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Abstract

Motivation: Resistance to anti-TNF therapy in subgroups of ulcerative colitis (UC) patients is a major challenge and
incurs significant treatment costs. Identification of patients at risk of nonresponse to anti-TNF is of major clinical im-
portance. To date, no quantitative computational framework exists to develop a complex biomarker for the progno-
sis of UC treatment. Modelling patient-wise receptor to transcription factor (TF) network connectivity may enable
personalized treatment.

Results: We present an approach for quantitative diffusion analysis between receptors and TFs using gene expres-
sion data. Key TFs were identified using pandaR. Network connectivities between immune-specific receptor-TF pairs
were quantified using network diffusion in UC patients and controls. The patient-specific network could be consid-
ered a complex biomarker that separates anti-TNF treatment-resistant and responder patients both in the gene
expression dataset used for model development and separate independent test datasets. The model was further
validated in rheumatoid arthritis where it successfully discriminated resistant and responder patients to tocilizumab
treatment. Our model may contribute to prognostic biomarkers that may identify treatment-resistant and responder
subpopulations of UC patients.

Availability and implementation: Software is available at https://github.com/Amy3100/receptor2tfDiffusion.

Contact: ruth.h.paulssen@uit.no

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

1.1 About disease
This paper focuses on ulcerative colitis (UC) a subtype of inflamma-
tory bowel disease (IBD) along with Crohn’s disease. UC is a com-
plex chronic inflammatory disease with dysregulation of the
immune responses in the colonic mucosa. The disease features
chronic acute relapsing disease activity, with intervals of remission
(Khor et al., 2011). Emerging evidence implicates immunological,
microbial, environmental and genetic factors in the disease patho-
genesis (Zhang and Li, 2014). Analysis of UC risk genes from gen-
ome-wide association studies (GWAS) implicates processes such as
cell–cell communication, response to cytokine stimulus, and cell sur-
face receptor intracellular signalling (Jostins et al., 2012). Targeted
treatments that induce remission in subpopulations of UC patients
act by inhibiting signalling pathways between extracellular signal-
ling molecules such as cytokines, and key transcriptional regulators
of inflammatory processes (Schwartz et al., 2017). However, there is
significant patient-to-patient variability in treatment response, as

shown by the low response rates in clinical trials (Hindryckx et al.,
2015; Jairath et al., 2015). Therefore, we seek a method of quantify-

ing patient-specific differences through receptor to transcription fac-
tor (TF) signalling.

1.2 Disease biomarkers
Successful personalized medicine for UC requires accurate bio-
markers that can identify resistant and responders, but no individ-

ual molecular biomarker is currently recommended for clinical use
to predict the treatment effects in UC (Kim et al., 2017). Patient-
specific biomarker discovery methods are prone to overfitting,

resulting in the identification of clinically unreliable biomarkers
(Hernández et al., 2014). Embedding biological information from
networks in the biomarker discovery process may reduce the risk

of overfitting (Guo and Wan, 2014).
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1.3 Proposed method
In this study, we propose quantifying patient-specific network con-
nectivities between pairs of genes as complex biomarkers. However,
with over 20 000 genes in the human genome, the number of poten-

tials pairwise connections approaches 200 million. Therefore, it is
necessary to identify a limited number of biologically relevant con-

nections that explains a plausible biological mechanism central to
UC aetiopathogenesis. This prevents overfitting caused by the large
number of potential connections. Hence, we focus on the network

connectivities between disease-relevant receptors and TFs that regu-
late the expression of genes involved in the inflammatory process

(Fig. 1A and B). This connectivity can be quantified by network dif-
fusion. Network diffusion describes the gradual spread of an ab-
stract signal throughout a network. Diffusion is a global network

process that considers all available paths, not just direct links or the
shortest paths (Di Nanni et al., 2020). Thus, the diffusion time rep-

resents the overall network connectivity between two genes, e.g.
from a receptor to a TF (Fig. 1A).

2 Methods

The methods are briefly described (see the Supplementary Method
for details). Statistical analysis and processing of the data were per-

formed using R version 3.6.3 (www.r-project.org). To identify rele-
vant TFs, the Bioconductor R package, pandaR (10.18129/

B9.bioc.pandaR; Schlauch et al., 2017) was used. IBD-relevant cyto-
kines were selected from the list of GWAS risk genes for IBD
(Supplementary Table S1). The comPPI database (Veres et al., 2015)

was used to create a signalling network connecting receptors to TFs.
Network diffusion was performed on this network to estimate net-

work connectivity between each receptor-TF pair. The differential
connectivity between sample groups was tested using linear model-
ling (Ritchie et al., 2015).

2.1 Initial data mining
The Gene expression Omnibus (GEO) was searched for datasets
containing gene expression data from the colon biopsies obtained
before treatment with anti-TNF and with treatment response data
available. The detailed search protocol is available in the
Supplementary Methods. Gene expression data for mucosal gene ex-
pression in IBD before and after treatment with anti-TNF (inflixi-
mab) were downloaded from the GEO (Supplementary Table S2).
GSE16879 was used as a training dataset for model development
(Arijs et al., 2009a). The remaining datasets were used for testing.

Regulatory motif binding information was obtained from the
regulatory circuits database (Marbach et al., 2016), which contains
available TF binding sites in several tissues and cell types. The bind-
ing motif-set representing general immune cells (high-level network
‘14_immune_organs.txt’) was chosen from a regulatory circuits
database as a relevant representation of the inflammatory cells
involved in UC. Protein–protein interaction (PPI) data were
obtained from the ComPPI database (Veres et al., 2015). This is a
cellular compartment-specific database of proteins and their interac-
tions (http://ComPPI.LinkGroup.hu). Only interactions with a confi-
dence score >0.6 were used in the network construction.

To identify key TFs, pandaR (Passing Attributes between Networks
for Data Assimilation), was applied to the training Gene expression
dataset (Schlauch et al., 2017). pandaR creates a gene regulatory net-
work (GRN) with weighted edges between TFs and gene targets regu-
lated by these TFs. To evaluate which TFs significantly contributed to
the variation in gene expression, a null distribution regulation network
edge weight was computed by randomizing the TF gene target informa-
tion. Then, the resulting null distribution was used to calculate an em-
pirical P-value for each TF.

A sub-network was extracted from the PPI connecting key TFs
to cytokine receptors. Genes annotated with the transducer Gene
Ontology (GO) terms: GO:0002768 (cell surface receptor signalling
pathway) or GO:0019221 (cytokine-mediated signalling pathway)
were included in the intermediate network between the TFs and
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Fig. 1. Outline of diffusion model. (A) A schematic figure illustrating how the same biological pathway associated with a specific function may be perturbated leading to a dif-

ferent route of signal transduction from receptor to TF in different patients. This model can be adapted to data to build a patient-specific model (alternatively, the model can

be completely generated from the data). The model can then be used to generate predictions of therapies for the patient. (B) Concept of diffusion model based on calculating

patient-specific network edge weights in a network connecting cytokine receptors to TFs through a protein-PPI network. In the diffusion process, receptors receive a signal,

and it diffuses through the network to the TFs. The model output is signal received by the TFs over time which is simplified as time to reach 50% of maximum signal at the TF

(t50). The output t50 data matrix contains t50 values for each receptors-TF pair per patient. This matrix can then be used for further statistical analysis or machine learning
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receptors. In the resulting signalling network, the nodes represent
the genes coding for the interacting proteins, and the edges represent
physical interactions that may pass a biological signal. ComPPI was

used to obtain PPIs. The network includes interactions involving the
selected TFs, surface receptors which are known UC risk genes and

signal transduction genes, such as kinases, that may contribute to
passing information between the receptors and TFs. The same sig-
nalling network was used for all the UC datasets.

2.2 Reference methods for biomarker discovery
To separate treatment-resistant and responder patients, we initially
tried the biomarker discovery tool LIONESS which quantifies

patient-specific GRNs (Kuijjer et al., 2019) and ‘nnet’ a deep
learning-based method (Venables, 2002). The neural network
parameters were optimized over a grid of the number of hidden

nodes (size) and regularization (decay) parameters. We used ‘nnet’
with 10-fold cross-validation repeated 20 times using average accur-

acy to select the final model. This process was repeated across a grid
of number of hidden nodes and the regularization parameter to iden-
tify the optimum model structure for each dataset. Prediction results

in the testing datasets were evaluated by area under the receiver
operating curve (AUC). In the algorithm, other parameters were
kept at their default settings.

2.3 The diffusion model
We chose to model the results of the biochemical events that occur
during signal transduction using a network connecting cell surface

receptors to TFs in the nucleus. The model is adapted from Fick’s
law of chemical diffusion to a network structure. See e.g. Philibert
(2005) for a review. Consider a patient-specific signalling network

with nodes representing proteins e.g. cytokines, receptors and kin-
ases create a signal transduction cascade. If a signal S, analogous to

a concentration of a chemical in Fick’s law, is placed on a node i,
the signal flux F along a network edge connecting node i to node j at
a time t is given by:

F tð Þi!j ¼ ðSi � SjÞ � Ei � Ej:

Where the edge connectivity weight, analogous to the diffusion
constant in Fick’s law, is calculated using the patient’s normalized
gene expression values, E, of the genes coding for the proteins

i and j. The signal present at each protein node i connected to
J other protein nodes j � 1:J is then updated at time t þ 1 using the

sum of all fluxes:

S t þ 1ð Þi ¼ S tð Þi þ
XJ

j¼1
F tð Þi!j:

The computation is initialized by setting all signal levels to zero
and then placing one unit of signal on a starting receptor protein.

The signal propagates through interconnected proteins throughout
the network. To quantify the connectivity, we take the number of

time steps to reach 50% of the maximum signal at the TF of interest
ðt50Þ. This methodology was implemented in R (4.1.0). Simulations
were run for 2000 timesteps for all samples in each dataset, generat-

ing a new data matrix of t50 data with rows for each sample and a
column for each receptor-TF pair. To evaluate if the obtained matrix

of diffusion data contains new information or is merely a linear
combination of the original gene expression data, the t50–feature
space was compared to the original gene expression matrix using

Procrustes rotation (Peres-Neto and Jackson, 2001). This method
was also used to test if the t50 data reflected the gene expression lev-

els of just a few highly connected or ‘hub’ genes or global gene ex-
pression changes due to variations in proliferation rate or
infiltration of immune cells. Cell deconvolution was used to estimate

the infiltration of different immune cells in all samples (Becht et al.,
2016) and a gene expression signature (Sotiriou and Pusztai, 2009)
was used to estimate the proliferation rate.

2.4 Statistical analysis
Significance testing for differentially expressed genes, regulatory net-
work connectivities and diffusion ðt50Þ on the training dataset was
performed using limma (Ritchie et al., 2015).

Patients were grouped as normal controls, i.e. non-UC diagnosis.
Responders, which attained a complete mucosal healing with a de-
crease of the Mayo endoscopic subscore and histological score to 0
or 1. Patients that did not attain the mentioned level of response
were placed in the resistant group despite some of them showing
endoscopic or histologic improvements (Arijs et al., 2009b).

Three comparison tests were made:

1. Inflamed versus non-inflamed: To identify pathways that may be

involved in active inflammation, we compared samples from

patients with active endoscopic inflammation to non-UC con-

trols and UC patients that had responded to treatment. The

inflamed group comprised all patient samples taken from an ac-

tive site of inflammation before treatment or from a treatment-

resistant patient after treatment. The non-inflamed comprise

normal control samples (N ¼ 6) and responders after treatment

(N ¼ 8).

2. Resistant versus responder: To look for a biomarker of drug re-

sponse, we compared samples from resistant and responder

patients obtained before treatment.

3. Male versus female. As a negative control of samples concordant

for inflammation, we compared samples obtained from males

and female patients before treatment.

Correcting for multiple testing was done with the method of
Benjamini and Hochberg (1995). Exploratory data visualization was
done using principal component analysis (PCA) and Partial least
squares (PLS) regression (Gidskehaug et al., 2007). Gene annotation
was performed using the Bioconductor org. Hs.eg.db package ver-
sion 3.12.0 [10.18129/B9.bioc.org.Hs.eg.db]. GO enrichment ana-
lysis was performed using the clusterProfiler, Bioconductor package
(Yu et al., 2012).

3 Results

3.1 Data mining and network definition
Fifty-three IBD-relevant cytokines were selected from the 1067 iden-
tified GWAS risk genes for IBD (Supplementary Table S3). Key 58
TFs were identified using the sum of their regulatory network con-
nections from pandaR (empirical P-value < 0.05). A list of the
selected TFs and receptors is available in the supplements
(Supplementary Table S3), and a full list of all TFs considered with
their annotations and relevant target genes (Supplementary Tables
S4 and S5). The comPPI database (Veres et al., 2015) was used to
create a signalling network connecting the cytokines to the TFs
through 83 receptors and 266 intracellular signal transduction pro-
teins generating a signalling network with 407 nodes and 4546
edges (Fig. 1B).

3.2 Diffusion model creates a feature space that

contains novel information compared to gene

expression
The diffusion model describes network connectivity from receptors
to key TFs, using the time it takes a signal to diffuse from the recep-
tor to the TF (Supplementary Fig. S1 for an example), generating a
new feature space of 4814 receptor-TF pairs. Procrustes rotation
was used to compare this feature space to the original gene expres-
sion space and estimate the fraction of t50variability that is linearly
dependent on gene expression (Table 1). Overall, in the four datasets
examined, between 70% and 80% of the t50 information is directly
linearly dependent on the gene expression data. To investigate if the
t50 data were primarily driven by highly connected ‘hub’ genes in
the signalling network, we extracted a subset of gene expression

Diffusion-based signalling model of ulcerative colitis 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab017/6354348 by guest on 21 February 2022


article-lookup/doi/10.1093/bioadv/vbab017#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab017#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab017#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab017#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab017#supplementary-data


Table 1. Dataset comparisons using Procrustes rotation

Dataset GEO Acc# Expression (%)a Hub genes (%)b Global (%)c Expression and hub genes (%)d

Training GSE16879 79 75 64 87

Test GSE12251 79 75 64 87

Test GSE23597 71 66 47 71

Test GSE73661 69 60 48 77

Notes: Percentage of t50 dataset variability linearly explainable by (a) gene expression of all genes, (b) expression of genes that are highly connected in the sig-

nalling network (hub genes with more than 50 edges), (c) global expression changes due to changes in proliferation rate or immune cell infiltration. For compari-

son, (d) Percentage of gene expression data not explainable by the highly connected hub genes.
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data for 46 genes with more than 50 edges. These hub genes could
explain between 60% and 75% the variability in the t50 data. In
comparison, the hub genes could explain between 71% and 87% of
the total gene expression data variability.

Global changes in gene expression can be caused by large-scale
tissue changes such as immune cell infiltration or changes in the pro-
liferation rate. To investigate if this controlled the t50 data, we esti-
mated the proliferation rate using a proliferation gene expression
signature (Hamed et al., 2015) and immune cell infiltration using a
cell deconvolution tool developed for tissues analysed using
Affymetrix data (Becht et al., 2016). These data were compared to
the t50 data in the same manner as the gene expression data, but it
could explain only from 57% to 64% of the diffusion data (Table
1).

3.3 Diffusion model outperforms LIONESS and ‘nnet’

for predicting anti-TNF response in UC
We used a linear model to relate t50 to inflammation status and drug
response in the training dataset. This enabled us to identify the
receptor-TF pairs significantly related to active UC. We obtained
2362 receptor-TF pairs with adjusted P-values less than 0.01 (Fig.
2A).

PCA of network connectivities ðt50) shows postresponders clus-
tered with the control group as expected but shows no clear separ-
ation between resistant and responders before treatment (Fig. 2B).
Using PLS of t50, we obtained some separation of treatment-resistant

and responder patients (Fig. 2C). We used a linear model to relate
the t50 data to the anti-TNF treatment-resistant and responder pa-
tient groups and identified 114 receptor-TF pairs with significant
differences in network connectivity (adj. P.val < 0.05;
Supplementary Table S6). Using the receiver operating characteristic
curve (ROC), we evaluated the individual receptor-TF pairs for their
ability to discriminate anti-TNF resistant from responders. We
found 35 receptor-TF pairs with AUC higher than 0.84 in the train-
ing dataset (Supplementary Table S7). The top-scoring discrimina-
tors in the training UC dataset were the receptor-TF pairs
TNFRSF11B-ELF1, TNFRSF11B-ZNF219 and TNFRSF11B-
NFKB1, each with an AUC of ¼ 0.91 (Supplementary Fig. S2).
These pairs show distinct differences between treatment resistant
and responders and between resistant and controls (Fig. 3,
Supplementary Fig. S2 and Table 2). As a negative example, we
compared male (n¼14) and female (n¼10) patient samples before
treatment and found no significant differences in network connectiv-
ity (adj. P<0.05). We then tested the ability of the top three
receptor-TF pairs to predict anti-TNF response in the test datasets
(Supplementary Table S2). The predictive ability of these receptor-
TF pairs was compared with a deep learning method, ‘nnet’, a feed-
forward neural network algorithm trained on the same dataset. We
also tested LIONESS, a method for computing sample-specific
GRNs. Surprisingly, the diffusion model outperformed the neural
network, giving higher AUC scores (Table 2) in the UC training
dataset and the majority of the independent test datasets. We com-
pared inflamed versus noninflamed, i.e. normal controls and res-
ponders after treatment versus before treatment and resistant after
treatment, in addition to the treatment resistant versus responders.
LIONESS estimates a total of 2 678 095 regulatory edge weights per
sample. Significantly changed edge weights were then identified
using linear modelling (limma). Between the inflamed and nonin-
flamed samples in the training set, 161 052 statistically significant
edge weights (adj. P-value < 0.01) were found. However, no signifi-
cant results were obtained (adj. P-value � 0.99) for the more im-
portant comparison of anti-TNF resistant versus responder
comparison (Supplementary Table S8). LIONESS was therefore not
applied to the test datasets.

3.4 Validation with rheumatoid arthritis
To assess our model’s generalizability for other autoimmune dis-
eases, we applied the diffusion model to the rheumatoid arthritis
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Fig. 3. Box plots of t50 data for the different patient groups. This figure indicates receptor–TF pairs with top AUC score in UC training dataset

Table 2. Testing of predictive ability of diffusion model compared

to neural network modelling in Training and Test datasets

Dataset GEO Acc# nnet-AUC TNFRSF11B-ELF1 TNFRSF11B-NFKB1

Training GSE16879 0.80 0.91 0.91

Test GSE12251 0.77 0.88 0.78

Test GSE23597 0.72 0.66 0.59

Test GSE73661 0.50 0.65 0.68

Notes: nnet-AUC shows AUC scores calculated by ‘nnet’. Columns

represent receptor-TF pairs TNFRSF11B-ELF, TNFRSF11B-NFKB1,

TNFRSF11B-ZNF219 having the best AUC scores using diffusion model on

the training dataset.
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(RA) dataset. UC and RA share many inheritable risk loci and have
many overlapping pathogenic pathways (Bae et al., 2017; Halling
et al., 2017; Hemminki et al., 2009). Therefore, we selected and
merged two RA gene expression datasets: GSE24742 (Ducreux
et al., 2014) and GSE45867 (Gutierrez-Roelens et al., 2011) to val-
idate our modelling method. The chosen dataset is a microarray
gene expression study of paired synovial biopsy samples collected
before therapy (T0) and after therapy (T12) from the affected knee
of RA patients treated with tocilizumab (TCZ), methotrexate
(MTX) or rituximab (RTX). The experiment design of the valid-
ation dataset was similar to the UC dataset in terms of before treat-
ment biopsy, underlying disease mechanism (inflammation), and a
sufficient number of samples used in the study. We used a dataset
with 86 RA samples to validate the model for testing the perform-
ance of the model.

For validation, we used the same pipeline developed with the
same score thresholds. We created a literature curated list of RA-
relevant receptors (McInnes et al., 2016; Mockridge et al., 2017;
Supplementary Table S3) which was subsequently integrated with
expression data to create an RA-relevant diffusion model. Our ROC
results found a remarkable AUC ¼ 1 for receptor-TF pair PTPRZ1-

NFKB1 (Fig. 4A), AUC ¼ 0.94 each for PTPRZ1-JUN (Fig. 4B) and
PTPRZ1-ETS2 (Fig. 4C) which accurately separates the TCZ
treatment-resistant and responder patients (Fig. 4D–F). High AUC

receptor-TF pairs are listed in Supplementary Data (Supplementary
Table S5). GO analysis of the TFs identified in RA highlighted proc-

esses such as response to oxidative stress, cellular response to pep-
tide, negative regulation of protein phosphorylation, etc. GO
analysis highlights key immune processes associated with RA patho-

physiology regulated by key TFs such as SPI1, RARA, PPARG,
NFKB1, ETS1 and MAF (Supplementary Fig. S3; Giaginis et al.,
2009; Ikuta et al., 2012; Kang et al., 2017; Manuel Sánchez-
Maldonado et al., 2020; Zisakis et al., 2007).

4 Discussion

We have developed a diffusion model; a molecular pathway inspired

method to model patient-specific treatment response. It creates a
new feature space by using key TFs, receptors, biological prior infor-

mation in the form of a PPI and gene expression data. This new fea-
ture space is a nonlinear transformation of the original gene
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AUC score (D) PTPRZ1-NFKB1 (E) PTPRZ1-JUN (F) PTPRZ1-ETS2 which show distinction between treatment response groups based on t50 score calculated by diffusion
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expression variables, designed with the goal of being more relevant
for describing cytokine signalling in UC. We have compared the
ability of the new features to predict anti-TNF response in UC to
two other methods. We used ‘nnet’, a machine learning method that
has recently been used in biomarker discovery (Mallik et al., 2020)
and LIONESS, a regulatory network reconstruction method that
estimates patient-specific regulatory connections. These methods
represent two extremes in the analysis of biological data. The ‘nnet’
is a general machine learning method that controls overfitting by
regularization model parameters. LIONESS–pandaR, however, uses
a large amount of biological background information about TF-
targets and PPI to estimate patient-specific GRNs. Although both
the ‘nnet’ and the t50 features may serve as useful biomarkers of
drug response in independent datasets, the LIONESS-pandaR
method fails to identify any biomarkers for drug response. This may
be due to the large number of calculated network connection
weights and the consequential penalty for multiple testing.
Therefore, pandaR-LIONESS may lack the sensitivity to pick up the
more subtle differences between subclasses of the patient samples,
compared to the much larger difference between normal and
inflamed tissue.

The diffusion-based features outperform the ‘nnet’ both in fitting to
the training data and two out of three test datasets. This may be an indica-
tion that the combinations and transforms of the gene expression data
derived from the signalling network topology might have more biological
relevance than features obtained by a pure fit to the gene expression, des-
pite the regularization penalties in ‘nnet’. Our method identified well-
known pro-inflammatory receptors such as TNFRSF11B, OSMR, NRP1
and CCR2 which exhibited stronger connectivity (low t50Þ to most
inflammation-related TFs in UC patients with active inflammation than
in non-UC controls and responders after treatment (Fig. 2A and
Supplementary Fig. S4). These results must be interpreted with a caution
as the responder samples may still contain residual microscopic inflamma-
tion and have lasting changes to their epithelial cells (Fenton et al., 2021;
Planell et al., 2013). However, the goal of this analysis is to identify the
receptor-TF pairs involved in active inflammation that requires treatment.
Notably, our model also identified TFs ESRRA and HNF4A, which play
an important role in the regulation of intestinal homeostasis. ESRRA is a
regulator of intestinal homeostasis (Kim et al., 2020), and HNF4A modu-
lates inflammation in UC and maintains epithelial barrier integrity in the
normal intestine (Ahn et al., 2008; Barrett et al., 2009).

Despite the good predictive performance, it is also noteworthy
that both ‘nnet’ and the diffusion model performed worse on test
dataset 3 (GSE73661). A dataset analysed with a different array de-
sign than the training dataset. This highlights the importance of ro-
bust and repeatable measuring processes for the practical use of
complex gene expression-based biomarkers. Unfortunately, no
large-scale modern RNA-seq datasets are currently available to test
for predicting anti-TNF response in UC.

The diffusion model may also be susceptible to predictive errors be-
cause of the assumptions made in the initial data mining. We have chosen
to focus on cytokines as the source of the inflammatory signal (Chen and
Sundrud, 2016), but inflammatory diseases may also involve other signal-
ling systems such as pattern recognition receptors and metabolic factors.
The method is also highly simplified, ignoring molecular functions such as
activation, repression and feedback loops, which are not considered expli-
citly. In addition, biological molecules of unknown function that may in-
fluence true network connectivity are ignored. Moreover, epigenetic
factors have a crucial role in determining the transcriptional activation of
genes targeted by a specific TF (Gibney and Nolan, 2010). However,
obtaining epigenetic signatures for every individual patient is currently
cost-prohibitive. Additionally, the evaluation does not take into account
changes in the patient’s gene expression as the disease progresses. They
may therefore be expected to give a more reliable prediction of short-term
effects than in long-term remission. In conclusion, we assert that our diffu-
sion model can be used to generate testable hypotheses applicable to UC
and other autoimmune diseases such as RA, psoriasis and asthma. This

framework outlines the receptor-TF-specific network connectivity which
varies with the gene expression of each individual patient. Estimating the
receptor-TF network connectivity associated with varied drug responses
in disease subpopulations may yield valuable insights into a patient’s treat-
ment outcome.
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