(1− s)λ + β

1− λ

log 2
Cη(γ )

)
|μ|(�),

whence, suitably choosing γ = γε → 0 as ε → 0, we get (7.8). Therefore, suitably

choosing sε → 1 and ηε → 0 as ε → 0, by (7.8) we get that με = με,ηε

flat→ μ and
wε = wε,ηε,sε satisfies

lim sup
ε→0

1

| log ε| Fδε (wε;�ε(με)) ≤ lim sup
ε→0

Fε(με)

| log ε|
≤ 2π

(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

��

7.2. The Ginzburg–Landau Model

Finally, we prove Theorem 0.2 for λ ∈ [0, 1) in the more general setting intro-
duced in Section 6.2.

Theorem 7.2. Let GLW
ε be defined in (6.13) where a is a measurable (0, 1)2-

periodic function satisfying a(x) ∈ [α, β] ⊂ (0,+∞) for a.e. x ∈ R
2. Let moreover

A
hom be the symmetric matrix defined in (0.5). If (7.1) is satisfied, then the following

�-convergence result holds true.

(i) (�-liminf inequality) Let {vε}ε ⊂ H1(�;R2) be such that Jvε
flat→ πμ for some

μ ∈ X (�). Then

lim inf
ε→0

GLW
ε (vε)

| log ε| ≥ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).
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(ii) (�-limsup inequality) For every μ ∈ X (�), there exists a sequence {vε}ε ⊂
H1(�;R2) such that Jvε

flat→ πμ and

lim sup
ε→0

GLW
ε (vε)

| log ε| ≤ 2π
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�).

(7.16)

Proof of (i). Without loss of generality we can assume that GLW
ε (wε) ≤ C | log ε|

and by standard density arguments we can also assume that {vε}ε ⊂ H1(�;R2) ∩
C1(�;R2).

Let τ̄ ∈ (0, 1). By arguing verbatim as in the proof of Theorem 6.2(ii), one can
prove that for every ε > 0, there exist γ τ̄ > 0 with γ τ̄ → 0 as τ̄ → 0, a family Bε

of balls such that Rad(Bε) ≤ Cτ̄ ε| log ε| and

1− γ τ̄ < |vε| < 1+ γ τ̄ in �(Bε), (7.17)

and a measure με with suppμε ⊂ ⋃
B∈Bε

B such that με
flat→ μ as ε → 0. For

every ε > 0 we defined the function wε ∈ H1(�(Bε);S1) as wε(x) := vε(x)
|vε(x)| . By

(7.17) we get

GLW
ε (vε) ≥

∫

�(Bε)

a
( x

δε

)
|∇vε|2 dx ≥ (1− γ τ̄ )

∫

�(Bε)

a
( x

δε

)
|∇wε|2

≥(1− γ τ̄ )Fε(με,Bε),

(7.18)

where Fε is defined in (5.4) with Fδ defined in (5.21). Since the assumptions of
Proposition 5.4 are satisfied, by (7.18) we have that

lim inf
ε→0

GLW
ε (vε)

| log ε| ≥ (1− γ τ̄ )
(
(1− λ)ess inf a + λ

√
detAhom

)
|μ|(�),

whence the claim follows letting τ̄ → 0.
Proof of (ii). By arguing as in the proof of Theorem 7.1 (iii), we may reduce

to the case |zi | = 1 for every i = 1, . . . , n. For every 0 < η, s < 1, let με,η

be defined as in (7.6) and let uε,η,s be the function provided by (7.10). Setting

�ε(με,η) := �\⋃n
i=1 Bε(xδε,η

i ) with xδε,η
i defined in (7.5), for every ε > 0 we

define

vε,η,s(x) :=
{

eιuε,η,s (x) if x ∈ �ε(με,η),

|x−xi |
ε

(
x−xi|x−xi |

)zi
if x ∈ Bε(xδε,η

i ) for some i.
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We note that vε,η,s ∈ H1(�;R2) and that Jvε,η,s = πμε,η for every ε > 0.
In addition, for almost every x ∈ �ε(με,η) we have that |vε,η,s(x)| = 1, hence
W (|vε,η,s(x)|) = 0. By arguing as in (6.30) and (6.31), and using (7.8), we thus
obtain that

lim sup
ε→0

1

| log ε|GLW
ε (vε,η,s) ≤ 2π

(
(1− sλ)(m + η) + λs

√
detAhom

)
|μ|(�)

+ 2πβ(1− s)λ|μ|(�).

Therefore, suitably choosing sε → 1 and ηε → 0 as ε → 0 and setting vε =
vε,ηε,sε , by (7.7) we have that Jvε

flat→ μ as ε → 0 and that {vε}ε satisfies (7.16).
Remark 7.3. Note that if δε tends to zero much slower than ε in such a way that
λ = 0 in (7.1), then, within the | log ε|, scaling the homogenization process is
not detected by the �-limit in Theorems 7.1 and 7.2, which in turns reduces to
2π ess inf a|μ|(�). This is the case if limε→0

ε p

δε
= 0 for all p ∈ (0, 1] ; for

example, if δε = 1
| log ε| .

Example 7.1. We can give an explicit example, choosing a piecewise constant on a
checkerboard taking alternatively the values α and β. We have that Ahom = √

αβ I
(see e.g. [34] Section 1.5), so that the corresponding �-limit is

2π
(
(1− λ)α + λ

√
αβ

)
|μ|(�),

with λ given by (7.1). The limit has the same form if we choose a as a laminate
taking only the values α and β with volume fraction 1/2, whose homogenized
matrix Ahom has the eigenvalues α+β

2 and 2αβ
α+β

(see e.g. [17, Section 12.2.2]).

Acknowledgements. The hospitality of the Scuola Internazionale Superiore di Studi Avan-
zati (SISSA) where part of this research was done is gratefully acknowledged. R. Alicandro,
A. Braides, and L. De Luca are members of the Gruppo Nazionale per l’Analisi Matematica,
la Probabilità e le loroApplicazioni (GNAMPA) of the Istituto Nazionale di AltaMatematica
(INdAM). A. Braides acknowledges the MIUR Excellence Department Project awarded to
the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
M. Cicalese was supported by the DFG Collaborative Research Center TRR 109, “Dis-
cretization in Geometry and Dynamics”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


606 R. Alicandro, A. Braides, M. Cicalese, L. De Luca & A. Piatnitski

References

1. Alberti, G., Baldo, S., Orlandi, G.: Variational convergence for functionals of
Ginzburg–Landau type. Indiana Univ. Math. J. 54, 1411–1472, 2005

2. Alicandro, R.,Cicalese,M.: Variational analysis of the asymptotics of the XY model.
Arch. Ration. Mech. Anal. 192, 501–536, 2009

3. Alicandro, R., Cicalese, M., Ponsiglione, M.: Variational equivalence between
Ginzburg–Landau, XY spin systems and screw dislocations energies. Indiana Univ.
Math. J. 60, 171–208, 2011

4. Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dy-
namics of discrete topological singularities in two dimensions: a �-convergence ap-
proach. Arch. Ration. Mech. Anal. 214, 269–330, 2014

5. Alicandro, R., Ponsiglione, M.: Ginzburg–Landau functionals and renormalized
energy: a revised �-convergence approach. J. Funct. Anal. 266, 4890–4907, 2014

6. Ansini, N., Braides, A., Chiadò Piat, V.: Gradient theory of phase transitions in
inhomogeneous media. Proc. R. Soc. Edinb. A 133, 265–296, 2003

7. Ariza, M.P.,Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals.
Arch. Ration. Mech. Anal. 178, 149–226, 2005

8. Babadjian, J.-F., Millot, V.: Homogenization of variational problems in manifold
valued Sobolev spaces. ESAIM COCV 16, 833–855, 2010

9. Bach, A., Cicalese, M., Kreutz, L., Orlando, G.: The antiferromagnetic XY model
on the triangular lattice: Topological singularities. Preprint 2020. arXiv:2011.10445

10. Berlyand, L., Cioranescu, D., Golovaty, D.: Homogenization of a Ginzburg–
Landau model for a nematic liquid crystal with inclusions. J. Math. Pures Appl. 84,
97–136, 2005

11. Berlyand, L., Rybalko, V.: Homogenized description of multiple Ginzburg–Landau
vortices pinned by small holes. Netw. Heterog. Media 8, 115–130, 2013

12. Berlyand, L.,Mironescu, P.: Two-parameter homogenization for a Ginzburg–Landau
problem in a perforated domain. Netw. Heterog. Media 3, 461–487, 2008

13. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices, vol. 13. Progress in
Nonlinear Differential Equations and Their Applications, Birkhäuser Boston, Boston
(MA), 1994

14. Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in
Sobolev spaces. J. Funct. Anal. 80, 60–75, 1988

15. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math.
80, 37–86, 2000

16. Boutet de Monvel-Berthier, A., Georgescu, V., Purice R.: A boundary value
problem related to the Ginzburg–Landau model. Commun. Math. Phys. 142, 1–23, 1991

17. Braides, A.: �-convergence for Beginners, vol. 22. Oxford Lecture Series in Mathe-
matics and its Applications, Oxford University Press, Oxford, 2002

18. Braides, A.: A handbook of �-convergence. Handbook of Differential Equations. Sta-
tionary Partial Differential Equations, vol. 3 (M. Chipot and P. Quittner, eds.), Elsevier,
2006

19. Braides, A.,Defranceschi, A.:Homogenization of Multiple Integrals, vol. 12. Oxford
Lecture Series inMathematics and its Applications, OxfordUniversity Press, NewYork,
1998

20. Braides, A., Zeppieri, C.I.: Multiscale analysis of a prototypical model for the inter-
action between microstructure and surface energy. Interfaces Free Bound. 11, 61–118,
2009

21. Brezis, H.,Nirenberg, L.: Degree theory andBMO: Part I: compactmanifoldswithout
boundaries. Selecta Math. (N.S.) 1, 197–263, 1995

22. Cristoferi, R., Fonseca, I., Hagerty, A., Popovici, C.: A homogenization result in
the gradient theory of phase transitions. Interfaces Free Bound. 21, 367–408, 2019

23. Dal Maso, G.: An Introduction to �-Convergence, vol. 8. Progress in Nonlinear Dif-
ferential Equations and Their Applications. Birkhäuser Boston, Boston (MA), 1993

http://arxiv.org/abs/2011.10445


Topological Singularities in Periodic Media 607

24. De Luca, L.: �-Convergence analysis for discrete topological singularities: the
anisotropic triangular lattice and the long range interaction energy. Asymptot. Anal.
96, 185–221, 2016

25. De Luca, L., Garroni, A., Ponsiglione, M.: �-Convergence analysis of systems of
edge dislocations: the self energy regime.Arch. Ration. Mech. Anal. 206, 885–910, 2012

26. De Luca, L., Ponsiglione, M.: Low energy configurations of topological singularities
in two dimensions: a �-convergence analysis of dipoles. Commun. Contemp. Math. 22,
1950019, 2020

27. Dirr, N., Lucia, M., Novaga, M.: Gradient theory of phase transitions with a rapidly
oscillating forcing term. Asymptot. Anal. 60, 29–59, 2008

28. Dos Santos, M., Mironescu, P., Misiats, O.: The Ginzburg–Landau functional with
a discontinuous and rapidly oscillating pinning term. Part I: The zero degree case,
Commun. Contemp. Math. 13, 885–914, 2011

29. Dos Santos, M.: The Ginzburg–Landau functional with a discontinuous and rapidly
oscillating pinning. Part II: term the non-zero degree case. Indiana Univ. Math. J. 62,
551–641, 2013

30. Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company, Malabar,
1982

31. Hull, D.,Bacon, D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford,
2011

32. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J.
Math. Anal. 30, 721–746, 1999

33. Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg–Landau energy. Calc.
Var. Partial Differ. Equ. 14, 151–191, 2002

34. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators
and Integral Functionals. Springer, Berlin, 1994

35. Kleman, M., Lavrentovich, O.D.: Soft Matter Physics: An Introduction. Springer,
New York, 2003

36. London, F.: Superfluids. Macroscopic Theory of Superconductivity, Vol. I. Wiley, New
York, 1950. Revised 2nd edn., Dover, New York, 1961

37. London, F.: Superfluids. Macroscopic Theory of Superfluid Helium, Vol. II.Wiley, New
York, 1954. Revised 2nd Edn., Dover, New York, 1964

38. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51,
591–648, 1979

39. Ponsiglione,M.: Elastic energy stored in a crystal induced by screw dislocations: from
discrete to continuous. SIAM J. Math. Anal. 39, 449–469, 2007

40. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J.
Funct. Anal. 152, 379–403, 1998

41. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to
Ginzburg–Landau. Commun. Pure Appl. Math. LVI I, 1627–1672, 2004

42. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, vol. 70.
Progress inNonlinearDifferentialEquations andTheirApplications.Birkhäuser,Boston
(MA), 2007



608 R. Alicandro, A. Braides, M. Cicalese, L. De Luca & A. Piatnitski

R. Alicandro
DIEI, Università di Cassino e del Lazio meridionale,

Via di Biasio 43,
03043 Cassino

FR
Italy.R. Alicandro

e-mail: alicandr@unicas.it

and

A. Braides
Dipartimento di Matematica,

Università di Roma ‘Tor Vergata’,
Via della Ricerca Scientifica,

00133 Rome
Italy.A. Braides

e-mail: braides@mat.uniroma2.it

and

M. Cicalese
Zentrum Mathematik - M7,

Technische Universität München,
Boltzmannstrasse 3,
85747 Garching

Germany.M. Cicalese
e-mail: cicalese@ma.tum.de

and

L. De Luca
Istituto per le Applicazioni del Calcolo “M. Picone”, IAC-CNR,

Via dei Taurini 19,
00185 Rome

Italy.M. De Luca
e-mail: lucia.deluca@cnr.it

and

A. Piatnitski
The Arctic University of Norway,

Campus Narvik,
P.O. Box 385, 8505 Narvik

Norway.

and

Institute for Information Transmission Problems of RAS,
Bolshoy Karetny per., 19,

Moscow
Russia. 127051A. Piatnitski

e-mail: apiatni@iitp.ru



Topological Singularities in Periodic Media 609

(Received January 3, 2021 / Accepted November 10, 2021)
Published online December 20, 2021

© The Author(s) (2021)


	Topological Singularities in Periodic  Media: Ginzburg–Landau and Core-Radius Approaches
	Abstract
	1 Notation and Preliminary Results
	2 The Effective Energy of a Singularity
	3 Asymptotic Analysis on Annuli
	4 The Ball Construction
	5 General Γ-Liminf Inequality
	6 The Case limεto0|logδε||logε|ge1
	6.1 The Core-Radius Approach
	6.2 The Ginzburg–Landau Model

	7 The Case limεto0|logδε||logε|in[0,1)
	7.1 The Core-Radius Approach
	7.2 The Ginzburg–Landau Model

	Acknowledgements.
	References




