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a b s t r a c t 

Methods for electro- or magnetoencephalography (EEG/MEG) based brain source imaging (BSI) using sparse 

Bayesian learning (SBL) have been demonstrated to achieve excellent performance in situations with low num- 

bers of distinct active sources, such as event-related designs. This paper extends the theory and practice of SBL 

in three important ways. First, we reformulate three existing SBL algorithms under the majorization-minimization 

(MM) framework. This unification perspective not only provides a useful theoretical framework for comparing 

different algorithms in terms of their convergence behavior, but also provides a principled recipe for constructing 

novel algorithms with specific properties by designing appropriate bounds of the Bayesian marginal likelihood 

function. Second, building on the MM principle, we propose a novel method called LowSNR-BSI that achieves fa- 

vorable source reconstruction performance in low signal-to-noise-ratio (SNR) settings. Third, precise knowledge 

of the noise level is a crucial requirement for accurate source reconstruction. Here we present a novel principled 

technique to accurately learn the noise variance from the data either jointly within the source reconstruction pro- 

cedure or using one of two proposed cross-validation strategies. Empirically, we could show that the monotonous 

convergence behavior predicted from MM theory is confirmed in numerical experiments. Using simulations, we 

further demonstrate the advantage of LowSNR-BSI over conventional SBL in low-SNR regimes, and the advan- 

tage of learned noise levels over estimates derived from baseline data. To demonstrate the usefulness of our novel 

approach, we show neurophysiologically plausible source reconstructions on averaged auditory evoked potential 

data. 
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. Introduction 

Electro- and Magnetoencephalography (EEG/MEG) are non-invasive

echniques for measuring brain electrical activity with high temporal

esolution. As such, both have become indispensable tools in basic neu-

oscience and clinical neurology. The downside of both techniques, how-

ver, is that their sensors are located far away from the neural generators
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f the measured brain electrical activity. EEG/MEG measurements are

herefore characterized by low spatial resolution and highly overlapping

ontributions of multiple brain sources in each sensor. The mathemati-

al model of the EEG/MEG sensing procedure can be described by the

inear forward model 

 = 𝐋𝐗 + 𝐄 , (1) 
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p  
hich maps the electrical activity of the brain sources, 𝐗 , to the sen-

or measurements, 𝐘 . The measurement matrix 𝐘 ∈ ℝ 

𝑀×𝑇 captures the

ctivity of 𝑀 sensors attached at different parts of the scalp at 𝑇 time in-

tants, 𝐲( 𝑡 ) ∈ ℝ 

𝑀×1 , 𝑡 = 1 , … , 𝑇 , while the source matrix , 𝐗 ∈ ℝ 

𝑁×𝑇 , con-

ists of the unknown activity of 𝑁 brain sources located in the corti-

al gray matter at the same time instants, 𝐱( 𝑡 ) ∈ ℝ 

𝑁×1 , 𝑡 = 1 , … , 𝑇 . The

atrix 𝐄 = [ 𝐞 (1) , … , 𝐞 ( 𝑇 )] ∈ ℝ 

𝑀×𝑇 represents 𝑇 time instances of inde-

endent and identically distributed (i.i.d.) zero mean white Gaussian

oise with variance 𝜎2 , 𝐞 ( 𝑡 ) ∈ ℝ 

𝑀×1 ∼  (0 , 𝜎2 𝐈 𝑀 

) , 𝑡 = 1 , … , 𝑇 , which is

ssumed to be independent of the source activations. The linear for-

ard mapping from 𝐗 to 𝐘 is given by the lead field matrix 𝐋 ∈ ℝ 

𝑀×𝑁 ,

hich is here assumed to be known. In practice, 𝐋 can be computed

sing discretization methods such as the Finite Element Method (FEM)

or a given head geometry and known electrical conductivities using the

uasi-static approximation of Maxwell’s equations ( Baillet et al., 2001;

ramfort, 2009; Hämäläinen et al., 1993; Huang et al., 2016 ). 

The goal of brain source imaging (BSI) is to infer the underlying brain

ctivity 𝐗 from the EEG/MEG measurement 𝐘 given the lead field matrix

 . Unfortunately, this inverse problem is highly ill-posed as the number

f sensors is typically much smaller than the number of locations of

otential brain sources. Thus, a unique solution cannot be found with-

ut introducing further mathematical constraints or penalties, which are

ften referred to as regularizers. In addition, the leadfield matrix is typi-

ally highly ill-conditioned even for small numbers of sensors, introduc-

ng numerical instabilities in the inverse estimates. 

Interestingly, regularization can also be interpreted in a Bayesian

ramework, where the regularizer introduces prior knowledge or as-

umptions about the nature of the true sources into the estimation

 Calvetti and Somersalo, 2018; Stuart, 2010 ). A common assumption

s that the number of active brain sources during the execution of a spe-

ific mental task is small, i.e., that the spatial distribution of the brain

ctivity is sparse. This assumption can be encoded in various ways. Clas-

ical approaches ( Matsuura and Okabe, 1995 ) employ super-Gaussian

rior distributions to identify solutions in which most of brain regions

re inactive. 

In these approaches Maximum-a-Posteriori (MAP) estimation, also

ermed Type-I learning , is used. Later work ( Wipf et al., 2010 ) has

hown that hierarchical Bayesian models achieve better reconstructions

f sparse brain signals by employing a separate Gaussian prior for each

rain location. The variances at each location are treated as unknown

hyper-) parameters, which are estimated jointly with the source ac-

ivity. This approach is called Sparse Bayesian Learning (SBL), Type-II

aximum-Likelihood (Type-II ML) estimation or simply Type-II learning

 Mika et al., 2001; Tipping, 2001; Wipf and Rao, 2004 ). 

Type-II learning generally leads to non-convex objective functions,

hich are non-trivial to optimize. A number of iterative algorithms have

een proposed ( Mika et al., 2001; Tipping, 2001; Wipf and Nagarajan,

009; 2010; Wipf et al., 2010; 2011 ), which, due to employing distinct

arameter update rules, differ in their convergence guarantees, rates

nd overall computational complexity. Being derived using vastly differ-

nt mathematical concepts such as fixed point theory and expectation-

aximization (EM), it has, however, so far been difficult to explain the

bserved commonalities and differences, advantages and disadvantages

f Type-II methods in absence of a common theoretical framework, even

f the properties of individual algorithms have been extensively studied

 Wipf and Nagarajan, 2009 ). 

The primary contribution of this paper is to introduce Majorization-

inimization (MM) ( Hunter and Lange, 2004; Sun et al., 2017 , and ref-

rences therein) as a flexible algorithmic framework within which dif-

erent SBL approaches can be theoretically analyzed. Briefly, MM is

 family of iterative algorithms to optimize general non-linear objec-

ive functions. In a minimization setting, MM replaces the original cost

unction in each iteration by an upper bound, or majorization function,

hose minimum is usually easy to find. The objective value at the min-

mum is then used to construct the bound for the following iteration,

nd the procedure is repeated until a local minimum of the objective
2 
s reached. Notably, MM algorithms are popular in many disciplines in

hich Type-II learning problems arise, such as, e.g., telecommunications

 Haghighatshoar and Caire, 2017; Khalilsarai et al., 2020; Oguz-Ekim

t al., 2011; Prasad et al., 2015; Shen et al., 2019 ) and finance ( Benidis

t al., 2018; Feng et al., 2016 ). The concept of MM is, however, rarely

xplicitly referenced in EEG/MEG brain source imaging, even though it

as been used implicitly ( Bekhti et al., 2018; Hashemi and Haufe, 2018 ).

e demonstrate here that three popular SBL variants, denoted as EM,

acKay , and convex-bounding based SBL, can be cast as majorization-

inimization methods employing different types of upper bounds on the

arginal likelihood. This view as variants of MM helps explain, among

ther things, the guaranteed convergence of these algorithms to a lo-

al minimum. The characteristics of the chosen bounds determine the

econstruction performance and convergence rates of the resulting al-

orithms. The MM framework additionally offers a principled way of

onstructing new SBL algorithms for specific purposes by designing ap-

ropriate bounds. 

Therefore, a second contribution of this paper is the development

f a new SBL algorithm, called LowSNR-BSI, that is especially suitable

or low signal-to-noise ratio (SNR) regimes. Real-world applications of

EG/MEG brain source imaging are often characterized by low SNR,

here the power of unwanted noise sources can be comparable to the

ower of the signal of interest. This holds in particular for the recon-

truction of ongoing as well as induced (non-phase-locked) oscillatory

ctivity, where no averaging can be performed prior to source recon-

truction. Current SBL algorithms may suffer from reduced performance

n such low-SNR regimes ( Cai et al., 2021; Khanna and Murthy, 2017a;

wen et al., 2012 ). To overcome this limitation, we propose a novel MM

lgorithm for EEG/MEG source imaging, which employs a bound on the

BL cost function that is particularly suitable for low-SNR regimes. 

As a third contribution, this paper discusses principled ways to es-

imate the sensor noise variance 𝜎2 , which is assumed to be known in

he first part of the paper. Determining the goodness-of-fit of the optimal

odel, the value of this variable exerts a strong impact on the overall re-

onstruction ( Habermehl et al., 2014 ). Technically being another model

yperparameter, the noise variance is, however, rarely estimated as part

f the model fitting. Instead, it is often determined prior to the model

tting from a baseline recording. This approach can, however, lead to

uboptimal results in practice or be even inapplicable, e.g., when rest-

ng state data are analyzed. Here we present a number of alternatives

o estimate the noise variance in Type-I and Type-II brain source imag-

ng approaches. Building on work by ( Wipf and Rao, 2007 ), we derive

n analytic update rule, which enables the adaptive estimation of the

oise variance within various SBL schemes. Moreover, we propose two

ovel cross-validation (CV) schemes from the machine learning field to

etermine the noise variance parameter. 

We conduct extensive ground-truth simulations in which we com-

are LowSNR-BSI with popular source reconstruction schemes including

xisting SBL variants, and in which we systematically study the impact

f different strategies to estimate the noise level 𝜎2 from the data. 

The outline of the paper is as follows: In Section 2 , a comprehensive

eview of Type-II BSI methods is presented. In Section 3 , we unify the

ype-II methods described in Section 2 within the MM framework, and

n Section 4 , we derive LowSNR-BSI algorithm within the same frame-

ork. Section 5 introduces numerous principled ways for estimating

he sensor noise variance. Simulation studies, real data analysis, and

iscussions are presented in Sections 6, 7 , and 8 , respectively. Finally,

ection 9 concludes the paper. 

. Bayesian learning 

The ill-posed nature of the EEG/MEG inverse problem can be over-

ome by assuming a prior distribution 𝑝 ( 𝐗 ) for the source activity. The

osterior distribution of the sources after observing the data 𝐘 , 𝑝 ( 𝐗 |𝐘 ) ,
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a  
s given by Bayes’ rule: 

 ( 𝐗 |𝐘 ) = 

𝑝 ( 𝐘 |𝐗 ) 𝑝 ( 𝐗 ) 
∫ 𝑝 ( 𝐘 |𝐗 ) 𝑝 ( 𝐗 ) d 𝐗 

, (2) 

here the conditional probability 𝑝 ( 𝐘 |𝐗 ) in the numerator denotes the

ikelihood , while the term in the denominator, ∫ 𝑝 ( 𝐘 |𝐗 ) 𝑝 ( 𝐗 ) d 𝐗 = 𝑝 ( 𝐘 ) ,
s referred to as model evidence or marginal likelihood . However, note

hat the posterior is often not analytically tractable, as evaluating the

ntegral in the model evidence is intractable for many choices of prior

istributions and likelihoods. 

emark 1. Priors fulfill the same practical purpose as regularizers even

f they are motivated from a different perspective, e.g., the Bayesian

ormalism, in this paper. Besides, we regard the Bayesian perspective

s a helpful technical vehicle to inspire and generate flexible priors for

haping more plausible solutions. 

.1. Type-I Bayesian learning 

As the model evidence in Eq. (2) only acts as a scalar normalization

or the posterior, its evaluation can be avoided if one is only interested in

he most probable source configuration 𝐗 rather than the full posterior

istribution. This point estimate is known as the maximum-a-posteriori

MAP) estimate: 

 

MAP ∶= arg max 
𝐗 

𝑝 ( 𝐘 |𝐗 ) 
⏟⏟⏟
likelihood 

𝑝 ( 𝐗 ) 
⏟⏟⏟
prior 

. (3) 

ssuming i.i.d. Gaussian sensor noise, the likelihood reads: 

 ( 𝐘 |𝐗 ) = 

𝑇 ∏
𝑡 =1 

𝑝 ( 𝐲 ( 𝑡 ) |𝐱 ( 𝑡 )) = 

𝑇 ∏
𝑡 =1 

 ( 𝐋𝐱 ( 𝑡 ) , 𝜎2 𝐈 ) , (4) 

nd the resulting MAP estimate (3) is given by 

 

MAP ∶= arg max 
𝐗 

[ 

𝑇 ∏
𝑡 =1 

exp 
( 

− 

1 
2 𝜎2 

‖𝐲( 𝑡 ) − 𝐋𝐱( 𝑡 ) ‖2 2 ) 

] 

𝑝 ( 𝐗 ) 

= arg min 
𝐗 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

‖𝐲( 𝑡 ) − 𝐋𝐱( 𝑡 ) ‖2 2 
] 

+ 𝜎2  

I ( 𝐗 ) = arg min 
𝐗 

 

I ( 𝐗 ) , (5) 

here  

I ( 𝐗 ) = log ( 𝑝 ( 𝐗 ) ) and  

I ( 𝐗 ) denotes the Bayesian Type-I learning

MAP) objective function. 

Note that this expression can be interpreted as a trade-off between

wo optimization goals, where the first (log-likelihood) term in (5) pe-

alizes model errors using a quadratic loss function and the second (log-

rior) term penalizes deviations of the solution from the assumed spatial

r temporal properties of the brain sources encoded in  

I ( 𝐗 ) . The trade-

ff between these two optimization goals is defined by the ratio of the

oise variance 𝜎2 and the variance of the prior distribution. As the latter

s hardly known in practice, a regularization parameter 𝜆 ∝ 𝜎2 subsuming

oth variables is introduced, which can be tuned to adjust the relative

mportance of both penalties in the optimization. 

Several existing algorithms are characterized by different choices of

 prior. For instance, choosing a Gaussian prior distribution leads to the

lassical minimum-norm estimate ( Hämäläinen and Ilmoniemi, 1994;

ascual-Marqui, 2007; Pascual-Marqui et al., 1994 ), which also goes

y the names 𝓁 2 2 -norm (or Tikhonov) regularization and “ridge regres-

ion ” in the statistics and machine learning literature. The choice of a

aplace prior leads to the minimum-current estimate ( Matsuura and Ok-

be, 1995 ), which is also known as 𝓁 1 -norm regularization or “LASSO ”

egression. Besides, hierarchical Bayesian priors with automatic depth

eighting have been used to infer brain activity from EEG/MEG data

 Calvetti et al., 2019 ). More complex priors have been also used to in-

orporate anatomical information of the sources ( Dale and Sereno, 1993;

ascual-Marqui et al., 2002; Trujillo-Barreto et al., 2004 ) or to encode

ssumptions on the spatial, temporal and/or spectral structure of the

ources. Respective methods include FOCUSS ( Gorodnitsky et al., 1995 ),
3 
-FLEX ( Haufe et al., 2008; 2011 ), MxNE ( Gramfort et al., 2012 ), ir-

xNE ( Strohmeier et al., 2016 ), TF-MxNE ( Gramfort et al., 2013 ), irTF-

xNE ( Strohmeier et al., 2015 ), and STOUT ( Castaño-Candamil et al.,

015 ), which all enforce sparsity in different domains such as Gabor

rames or cortical patches through appropriate norm constraints. 

.2. Type-II Bayesian learning 

While in the MAP approach the prior distribution is fixed, it is some-

imes desirable to consider entire families of distributions 𝑝 ( 𝐗 |𝜸) param-

terized by a set of hyper-parameters 𝛾. These hyper-parameters can be

earned from the data along with the model parameters using a hierar-

hical empirical Bayesian approach ( Mika et al., 2001; Tipping, 2001;

ipf and Rao, 2004 ). In this maximum-likelihood Type-II (ML-II, or sim-

ly Type-II) approach, 𝛾 is estimated through the maximum-likelihood

rinciple: 

II ∶= arg max 
𝜸

𝑝 ( 𝐘 |𝜸) = arg max 
𝜸 ∫ 𝑝 ( 𝐘 |𝐗 , 𝜸) 𝑝 ( 𝐗 |𝜸) d 𝐗 . (6) 

omputation of the conditional density 𝑝 ( 𝐘 |𝜸) is formally achieved by

ntegrating over all possible source distributions 𝐗 for any given choice

f 𝜸. The maximizer of Eq. (6) then determines a data-driven prior dis-

ribution 𝑝 ( 𝐗 |𝜸II ) . Plugged into the MAP estimation framework Eq. (3) ,

his gives rises to the Type-II source estimate 𝐗 

II . 

As the conditional density 𝑝 ( 𝐘 |𝜸) for a given 𝜸 is identical to the

odel evidence in Eq. (2) , this approach also goes by the name evi-

ence maximization ( Wipf and Rao, 2007; Wipf et al., 2011 ). Concrete

nstantiations of this approach have further been introduced under the

ames sparse Bayesian learning (SBL) ( Tipping, 2001 ) or automatic rel-

vance determination (ARD) ( Tipping, 2000 ), kernel Fisher discriminant

KFD) ( Mika et al., 2001 ), variational Bayes (VB) ( Seeger and Wipf, 2010;

ipf and Nagarajan, 2009 ) and iteratively-reweighted MAP estimation

 Gorodnitsky et al., 1995; Wipf and Nagarajan, 2010 ). Interested read-

rs are referred to ( Wu et al., 2016 ) for a comprehensive survey on

ayesian machine learning techniques for EEG/MEG signals. To distin-

uish all these Type-II variants from classical ML and MAP approaches

ot involving hyperparameter learning, the latter are also referred to as

ype-I approaches. 

emark 2. The marginal likelihood formulation in Type-II Bayesian

earning, Eq. (6) , enables estimation of flexible priors with many pa-

ameters from data. This stands in contrast to the use of classical cross-

alidation techniques to learn hyperparameters of regularizers, which

orks for very few parameters only (in most cases only a single scalar

egularization constant). 

.3. Sparse Bayesian learning and Champagne 

A Type-II estimation framework with particular relevance for

EG/MEG source imaging is SBL. In this framework, the 𝑁 modeled

rain sources are assumed to follow independent univariate Gaussian

istributions with zero mean and distinct unknown variances 𝛾𝑛 : 𝑥 𝑛 ( 𝑡 ) ∼
 (0 , 𝛾𝑛 ) , 𝑛 = 1 , … , 𝑁 . In the SBL solution, the majority of variances

s zero, thus effectively inducing spatial sparsity of the corresponding

ource activities. Such sparse solutions are physiologically plausible in

ask-based analyses, where only a fraction of the brain’s macroscopic

tructures is expected to be consistently engaged. This consideration

as led ( Wipf and Rao, 2004 ) to propose the Champagne algorithm for

rain source imaging, which is rooted in the concept of SBL. Compared

o Type-I approaches achieving sparsity through 𝓁 1 -norm minimization,

hampagne has shown significant performance improvement with re-

pect to EEG/MEG source localization ( Owen et al., 2012; Wipf et al.,

010 ). 

Just as most existing approaches, Champagne makes the simplifying

ssumption of statistical independence between time samples. This leads
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o the following expression for the distribution of the sources: 

 ( 𝐗 |𝜸) = 

𝑇 ∏
𝑡 =1 

𝑝 ( 𝐱( 𝑡 ) |𝜸) = 

𝑇 ∏
𝑡 =1 

 (0 , 𝚪) , (7) 

here 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤ and 𝚪 = diag ( 𝜸) . Note that, in task-based anal-

ses, the noise variance 𝜎2 can be estimated from a baseline (resting

tate) recording. In the first part of this paper, it is, therefore, assumed

o be known. 

emark 3. Electrophysiological data are known to possess a complex

ntrinsic autocorrelation structure. Here, we consider priors that make

he simplifying assumption of independence between time samples,

hich is consistent with most existing works in the field ( Gramfort

t al., 2012; Hämäläinen and Ilmoniemi, 1994; Haufe et al., 2008; Mat-

uura and Okabe, 1995; Pascual-Marqui et al., 1994 ). Importantly, us-

ng such simplifying priors generally does not prevent the resulting in-

erse solutions to have time structure. Nevertheless, priors modeling

he known properties of the latent variables more accurately might lead

o better reconstructions especially in low-sample regimes. Preliminary

ork shows that priors modeling temporal structure with autoregressive

odels can indeed improve the reconstruction of autocorrelated source

 Hashemi and Haufe, 2018 ). 

The parameters of the SBL model are the unknown sources as well

s their variances. As computation of the integral in Eq. (6) is in-

easible, Champagne considers an approximation, where the variances

𝑛 , 𝑛 = 1 , … , 𝑁 , are optimized based on the current estimates of the

ources in an alternating iterative process. Given an initial estimate of

he variances, the posterior distribution of the sources is a Gaussian of

he form ( Wipf et al., 2010 ), (Sekihara and Nagarajan, 2015, Chapter 4) 

 ( 𝐗 |𝐘 , 𝜸) = 

𝑇 ∏
𝑡 =1 

 ( ̄𝐱 ( 𝑡 ) , 𝚺𝐱 ) , where (8) 

̄
 ( 𝑡 ) = 𝚪𝐋 

⊤( 𝚺𝐲 ) −1 𝐲( 𝑡 ) (9) 

𝐱 = 𝚪 − 𝚪𝐋 

⊤( 𝚺𝐲 ) −1 𝐋 𝚪 (10) 

𝐲 = 𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤ . (11) 

he estimated posterior parameters 𝐱̄ ( 𝑡 ) and 𝚺𝐱 are then in turn used

o update the estimate of the variances 𝛾𝑛 , 𝑛 = 1 , … , 𝑁 as the minimizer

f the negative log of the marginal likelihood 𝑝 ( 𝐘 |𝜸) , which is given by

ipf et al. (2010) : 

 

II ( 𝜸) = − log 𝑝 ( 𝐘 |𝜸) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) + log |𝚺𝐲 | , (12) 

here | ⋅ | denotes the determinant of a matrix. This process is re-

eated until convergence. Given the final solution of the hyperparame-

er 𝜸II , the point estimate 𝐱 II of the source activity is obtained from the

osterior mean of the estimated source distribution: 𝐱 II ( 𝑡 ) = 𝐱̄ ( 𝑡 ) . Note

hat given the definition of the empirical sample covariance matrix as

 𝐲 = 

1 
𝑇 

∑𝑇 
𝑡 =1 𝐲 ( 𝑡 ) 𝐲 ( 𝑡 ) 

⊤, the term 

1 
𝑇 

∑𝑇 
𝑡 =1 𝐲 ( 𝑡 ) 

⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) in Eq. (12) can be

ewritten as tr ( 𝐂 𝐲 𝚺−1 
𝐲 ) , so that Eq. (12) becomes (Wipf et al., 2010,

ection II) 

 

II ( 𝜸) = tr ( 𝐂 𝐲 𝚺−1 
𝐲 ) + log |𝚺𝐲 | . (13) 

ote that, in this form, the loss function Eq. (13) bears an interesting

imilarity to the log-determinant (log-det) Bregman divergence in informa-

ion geometry ( James and Stein, 1992 ). This perspective on Type-II loss

unction enables a common viewpoint for Type-I and Type-II methods. 

By invoking mathematical tools based on Legendre-Fenchel duality

heory, the cost function Eq. (12) can be formulated equivalently as an-

ther cost function,  

II − 𝑥 ( 𝐗 , 𝜸) , whose optimizers, { 𝜸∗ , 𝐗 

∗ } , are derived
4 
y performing a joint minimization over 𝐗 and 𝜸 (Wipf et al., 2011, see

lso Section II-B) , Bauschke and Combettes (2017) ; Rockafellar (1970) : 

𝜸∗ , 𝐗 

∗ = arg min 𝜸≥ 0 , 𝐗 ≥ 0  

II − 𝑥 ( 𝐗 , 𝜸) , where 

 

II − 𝑥 ( 𝐗 , 𝜸) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

‖𝐲( 𝑡 ) − 𝐋𝐱( 𝑡 ) ‖2 2 + 𝜎2  

II − 𝑥 ( 𝐗 , 𝜸) 

 

II − 𝑥 ( 𝐗 , 𝜸) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥 𝑛 ( 𝑡 ) 2 

𝛾𝑛 
+ log |𝚺𝐲 | , (14) 

here  

II − 𝑥 ( 𝐗 , 𝜸) denotes a regularizer that depends on the data, 𝐱( 𝑡 ) ,
nd where 𝑥 𝑛 ( 𝑡 ) denotes the activity of source 𝑛 at time instant 𝑡 . Then,

s each source 𝑥 𝑛 ( 𝑡 ) is also a function of 𝛾𝑛 according to Eq. (9) , the

erm 

𝑥 𝑛 ( 𝑡 ) 2 

𝛾𝑛 
goes to zero when 𝛾𝑛 → 0 . 

emark 4. In contrast to standard MAP estimation, the effective priors

btained within our hierarchical Bayesian framework, e.g.,  

II − 𝑥 ( 𝐗 , 𝜸)
n Eq. (14) , are not fixed. They depend on parameters that can be tuned

nd learned from the data; thus, Type-II priors have the ability and flex-

bility to capture the actual properties of the observed real data. 

We will use the formulation in Eq. (14) to derive alternative opti-

ization schemes for Champagne in Sections 2.3.2 and 2.3.3 . 

.3.1. EM Champagne 

As the cost function Eq. (12) is non-convex in 𝜸, the quality of the

btained solution depends substantially on the properties of the em-

loyed numerical optimization algorithm. Crucially, algorithms might

ot only differ with respect to their convergence properties but may

lso lead to different solutions representing distinct local minima of

q. (12) . The first algorithm for mimimizing Eq. (12) has been in-

roduced by Wipf and Nagarajan (2009) and is an application of the

xpectation-maximization (EM) formalism ( Dempster et al., 1977 ). As

an be shown, Eqs. (9) –(11) correspond to the expectation (E) step of

he EM algorithms with respect to the posterior distribution 𝑝 ( 𝐗 |𝐘 , 𝜸) .
he maximization (M) step of the EM formalism with respect to 𝜸 then

eads to the update rule 

𝑘 +1 
𝑛 ∶= 

[
𝚺𝑘 
𝐱 
]
𝑛,𝑛 

+ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

( ̄𝐱 𝑘 𝑛 ( 𝑡 )) 
2 for 𝑛 = 1 , … , 𝑁 . (15) 

inal estimates of both parameters are obtained by iterating the updates

9) –(11) and (15) until convergence. The resulting algorithm is known

s the EM variant of the Champagne algorithm (Sekihara and Nagara-

an, 2015, Chapter 4) ( Wipf and Nagarajan, 2009 ) in the field of brain

ource imaging. 

.3.2. Convex-bounding based Champagne 

As the EM algorithm outlined above has been shown to have slow

onvergence speed, alternative minimization strategies have been pro-

osed. Two such variants, a convex-approximation based approach and

he so-called MacKay update, have been proposed in Wipf and Nagara-

an (2009) and further practically investigated in Owen et al. (2012) .

onsidering that the log-determinant in Eq. (14) is concave, the convex-

ounding based variant of Champagne constructs a linear upper bound

ased on the concave conjugate of log |||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤|||, defined as 𝑤 

∗ ( 𝐳) , 

og |||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤||| = log |||𝜎2 𝐈 + 𝐋 diag ( 𝜸) 𝐋 

⊤||| = min 
𝐳> 0 

𝐳 ⊤𝜸 − 𝑤 

∗ ( 𝐳) . (16) 

ith this upper bound, and for a fixed value of 𝜸, the auxiliary variable

can be derived as the tangent hyperplane of the log |𝚺𝐲 |: 
 = ∇ 𝜸 log 

|||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤||| . 
Note that the concave conjugate is obtained as a result of ap-

lying Legendre-Fenchel duality theory (see, e.g., Bauschke and

ombettes (2017) ; Rockafellar (1970) ) on the concave function

og |||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤||| as follows: 𝑤 

∗ ( 𝐳) = inf 
𝜸> 0 

[
𝜸⊤𝐳 − 𝑤 ( 𝜸) 

]
, where 𝑤 ( 𝜸) =

og |||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤||| denotes our target concave function. 
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By inserting Eq. (16) instead of log |𝚺𝐲 | into Eq. (14) , the non-convex

enalty function Eq. (14) is replaced by the convex function 

 

II − 𝑥 
conv ( 𝐗 , 𝜸) = min 

𝜸≥ 0 , 𝐳> 0 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥̄ 𝑛 ( 𝑡 ) 2 

𝛾𝑛 

] 

+ 𝐳 𝑇 𝜸 − 𝑤 

∗ ( 𝐳) 

n each step of the optimization. The final estimates of 𝐗 , 𝜸 and 𝐳 are ob-

ained by iterating between following update rules until convergence: 

 

𝑘 
𝑛 = 𝐋 

⊤
𝑛 ( 𝚺

𝑘 
𝐲 ) 

−1 𝐋 𝑛 , 𝑛 = 1 , … , 𝑁 (17) 

̄
 

𝑘 ( 𝑡 ) = 𝚪𝐋 

⊤( 𝚺𝑘 
𝐲 ) 

−1 𝐲( 𝑡 ) (18) 

𝑘 +1 
𝑛 = 

√ √ √ √ 

1 
𝑇 

∑𝑇 
𝑡 =1 ( ̄𝐱 𝑘 𝑛 ( 𝑡 )) 2 

𝑧 𝑘 𝑛 
, 𝑛 = 1 , … , 𝑁 . (19) 

ere, 𝐋 𝑛 in (17) denotes the 𝑛 -th column of the lead field matrix. 

.3.3. MacKay update for Champagne 

The MacKay update proposed in (Wipf and Nagarajan, 2009, Sec-

ion III.A-2) can be derived in a similar fashion as the convex-bounding

ased update using different auxiliary functions and variables. By defin-

ng new variables 𝜅𝑛 ∶= log ( 𝛾𝑛 ) for 𝑛 = 1 , … , 𝑁 , the non-convex term

og |||𝜎2 𝐈 + 𝐋 diag ( 𝜸) 𝐋 

⊤||| in Eq. (16) can be written as: 

og |||𝜎2 𝐈 + 𝐋 diag ( 𝜸) 𝐋 

⊤||| = log 
||||||𝜎2 𝐈 + 

𝑁 ∑
𝑛 =1 

𝛾𝑛 𝐋 

⊤
𝑛 𝐋 𝑛 

||||||
= log 

||||||𝜎2 𝐈 + 

𝑁 ∑
𝑛 =1 

exp ( 𝜅𝑛 ) 𝐋 

⊤
𝑛 𝐋 𝑛 

|||||| . 
hen, one can introduce another surrogate function (Wipf and Nagara-

an, 2009, Appendix-B) 

og 
||||||𝜎2 𝐈 + 

𝑁 ∑
𝑛 =1 

exp ( 𝜅𝑛 ) 𝐋 

⊤
𝑛 𝐋 𝑛 

|||||| = max 
𝐳> 0 

𝐳 𝑇 log ( 𝜸) − ℎ ∗ ( 𝐳) (20) 

or the log |||𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤|||, where ℎ ∗ ( 𝐳) denotes the convex conjugate of

og |||𝜎2 𝐈 + 

∑𝑁 

𝑛 =1 exp ( 𝜅𝑛 ) 𝐋 

⊤
𝑛 𝐋 𝑛 

||| in contrast to the concave conjugate coun-

erpart, 𝑤 

∗ ( 𝐳) used in Eq. (16) . Substituting (20) into Eq. (14) leads to

 so-called min-max optimization program for optimizing the non-convex

enalty function  

II − 𝑥 ( 𝐗 ) , which alternates between minimizations over

and maximizations of the bound in (20) : 

 

MacKay 
conv ( 𝐗 , 𝜸) = min 

𝜸≥ 0 max 
𝐳> 0 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥̄ 𝑛 ( 𝑡 ) 2 

𝛾𝑛 

] 

+ 𝐳 𝑇 log ( 𝜸) − ℎ ∗ ( 𝐳) . (21) 

et 𝛾𝑘 𝑛 denote the value of 𝛾𝑛 in the 𝑘 -th iteration. Inserting 𝜸𝑘 into

q. (21) and minimizing with respect to 𝜸𝑘 𝑛 requires that the deriva-

ives 

𝜕 

𝜕𝛾𝑘 𝑛 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐱̄ 𝑘 ( 𝑡 ) ⊤𝐱̄ 𝑘 ( 𝑡 ) 
𝛾𝑘 𝑛 

+ 𝐳 𝑇 log ( 𝛾𝑘 𝑛 ) − ℎ ∗ ( 𝐳) 
] 

= 0 , 

or 𝑛 = 1 , … , 𝑁 , vanish. The resulting function is then maximized with

espect to z (Wipf and Nagarajan, 2009, Appendix-B) , which leads to

he so-called MacKay update for optimizing Eq. (14) (Wipf and Nagara-

an, 2009, Section A-2) : 

𝑘 +1 
𝑛 ∶= 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝐱̄ 𝑘 𝑛 ( 𝑡 ) 

)2 ] ( 

𝛾𝑘 𝑛 𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1 

= 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
( 𝛾𝑘 𝑛 ) 𝜷

𝑘 
𝑛 ( 𝑡 ) 

)2 ] ( 

𝛾𝑘 𝑛 𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1 

= 𝛾𝑘 𝑛 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

( 𝜷𝑘 
𝑛 ( 𝑡 )) 

2 

] ( 

𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1 
, for 𝑛 = 1 , … , 𝑁 , (22) 

here 𝜷𝑘 
𝑛 ( 𝑡 ) is defined as follows: 𝜷𝑘 

𝑛 ( 𝑡 ) ∶= 𝐋 

⊤
𝑛 ( 𝚺

𝑘 
𝐲 ) 

−1 𝐲( 𝑡 ) for 𝑛 = 1 , … , 𝑁 .
5 
. Unification of sparse Bayesian learning algorithms with the 

ajorization-minimization (MM) framework 

In this section, we first briefly review theoretical concepts behind

he MM algorithmic framework ( Hunter and Lange, 2004; Jacobson and

essler, 2007; Razaviyayn et al., 2013; Wu et al., 2010 ). Then, we for-

ally characterize Champagne variants as MM algorithms by suggest-

ng upper bounds on the cost function Eq. (14) that, when employed

ithin the MM framework, yield the same update rules as the origi-

al algorithms. The first three rows of Table 1 list the update rules and

athematical formalism used in this section. 

.1. Majorization-Minimization 

Majorization-minimization is a promising strategy for solving gen-

ral non-linear optimization programs. Compared to other popular op-

imization paradigms such as (quasi)-Newton methods, MM algorithms

njoy guaranteed convergence to a stationary point ( Sun et al., 2017 ).

he MM class covers a broad range of common optimization algo-

ithms such as proximal methods and convex-concave procedures (CCCP)

Sun et al., 2017, Section IV) , Lipp and Boyd (2016) ; Yuille and Rangara-

an (2003) . While such algorithms have been applied in various contexts,

uch as non-negative matrix factorization ( Févotte, 2011 ) and massive

IMO systems for wireless communication ( Haghighatshoar and Caire,

017; Khalilsarai et al., 2020 ), their advantages have so far rarely been

ade explicit in the context of brain source imaging ( Bekhti et al., 2018;

ashemi and Haufe, 2018; Luessi et al., 2013 ). 

We define an original optimization problem with the objective of

inimizing a continuous function 𝑓 ( 𝐮 ) within a closed convex set  ⊂

 

𝑛 : 

in 
𝐮 

𝑓 ( 𝐮 ) subject to 𝐮 ∈  . (23)

hen, the idea of MM can be summarized as follows. First, construct

 continuous surrogate function 𝑔( 𝐮 |𝐮 𝑘 ) that upper-bounds, or majorizes ,

he original function 𝑓 ( 𝐮 ) and coincides with 𝑓 ( 𝐮 ) at a given point 𝐮 𝑘 : 

A1] 𝑔( 𝐮 𝑘 |𝐮 𝑘 ) = 𝑓 ( 𝐮 𝑘 ) ∀ 𝐮 𝑘 ∈  

A2] 𝑔( 𝐮 |𝐮 𝑘 ) ≥ 𝑓 ( 𝐮 ) ∀ 𝐮 , 𝐮 𝑘 ∈  . 

econd, starting from an initial value 𝐮 0 , generate a sequence of feasi-

le points 𝐮 1 , 𝐮 2 , … , 𝐮 𝑘 , 𝐮 𝑘 +1 as solutions of a series of successive simple

ptimization problems, where 

A3] 𝐮 𝑘 +1 ∶= arg min 
𝐮 ∈ 𝑔( 𝐮 |𝐮 𝑘 ) . 

Note that the performance of MM algorithms heavily depends on

he choice of a suitable surrogate function, which should, on one

and, faithfully reflect the behavior of the original non-convex function

q. (23) while, on the other hand, be easy to minimize. 

efinition 1. Any algorithm fulfilling conditions [A1]–[A3] is called a

ajorization Minimization (MM) algorithm. 

orollary 1. An MM algorithm has a descending trend property, whereby

he value of the cost function 𝑓 decreases in each iteration: 𝑓 ( 𝐮 𝑘 +1 ) ≤ 𝑓 ( 𝐮 𝑘 ) .

roof. The proof is included in Appendix B . □

While Corollary 1 guarantees a descending trend, convergence re-

uires additional assumptions on particular properties of 𝑓 and 𝑔

 Jacobson and Fessler, 2007; Razaviyayn et al., 2013 ). For the smooth

unctions considered in this paper, we require that the derivatives of the

riginal and surrogate functions coincide at 𝐮 𝑘 : 

A4] ∇ 𝑔( 𝐮 𝑘 |𝐮 𝑘 ) = ∇ 𝑓 ( 𝐮 𝑘 ) ∀ 𝐮 𝑘 ∈  . 

hen, the following, stronger, theorem holds. 

heorem 1. For an MM algorithm that additionally satisfies [A4], every

imit point of the sequence of minimizers generated through [A3] is a sta-

ionary point of the original optimization problem Eq. (23) . 
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Table 1 

This table summarizes the update rules presented in Section 2.3 and their corresponding MM upper-bounds that will be 

utilized in Sections 3 and 4 . 

Update Rule Mathematical Formalism Used Inequality Used 

EM 𝛾𝑘 +1 
𝑛 

∶= 
[
𝚺𝑘 
𝐱 
]
𝑛,𝑛 

+ 1 
𝑇 

∑𝑇 

𝑡 =1 ( ̄𝐱 
𝑘 
𝑛 
( 𝑡 )) 2 Expectation-Maximization Formalism Jensen’s Inequality 

Convex Bounding 𝛾𝑘 +1 
𝑛 

∶= 
√ [

1 
𝑇 

∑𝑇 

𝑡 =1 ( ̄𝐱 𝑘 𝑛 ( 𝑡 )) 2 
]( 

𝐋 ⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1∕2 
Concave Conjugate Taylor Expansion 

MacKay 𝛾𝑘 +1 
𝑛 

∶= 
[

1 
𝑇 

∑𝑇 

𝑡 =1 ( ̄𝐱 
𝑘 
𝑛 
( 𝑡 )) 2 

]( 
𝛾𝑘 
𝑛 
𝐋 ⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1 
Change of Variable + Convex Conjugate Taylor Expansion 

LowSNR-BSI 𝛾𝑘 +1 
𝑛 

∶= 
√ [

1 
𝑇 

∑𝑇 

𝑡 =1 ( ̄𝐱 𝑘 𝑛 ( 𝑡 )) 2 
](
𝐋 ⊤
𝑛 
𝐋 𝑛 

)−1∕2 
MM Principle in Low-SNR Setting Taylor Expansion 
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roof. A detailed proof can be found in (Razaviyayn et al., 2013, The-

rem 1) . □

Note that since we are working with smooth functions, condi-

ions [A1]–[A4] are sufficient to prove convergence to a station-

ry point according to Theorem 1 (see Hunter and Lange (2004) ;

azaviyayn et al. (2013) ; Wu et al. (2010) and Dempster et al. (1977) ;

u (1983) ) for proofs of the convergence behaviour of other MM algo-

ithms such as expectation maximization. 

emark 5. Corollary 1 implies that if a surrogate function is con-

tructed to fulfill conditions [A1] and [A2], and if the next feasible

oint of the algorithm is always assigned as the minimizer of the surro-

ate function based on [A3], the resulting MM algorithm decreases 𝑓 ( 𝐮 )
n each step. Although a weaker condition than [A3], i.e., 𝑔( 𝐮 𝑘 +1 |𝐮 𝑘 ) ≤
( 𝐮 𝑘 |𝐮 𝑘 ) , is sufficient for a descending trend, we only consider MM algo-

ithms in this paper; thus, condition [A3] is a crucial requirement. As we

ave shown in Theorem 1 , [A3] is further required to prove guaranteed

onvergence of an MM algorithm. 

We now show that three algorithms that have been proposed for

olving the SBL cost function Eq. (12) can all be cast as instances of the

M framework invoking different majorization functions on  

II − 𝑥 ( 𝐗 ) .
or the convex-bounding based approach as well as the algorithm using

acKay updates, the full set of conditions [A1]–[A4] in Theorem 1 are

roven. Due to the considerations made above, we, however, only prove

orollary 1 for the EM-based Champagne algorithm. 

.1.1. EM update as MM 

It is known that the EM algorithm is a special case of MM framework

sing Jensen’s inequality to construct the surrogate function ( Sun et al.,

017; Wu et al., 2010 ). Here, we work out the specific surrogate func-

ion for the SBL cost function Eq. (12) (i.e., the negative log marginal

ikelihood). 

As Wipf and Nagarajan have shown (Wipf and Nagarajan, 2009, Sec-

ion III.A-1) , the EM algorithm for Type-II problems consists of the fol-

owing two parts: For the E-step, the posterior 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) is obtained

iven the value of 𝜸 at 𝑘 -th iteration, 𝜸𝑘 . The M-step then solves: 

𝑘 +1 ∶= arg min 𝜸E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) [− log 𝑝 ( 𝐘 , 𝐗 |𝜸) ] , where 

− log 𝑝 ( 𝐘 , 𝐗 |𝜸) = 

𝑇 

2 
log |𝚪| + 

1 
2 

𝑇 ∑
𝑡 =1 

𝐱̄ ( 𝑡 ) ⊤𝚪−1 𝐱̄ ( 𝑡 ) 

+ 

𝑇 

2 
log |||𝜎2 𝐈 ||| + 

𝑇 ∑
𝑡 =1 

1 
2 𝜎2 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 ( 𝑡 ) ||2 2 , (24) 

hich leads to the update rule in Eq. (15) . 

roposition 1. The EM based Champagne algorithm is an MM algorithm

ulfilling Corollary 1 , where the negative log-likelihood loss, − log 𝑝 ( 𝐘 |𝜸) , is
ajorized by the following surrogate function 
6 
 

𝑘 
EM 

( 𝜸|𝜸𝑘 ) = 

𝑇 

2 
log |𝚪| + E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 

[ 

1 
2 

𝑇 ∑
𝑡 =1 

𝐱̄ 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱̄ 𝑘 ( 𝑡 ) 
] 

+ 

𝑇 

2 
log |||𝜎2 𝐈 ||| + E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 

[ 

𝑇 ∑
𝑡 =1 

1 
2 𝜎2 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 
] 

+ E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 𝑝 (𝐗 |𝐘 , 𝜸𝑘 
)
. (25) 

roof. A detailed proof can be found in Appendix C . □

Note that the EM algorithm is also equivalent to the restricted max-

mum likelihood (ReML) ( Friston et al., 2002 ) and dynamic statistical

arametric mapping (dSPM) approaches ( Dale et al., 2000 ) for solving

he sparse EEG/MEG inverse problem, which, thereby, can also be in-

erpreted as instances of minimization-majorization. 

.1.2. Convex-bounding based approach as MM 

We start by recalling the non-convex penalty  

II − 𝑥 ( 𝐗 , 𝜸) as defined

n Eq. (14) : 

 

II − 𝑥 ( 𝐗 , 𝜸) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥 𝑛 ( 𝑡 ) 2 

𝛾𝑛 
+ log |𝚺𝐲 | . 

y setting 𝐱 = 𝐱̄ 𝑘 to the value obtained by the convex-bounding based

ethod in the 𝑘 -th iteration, the following holds: 

roposition 2. The convex-bounding based Champagne algorithm is an

M algorithm fulfilling Theorem 1 , where  

II − 𝑥 ( 𝐗 , 𝜸) is majorized by the

ollowing surrogate function: 

 

𝑘 
conv ( 𝜸|𝜸𝑘 ) = 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥̄ 𝑘 𝑛 ( 𝑡 ) 
2 

𝛾𝑛 

] 

+ log |||𝚺𝑘 
𝐲 
||| + tr 

[ (
𝚺𝑘 
𝐲 

)−1 
𝚺𝐲 

] 

− tr 
[ (

𝚺𝑘 
𝐲 

)−1 
𝚺𝑘 
𝐲 

] 
. (26) 

roof. A detailed proof is provided in Appendix D . □

.1.3. MacKay update as MM 

Similar to convex-bounding, we can show that the Mackay updates

or Champagne can be viewed as an MM algorithm. 

roposition 3. The Champagne variant employing MacKay updates is

n MM algorithm fulfilling Theorem 1 , where  

II − 𝑥 ( 𝐗 , 𝜸) is majorized by

 

𝑘 
conv ( 𝜸|𝜸𝑘 ) . 
roof. The proof is similar to that of Proposition 2 and provided in

ppendix E . □

To summarize this section, we have shown that three popular strate-

ies for solving the SBL problem in Eq. (12) , namely the EM, the

acKay, and the convex bounding based approaches, can be charac-

erized as MM algorithms. Importantly, this perspective provides a com-

on framework for comparing different Champagne algorithms. For ex-

mple, we can derive and compare certain characteristics of Champagne

lgorithms directly based on the properties of the majorization functions

hey employ. Conversely, it is also possible to design specific majoriza-

ion functions that are optimal in a specific sense, leading to new source

econstruction algorithms. 
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Algorithm 1: LowSNR-BSI algorithm. 

Input : The lead field matrix 𝐋 ∈ ℝ 

𝑀×𝑁 , the measurement vectors 

𝐲( 𝑡 ) ∈ ℝ 

𝑀×1 , 𝑡 = 1 , … , 𝑇 , and the noise variance 𝜎2 . 

Result : The estimated prior source variances [ 𝛾1 , … , 𝛾𝑁 

] ⊤, the 

posterior mean 𝐱̄ ( 𝑡 ) and covariance 𝚺𝐱 of the sources. 

1 Set a random initial value for 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤ and construct 

𝚪 = diag ( 𝜸) . 
2 Calculate the statistical covariance 𝚺𝐲 = 𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤. 

3 Initialize 𝑘 ← 1 
Repeat 

4 Calculate the posterior mean as 𝐱̄ 𝑘 ( 𝑡 ) = 𝚪𝐋 

⊤𝚺−1 
𝐲 𝐲( 𝑡 ) . 

5 Update 𝛾𝑛 for 𝑛 = 1 , … , 𝑁 based on 

6 Recalculate the active set of brain sources by selecting the 

values of 𝛾𝑛 that are greater than a pre-defined threshold: 

𝛾𝑛 > 𝛾thresh , 𝑛 = 1 , … , 𝑁 . 

7 𝑘 ← 𝑘 + 1 

Until stopping condition is satisfied: 
‖‖‖𝐱̄ 𝑘 +1 − ̄𝐱 𝑘 ‖‖‖2 2 ≤ 𝜖 or 𝑘 = 𝑘 max ; 

8 Calculate the posterior covariance as 𝚺𝐱 = 𝚪 − 𝚪𝐋 

⊤𝚺−1 
𝐲 𝐋 𝚪. 

Eq. (29) . 
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. LowSNR-brain source imaging (LowSNR-BSI) 

Here, we assume a low-SNR regime, as it is common in BSI appli-

ations. SNR is defined in sensor space as signal power, 𝔼 { ||𝐋𝐱( 𝑡 ) ||2 } ,
ivided by noise power, 𝜎2 : SNR = 

𝔼 { ||𝐋𝐱( 𝑡 ) ||2 } 
𝜎2 

, and can be expressed in

B scale as SNR dB = 10 log 10 ( SNR ) . In many practical applications, we

re interested in solving the BSI problem for SNR dB ≤ 0 ; that is, when

he noise power is comparable to the power of the signal or even larger.

lthough the algorithms presented in Sections 3.1.1 –3.1.3 achieve satis-

actory performance in terms of computational complexity, their recon-

truction performance degrades significantly in low-SNR regimes. This

ehavior has been theoretically shown in (Khanna and Murthy, 2017a,

ection VI-E) and has also been confirmed in several simulation studies

 Cai et al., 2021; Owen et al., 2012 ). 

In order to improve the performance of SBL in low-SNR settings,

e propose a novel MM algorithm by constructing a surrogate function

or Eq. (12) specifically for this setting. Based on ( Haghighatshoar and

aire, 2017 ), we propose the following convex surrogate function: 

 

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) = tr ( 𝐋 𝚪𝐋 

⊤) + 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲( 𝑡 ) . (27) 

he following proposition is based on results in ( Haghighatshoar and

aire, 2017 ). 

roposition 4. The surrogate function Eq. (27) majorizes the Type-II loss

unction Eq. (12) and results in an MM algorithm that fulfills Theorem 1 .

or SNR → 0 , Eq. (12) converges to Eq. (27) : 

 

II ( 𝜸) =  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) +  ( SNR ) . (28) 

roof. A detailed proof of this result is presented in Appendix F . The

ain idea is to first normalize the sensor and source covariance matri-

es by 𝜎2 and then consider the eigenvalue decomposition of tr ( 𝐋 𝚪𝐋 

⊤)
s 𝐋 𝚪𝐋 

⊤ = 𝐔𝐏𝐔 

⊤ with 𝐏 = diag ( 𝑝 1 , … , 𝑝 𝑀 

) . These two steps result in

he following equality: log |𝚺𝐲 | = log |𝐈 + 𝐔𝐏𝐔 

⊤|. Finally, the proof is

ompleted by leveraging the concavity of the log ( ⋅) function and us-

ng a Taylor expansion around the eigenvalues of 𝐋 𝚪𝐋 

⊤, i.e., 𝑝 𝑖 , for 𝑖 =
 , … , 𝑀 . □

Note that, as a result of Proposition 4 , the behaviour of the non-

onvex SBL cost function Eq. (12) is more and more well approximated

n the vicinity of the current estimate by the proposed surrogate function

q. (27) as the noise level increases, which sets it apart from existing

urrogate functions. Therefore, the proposed bound is particularly suit-

ble in low-SNR regimes. 

In contrast to the original SBL cost function Eq. (12) , the surrogate

unction Eq. (27) is convex and has unique minimum that can be found

nalytically in each iteration of the optimization. To find the optimal

alue of 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤, we first take the derivative of (27) with re-

pect to each 𝛾𝑛 for 𝑛 = 1 , … , 𝑁 , and then set it to zero, which yields the

ollowing closed-form solution for 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤: 

𝑘 +1 
𝑛 ∶= 

√ √ √ √ 

1 
𝑇 

∑𝑇 
𝑡 =1 ̄𝐱 𝑘 𝑛 ( 𝑡 ) 2 

𝐋 

⊤
𝑛 𝐋 𝑛 

for 𝑛 = 1 , … , 𝑁 . (29) 

 detailed derivation of Eq. (29) can be found in Appendix G . We call

he algorithm obtained by iterating between (9) –(11) and (29) LowSNR-

rain Source Imaging (LowSNR-BSI) . In practice, values exactly equal

o zero may not be obtained for the 𝛾𝑛 . Therefore, an active-set strat-

gy is employed. Given a threshold 𝛾thresh , those variances 𝛾𝑛 for which

𝑛 < 𝛾thresh holds are set to zero in each iteration of the algorithm.

lgorithm 1 summarizes the steps of LowSNR-BSI. Table 1 allows for a

irect comparison of the LowSNR-BSI update rule (last column) and the

orresponding update rules of other Champagne variants derived within

he MM framework. 
7 
. Automatic estimation of the noise level 

.1. Adaptive noise learning 

It is common practice to estimate the noise variance 𝜎2 from baseline

ata prior to solving the EEG/MEG inverse problem ( Bijma et al., 2003;

ai et al., 2018; De Munck et al., 2002; Engemann and Gramfort, 2015;

uizenga et al., 2002; Jun et al., 2006; Plis et al., 2006 ). However, a

aseline estimate may not always be available or may not be accurate

nough, say, due to inherent non-stationarities in the data/experimental

etup. Here, we argue that estimating the noise parameter from the

o-be-reconstructed data can significantly improve the reconstruction

erformance even compared to a baseline estimate. To this end, we

ere derive data-driven update rules that allow us to tune estimate the

oise variance, 𝜎2 within the source reconstruction procedure using the

hampagne and LowSNR-BSI algorithms, where we build on prior work

y Mika et al. (2001) ; Tipping (2001) ; Wipf and Rao (2007) ; Wu and

ipf (2012) ; Zhang, Rao, 2011 . Practically we introduce the shortcut

= 𝜎2 to underscore that 𝜆 is a tunable parameter whose estimate can

ubstantially deviate from the baseline estimate in practice. We then

reat 𝜆 as another model hyperparameter, similar to the source vari-

nces 𝛾𝑛 . Thus, in each step of learning cycles of the Champagne and

owSNR-BSI algorithms, we also minimize the loss function  

II with re-

pect to 𝜆, where the remaining parameters 𝚪 and 𝚺𝐱 are fixed to the

alues obtained in the preceding iteration. This leads to the following

heorem: 

heorem 2. The minimization of  

II ( 𝜆) with respect to 𝜆, 

∗ ∶= arg min 𝜆 

II ( 𝜆) = arg min 𝜆

( 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) + log |𝚺𝐲 |

) 

, 

ields the following update rule for 𝜆 at the ( 𝑘 + 1) -th iteration, assuming 𝚪𝑘 

nd 𝚺𝑘 
𝐱 be fixed values obtained in the ( 𝑘 ) -th iteration: 

𝑘 +1 ∶= 

1 
𝑇 

∑𝑇 
𝑡 =1 ||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 

𝑀 − 𝑁 

𝑘 + tr 
[
( 𝚺𝑘 

𝐱 )( 𝚪
𝑘 ) −1 

] , (30) 

here 𝑁 

𝑘 denotes the number of non-zero voxels identified at iteration 𝑘

hrough an active-set strategy. 

roof. A detailed proof can be found in Appendix H . □

As shown in Algorithm (1) , our implementation uses an active-set

trategy that only selects the non-zero voxels at each iteration based on

 threshold. Therefore, at the initial steps of the algorithm, 𝑁 

𝑘 = 𝑁 since

ll source variances are initialized randomly. But, when the algorithm
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s  
roceeds, the number of non-zero voxels decreases as a result of our

ctive-set strategy, which results in smaller values for 𝑁 

𝑘 . 

.2. Cross-validation strategies 

In the previous section, we proposed to estimate the noise variance

= 𝜎2 in-sample such that the SBL likelihood according to Eq. (12) was

aximized, which led to an analytic update rule. As, under our assump-

ion of homoscedastic sensor noise, 𝜆 is only a single scalar parameter,

t moreover becomes feasible make use of robust model selection tech-

iques employing the concept of cross-validation (CV), whose aim it is

o maximize the out-of-sample likelihood ( Bishop, 2006; Hastie et al.,

009; Shalev-Shwartz and Ben-David, 2014 ). To this end, the data are

plit into two parts. On the so-called training set , the model parameters

s fitted for a wide range of possible values of 𝜆, which are fixed within

ach individual optimization. The likelihoods of the fitted models are

hen evaluated on the held-out data parts, called the test sets . The choice

f 𝜆 that maximizes the empirical likelihood on the test data is then used

s an unbiased estimate of the noise variance. It is well-known from the

eld of machine learning that cross-validation effectively overcomes the

roblem of model overfitting in small samples. Here, we introduce two

V strategies employing different ways of splitting the data. 

.2.1. Temporal cross-validation 

In temporal CV, the temporal sequence of the data samples is

plit into 𝑘 different contiguous blocks (folds)( Blankertz et al., 2011;

emm et al., 2011 ). Here, we use 𝑘 = 4 . Three folds form the train-

ng set, 𝐘 

train _ temp ∈ ℝ 

𝑀×𝑇 train _ temp 
, on which we fit the Champagne and

owSNR-BSI models for a range of 𝜆s. On the remaining fold, 𝐘 

test _ temp ∈
 

𝑀×𝑇 test _ temp 
, the Type-II log-likelihood (c.f. Eqs. (12) and (13) ) 

 

II ( 𝐘 

train _ temp , 𝐘 

test _ temp ) = 

1 
𝑇 

∑𝑇 
𝑡 =1 𝐲 

test _ temp ( 𝑡 ) ⊤𝚺−1 
𝐲 train _ temp 𝐲 test _ temp ( 𝑡 ) 

+ log |𝚺𝐲 train _ temp | = tr ( 𝐂 𝐲 test _ temp 𝚺−1 
𝐲 train _ temp ) 

+ log |𝚺𝐲 train _ temp | (31) 

s then evaluated. Note that in Eq. (31) the model covariance 𝚺𝐲 train _ temp 

hat has been determined on the training data 𝐘 

train _ temp is combined

ith the empirical covariance of the hold-out data 𝐘 

test _ temp , which were

ot used during model fitting. Thus, Eq. (31) is the out-of-sample Type-II

og-likelihood. It has been theoretically shown ( Friedman et al., 2008;

hanna and Murthy, 2017a ) that the Type-II log-likelihood function

s a metric on the second-order information of the sensors closely re-

ated to the log-det Bregman divergence (discrepancy) between statis-

ical (model) and empirical covariances ( Bregman, 1967; James and

tein, 1992 ). The choice of 𝜆 that minimizes that discrepancy on hold-

ut data is, therefore, a sensible estimate for the true noise variance. We

rovide further details on the relation between the SBL likelihood and

he log-det Bregman divergence in Appendix A . 

.2.2. Spatial cross-validation 

In spatial CV, the data are not split into temporal segments but

y dividing the available EEG/MEG sensors into the training and test

ets. This variant has been proposed by Habermehl et al. (2014) ;

aufe et al. (2011) . Here, we again use 𝑘 = 4 folds, where we randomly

ssign 75% of the sensors to the training set, 𝐘 

train _ spat ∈ ℝ 

𝑀 

train _ spat ×𝑇 ,

nd the remaining 25% to the test set, 𝐘 

test _ spat ∈ ℝ 

𝑀 

test _ spat ×𝑇 . On the

raining sensors, Champagne and LowSNR-BSI are fitted using the cor-

esponding portion of the leadfield matrix, 𝐋 

train _ spat , for the same range

f 𝜆s as used in temporal CV. The sources, 𝐗 

train _ spat ∈ ℝ 

𝑁×𝑇 , estimated

rom the fitted models are then mapped back to the sensor space, and

he out-of-sample Type-I log-likelihood (c.f. Eq. (5) ) is evaluated on the

old-out (test) sensors: 
8 
 

I ( 𝐘 

train _ spat , 𝐘 

test _ spat ) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

‖‖‖𝐲 test _ spat ( 𝑡 ) − 𝐋 

test _ spat 𝐱 train _ spat ( 𝑡 ) ‖‖‖2 2 
∶= 

‖‖‖𝐘 

test _ spat − 𝐋 

test _ spat 𝐗 

train _ spat ‖‖‖2 𝐹 . (32) 

Note that, while the Type-II log-likelihood has an interpretation as

 Bregman divergence between model and empirical covariance matri-

es, the Type-I log-likelihood is the Frobenius norm or mean-squared

rror (MSE) ‖⋅‖2 
𝐹 

of the model residuals, i.e., the average squared Eu-

lidean distance between empirical and modeled observation vectors.

hus, while the Type-II likelihood compares model and observations

n terms of their second-order statistics, the Type-I likelihood uses only

rst-order information. As in temporal CV, the value of 𝜆 that minimizes

he MSE on the test sensors is selected as the final noise estimate. 

. Simulations 

We conducted an extensive set of simulations, in which we compared

he reconstruction performance of the proposed LowSNR-BSI algorithm

o that of Champagne and two additional widely-used source reconstruc-

ion schemes for a range of different SNRs. We also tested impact of the

roposed noise learning schemes (adaptive, temporal CV and spatial CV)

n the source reconstruction performance compared to estimating the

oise level from baseline data. 

.1. Pseudo-EEG signal generation 

orward modeling 

Populations of pyramidal neurons in the cortical gray matter are

nown to be the main drivers of the EEG signal ( Nunez et al., 2006 ).

ere, we use a realistic volume conductor model of the human head

o model the linear relationship between primary electrical source cur-

ents in these populations and the scalp surface potentials captured by

EG electrodes. The New York Head model ( Huang et al., 2016 ) pro-

ides a segmentation of an average human head into six different tissue

ypes. In this model, 2004 dipolar current sources were placed evenly

n the cortical surface and 58 sensors were placed on the scalp accord-

ng to the extended 10–20 system ( Oostenveld and Praamstra, 2001 ).

n accordance with the predominant orientation of pyramidal neuron

ssemblies, the orientation of all source currents was fixed to be per-

endicular to the cortical surface, so that only scalar source amplitudes

eeded to be estimated. Finite-element modeling was used to compute

he lead field matrix, 𝐋 ∈ ℝ 

58×2004 , which serves as the forward model

n our simulations. 

ource generation 

We simulated a sparse set of 𝑁 0 = 3 active sources, which were

laced at random positions on the cortex. The temporal activity of each

ource was generated by a univariate linear autoregressive (AR) process,

hich models the activity at time 𝑡 as a linear combination of the 𝑃 past

alues: 

 𝑖 ( 𝑡 ) = 

𝑃 ∑
𝑝 =1 

𝑎 𝑖 ( 𝑝 ) 𝑥 𝑖 ( 𝑡 − 𝑝 ) + 𝜉𝑖 ( 𝑡 ) , for 𝑖 = 1 , 2 , 3 . 

ere, 𝑎 𝑖 ( 𝑝 ) for 𝑖 = 1 , 2 , and 3 are linear AR coefficients, and 𝑃 is the or-

er of the AR model. The model residuals 𝜉𝑖 ( ⋅) for 𝑖 = 1 , 2 and 3 are also

eferred to as the innovation process; their variance determines the sta-

ility of the overall AR process. We here assume uncorrelated standard

ormal distributed innovations, which are independent for all sources.

n the following, we use stable AR systems of order 𝑃 = 5 . 

oise model 

To simulate the electrical neural activity of the underlying brain

ources, 𝑇 = 20 data points were sampled from the AR process described
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bove. Corresponding dipolar current sources were then placed at ran-

om locations, yielding sparse source activation vectors 𝐱( 𝑡 ) . Source acti-

ations 𝐗 = [ 𝐱(1) , … , 𝐱( 𝑇 )] were mapped to the 58 EEG sensors through

pplication of the lead field matrix 𝐋 : 

 

signal = 𝐋𝐗 (33)

ext, we added Gaussian white noise to the sensor-space signal. To this

nd, noise was randomly sampled from a standard normal distribution

nd normalized with respect to its Frobenius norm. A weighted sum of

ignal and noise contributions then yielded the pseudo-EEG signal 

 = 𝐘 

signal + 𝛼
𝐘 

noise ‖‖𝐘 

noise ‖‖𝐹 , (34)

here 𝛼 determines the signal-to-noise ratio in sensor space. For a

iven 𝛼, the noise variance is obtained as 𝜎2 = 1∕ 𝑀 tr [ 𝚺𝐞 ] , for 𝚺𝐞 =
ov [ 𝛼 𝐘 noise ‖𝐘 noise ‖𝐹 ] , and the SNR (in dB) is calculated as SNR =

0 log 10 
(‖‖‖𝐘 

signal ‖‖‖𝐹 ∕ 𝛼). Since our goal is to investigate the effect of

oise variance estimation on the performance of the proposed algo-

ithms, we fixed the noise variance in each set of simulations so

s to obtain distributions of performance metrics for a number of

imilar effective SNR values. We conducted four sets of simulations

sing 𝛼 = {2 , 1 . 5 , 1 , 0 . 5} , corresponding to average noise variances of
2 = {37 . 4 × 10 −3 , 21 . 0 × 10 −3 , 9 . 4 × 10 −3 , 2 . 3 × 10 −3 } and average SNRs

f SNR = {0 . 33 , 2 . 17 , 4 . 87 , 11 . 40} ( dB ) . Each set of simulations consists

f 100 experiments, in which source locations and time series as well as

oise realizations were randomly sampled. 

In addition to the pseudo-EEG signal, a pseudo baseline measure-

ent containing only noise but no signal was generated. The sole pur-

ose of this measurement was to provide an empirical estimate of the

oise variance as a baseline for our joint source reconstruction and

oise estimation approaches, which estimate the same quantity from

he summed pseudo-EEG signal. To ensure sufficiently precise baseline

stimation, 300 noise samples were generated, normalized, and scaled

y 𝛼 as in Eq. (34) for each experiment. 

.2. Source reconstruction 

We applied Champagne and LowSNR-BSI to the synthetic datasets

escribed above. The variances of all voxels were initialized randomly

y sampling from a standard normal distribution. The optimization pro-

rams were terminated either after reaching convergence (defined by

 relative change of the Frobenius-norm of the reconstructed sources

etween subsequent iterations of less than 10 −8 ), or after reaching a

aximum of 𝑘 max = 3000 iterations. 

In each experiment, we evaluated the algorithms using 40 predefined

hoices of the noise variance ranging from 𝜆 = 1∕3 𝜎2 to 𝜆 = 30 𝜎2 . In ad-

ition, 𝜆 was estimated from data using the techniques introduced in

ection 5 . We observed that the variance estimated from baseline data,

̂ 2 (averaged over all EEG channels) was typically almost identical to the

round-truth value 𝜆 = 𝜎2 used to simulate the data. The reconstruction

erformance obtained using this value was therefore included in the

omparison as a baseline. Performance at baseline noise level was com-

ared to the performance obtained using adaptive learning of the noise

sing Eq. (30) as well as using spatial or temporal cross-validation. Note

hat, for temporal CV, we generated 𝑇 = 80 samples, so that we obtained

0 samples in each training set and 20 samples in each test fold. Due to

he increased number of training samples, this method, therefore, has

n advantage over the remaining ones. For spatial CV, due to the spatial

lur introduced by volume conduction, there is a limit on how focal the

easured sensor-space electrical potentials or magnetic fields can be,

nd the signal will usually be distributed over all sensors. Therefore, a

etting in which all ‘signal-carrying’ electrodes will end up either in the

raining or test set is unlikely to occur in practice. Using, for example,

 = 4 random splits, it is ensured that the training set will typically cap-

ure the signal pattern well. The test set in this approach is only used to
9 
valuate the out-of-sample likelihood on the remaining sensors, while

o model fitting needs to take place. Therefore, missing certain aspects

f the signal pattern in the test set does not pose a critical problem,

specially if multiple splits are conducted. 

emark 6. The fact that real M/EEG data have time structure is ac-

nowledged in our simulation setting by modeling source time courses

s AR processes. The resulting samples of the training and test sets

hereby become dependent. Technically, this violates the i.i.d. assump-

ion underlying the theory of CV. However, one can argue that training

nd test sets are de-facto independent since the leakage from one set

o another is small compared to the length of the data. In the spatial

V approach, in contrast, the sensors of the training and test sets are

trongly dependent on another, because of the spatial blur introduced

y volume conduction. Nevertheless, as we observe in Sections 6.4 and

 , spatial CV works very well both in simulations and real data analysis.

his observation suggests that the cross-validation approach can work

ven if the i.i.d. assumption is violated, in line with previous literature

 Habermehl et al., 2014; Hastie et al., 2009; Haufe et al., 2011; Kohavi

t al., 1995 ). 

In addition to Champagne and LowSNR-BSI, two non-SBL source

econstruction schemes were included for comparison. As an exam-

le of a sparse Type-I method based on 𝓁 1 -norm minimization, S-FLEX

 Haufe et al., 2011 ) was used. As spatial basis functions, unit impulses

ere used, so that the resulting estimate was identical to the so-called

inimum-current estimate ( Matsuura and Okabe, 1995 ). In addition,

he eLORETA estimate ( Pascual-Marqui, 2007 ), a smooth inverse solu-

ion based on weighted 𝓁 2 2 -norm minimization was used. eLORETA was

sed with 5% regularization, whereas S-FLEX was fitted so that the resid-

al variance was consistent with the ground-truth noise level. Note that

he 5% rule is chosen as it gives the best performance across a subset of

egularization values ranging between 0.5% to 15%. 

.3. Evaluation metrics 

Source reconstruction performance was evaluated according to

he following metrics. First, the earth mover’s distance (EMD,

aufe et al. (2008) ; Rubner et al. (2000) ) was used to quantify the spa-

ial localization accuracy. The EMD metric measures the cost needed

o transform two probability distributions, defined on the same metric

omain, into each other. It was applied here to the 𝑁 × 1 amplitude dis-

ributions of the true and estimated sources, which were obtained by

aking the voxel-wise 𝓁 2 -norm along the time domain. EMD scores were

ormalized to be in [0 , 1] . Second, the error in the reconstruction of the

ource time courses was measured. To this end, Pearson correlation be-

ween all pairs of simulated and reconstructed (i.e., those with non-zero

ctivations) sources was measured. Each simulated source was matched

o a reconstructed source based on maximum absolute correlation. Time

ourse reconstruction error was then defined as one minus the average

f these absolute correlations across sources. Finally, the runtime of the

lgorithms was measured in seconds ( 𝑠 ). 

.4. Results 

Fig. 1 shows the EMD (upper row), the time course reconstruction

rror (middle row) and the negative log-likelihood loss value (lower

ow) incurred by Champagne and LowSNR-BSI for two SNR settings

 SNR = 0 . 33 dB and SNR = 11 . 40 dB ). Four different schemes of esti-

ating the noise level from data (estimation from baseline data, adap-

ive learning, spatial CV, and temporal CV) are compared. Note that

e found previously that the ground-truth noise variance 𝜆 = 𝜎2 used

n the simulation is generally accurately estimated from baseline data,

hich is referred to as ‘baseline’ in the figure, 𝜆 = 𝜎̂2 . Interestingly, how-

ver, this baseline is optimal only for LowSNR-BSI, and only with re-

pect to temporal source reconstruction. For Champagne, and with re-

pect to the spatial source reconstruction performance of LowSNR-BSI,
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Fig. 1. Source reconstruction performance of Champagne and 

LowSNR-BSI in two different SNR regimes (low SNR: 0.33 dB, 

left column; high SNR: 11.4 dB, right column). Spatial recon- 

struction error is measured in terms of the earth-mover’s dis- 

tance, and is shown in the upper row, while time course re- 

construction error is shown in the middle row. The lower row 

demonstrates the negative log-likelihood loss, SBL loss func- 

tion Eq. (12) , incurred by Champagne and LowSNR-BSI algo- 

rithms. 
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he choice of the baseline noise variance turns out to be suboptimal,

s it is outperformed by all three proposed schemes that estimate the

oise variance from the actual (task) data to be reconstructed (‘Adaptive

earning’, ‘Spatial CV’ and ‘Temporal CV’). Interestingly, noise levels

stimated using Spatial CV lead to near-optimal reconstruction perfor-

ance in a broad variety of settings, in line with observations made in

abermehl et al. (2014) ; Haufe et al. (2011) . All proposed noise learn-

ng schemes converge to points in the vicinity of the minimum of the

BL loss function Eq (12) . 

The EMD in our setting only depends on the spatial distribution of

he sources. Therefore, the EMD is not able to fully capture potential

dvantages resulting from modeling temporal characteristics of the cor-

elated EEG/MEG time courses. As a result, it is not highly aligned with

he values of the loss. This explains the observed discrepancies between

he loss function and the EMD values of Champagne and LowSNR-BSI in

ig. 1 . To assess the reconstruction of the temporal characteristics of the

rain sources, we also measure the time course error. All four variants

f LowSNR-BSI algorithms not only outperform their Champagne coun-

erparts but also approach the minimal achievable time course error.

igh EMD performance of Champagne with Spatial CV does not lead to

igh performance in terms of time course error as well as regarding the

egative log-likelihood loss. For all algorithms, regularization values re-

ulting in a smaller EMD metric can be found. However, this observation
10 
oes not imply a practical benefit of any algorithm as the ground-truth

s unknown in real-world situations. 

Fig. 2 further compares the source reconstruction performance of the

our noise estimation variants separately for Champagne and LowSNR-

SI for a range of four SNR values. As already observed in Fig. 1 , all three

roposed approaches for noise variance estimation (adaptive learning,

patial CV, and temporal CV) lead to better source reconstruction per-

ormance than the estimation from baseline data. Overall, spatial CV for

hampagne and temporal CV for LowSNR-BSI achieve the best combi-

ation of spatial and temporal reconstruction performance. 

The superior performance of CV techniques, however, comes at the

xpense of higher computational complexity of the source reconstruc-

ion. As Fig. 2 demonstrates, using CV techniques with the specified

umbers of folds increases the runtime of Champagne and LowSNR-BSI

y approximately two orders of magnitude ( 10 3 𝑠 ∼ 10 4 𝑠 ) compared to

he runtimes of eLORETA, S-FLEX, and the baseline and adaptive learn-

ng variants of Champagne and LowSNR-BSI ( 1 𝑠 ∼ 10 𝑠 ). 
Fig. 3 provides an alternative depiction of the data presented

n Fig. 2 , which allows for a more direct comparison of Cham-

agne and LowSNR-BSI. As benchmark algorithms, eLORETA ( Pascual-

arqui, 2007 ) and S-FLEX ( Haufe et al., 2011 ) are also included in the

omparison. It can be seen that LowSNR-BSI in the baseline mode, us-

ng adaptive noise learning, and using temporal CV consistently outper-
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Fig. 2. Source reconstruction performance of four different variants of LowSNR-BSI (upper row) and Champagne (lower row). The noise variance was es- 

timated from baseline data (ground truth), using adaptive learning, or using spatial or temporal cross-validation. Performance was evaluated for four SNRs 

( SNR = {0 . 33 , 2 . 17 , 4 . 87 , 11 . 40} dB ) and with respect to three different metrics (spatial reconstruction according to the earth-mover’s distance – left column, time 

course reconstruction error – middle column, and computational complexity according to the runtime (in seconds) – right column). 

Fig. 3. Source reconstruction performance of Champagne (dashed line) and LowSNR-BSI (solid line) for four SNR values ( SNR = {0 . 33 , 2 . 17 , 4 . 87 , 11 . 40} dB ). The 

noise variance was estimated from baseline data as well as using adaptive learning, spatial and temporal CV. Spatial reconstruction error was measured in terms of 

the earth-mover’s distance and is shown in the upper row, while time course reconstruction error is shown in the lower row. 
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orms Champagne in terms of spatial localization accuracy, in particular

n low-SNR settings. This behavior indeed confirms the advantage of the

urrogate function,  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) , which is designed to provide a better

pproximation of the non-convex SBL cost function in low-SNR regimes,

s presented in Section 4 . Consequently, as the SNR decreases, the gap

etween LowSNR-BSI and Champagne further increases. In terms of the
11 
ime course reconstruction error, LowSNR-BSI shows a similar improve-

ent over Champagne when the SNR is low. However, the magnitude

f this improvement is not as pronounced as observed for the EMD

etric. The only setting in which Champagne consistently outperforms

owSNR-BSI is when spatial CV is used to estimate the noise variance,

nd spatial reconstruction performance is evaluated. 
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Fig. 4. Convergence behavior of LowSNR-BSI as well as Champagne using the 

standard (convex-bounding based) updates (Champagne) as well as EM and 

MacKay updates. For standard Champagne and LowSNR-BSI, the use of a fixed 

noise variance estimated from baseline data is compared with adaptive noise 

learning. LowSNR-BSI variants have faster convergence rate at early stages of 

the optimization procedure, but later converge to less optimal log-likelihood 

values. Adaptive learning variants of Champagne and LowSNR-BSI reach bet- 

ter log-likelihood values than their counterparts using a fixed noise variance 

estimated from baseline data. 
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Note that the LowSNR-BSI surrogate function in the baseline mode

an provide a tight upper-bound for the original non-convex function

nly when SNR is equal to zero. For non-zero SNR, the current theory

nfortunately does not apply; however, it is clear from our empirical re-

ults that the LowSNR-BSI surrogate function remains advantageous also

n non-zero low-SNR regimes. As Fig. 3 demonstrates, we observe per-

ormance improvements of LowSNR-BSI over Champagne in the base-

ine mode for SNRs up to around 8 dB. After this point, the surrogate

unctions of LowSNR-BSI and Champagne both appear to be able to ap-

roximate the non-convex loss with a similar degree of precision; thus,

heir performance with respect to the evaluation metrics overlap as can

e seen in the right column of Fig. 1 . 

It can further be observed that S-FLEX yields higher spatial local-

zation accuracy (lower EMD) than eLORETA, while eLORETA yields

igher temporal accuracy (lower time course error) than S-FLEX across

ll SNR values. With respect to spatial accuracy, both approaches, how-

ver, are consistently outperformed by Champagne and LowSNR-BSI.

ote that the superior spatial reconstruction of sparsity-inducing algo-

ithms (Champagne, LowSNR-BSI and S-FLEX) compared to eLORETA

s expected here, because the simulated spatial distributions are in-

eed sparse. The superiority of SBL methods (Champagne, LowSNR-

SI) over S-FLEX that is observed here confirms observations and the-

retical considerations made in Cai et al. (2021) ; Owen et al. (2012) ;

ipf et al. (2010) . eLORETA shows comparable temporal reconstruc-

ion performance as LowSNR-BSI and Champagne, while S-FLEX is out-

erformed by all other methods. 

The convergence behavior of the different SBL variants discussed and

ntroduced in Sections 3 –5 is illustrated in Fig. 4 . LowSNR-BSI variants

ave faster convergence rates at the early stage of the optimization pro-

edure compared to standard Champagne as well as Champagne with

acKay updates. They, however, reach lower negative log-likelihood

alues eventually, which indicates that they find better maxima of the

odel evidence. Furthermore, the adaptive-learning variants of Cham-

agne and LowSNR-BSI reach lower negative log-likelihood values than

heir counterparts estimating the noise variance from baseline data,

uggesting that learning the noise variance, or in other words overes-
12 
imating the noise variance, improves the reconstruction performance

hrough better model evidence maximization. 

Note that the plots in Fig. 4 demonstrate the convergence behaviour

f MM algorithms for only one single experiment. We conducted another

xperiment (see Appendix I ), in which the simulation was carried out

00 times using different instances of source distributions and initializa-

ions. The final negative log-likelihood loss – attained after convergence

and runtimes of all methods were calculated. The median and inter-

uartile ranges over 100 randomized experiments of these performance

etrics are reported in Fig. 8 , which confirms the observations made

ere. 

. Analysis of auditory evoked fields (AEF) 

The MEG data used here were acquired in the Biomagnetic Imaging

aboratory at the University of California San Francisco (UCSF) with

 CTF Omega 2000 whole-head MEG system from VSM MedTech (Co-

uitlam, BC, Canada) with 1200 Hz sampling rate. The neural responses

f one subject to an Auditory Evoked Fields (AEF) stimulus were local-

zed. The AEF response was elicited with single 600 ms duration tones

1 kHz) presented binaurally. The data were averaged across 120 tri-

ls (after the trials were time-aligned to the stimulus). The pre-stimulus

indow was selected to be −100 ms to 5 ms and the post-stimulus time

indow was selected to be 5 ms to 250 ms, where 0 ms is the onset of

he tone. Further details on this dataset can be found in Cai et al. (2021) ;

alal et al. (2011) ; Owen et al. (2012) . The lead field for each subject

as calculated with NUTMEG ( http://bil.ucsf.edu ) using a single-sphere

ead model (two spherical orientation lead fields) and an 8 mm voxel

rid. 

The results presented in Section 6 have been obtained for the scalar

etting, where the orientation of the brain sources are assumed to be per-

endicular to the surface of cortex and, hence, only the scalar deflection

f each source along the fixed orientation needs to be estimated. In real

ata, surface normals are hard to estimate or even undefined in case of

olumetric reconstructions. Consequently, we model each source here as

 full 3-dimensional current vector. This is achieved by introducing three

ariance parameters for each source within the source covariance ma-

rix, 𝚪3 D = diag ( 𝜸3 D ) = [ 𝛾𝑥 1 , 𝛾
𝑦 

1 , 𝛾
𝑧 
1 , … , 𝛾𝑥 

𝑁 

, 𝛾
𝑦 

𝑁 

, 𝛾𝑧 
𝑁 

] ⊤. As all algorithms con-

idered here model the source covariance matrix 𝚪 to be diagonal, this

xtension can be readily implemented. Correspondingly, a full 3D lead-

eld matrix, 𝐋 

3 D ∈ ℝ 

𝑀×3 𝑁 , is used. 

Fig. 5 shows the reconstructed sources of the AEF of one subject us-

ng conventional Champagne with pre-estimated 𝜆 = 𝜎̂2 , adaptive noise

earning, and spatial CV. LowSNR-BSI with pre-estimated 𝜆 = 𝜎̂2 was

lso included in the comparison. Shown in the top panel are the recon-

tructions at the time of the maximal deflection of the auditory N100

omponent (shown in bottom panel). 

All reconstructions are able to correctly localize bilateral auditory

ctivity to Heschel’s gyrus, which is the location of the primary audi-

ory cortex. Note that an additional source in the midbrain, which is

ndicated by all three Champagne variants, is absent for LowSNR-BSI. 

We tested the reconstruction performance of all methods for random

ubsets of 10, 20, 40, 60, and 100 trials. As Fig. 6 shows, the proposed

oise learning variants of Champagne as well as LowSNR-BSI can cor-

ectly localize bilateral auditory activity to Heschl’s gyrus even when

sing as few as 10 trials. Focusing on the low-SNR regime, Fig. 7 shows

even reconstructions for random selections of 10 trials. LowSNR-BSI as

ell as all proposed noise learning variants of Champagne consistently

how sources at the expected locations in the left and auditory cortices,

here both cortices are jointly identified in the majority of experiments.

. Discussion 

We have provided a unifying theoretical platform for deriving differ-

nt sparse Bayesian learning algorithms for electromagnetic brain imag-

ng using the Majorization-Minimization (MM) framework. First, we

http://bil.ucsf.edu
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Fig. 5. Analysis of auditory evoked fields (AEF) of one subject using conventional Champagne with pre-estimated 𝜆 = 𝜎̂2 , adaptive noise learning, and spatial CV as 

well as LowSNR-BSI. Shown in the top panel are the reconstructions at the time of the maximal deflection of the auditory N100 component (shown in bottom panel). 

All reconstructions show sources at the expected locations in the left and right auditory cortex. 

Fig. 6. Analysis of auditory evoked fields (AEF) of one sub- 

ject using conventional Champagne with pre-estimated 𝜆 = 𝜎̂2 , 

adaptive noise learning, and spatial CV as well as LowSNR-BSI, 

tested with the number of trials limited to 10, 20, 40, 60, and 

100. All proposed noise learning reconstructions show sources 

at the expected locations in the left and right auditory cortices. 
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emonstrated that the choice of upper bounds of the Type-II non-convex

oss function within the MM framework influences the reconstruction

erformance and convergence rates of the resulting algorithms. Second,

ocusing on commonly occurring low-SNR settings, we derived a novel

ype-II Bayesian algorithm, LowSNR-BSI, using a novel convex bound-

ng MM function that converges to the original loss function as the SNR

oes to zero. We demonstrated the advantage of LowSNR-BSI over ex-

sting benchmark algorithms including Champagne, eLORETA and S-

LEX. Consistent with the theoretical considerations, the advantage of

owSNR-BSI over Champagne decreases with increasing SNR. Third, we

ave derived an analytic solution that allows us to estimate the noise

ariance jointly within the source estimation procedure on the same

task-related) data that are used for the reconstruction. We have also

dopted cross-validation schemes to empirically estimate the noise vari-

nce from hold-out data through a line search. We have proposed spatial

nd temporal CV schemes, where either subsets of EEG/MEG channels

(  

13 
r recorded samples are left out of the source reconstruction, and where

he noise variance is selected as the minimizer of a divergence between

odel and hold-out data. We also demonstrate that precise knowledge

f the noise variance is required in order to determine the optimal algo-

ithm performance. Finally, according to our empirical results, all three

roposed techniques for estimating the noise variance lead to superior

ource reconstruction performance compared to the setting in which the

oise variance is estimated from baseline data. 

.1. Cross-validation vs. adaptive noise learning 

Spatial CV for Champagne and Temporal CV for LowSNR-BSI

chieved the best performances and are generally applicable to any dis-

ributed inverse solution. Their long computation time can, however,

e challenging as their computational complexity is drastically higher

around two orders of magnitude) than using baseline data or adap-
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Fig. 7. Analysis of auditory evoked fields (AEF) of one subject using conventional Champagne with pre-estimated 𝜆 = 𝜎̂2 , adaptive noise learning, and spatial CV as 

well as LowSNR-BSI, tested with the number of trials limited to 10. Each column shows an experiment with a random selection of 10 trials. LowSNR-BSI as well as 

all proposed noise learning variants of Champagne always show sources at the expected locations in the left or right auditory cortex. In the majority of experiments, 

both cortices are jointly identified. 
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r  
ive learning schemes. The high complexity of CV techniques is a poten-

ial limitation in settings where the efficiency of the algorithm or im-

ediate access to the outcome is crucial. What is more, this approach

uickly becomes infeasible if more than one parameter needs to be esti-

ated through a grid search. In contrast, the computational complexity

f the proposed noise level estimation scheme using adaptive learning

s of the same order as the complexity of the baseline approach. More-

ver, we have successfully extended this approach to the estimation of

eteroscedastic noise, where a distinct variance is estimated for each

/EEG sensor ( Cai et al., 2021 ). Hence, the adaptive-learning approach

an be seen as an advancement of the baseline algorithm that combines

erformance improvement and computational efficiency. It is also worth

oting that the computational complexity of CV techniques heavily re-

ies on tunable parameters such as the number of folds/splits of the data

nd the total number of candidate points in the grid search. 

.2. Interpretation of Type-I and Type-II loss functions as divergences 

We have pointed out (see Section 5.2 and Appendix A ) that Type-I

nd Type-II Bayesian approaches implicitly use different metrics to com-

are the empirical sensor-space observations to the signal proportion ex-

lained by the reconstructed brain sources. Type-I approaches measure

rst-order differences between modeled and reconstructed time series

sing variants of the MSE, while Type-II approaches amount to using

he log-det Bregman divergence to measure differences in the second-

rder statistics of the empirically observed and modeled data as sum-

arized in the respective covariance matrices. While the connection be-

ween the Type-II loss function and the log-det Bregman divergence has

een investigated and exploited in numerous forms such as Stein’s loss

 James and Stein, 1992 ) or the graphical Lasso ( Friedman et al., 2008;

azumder and Hastie, 2012; Ravikumar et al., 2011 ), and has found

pplications in disciplines such as information theory and metric learn-

ng ( Davis et al., 2007; Zadeh et al., 2016 ), wireless communication

 Khalilsarai et al., 2020 ), and signal processing ( Khanna and Murthy,

017a; 2017b; Wiesel et al., 2015 ), it has not received much attention in

he BSI literature to the best of authors’ knowledge. Here, we have used
14 
his insight to devise a novel cross-validation scheme, temporal CV, in

hich model fit is measured in terms of the log-det Bregman divergence

or, Type-II likelihood) on held-out samples. In contrast, the previously

ntroduced spatial CV uses the mean-squared error to measure out-of-

ample model fit. Importantly, however, this difference does not imply

hat the application of spatial CV is restricted to Type-I approaches or

hat the use of temporal CV is restricted to Type-II approaches. Rather,

oth approaches are universally applicable. In fact, it is straightforward

o evaluate the Type-I likelihood based on the source times series re-

onstructed with Type-II methods. Conversely, it is also possible to esti-

ate the Type-II likelihood for Type-I approaches such as S-FLEX. Here,

he model source and noise covariances are first estimated from the re-

onstructed sources as 𝚪̂ = Cov [ 𝒙 ( 𝑡 )] and 𝜎̂2 = 1∕ 𝑀 

∑
𝑚 [ 𝐂 𝐲 − 𝐋 ̂𝚪𝐋 

⊤] [ 𝑚,𝑚 ] ,
fter which 𝚺𝒚 can be calculated. The optimal Type-I regularization pa-

ameter is then selected as the minimizer of  

II ( 𝐘 

train _ temp , 𝐘 

test _ temp ) in
q. (31) . 

.3. Limitations and future work 

One limiting assumption of the current work is that the activity of the

ources is modeled to be independent across voxels, spatial orientations,

nd time samples. Analogously, the noise is assumed to be independent

cross times samples, and homoscedastic (independent with equal vari-

nce across sensors). These assumptions merely act as prior information

hose purpose is to bias the inverse reconstruction towards solutions

ith lower complexity. Thus, they do not prevent the reconstruction of

rain and noise sources with more complex structure if the observed

ata are inconsistent with these priors. On the other hand, modeling

ependency structures that are in fact present in real data has the po-

ential to substantially improve the source reconstruction. We have re-

ently proposed adaptive noise learning algorithms that relax the rather

nrealistic assumption of homoscedastic noise ( Cai et al., 2021 ). Going

urther, it would be possible to also model spatial covariances of the

ources between voxels and/or between source orientation within vox-

ls, which would encode the realistic assumption that individual brain

egions do not work in isolation. Similary, the spatial covariance struc-
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2  
ure of the noise could be modeled in order to accommodate spatially

istributed artifacts due to, for example, heart beat or line noise interfer-

nce. Finally, electrophysiological data are known to possess a complex

ntrinsic autocorrelation structure, which is not modeled by the majority

f existing BSI algorithms. We have recently proposed ways to also learn

emporal correlations within the Type-II framework and have obtained

romising results with respect to time course reconstruction ( Hashemi

nd Haufe, 2018; Hashemi et al., 2021 ). 

. Conclusion 

We have provided a unifying theoretical platform for deriving differ-

nt sparse Bayesian learning algorithms for electromagnetic brain imag-

ng using the Majorization-Minimization (MM) framework. This unifi-

ation perspective not only provides a useful theoretical framework for

omparing different algorithms in terms of their convergence behavior,

ut also provides a principled recipe for constructing novel algorithms

ith specific properties by designing appropriate bounds of the Bayesian

arginal likelihood function. Building on MM principles, we then pro-

osed a novel method called LowSNR-BSI that achieves favorable source

econstruction performance in low signal-to-noise-ratio settings. Recog-

izing the importance of noise estimation for algorithm performance, we

resent both analytical and cross-validation approaches for noise esti-

ation. Empirically, we show that the monotonous convergence behav-

or predicted from MM theory is confirmed in numerical experiments.

sing simulations, we further demonstrate the advantage of LowSNR-

SI over conventional Champagne in low-SNR regimes, and the advan-

age of learned noise levels over estimates derived from baseline data.

o demonstrate the usefulness of our novel approach, we show neuro-

hysiologically plausible source reconstructions on averaged auditory

voked potential data. 

Our characterization of the Type-II likelihood as a divergence mea-

ure provides a novel perspective on the construction of BSI algorithms

nd might open new avenues of research in this field. It is conceivable

hat alternative divergence metrics can be used for solving the M/EEG

ource reconstruction problem in the future by modeling specific neu-

ophysiologically valid aspects of similarity between data and model

utput. Promising metrics in that respect are information divergences

uch as Kullback-Leibler (KL) ( Wei et al., 2020 ), Rényi ( Khanna and

urthy, 2017b ), Itakura-Saito (IS) ( Févotte et al., 2009 ) and 𝛽 diver-

ences ( Cichocki and Amari, 2010; Eguchi and Kato, 2010; Févotte and

dier, 2011; Samek et al., 2013 ) as well as transportation metrics such as

he Wasserstein distance between empirical and statistical covariances

e.g., ( Gramfort et al., 2015; Janati et al., 2020; Peyré et al., 2019; Vil-

ani, 2008 )). 

Although this paper focuses on electromagnetic brain source imag-

ng, Type-II methods have also been successfully developed in other

elds such as direction of arrival (DoA) and channel estimation in

ireless communications ( Gerstoft et al., 2016; Haghighatshoar and

aire, 2017; Khalilsarai et al., 2020; Prasad et al., 2015 ), Internet of

hings (IoT) ( Fengler et al., 2019a; 2019b ), robust portfolio optimiza-

ion in finance ( Feng et al., 2016 ), covariance matching and estima-

ion ( Benfenati et al., 2020; Greenewald and Hero, 2015; Meriaux et al.,

020; Ollila et al., 2020; Ottersten et al., 1998; Tsiligkaridis et al., 2013;

erner et al., 2008; Zoubir et al., 2018 ), graph learning ( Kumar et al.,

020 ), and brain functional imaging ( Wei et al., 2020 ). The methods

ntroduced in this work may also prove useful in these domains. 
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ppendix A. Bregman Divergence Formulation of the Type-II Loss 

unction 

We start by recalling the definition of log-det Bregman matrix diver-

ence - also known as Stein’s loss ( James and Stein, 1992 ) - between

ny two 𝑀 ×𝑀 positive semidefinite (PSD) matrices 𝐐 and 𝐖 : 

 log-det ( 𝐐 , 𝐖 ) = tr ( 𝐐𝐖 

−1 ) − log |||𝐐𝐖 

−1 ||| − 𝑀 , (35) 

here the “log-det ” Bregman matrix divergence in (35) is an special

ase of Bregman matrix divergence ( Bregman, 1967 ), where − log |⋅| is se-

ected as a strictly convex function. By substituting 𝐂 𝐲 and 𝚺𝐲 in (35) in-

tead of 𝐐 and 𝐖 , the log-det Bregman matrix divergence can be writ-

en as follows ( Davis et al., 2007; Friedman et al., 2008; Jalali et al.,

017; Khalilsarai et al., 2020; Khanna and Murthy, 2017a; Mazumder

http://bnci-horizon-2020.eu/database/data-sets
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a  
nd Hastie, 2012; Ravikumar et al., 2011; Tsiligkaridis and Hero, 2013;

adeh et al., 2016 ): 

 log-det ( 𝐂 𝐲 , 𝚺𝐲 ) = tr ( 𝐂 𝐲 𝚺−1 
𝐲 ) − log |||𝐂 𝐲 𝚺−1 

𝐲 
||| − 𝑀 

= tr ( 𝐂 𝐲 𝚺−1 
𝐲 ) + log |||𝚺𝐲 

||| − log |||𝐂 𝐲 
||| − 𝑀 

= log |||𝚺𝐲 
||| + tr ( 𝐂 𝐲 𝚺−1 

𝐲 ) + − log |||𝐂 𝐲 
||| − 𝑀 

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
const 

, (36) 

here (36) is the same as (13) up to a constant. Note that log |||𝐂 𝐲 
||| does

ot depend on 𝜸 and is, therefore, treated as a constant value here. 

ppendix B. Proof of Corollary 1 

roof. To verify the descending trend in the MM framework, it is suf-

cient to show that 𝑓 ( 𝐮 𝑘 +1 ) ≤ 𝑓 ( 𝐮 𝑘 ) . To this end, we have 𝑓 ( 𝐮 𝑘 +1 ) ≤
( 𝐮 𝑘 +1 |𝐮 𝑘 ) from condition [A2]. Condition [A3] further states that

( 𝐮 𝑘 +1 |𝐮 𝑘 ) ≤ 𝑔( 𝐮 𝑘 |𝐮 𝑘 ) , while 𝑔( 𝐮 𝑘 |𝐮 𝑘 ) = 𝑓 ( 𝐮 𝑘 ) holds according to [A1].

utting everything together, we have: 

( 𝐮 𝑘 +1 ) 
[A2] ≤ 𝑔( 𝐮 𝑘 +1 |𝐮 𝑘 ) [A3] ≤ 𝑔( 𝐮 𝑘 |𝐮 𝑘 ) [A1] 

= 𝑓 ( 𝐮 𝑘 ) , 

hich concludes the proof. □

ppendix C. Proof of Proposition 1 

roof. We first show that the objective function of the M-step is de-

ived by upper-bounding the negative log-likelihood, − log 𝑝 ( 𝐘 |𝜸) , using

ensen’s inequality (J) : 

 log 𝑝 ( 𝐘 |𝜸) = − log E 𝑝 ( 𝐗 |𝜸) 𝑝 ( 𝐘 |𝐗 , 𝜸) = − log E 𝑝 ( 𝐗 |𝜸) 
( 

𝑝 
(
𝐗 |𝐘 , 𝜸𝑘 

)
𝑝 ( 𝐘 |𝐗 , 𝜸) 

𝑝 
(
𝐗 |𝐘 , 𝜸𝑘 

) )
(I) 
= − log E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 

( 

𝑝 ( 𝐘 |𝐗 , 𝜸) 
𝑝 
(
𝐗 |𝐘 , 𝜸𝑘 

)𝑝 ( 𝐗 |𝜸) ) 

(J) ≤ − E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) log 
( 

𝑝 ( 𝐘 |𝐗 , 𝜸) 
𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 

𝑝 ( 𝐗 |𝜸) ) 

( II ) 
= − E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) log 𝑝 ( 𝐘 , 𝐗 |𝜸) + E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) log 𝑝 (𝐗 |𝐘 , 𝜸𝑘 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

const 

∶=  

𝑘 
EM 

( 𝜸|𝜸𝑘 ) . (37) 

The resulting bound is a majorizing function for − log 𝑝 ( 𝐘 |𝜸) , so that

ondition [A2] holds. Note that the term E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 𝑝 (𝐗 |𝐘 , 𝜸𝑘 
)

does not

epend on 𝜸 and, therefore, does not influence the optimization. Ac-

ording to the definition of Jensen’s inequality, the equality constraint

condition [A1] – holds if and only if the argument of the convex func-

ion is a constant. Therefore, to establish the equivalence of both sides

f (J) when 𝛾 = 𝛾𝑘 , it is sufficient to show that the argument of the log

unction, 
𝑝 ( 𝐘 |𝐗 , 𝜸) 
𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 𝑝 ( 𝐗 |𝜸) , is constant when 𝛾 = 𝛾𝑘 . This can be verified

y invoking Bayes rule: 

𝑝 ( 𝐘 |𝐗 , 𝜸𝑘 ) 
𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 

𝑝 ( 𝐗 |𝜸𝑘 ) = 𝑝 ( 𝐘 |𝜸𝑘 ) . 
ince 𝑝 ( 𝐘 |𝜸𝑘 ) is a constant, equality condition [A1] holds. 

After inserting the analytic form of − log 𝑝 ( 𝐘 , 𝐗 |𝜸) in Eq. (24) : 

− log 𝑝 ( 𝐘 ,𝐗 |𝜸) = 𝑇 
2 
log |𝚪| + 1 

2 

𝑇 ∑
𝑡 =1 

𝐱̄ ( 𝑡 ) ⊤𝚪−1 𝐱̄ ( 𝑡 ) + 𝑇 
2 
log |||2 𝜎2 𝐈 ||| + 

𝑇 ∑
𝑡 =1 

1 
𝜎2 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 ( 𝑡 ) ||2 2 , 
e are ready to prove that  

𝑘 
EM 

( 𝜸|𝜸𝑘 ) fulfills condition [A3]. We have: 

 

𝑘 
EM 

( 𝜸|𝜸𝑘 ) ∝ log |𝚪| + E 𝑝 ( 𝐗 |𝐘 , 𝜸𝑘 ) 
[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐱̄ 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱̄ 𝑘 ( 𝑡 ) 
] 

+ const , (38) 

here const comprises all terms of Eq. (25) that are not a function of

. To prove that  

𝑘 
EM 

( 𝜸|𝜸𝑘 ) satisfies condition [A3], we need to show
16 
hat  

𝑘 
EM 

( 𝜸|𝜸𝑘 ) reaches to its global minimum in each MM iteration.

his can be easily guaranteed if Eq. (38) is convex. While the sec-

nd term in (38) is convex, the first term, log |𝚪|, is in fact concave,

hich hampers conclusions concerning the convexity of their sum. How-

ver, we can use the concept of geodesic convexity or g-convexity from

on-Euclidean and geometric optimization, which enables us to prove

hat any local minimum of Eq. (38) is actually a global minimum. For

he sake of brevity, we will omit a detailed theoretical introduction

f g-convexity, and only borrow the following required propositions,

ropositions 5 and 6 , from the literature (an interested reader can re-

er to (Wiesel et al., 2015, Chapter 1) for a gentle introduction to this

opic, and to (Papadopoulos, 2005, Chapter 2) ( Ben-Tal, 1977; Bonnabel

nd Sepulchre, 2009; Liberti, 2004; Moakher, 2005; Pallaschke and

olewicz, 2013; Rapcsak, 1991; Vishnoi, 2018 ) for more in-depth tech-

ical details). Now, we state the following preliminary results: □

roposition 5. The function log |𝚪| is g-convex in 𝚪, where 𝚪 belongs to

he manifold of positive definite (PD) matrices. 

roof. A detailed proof can be found in (Wiesel et al., 2015,

emma. 1.13) . The main idea is to leverage the geodesic 𝐐 𝑞 =
𝐃 

𝑞 𝐕 

⊤, 𝑞 ∈ [0 , 1] between two matrices, 𝐐 0 = 𝐕𝐕 

⊤ and 𝐐 1 = 𝐕𝐃𝐕 

⊤, in

rder to transfer the problem into the following form: 

 

(
𝐐 𝑞 

)
= log |𝐕𝐃 

𝑞 𝐕 

⊤| = 2 log |𝐕 | + 𝑞 log |𝐃 | , 
here 𝑓 

(
𝐐 𝑞 

)
is a linear function and, therefore, convex in 𝑞. □

emark 7. The log-determinant function is concave in classical Eu-

lidean analysis. However, Proposition 5 demonstrates that it is g-

onvex with respect to the PD manifold. 

roposition 6. Any local minimum of a g-convex function over a g-convex

et is a global minimum. 

roof. A detailed proof is presented in (Rapcsak, 1991, Theorem 2.1) . 

Given that g-convexity is an extension of classical convexity to non-

uclidean geometry, it is straightforward to show that all convex func-

ions are also g-convex, where the geodesics between pairs of matrices

re simply line segments. Therefore, given Proposition 5 , we can con-

lude that Eq. (38) is g-convex; hence, any local minimum of  

𝑘 
EM 

( 𝜸|𝜸𝑘 )
s a global minimum according to Proposition 6 . This proves that con-

ition [A3] is fulfilled and completes the proof of Proposition 1 . □

ppendix D. Proof of Proposition 2 

roof. We start by recalling  

II − 𝑥 ( 𝐗 , 𝜸) in Eq. (14) : 

 

II − 𝑥 ( 𝐗 , 𝜸) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥 𝑛 ( 𝑡 ) 2 

𝛾𝑛 
+ log |𝚺𝐲 | . 

ased on (Sun et al., 2017, Example 2) , [A2] can be directly inferred

rom the concavity of the log-determinant function and its first-order

aylor expansion around the value from the previous iteration, 𝚺𝑘 
𝐲 ,

hich leads to the following inequality: 

og |||𝚺𝐲 
||| ≤ log |||𝚺𝑘 

𝐲 
||| + tr 

[ (
𝚺𝑘 
𝐲 

)−1 (
𝚺𝐲 − 𝚺𝑘 

𝐲 

)] 
(39) 

= log |||𝚺𝑘 
𝐲 
||| + tr 

[ (
𝚺𝑘 
𝐲 

)−1 
𝚺𝐲 

] 
− tr 

[ (
𝚺𝑘 
𝐲 

)−1 
𝚺𝑘 
𝐲 

] 
. 

Note that the first and last term in (39) do not depend on 𝜸; hence,

hey can be ignored in the optimization procedure. Conditions [A1]

nd [A4] are automatically satisfied by construction because the ma-

orizing function is obtained through a Taylor expansion around 𝚺𝑘 
𝐲 .

oncretely, [A1] is satisfied because the equality in Eq. (39) holds

or 𝚺𝐲 = 𝚺𝑘 
𝐲 . Similarly, [A4] is satisfied because the gradient of log |||𝚺𝐲 

|||
t point 𝚺𝑘 

𝐲 , 
(
𝚺𝑘 
𝐲 

)−1 
, defines the linear Taylor approximation log |||𝚺𝑘 

𝐲 
||| +
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ditions [A1]–[A4] hold, which concludes the proof. □
r 
[ (

𝚺𝑘 
𝐲 

)−1 (
𝚺𝐲 − 𝚺𝑘 

𝐲 

)] 
. Thus, both gradients coincide in 𝚺𝑘 

𝐲 by construc-

ion. Now, we show that [A3] can be satisfied easily using standard op-

imization algorithms by proving that  

𝑘 
conv ( 𝜸|𝜸𝑘 ) is a convex function

ith respect to 𝜸. To this end, we rewrite Eq. (26) : 

 

𝑘 
conv ( 𝜸|𝜸𝑘 ) = 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑥̄ 𝑘 𝑛 ( 𝑡 ) 
2 

𝛾𝑛 

] 

+ log |||𝚺𝑘 
𝐲 
||| + tr 

[ (
𝚺𝑘 
𝐲 

)−1 
𝚺𝐲 

] 
− tr 

[ (
𝚺𝑘 
𝐲 

)−1 
𝚺

s follows: 

 

𝑘 
conv ( 𝜸|𝜸𝑘 ) = diag [ 𝐔 ] 𝜸−1 + diag [ 𝐕 ] 𝜸 + const , (40) 

here 𝐔 ∶= 

1 
𝑇 

∑𝑇 
𝑡 =1 

[
𝐱̄ 𝑘 ( 𝑡 ) ⊤𝐱̄ 𝑘 ( 𝑡 ) 

]
and 𝐕 ∶= 𝐋 

⊤
(
𝚺𝑘 
𝐲 

)−1 
𝐋 are defined as pa-

ameters that do not depend on 𝜸. The term const also collects con-

tant terms in (39) , i.e. const ∶= log |||𝚺𝑘 
𝐲 
||| + 𝜎2 tr 

[
( 𝚺𝑘 

𝐲 ) 
−1 
]
− 𝑀 . Besides,

−1 = [ 𝛾−1 1 , … , 𝛾−1 
𝑁 

] ⊤ is defined as the element-wise inversion of 𝜸. The

onvexity of  

𝑘 
conv ( 𝜸|𝜸𝑘 ) can be directly inferred from the convex-

ty of diag [ 𝐔 ] 𝜸−1 and diag [ 𝐕 ] 𝜸 with respect to 𝜸 (Boyd and Vanden-

erghe, 2004, Chapter. 3) . The convexity of  

𝑘 
conv ( 𝜸|𝜸𝑘 ) , which en-

ures that condition [A3] can be satisfied using standard optimization,

long with fulfillment of conditions [A1], [A2] and [A4], ensure that

heorem 1 holds. 

In order to establish the equivalence of the MM algorithm using the

ajorization function Eq. (26) and the convex-bounding based Cham-

agne variant presented in Section 2.3.2 , we here decompose 𝚺𝐲 into

ank-one matrices as introduced in ( Sun et al., 2016 ). The first term of

q. (26) can be reformulated as follows: 

r 
[ (

𝚺𝑘 
𝐲 

)−1 
𝚺𝐲 

] 
= tr 

[ (
𝚺𝑘 
𝐲 

)−1 (
𝜎2 𝐈 + 𝐋 𝚪𝐋 

⊤
)] 

= tr 
[ (

𝚺𝑘 
𝐲 

)−1 
𝐋̃ ̃𝚪𝐋̃ 

⊤

] 
= diag 

[ 
𝐋̃ 

⊤
(
𝚺𝑘 
𝐲 

)−1 
𝐋̃ 

] ⊤
𝜸̃ , (41) 

here 𝚪̃ = diag ( 𝛾1 , … , 𝛾𝑁 

, 𝜎2 , … , 𝜎2 ) , and 𝐋̃ = [ 𝐋 , 𝐈 ] . Since we are opti-

izing Eq. (26) with respect to 𝛾𝑛 , for 𝑛 = 1 , … , 𝑁 , the elements of ̃𝚪 and
̃
 related to the sensor noise 𝜎2 vanish. Thus, by inserting Eq. (41) into

q. (26) , taking the derivative with respect to 𝛾𝑛 , for 𝑛 = 1 , … , 𝑁 , and

etting it to zero, 

𝜕 

𝜕𝛾𝑛 

( 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝐱̄ 𝑘 𝑛 ( 𝑡 ) 

)2 
𝜸−1 𝑛 + 

[ 
𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

] 
𝜸𝑛 

) 

= − 

1 
( 𝛾𝑛 ) 2 

( 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝐱̄ 𝑘 𝑛 ( 𝑡 ) 

)2 ) 

+ 

[ 
𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

] 
= 0 for 𝑛 = 1 , … , 𝑁 , 

here 𝐋 𝑛 denotes the 𝑛 -th column of the lead field matrix, we obtain an

pdate rule in terms of the original variables 𝚪 and 𝐋 : 

𝑘 +1 
𝑛 ∶= 

√ √ √ √ √ √ 

1 
𝑇 

∑𝑇 
𝑡 =1 ( ̄𝐱 𝑘 𝑛 ( 𝑡 )) 2 

𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

, (42) 

hich is identical to the update rule of the convex-bounding based ap-

roach discussed in Section 2.3.2 , Eqs. (17) –(19) . □

ppendix E. Proof of Proposition 3 

roof. The proof that conditions [A1]–[A4] are satisfied is directly anal-

gous to that of Proposition 2 ; therefore, it is omitted here. The equiv-

lence of the Champagne variant based on MacKay updates (Wipf and

agarajan, 2009, Section III.A-2) presented in Section 2.3.3 and the so-

ution derived within the MM framework can be derived by transform-

ng the update rule Eq. (42) into a fixed-point iteration of the form
𝑘 +1 = 𝑓 ( 𝜸𝑘 ) , which is an alternative way of minimizing the same sur-

ogate function ( Eq. (26) ). By squaring the left and right hand sides of
17 
q. (42) , one can divide both sides by 𝛾𝑘 +1 𝑛 and re-interpret the term on

he right hand side as the estimate from the previous ( 𝑘 -th) iteration: 

𝑘 +1 
𝑛 ∶= 

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

(
𝐱̄ 𝑘 𝑛 ( 𝑡 ) 

)2 ] ( 

𝛾𝑘 𝑛 𝐋 

⊤
𝑛 

(
𝚺𝑘 
𝐲 

)−1 
𝐋 𝑛 

) −1 
(43) 

or 𝑛 = 1 , … , 𝑁 . This is indeed identical to the MacKay update in

q. (22) , which concludes the proof. □

ppendix F. Proof of Proposition 4 

roof. (following (Haghighatshoar and Caire, 2017, Appendix C-A) )

ithout loss of generality, we here consider the case 𝜎2 = 1 , which can

e obtained by normalizing the sensor and source covariance matrices

y 𝜎2 : 𝚪 ← 𝚪∕ 𝜎2 , 𝚺𝐲 ← 𝚺𝐲 ∕ 𝜎2 = 𝐈 + 𝐋 𝚪𝐋 

⊤. Also, due to the concavity of

he log ( ⋅) function and by using a Taylor expansion around point 𝑎 , we

ave: 

og ( 𝑥 ) = log 𝑎 + 

𝑥 

𝑎 
− 1 +  ( 𝑥 ) , ∀𝑎 > 0 . (44) 

Assuming that 𝐋 𝚪𝐋 

⊤ has an eigenvalue decomposition 𝐋 𝚪𝐋 

⊤ =
𝐏𝐔 

⊤ with 𝐏 = diag ( 𝑝 1 , … , 𝑝 𝑀 

) , the majorizing function  

Low-SNR 
conv ( 𝜸|𝜸𝑘 )

s well as Eq. (28) are derived as follows: 

og |𝚺𝐲 | = log |𝐈 + 𝐔𝐏𝐔 

⊤| (I) 
= 

𝑀 ∑
𝑖 =1 

log (1 + 𝑝 𝑖 ) 
( II ) 
= 

𝑀 ∑
𝑖 =1 

𝑝 𝑖 +  ( 𝑝 𝑖 ) 

= tr ( 𝐋 𝚪𝐋 

⊤) +  ( SNR ) , (45) 

here the 𝑝 𝑖 , for 𝑖 = 1 , … , 𝑀 denote the diagonal elements of 𝐏 , which

re equivalent to the eigenvalues of 𝐋 𝚪𝐋 

⊤. The term  ( 𝑝 𝑖 ) represents the

econd and higher-order residuals of the Taylor expansion. Note that

45) -(I) is obtained by expanding 𝐏 over its diagonal elements, while

45) -(II) is derived by exploiting the concavity of the log ( . ) function

nd its first-order Taylor expansion around 𝑎 = 1 based on Eq. (44) .

iven the eigenvalue decomposition of 𝐋 𝚪𝐋 

⊤ = 𝐔𝐏𝐔 

⊤ and the normal-

zation with respect to the noise variance, the sum over all eigenvalues

f 𝐋 𝚪𝐋 

⊤, i.e., 
∑𝑀 

𝑖 =1 𝑝 𝑖 , represents the ratio between the power of the

ignal and the power of the noise; hence, one can replace 
∑𝑀 

𝑖 =1  ( 𝑝 𝑖 ) 
n Eq. (45) with  ( SNR ) . To elaborate this more, note that given
2 = 1 , we have SNR ∝ 𝔼 { ||𝐋𝐱( 𝑡 ) ||2 } = tr ( 𝐋 𝚪𝐋 

⊤) , where 𝔼 { 𝐱 ( 𝑡 ) 𝐱 ( 𝑡 ) ⊤} =
= diag 

(
[ 𝛾1 , … , 𝛾𝑁 

] ⊤
)

due to the independence between voxels. There-

ore, SNR ∝ tr ( 𝐋 𝚪𝐋 

⊤) = 

∑𝑀 

𝑖 =1 𝑝 𝑖 , as the sum of the eigenvalues of a ma-

rix is equal to its trace. 

As we have shown that log |𝚺𝐲 | = tr ( 𝐋 𝚪𝐋 

⊤) +  ( SNR ) , condition [A2]

olds and  

II ( 𝜸) converges to  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) when SNR → 0 . 

Moreover, as Eq. (28) is constructed using a linear Taylor approx-

mation, [A1] and [A4] hold due to the same arguments made in the

roof of Proposition 2 . It remains to be shown that condition [A3] can

e easily fulfilled due to the convexity of  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) . To this end,

e exploit the following key relationship between the sensor and source

pace covariances: 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) = 

1 
𝑇 

𝑇 ∑
𝑡 =1 

[ 1 
𝜆
||𝐲 ( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 + ̄𝐱 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱̄ 𝑘 ( 𝑡 ) 

]
. (46) 

y replacing 1 
𝑇 

∑𝑇 
𝑡 =1 𝐲 ( 𝑡 ) 

⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) in Eq. (27) with its source space equiv-

lence in (46) , we have: 

 

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) = tr ( 𝐋 𝚪𝐋 

⊤) + 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐱̄ 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱̄ 𝑘 ( 𝑡 ) + const , (47) 

here const denotes the terms that do not depend on 𝜸. Reformulating

47) as 

 

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) = diag [ 𝐖 ] 𝜸 + diag [ 𝐐 ] 𝜸−1 + const , 

ith 𝐖 ∶= 𝐋 

⊤𝐋 , 𝐐 ∶= 

1 
𝑇 

∑𝑇 
𝑡 =1 

[
𝐱̄ 𝑘 ( 𝑡 ) ⊤𝐱̄ 𝑘 ( 𝑡 ) 

]
and 𝜸−1 = [ 𝛾−1 1 , … , 𝛾−1 

𝑁 

] ⊤

roves the convexity of  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) using the same arguments made

or proving convexity in Proposition 2 . Thus, we have shown that con-
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ppendix G. Detailed Derivation of the LowSNR-BSI Algorithm 

To find the optimal value of 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤, we take the derivative

f  

Low-SNR 
conv ( 𝜸|𝜸𝑘 ) in (27) with respect to each 𝛾𝑛 for 𝑛 = 1 , … , 𝑁 : 

𝜕 
𝜕𝛾𝑛 

 Low-SNR 
conv 

(
𝜸|𝜸𝑘 )= 𝜕 

𝜕𝛾𝑛 

[
tr 
(
𝐋 𝚪𝐋 ⊤

)
+ 1 

𝑇 

∑𝑇 
𝑡 =1 𝐲 ( 𝑡 ) 

⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) 

]
( I ) 
= 𝜕 

𝜕𝛾𝑛 

[∑𝑁 
𝑛 =1 𝛾𝑛 𝐋 

⊤
𝑛 𝐋 𝑛 

]
+ 𝜕 

𝜕𝛾𝑛 

[
1 
𝑇 

∑𝑇 
𝑡 =1 𝐲 ( 𝑡 ) 

⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) 

]
( II ) 
= 𝐋 ⊤𝑛 𝐋 𝑛 + 

𝜕 
𝜕𝛾𝑛 

∑𝑇 
𝑡 =1 

1 
𝑇 

[
1 
𝜎2 

‖𝐲 ( 𝑡 ) − 𝐋 𝐱 𝑘 ( 𝑡 ) ‖2 2 + 𝐱 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱 𝑘 ( 𝑡 ) ]
( III ) 
= 𝐋 ⊤𝑛 𝐋 𝑛 + 

[
1 
𝑇 

∑𝑇 
𝑡 =1 𝐱 

𝑘 ( 𝑡 ) ⊤
(

𝜕 
𝜕𝛾𝑛 

𝚪−1 
)
𝐱 𝑘 ( 𝑡 ) 

]
= 𝐋 ⊤𝑛 𝐋 𝑛 + 

( 
− 1 

𝛾2 𝑛 

) [ 
1 
𝑇 

∑𝑇 
𝑡 =1 

(
𝐱 𝑘 𝑛 ( 𝑡 ) 

)2 ] 
, 

(48) 

where Eq. (48) -I is derived based on a sum-of-rank-one matrices re-

ormulation of the term tr ( 𝐋 𝚪𝐋 

⊤) by exploiting the diagonal struc-

ure of 𝚪. Equality (48) -II is the direct implication of the duality be-

ween 𝜸-space and 𝐗 -space that has been pointed out in (14) . Finally,
1 
𝜎2 
||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 does not appear in (48) -III and is ignored since it does

ot depend on 𝜸. Setting the derivative in Eq. (48) to zero yields the

ollowing closed-form update for 𝜸 = [ 𝛾1 , … , 𝛾𝑁 

] ⊤: 

𝑘 +1 
𝑛 ∶= 

√ √ √ √ √ 

1 
𝑇 

∑𝑇 
𝑡 =1 

(
𝐱 𝑘 𝑛 ( 𝑡 ) 

)2 

𝐋 

⊤
𝑛 𝐋 𝑛 

for 𝑛 = 1 , ⋯ , 𝑁 , 

hich is identical to the update rule in Eq. (29) . This completes the

erivation of the LowSNR-BSI algorithm. 

ppendix H. Proof of Theorem 2 

roof. We start by taking the derivative of  

II ( 𝜆) with respect to 𝜆: 

𝜕 

𝜕𝜆
 

II ( 𝜆) = 

𝜕 

𝜕𝜆

(
log |𝚺𝐲 |) + 

𝜕 

𝜕𝜆

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) 

] 

. (49) 

e first calculate the first term, 𝜕 

𝜕𝜆

(
log |𝚺𝐲 |). Using the matrix inversion

quality 

og |𝚺𝐲 | = log |𝜆𝐈 + 𝐋 𝚪𝐋 

⊤| = log | 1 
𝜆
𝐋 

⊤𝐋 + 𝚪−1 | + log |𝚪| + log |𝜆𝐈 | , 
e have 

𝜕 

𝜕𝜆

(
log |𝚺𝐲 |) = 

𝜕 

𝜕𝜆

(
𝑀 log 𝜆 + log | 1 

𝜆
𝐋 

⊤𝐋 + 𝚪−1 |) = 

𝜕 

𝜕𝜆

(
𝑀 log 𝜆 + log |𝚺−1

𝐱 

here the term log |𝚪| is omitted since it is does not depend on 𝜆. Then,

he derivative of log |𝚺𝐲 | with respect to 𝜆 can be obtained as follows: 

𝜕 

𝜕𝜆

(
log |𝚺𝐲 |) = 

𝑀 

𝜆
− 

( 

1 
𝜆2 

) 

tr 
[
𝚺𝐱 𝐋 

⊤𝐋 

]
, (50)

here the second term in (50) is derived according to the equality 𝚺−1 
𝐱 =

 𝚪−1 + 

1 
𝜆
𝐋 

⊤𝐋 ) , which holds for the inverse of the posterior covariance in

q. (10) (Sekihara and Nagarajan, 2015, Chapter 4) : 

𝜕 

𝜕𝜆

(
log |𝚺−1 

𝐱 |) = tr 
[
𝚺𝐱 

𝜕 

𝜕𝜆
𝚺−1 
𝐱 

]
= tr 

[
𝚺𝐱 

𝜕 

𝜕𝜆

(
𝚪−1 + 

1 
𝜆
𝐋 

⊤𝐋 

)]
18 
= tr 
[
𝚺𝐱 

𝜕 

𝜕𝜆

( 1 
𝜆
𝐋 

⊤𝐋 

)]
= − 

( 

1 
𝜆2 

) 

tr 
[
𝚺𝐱 𝐋 

⊤𝐋 

]
. 

n the next step, we calculate the derivative of the second term in

q. (49) using the following key relation between the sensor and source

pace covariances presented in Appendix F . Given (46) , we have 

𝜕 

𝜕𝜆

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 )] 

] 

= 

( 

− 

1 
𝜆2 

) 

1 
𝑇 

𝑇 ∑
𝑡 =1 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 , (51) 

here the term 𝐱̄ 𝑘 ( 𝑡 ) ⊤𝚪−1 𝐱̄ 𝑘 ( 𝑡 ) is neglected since it does not depend on

. Let 𝚪𝑘 and 𝚺𝑘 
𝐱 be fixed values obtained in the ( 𝑘 ) -th iteration. Then,

y substituting Eqs. (50) and (51) into Eq. (49) , we have: 

𝜕 

𝜕𝜆
 

II ( 𝜆) = 

𝜕 

𝜕𝜆

(
log |𝚺𝐲 |) + 

𝜕 

𝜕𝜆

[ 

1 
𝑇 

𝑇 ∑
𝑡 =1 

𝐲 ( 𝑡 ) ⊤𝚺−1 
𝐲 𝐲 ( 𝑡 ) 

] 

= 

𝑀 

𝜆
− 

( 

1 
𝜆2 

) 

tr 
[
𝚺𝑘 
𝐱 𝐋 

⊤𝐋 

]
+ 

( 

− 

1 
𝜆2 

) 

1 
𝑇 

𝑇 ∑
𝑡 =1 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 . 
(52) 

y expressing tr 
[
𝚺𝑘 
𝐱 𝐋 

⊤𝐋 

]
in terms of the values at the ( 𝑘 ) -th iteration

ccording to the following matrix equality ( Zhang, Rao, 2011 ): 

r 
[
𝚺𝑘 
𝐱 𝐋 

⊤𝐋 

]
= tr [ 𝚺𝑘 

𝐱 𝜆
𝑘 
(
( 𝚺𝑘 

𝐱 ) 
−1 − ( 𝚪𝑘 ) −1 

)
] = tr [ 𝜆𝑘 𝐈 𝑁 

𝑘 ] − tr 
[
𝜆𝑘 ( 𝚺𝑘 

𝐱 )( 𝚪
𝑘 ) −1 

]
, 

Eq. (52) can be reformulated as follows: 

𝜕 

𝜕𝜆𝑘 
 II ( 𝜆𝑘 ) = 𝑀 

𝜆𝑘 
− 1 

( 𝜆𝑘 ) 2 
tr [ 𝜆𝑘 𝐈 

𝑁 𝑘 
] + 1 

( 𝜆𝑘 ) 2 
tr 
[
𝜆𝑘 ( 𝚺𝑘 𝐱 )( 𝚪

𝑘 ) −1 
]
− 1 

( 𝜆𝑘 ) 2 
1 
𝑇 

𝑇 ∑
𝑡 =1 

||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 . 
Note that 𝑁 

𝑘 denotes the number of non-zero voxels at the ( 𝑘 ) -th
teration. Now by setting the derivative to zero, the update rule for 𝜆 at

he ( 𝑘 + 1) -th iteration is obtained as 

𝑘 +1 ∶= 

1 
𝑇 

∑𝑇 
𝑡 =1 ||𝐲( 𝑡 ) − 𝐋 ̄𝐱 𝑘 ( 𝑡 ) ||2 2 

𝑀 − 𝑁 

𝑘 + tr 
[
( 𝚺𝑘 

𝐱 )( 𝚪
𝑘 ) −1 

] . 
This completes the proof. □

ppendix I. A Statistical Analysis of Computational Complexity 

nd Convergence Behaviour of MM Methods 

Here, we conducted an experiment, in which the simulation pre-

ented in Fig. 4 was carried out 100 times using different instances of

ource distributions and initializations. The final negative log-likelihood

oss – attained after convergence – and runtimes of all methods were

alculated. The median and inter-quartile ranges over 100 randomized

xperiments of these performance metrics are reported in Fig. 8 . 

As demonstrated in Fig. 4 , the EM algorithm indeed needs a larger

umber of iterations for convergence than its peer MM variants, which

ventually results in longer runtimes and higher computational com-

lexity if we measure runtime in units of seconds, demonstrated in

ig. 8 -(A). The overall computation complexity in each iteration of the

M, however, is comparable to the other MM variants. Even though an
Fig. 8. (A) Runtime and (B) Type-II nega- 

tive log marginal likelihood loss attained after 

convergence of different variants of LowSNR- 

BSI and Champagne, as well as using EM and 

MacKay updates. Shown are the median and 

inter-quartile ranges over 100 randomized ex- 

periments. 
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dditional operation for calculating the posterior matrix of the sources,

𝐱 , is involved in each iteration of the EM algorithm – which operates in

he high-dimensional source space, efficient implementation techniques

an drastically reduce the computational complexity of this operation,

.g., from  ( 𝑁 

2 ) to  ( 𝑁) , since only the main diagonal elements of

𝐱 are required in the update rule, i.e., 
[
𝚺𝑘 
𝐱 
]
𝑛,𝑛 

. Therefore, the over-

ll computational complexity of the EM algorithm at each iteration is

ominated by 1 
𝑇 

∑𝑇 
𝑡 =1 ( ̄𝐱 

𝑘 
𝑛 ( 𝑡 )) 

2 , which is a common term in all other MM-

ased approaches, e.g., convex bounding, MacKay, and LowSNR-BSI. In-

erested readers can refer to ( Zumer, Attias, Sekihara, Nagarajan, 2007 )

or a computational analysis of EM and other Type-II methods. Fig. 8 -(B)

lso depicts the median and inter-quartile ranges of the final negative

og-likelihood loss – attained after convergence – of different variants

f LowSNR-BSI and Champagne as well as Champagne using EM and

acKay updates. 
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