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1  | E ARLY LIFE AND C AREER

Gerald grew up on farms in Norfolk, perhaps explaining his life-
long fascination with the natural world and with conservation. 
As a teenager, he bought a moth trap and wrote up a project in-
vestigating how weather conditions affected moth numbers on 
the farm. This was awarded the Prince Philip Award for Zoology 
and, as an undergraduate, Gerald studied zoology at Imperial 
College, University of London. Gerald's work on moths came to 
the attention of Roger Short who was working at the University 
of Cambridge Veterinary School, so he was offered a PhD proj-
ect studying the seasonality of reproduction in red deer on the 
Isle of Rum, Scotland. Rum has been a world-leading centre for 
research subsequent to being acquired by Nature Conservancy 
Council in 1958. Although much of the focus on Rum has been 
on behavioural ecology and population dynamics and genetics of 

red deer, Gerald's specific interests were to investigate how be-
haviour and physiology were regulated by endocrine systems.1 He 
showed how the stags cast their antlers in the spring when testos-
terone levels are at their nadir and grow new antlers when levels 
remain low in the summer. As the daylength decreases in autumn, 
testicular synthesis of androgens increases. This facilitates rutting 
behaviour, and the antlers stop growing and become mineralised, 
resulting in hard bony weapons crucial in competitive encoun-
ters with other males.2 When he was still a PhD student on Rum, 
Gerald had the rare distinction of publishing a letter anonymously 
in Nature.3 He had been weighing his shavings daily and noted 
that his beard growth increased in anticipation of returning to the 
main land and resuming sexual activity. This was widely reported 
in the newspapers at the time, although it had the important mes-
sage that that testosterone production could be influenced by the 
higher centres. When Roger Short was appointed director of the 

 

Received: 8 March 2021  |  Revised: 15 March 2021  |  Accepted: 16 March 2021
DOI: 10.1111/jne.12968  

E D I T O R  I N V I T E D  R E V I E W

Gerald Lincoln: A man for all seasons

Francis J. P. Ebling1  |   John Fletcher2 |   David G. Hazlerigg3  |   Andrew S. I. Loudon4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

1School of Life Sciences, University of 
Nottingham, Nottingham, UK
2Reediehill Deer Farm, Auchtermuchty, UK
3Department of Arctic and Marine Biology, 
The Arctic University of Norway, Tromsø, 
Norway
4Centre for Biological Timing & School 
of Medicine, University of Manchester, 
Manchester, UK

Correspondence
Francis J. P. Ebling, School of Life Sciences, 
Queen's Medical Centre, University of 
Nottingham, Nottingham NG7 2UH, UK.
Email: fran.ebling@nottingham.ac.uk

Funding information
The work was supported by grants from 
the Biotechnology and Biological Sciences 
Research Council UK (BB/N015584/1) and 
a Human Sciences Frontier Programme 
Grant RGP0030/2015 Evolution of 
Seasonal Timers awarded to AL and DH. AL 
acknowledges the support of the Wellcome 
Trust, Grant 107851/Z/15/Z.

Abstract
Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 
75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University 
and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and 
naturalist who was a seminal figure in developing our understanding of the neuroen-
docrine mechanisms underlying seasonal rhythmicity. This review considers his life 
and some of his major scientific contributions to our understanding of seasonality, 
photoperiodism and circannual rhythmicity. It is based on a presentation at the online 
2nd annual seasonality symposium (2 October 2020) that was supported financially 
by the Journal of Neuroendocrinology.
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new MRC Unit of Reproductive Biology in Edinburgh, he recruited 
Gerald in 1974 to study mechanisms underlying male fertility.

Arguably a major factor in Gerald's success was his decision 
to work with the Soay sheep as an animal model for this work. 
Although the laboratory rat and primates were the established an-
imal models at the time, Gerald's work on seasonality in deer un-
derscored the value of studying a species in which fertility changed 
dramatically over the course of the year, such that the underly-
ing neuroendocrine mechanisms could be appreciated. The Soay 
is a small semi-domesticated breed of sheep retaining a marked 
seasonal cycle, which is also convenient in practical terms for col-
lecting multiple blood samples, as well as for surgical and exper-
imental procedures. Roger Land at the Roslin Institute provided 
facilities for housing Soay sheep indoors under controlled light-
ing environments; thus, animals could be brought into breeding 
conditions independently from the external time of year. Gerald 
also benefited from the Reproductive Biology Unit's commitment 
to development of radioimmunoassays; thus, hormonal profiles 
could for the first time be measured across multiple species in 
large numbers of samples, allowing accurate profiling of secretory 
patterns. Gerald collaborated with Alan and Judy McNeilly, who 
were scientists at the forefront of generating suitable antisera and 
protocols for radioimmunoassay.4,5

2  | THE GONADOTROPHIN-RELE A SING 
HORMONE PUL SE GENER ATOR AND 
SE A SONAL CONTROL OF FERTILIT Y

Gerald developed a protocol where male Soay sheep (rams) were 
maintained indoors on long days comprsing 16  hours of light 
and 8  hours of dark for 16  weeks, then on short days compris-
ing 8 hours of light and 16 hours dark for 16 weeks. Many overt 
aspects of annual seasonality were apparent in the sheep but com-
pressed into a 32-week cycle, including testicular diameter, ingui-
nal skin colouration, moulting of the wool and the rate of horn 
growth. Collection of serial blood samples from indwelling jugular 
cannulae at different points in this photoperiodically driven cycle 
showed clearly that the cycle in testis size and function reflected 
changes in the pulsatile pattern of luteinising hormone (LH) se-
cretion.6 Specifically, the sexually inactive phase in long days re-
flected a low frequency of LH pulses, although those that occurred 
were of a relatively high amplitude. By contrast, exposure to short 
days induced an increase in LH pulse frequency and a consequen-
tial reduction in pulse amplitude; this was associated with an in-
crease in plasma testosterone concentrations. Although pulsatile 
LH secretion had been described in a number of other mamma-
lian species by the mid-1970s, this was clear evidence that, in the 
sheep at least, an increase in LH pulse frequency was the primary 
signal to drive steroidogenesis and, alongside increased follicle-
stimulating hormone, gametogenesis.7 The implication of this is 
that a change in hypothalamic function, culminating in a change 
in frequency of GnRH secretion, must be causing the change in 

the frequency of release of LH from gonadotrophs in the anterior 
pituitary. Gerald exploited a number of experimental strategies to 
confirm the relationship between gonadotrophin-releasing hor-
mone (GnRH) and LH, as well as their role in control of the testis. 
For example, using small portable infusion pumps, he showed that 
intermittent stimulation of sexually inactive rams with synthetic 
GnRH at 2-hour intervals would drive testicular function8; thus, 
GnRH alone was sufficient to induce seasonal cycles in reproduc-
tive function. Conversely, he used an immunoneutralisation strat-
egy to demonstrate that loss of GnRH led to reproductive failure.9 
The development of surgical procedures to collect blood from the 
portal capillaries in the median eminence of sheep confirmed the 
precise relationship between GnRH and LH secretion experimen-
tally in the following decade.10,11

Gerald interpreted this GnRH pulse frequency-modulated sea-
sonal control of fertility in sheep as a clear indication that the key 
mechanistic questions about seasonality were really about central 
nervous system function. An example of his creative and lateral 
thinking was that he had found that use of an opiate-based an-
aesthetic widely used in veterinary practice (Immobilon) markedly 
suppressed LH secretion in sheep.12 Because the Immobilon did 
not impair the response to exogenous GnRH and treatment with 
the opiate antagonist diprenorphine rapidly restored LH secretion, 
he inferred that these were central effects.13 Gerald was aware 
of the work of Hughes and Kosterlitz with respect to identifying 
enkephalin peptides as endogenous opioids,14 and so investigated 
in depth whether the seasonal suppression of GnRH secretion in 
sheep might reflect enhanced endogenous opioid activity in the 
hypothalamus. This was an eminently plausible hypothesis, and 
was exhaustively tested using the opiate antagonist naloxone as a 
powerful pharmacological tool. Contrary to expectations, blockade 
of endogenous opioids with naloxone failed to restore suppressed 
gonadotrophin secretion in reproductively quiescent rams, yet it 
enhanced pulsatile LH secretion during the breeding season.15 
Subsequent studies confirmed a key role for opioidergic systems 
in mediating gonadal steroid negative feedback to the GnRH secre-
tory system rather than a role in mediating seasonal quiescence,16 
although it is worth noting that these studies on endogenous opi-
oids preceded the more specific identification of the kisspeptin-
neurokinin B-dynorphin (KNDy) system by almost two decades.

3  | MEL ATONIN

The realisation that seasonal changes in testicular function and 
consequent changes in secondary sexual characteristics, physiol-
ogy and behaviour all reflected central changes in the control of 
the pituitary gland directed Gerald's research direction towards 
how changes in photoperiod were detected and communicated to 
the hypothalamus. Studies in hamsters where the pineal gland had 
been removed implicated this structure in photoperiodic response, 
but, in the ruminant, the pineal gland is deep beneath the cortex 
on the roof of the epithalamus, and surgical access risks rupture of 
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the mid-saggital sinus. Gerald therefore developed an alternative 
surgical strategy to determine the contribution of the ovine pineal 
gland to the photoperiodic control of reproduction. This involved 
disruption of the sympathetic innervation to the face and head 
by removal of the superior cervical ganglion. His initial studies in 
just four ganglionectomised rams and four sham controls revealed 
that pineal function was essential for synchronisation of not just 
reproductive function, but also the prolactin axis to changes in 
artificial photoperiod.17-19 Radioimmunoassay confirmed that 
ganglionectomy ablated circadian rhythmicity of melatonin secre-
tion, although the assays still detected above baseline circulating 
concentrations of melatonin.20 Later studies using subcutaneous 
implants that continually released melatonin (Figure 1) confirmed 
that melatonin was a key neurochemical signal in that this treat-
ment disrupted the timing of reproductive and prolactin-regulated 
cycles in Soay rams exposed to artificial lighting regimens,21 and 
also advanced the onset of reproductive activity in red deer stags 
maintained outside.22

In retrospect, we can appreciate that the constant release of 
supraphysiological concentrations of melatonin served to ‘blind-
fold’ the animals to the ambient photoperiod, although these dra-
matic actions of melatonin in ruminants underpinned later elegant 
studies using timed infusions to identify the precise character-
istics of the nocturnal melatonin signal that is communicated to 

the neuroendocrine system.23 Gerald and other research groups 
exploited a miniaturised version of this continuous-release mel-
atonin implant strategy to identify potential target sites of mela-
tonin.24,25 Microimplants placed in the mediobasal hypothalamus 
but not in the preoptic area significantly accelerated the onset of 
testicular regrowth24 and initiated a rapid decline in prolactin se-
cretion.26 Control studies using radiolabelled melatonin revealed 
that the hormone diffused quite a distance away from the implant 
site, so precise location of melatonin target cells was not feasible. 
Autoradiographical analysis of radiolabelled melatonin binding 
identified widespread melatonin receptor distribution in the sheep 
brain,27,28 and so these microimplant studies certainly helped to 
focus interest on melatonin regulating classical neuroendocrine 
regions in sheep, whereas, in many other mammalian species, the 
distribution of melatonin receptors was far more limited and, in 
some mustelids, restricted to the pituitary gland rather than the 
brain itself,29 raising the issue of how the mediobasal implant ex-
periments should be interpreted.

4  | THE PARS TUBER ALIS

Even in sheep, the pituitary stalk (pars tuberalis) was found to be the 
most dense region of melatonin binding,30 and Gerald followed up 

F I G U R E  1   Changes in diameter of the testes (mean ± SEM), plasma concentrations of testosterone, FSH and prolactin, intensity of the 
sexual skin flush (individual values), the period of intense rutting behaviour (individual values, small open bars) and the timing of the moult 
of the wool from the scrotum (individual values in four melatonin-implanted and four control adult Soay rams, exposed to alternating 10- to 
30-week periods of short days (SD) and long days (LD) for 68 weeks. The implants were introduced at week 14 during long days, and left in 
place throughout the remainder of the study (reproduced with permission from the Journal of Reproduction and Fertility21)
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his central implant studies by showing that implants placed in the 
pars tuberalis but not the pars distalis could alter seasonal cycles 
in reproductive endocrinology and in prolactin secretion,31 further 
supporting the pars tuberalis as a direct melatonin target. Arguably 
Gerald's greatest contribution to this debate was the development 
with Iain Clarke of the hypothalamo-pituitary disconnected (HPD) 

Soay ram model. This was a complex surgical approach where, via 
a transsphenoidal approach, tissue from the tuber cinereum was re-
moved and an aluminium barrier inserted, retaining a sufficient pitui-
tary blood supply to maintain viability of the pars tuberalis and pars 
distalis.32 The rationale for this complex approach is that, if the ef-
fects of melatonin in sheep are exclusively within the hypothalamus, 
then no seasonal cyclicity or photoperiodic responsiveness will be 
seen in HPD sheep because communication between the hypothala-
mus and the pituitary gland has been abolished. If, however, the pars 
tuberalis is an important melatonin target site, then because com-
munication between the pars tuberalis and pars distalis is still intact, 
cyclicity in some neuroendocrine axes should still be observed. Of 
course the HPD disrupts the delivery of GnRH to the pituitary, and 
so HPD sheep have hypogonadotrophic hypogonadism; thus, the re-
productive axis cannot be used as a test of the hypothesis. However, 
because prolactin secretion is under predominantly inhibitory con-
trol by hypothalamic dopamine, this can be used as an index of 
seasonality. Gerald placed HPD sheep and sham-operated controls 
under alternating 16 week periods of long and short days and found 
that the prolactin cycles and wool growth remained perfectly in syn-
chrony with the photoperiodic regime (Figure 2 32). In confirmation 
of the loss of central input, prolactin concentrations never fell to 
the undetectable levels seen in sham-operated rams in short days, 
presumably reflecting the loss of the hypothalamic dopamine signal. 
Correspondingly, acute induction of stress caused a short-term rise 
in prolactin in the sham animals but was ineffective in the HPD ani-
mals, and the centrally acting glutamate agonist NMDA suppressed 
prolactin secretion in sham animals but not in the HPD sheep, with 
both findings comprising lines of evidence that the loss of central 
communication was complete in the HPD animals.32 Follow-up stud-
ies confirmed that secretagogues such as thyrotrophin-releasing 
hormone could elicit prolactin secretion in HPD sheep and dopamine 
agonists could suppress prolactin, whereas dopamine antagonists 
were without effect.33 Moreover, the HPD sheep responded to pe-
ripheral melatonin implants with an initial suppression but eventual 
increase in prolactin secretion, similar to the sham controls.34 This 
brilliant series of experiments provided the most compelling evi-
dence of a direct action of melatonin on the pars tuberalis, at least 
with respect to the control of prolactin secretion.

It may appear to be counter-intuitive that the pars tuberalis 
would signal in a retrograde manner to the hypothalamus to regulate 

F I G U R E  2   Long-term changes in the blood plasma 
concentrations of prolactin in groups of (A) control and (B) 
hypothalamo-pituitary disconnected (HPD) Soay rams housed 
indoors under an artificial lighting regimen of alternating 16-weekly 
periods of long days (16L:8D, LD) and short days (8L:16D, SD) 
for 72 weeks. The HPD and sham-operations (half control group) 
were performed in experimental week 1 (8 weeks into a 16-weekly 
period of long days). The values are mean ± SEM, n = 8, based on 
blood samples collected twice weekly (reproduced with permission 
from the Journal of Neuroendocrinology32)
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F I G U R E  3   Changes in diameter of 
the testes and the blood plasma levels of 
testosterone (mean ± SEM) in adult Soay 
rams exposed to long days (16L:8D) for 
94 weeks following pre-treatment with 
short days (8L:16D) for 16 weeks (data 
redrawn from Biology of Reproduction47)
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other neuroendocrine axes, although there is now compelling evi-
dence that this is the case. Studies by many research groups includ-
ing Yoshimura in quail35 and Hazlerigg36 in sheep identified the beta 
subunit of the thyroid-stimulating hormone (βTSH) as a major para-
crine factor from the pars tuberalis that acts on TSH receptors in 
hypothalamic tanycyte cells to regulate thyroid hormone processing 
and, ultimately, seasonal reproductive function.37 Gerald focussed 
his attention on the mechanisms by which the photoperiodically reg-
ulated change in nocturnal duration of melatonin might be decoded 
by thyrotrophs in the pars tuberalis. Given the cloning of multiple 
mammalian ‘clock’ genes in the 1990s, as well as the hypothesis that 
the circadian phase at which melatonin was present might determine 
how a long and short duration of melatonin could elicit different sea-
sonal responses, understanding the effects of melatonin on clock 
gene expression in the pars tuberalis was a natural step forward. Not 
only were many clock genes highly and rhythmically expressed in 
the pars tuberalis, but the phasing of the period family (per1, per2) 
and the cryptochrome family (cry1, cry2) differed in long and short 
photoperiods.38 In sheep maintained in constant light to suppress 
endogenous melatonin production, infusion of melatonin was found 
to acutely induce cry1 expression and suppress other clock genes, 
indicating a causal link,39 and in vitro analyses also identified the im-
mediate early gene egr1 as a potential mediator of the effects of mel-
atonin.40 Subsequent transcriptomic analysis of sheep pars tuberalis 
identified a large number of genes that had altered phasing in long 
vs short photoperiods,41 and bmal2, eya3 and TAC1 have all emerged 
as pathway candidates in transducing the melatonin signal into a 
seasonal drive from the pars tuberalis.42-44 However, somewhat 
unexpectedly, sheep maintained for a prolonged time on long days 
showed clock gene phasing in the pars tuberalis that corresponded to 
the ambient melatonin phasing, yet downstream seasonal physiology 
reversed from the initial photoperiodic state.45 Gerald considered 
this as important evidence for the existence of intrinsic circannual 
mechanisms that were independent of melatonin-regulated timers.45

5  | CIRC ANNUAL RHY THMICIT Y

Throughout his career, Gerald had appreciated the contribution of 
endogenous circannual rhythmicity to the generation of seasonal 
cycles in behaviour and physiology, recognising that seasonality not 
only resulted from responses to changing ambient photoperiod, but 
also reflected innate long-term timing processes with a periodicity 
of approximately 1 year. This appreciation may have arisen from his 
fieldwork in tropical habitats, where annual rhythmicities in repro-
ductive cycles exist in many species despite relatively small changes 
in daylength and, in some cases, these are out of synchrony in a 
population, although individuals retain quite precise annual timing.46 
In a very long-term study with his PhD student Osborne Almeida 
(Figure 3), it was observed that innate cyclicity in reproductive activ-
ity occurred in Soay rams maintained under constant photoperiod 
for 96 weeks.47 However, this rhythmicity persisted under constant 

F I G U R E  4   Examples of free-running circannual prolactin 
rhythms under constant long days in five individual HPD Soay rams 
exposed to a change from short days (8L:16D) to long days (16L:8D) 
at week 0. Plasma prolactin values are ng mL-1. The horizontal bars 
indicate the timing of the spring wool moult, known to be prolactin 
dependent (white bar, full moult; line, partial moult) (reproduced 
with permission from Science49)
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long days (16L:8D) but not under constant short days (8L:16D) and 
the period length of the testicular cycle was clearly shorter than 
52  weeks, and so was described at the time as “photorefractori-
ness”.47 This term encapsulates the view that the reversal of the ex-
pected reproductive response to a given photoperiod was the result 
of a loss of responsiveness to that particular daylength. This con-
ceptualisation works well for photoperiodic rodents with a short life 
span, although analysis of melatonin rhythms in ‘photorefractory’ 
mammals indicates that they still are tracking ambient photoperiod, 
and the persistence of these long-term reproductive cycles was very 
clear in ganglionectomised Soay rams that had no pineal melatonin 
information.48 Even in 1989, Gerald shied away from describing 
innate rhythmicity in ganglionectomised rams as ‘circannual’,48 al-
though the steady increase in documented examples from the mam-
malian and avian literature led him to express the view that “Because 
the dynamics of the physiological changes during the development of 
photorefractoriness and during the onset of circannual rhythms are simi-
lar and can be revealed by exposure to constant photoperiod, it is likely 
that they share common underlying control mechanisms”.45

A detailed study of prolactin concentration and downstream 
moult cycles in HPD sheep maintained for almost 3 years (144 weeks) 
in constant long days provided robust evidence for the persistence 
of innate rhythmicity (Figure 4) and the long duration of this study 
meant that the periodicity of individual rams could be determined, 
and, because these differed, the loss of synchrony between the ex-
perimental subjects became evident.49 These long-term ‘circannual’ 
rhythms could be resynchronised in HPD rams but not in those that 
had also been ganglionectomised to remove endogenous melatonin 
secretion. This elegantly demonstrated the role of daily melatonin 
rhythms in conveying the synchronising effect of changing photo-
period on circannual rhythmicity.49 Gerald spent the later years of 
his career considering what mechanisms might underlie circannual 
rhythm generation, and was an advocate of a cyclical histogenesis 
theory. Studies on the pars tuberalis as a target for melatonin action 
and as a driver of downstream seasonal neuroendocrine rhythms, 
combined with evidence that this structure showed clear seasonal 

changes in cell division and differentiation (histogenesis), under-
pinned this theory.50 Hazlerigg and Lincoln wrote that they “concep-
tualize circannual rhythm generation as a phenomenon involving cyclic 
tissue growth and remodelling”, and noted that this may take place in 
many structures in the adult but it is in the pituitary and hypotha-
lamic regions that also input photoperiodic information where this 
process is co-ordinated and can be re-synchronised.50 The demon-
stration that thyrotrophs in the ovine pars tuberalis exist in one of 
two states, either βTSH positive in the long day state under the con-
trol of Eya 3, or βTSH negative in the short day state characterised 
by high chromogranin A expression, strongly supports the cyclical 
histogenesis theory.51 Moreover, Gerald was enthusiastic about re-
cent work demonstrating an epigenetic component to the mecha-
nism by which a changing daily melatonin signal might be detected 
by the pars tuberalis but then interact with a rhythmically changing 
cellular chromatin state, perhaps an annual recapitulation of devel-
opmental mechanisms regulating βTSH cells.42

Towards the end of his career, Gerald* became particularly inter-
ested in the question of when and how circannual rhythmicity might 
have evolved in primitive organisms despite their relatively short life 
span.46 His broad understanding of biology stimulated this interest, 
and he eloquently presented a beautiful example of how annual 
rhythmicity occurs across the haploid and diploid components of 
the life cycle of the marine dinoflagellate Alexandrium (Figure 5). The 
progressive sequence of vegetative propagation of the haploid stage 
in summer then the sexual diploid phase and ensheathment of cysts 
to survive winter still persisted in algae maintained in constant con-
ditions, such that circannual rhythmicity is innate and is transferred 
across generations (Figure  5). His view was that circannual timing 
evolved in free-living eukaryotic cells, the alternation between 
growth and dormancy across life history is adaptive regardless of 
the short lifespan of any individual cell.46 This hypothesis predicts 
that circannual clocks are genetically regulated, cell autonomous and 
transgenerational, and so a fitting legacy to Gerald's work would be 
that these predictions are tested in the pars tuberalis and other ‘cal-
endar’ regions in higher organisms.

F I G U R E  5   A living unicellular 
example, the life cycle of the marine 
alga Alexandrium tamarense: haploid 
cells propagate vegetatively during the 
summer, producing the renowned toxic 
bloom in ocean surface waters. These 
cells conjugate in autumn to form the 
sexual diploid phase, which transforms 
into a dense resistant cyst that sinks to 
the seabed to overwinter. Remarkably, 
encystment in subsequent year(s) is 
regulated by an endogenous circannual 
timer that anticipates spring (reproduced 
with permission from the Journal of 
Neuroendocrinology46)
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ENDNOTE S
	*	 One of Gerald's last contributions to the scientific literature was a 

chapter for a book titled Neuroendocrine Clocks and Calendars,52 part 
of the Masterclass in Neuroendocrinology series that benefits the 
International Neuroendocrine Federation. His chapter provided a his-
torical overview of how we have arrived at our current understanding 
of seasonality, photoperiodism and circannual rhythmicity. That book, 
published in December 2020, is dedicated to his memory: “No person 
could have been better placed to contribute a chapter as Gerald played a 
leading role in these fields. He was an outstanding naturalist and scien-
tist, a deep thinker, and a vibrant and engaging communicator … . Gerald 
was passionate about his research, and his enthusiasm for understanding 
mechanisms and explaining the natural world stimulated and enthused 
everyone he came into contact with. The scientific community has lost an 
inspirational biologist and a wonderful person.”
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