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Abstract
The research in this PhD thesis is focused on some problems of general interest
in both applied mathematics and engineering sciences. It contains new results,
which can be directly used for solving some important structural problems in
engineering sciences, but which are also of interest in pure mathematics. The
main body of this PhD thesis consists of six papers (Papers A – F).

In Paper A we present and discuss some recent developments concerning
operationalmodal analysis (OMA) techniques, and also give a concrete example
where the most popular OMA techniques have been implemented and applied
on a steel truss bridge located over the Åby river in Sweden.

In Paper B a basic mathematical model of vibrating structure is presented.
We also review and compare some signal processing techniques that are of
great importance for OMA and structural health monitoring (SHM) of civil
engineering structures. A new application of OMA on a high rise building
in Sweden, where some of the most popular OMA techniques are applied is
included in this paper.

In Paper C we prove and discuss some new Fourier inequalities in the
generalized Lorentz type spaces, and in the important case with unbounded
orthogonal systems. The derived results generalize, complement and unify
several results in the literature for this general case.

In Paper D we further compliment and develop the results in Paper C. In
this paper we also prove and discuss the corresponding Jackson-Nikol’skii type
inequalities, still in the important case with unbounded orthonormal systems.

In Paper E we discuss some signal processing problems in a Bayesian
framework and semi-group theory in the general case with non-separable
function spaces. In particular, this is done for the case of an abstract Cauchy
problem, with initial data in a non-separable Morrey space.

In Paper F we present a brief description of the Hålogaland suspension
bridge, along with some challenges which have already appeared. Moreover,
the problems and challenges which have appeared in a number of bridges of
this type in the past are also reported on and discussed. The aim of this Paper
is that it can serve as a basis for our planned future research concerning SHM
of this bridge.

These new results are put into a more general frame in an introduction,
where, in particular, some important information and challenges connected to
the Hålogaland bridge in Narvik are discussed in the light of this frame.
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Preface
This PhD thesis in Engineering Science is submitted in fulfillment of the require-
ments for the degree Doctor of Philosophy at UiT The Arctic University of Nor-
way. The research presented here is conducted under the supervision of Pro-
fessor Per Johan Nicklasson and co-supervision of Professor Lars-Erik Persson
and Professor Dag Lukkassen.

The thesis is composed of six Papers A – F, and a matching introduction.
In the introduction, the papers are discussed and put into a more general
frame. The introduction is also of independent interest, since it contains
a brief discussion on the important interplay between applied mathematics
and engineering applications, illustrated by comparing with some relevant
international research presented in this light.

A very brief presentation of the main content of the six papers can be
found in the abstract above, and a more complete description at the end of
the Introduction.
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Preface

Paper F: Harpal Singh. “The Hålogaland bridge - descriptions, challenges and
related research under arctic conditions”. Technical report, UiT The Arctic
University of Norway, 2021. 16 pages. Submitted for publication in conference.

In addition to the papers above, the following paper is related to this PhD thesis:

[*] D. Baramidze, L.E. Persson, H. Singh and G. Tephnadze. "Some new results
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Also this paper is focused on Fourier analysis, but of a completely different kind
than in Papers C and D. Hence, we have chosen not to include it in the thesis.
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Chapter 1

Introduction
Civil engineering infrastructure around the world is in need of rehabilitation
and repair. Ageing processes and damages resulting from wind, traffic and the
surrounding environment, cannot be avoided. This is causing many serious
problems, and new challenging research techniques are needed to solve them.

Governments and municipalities have to devote more time and budget for
maintenance and repairs of damaged structures. In some cases it is a need for
making new structures in place of deteriorated ones, to provide decent services.
For example, in Germany the value of the constructed infrastructures is about
20 trillion Euro. If the life of infrastructures is assumed to be 100 years, then the
replacement rate is approximately 200 billion Euro per year (see [225]).

A similar study was carried out by the American Society of Civil Engineers
(ASCE) regarding the infrastructure in the USA, and it was concluded that an
investment of over 2 trillion USD is needed over the next 10 years to reduce the
risks of ageing infrastructures (see [155]). It was also discovered that more than
27 percent of the national bridges in the USA are either structural deficient or
functionally obsolete, and the average age of the bridges in the USA is about
43 years (see [1]). The ASCE estimated that an investment of 930 billion USD is
needed to bring the bridge infrastructure up to code.

Analysis of such problems is important e.g. in Scandinavia, as the impact
of the extreme arctic conditions is quite intense. In 2017, the newspaper
"Verdens Gang" (VG) got access to a report published by the Norwegian Public
Roads Administration (Statens Vegvesen). According to this report, there
are approximately 16971 bridges in Norway, and Norwegian Public Roads
Administration has been violating inspection rules for many of them (see [247]).

It was revealed that for one in every two bridges, proper inspection of
bridges was lacking. Moreover, 1087 bridges have damages that are described
as critical to the load bearing capacity, or traffic safety by the bridge inspectors
(see [247]). The newspaper VG has created a map of all the bridges from
this report, and has marked the bridges as seriously injured, delaying action
and lacking inspection (see [248]). The Norwegian Public Roads Administration
confirmed this report.

The research in this PhD thesis is to a great extent inspired by the challenges
described above, and aim at showing how engineering mathematics can con-
tribute to tackling these serious problem. Here, in particular, we also have the
focus on some challenges connected to the fairly new Hålogaland suspension
bridge quite close to the UiT The Arctic University of Norway, Campus Narvik.
Such challenges are also common to many types of infrastructure.

Themain part of the thesis is focused on some problems of general interest
in engineering sciences. It contains a broad spectrum from contributions
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1. Introduction

which can be directly used for solving some important structural problems, to
contributions which are of interest also in pure mathematics.

Such a broad view of science, and in particular the interplay between
mathematics, applied mathematics and engineering sciences, are increasingly
important for several reasons, e.g. for the development of research in various
areas of engineering sciences. Correspondingly, nowadays there exists even
some international journals which invites papers on such a broad scale of
science. As an important example, let us heremention the Journal of “Nonlinear
Studies” with P.L. Lions (Fields medalist) and S. Sivasundaram as Editors-in
Chiefs (see [143], www.nonlinearstudies.com).

TheDecember 2019 issue of this journal was devoted to the 75th anniversary
of one ofmy supervisors, and in the preface the Editors P.L. Lions, N. Samko and
S. Sivasundaram wrote some motivation in this spirit, (see [144] and also [149]).
One of my articles, "Recent trends in operation modal analysis techniques and
its application on a steel truss bridge" (see [225]) has been published in this
issue of the journal.

Papers A and B form the basis of this PhD thesis. In Paper A we review
and discuss some important operational modal analysis (OMA) techniques
used for civil engineering constructions. As a concrete application, where
such techniques are used, we present an example, where a steel truss bridge
in Sweden is analysed in detail. Paper B complements Paper A in various
ways, where some signal processing techniques of importance for OMA and
structural health monitoring (SHM) are reviewed and discussed. As a concrete
application, where such techniques are used, we present the details concerning
a high rise building, namely the fire station in Luleå, Sweden.

The research discussed in Papers A and B is also related to some recent
research inmore theoretical Fourier analysis (see e.g. the PhD thesis of A. Seger
[216] and the paper [9]). Fourier analysis form the basis of signal processing
techniques that are used in vibration analysis of the structures. In this PhD
thesis, we further develop the investigations in [8] and [9]. A lot of theoretical
research has been done for Fourier coefficients in bounded systems, but
it has its limitations with respect to some applications. This motivated the
researchers to further explore and analyse inequalities for Fourier coefficients
in unbounded orthogonal systems.

In Paper C some new results concerning Fourier inequalities in unbounded
orthogonal systems are presented and discussed. In Paper D these results are
complemented, and also some new Jackson-Nikol’skii type inequalities in un-
bounded orthonormal systems are proved. It is important to work with un-
bounded orthogonal systems, since some of the most powerful such systems
used in practice have this property (e.g. wavelets system). Actual interest in
Papers C and D is equipped with some applications related to structural prob-
lems in complex civil engineering structures, that focus about the development
of signal processing techniques which can be used for detecting damages in
bridges and high rise buildings see e.g. [216].

Vibration based damage detection (VBDD) techniques contain a lot of uncer-
tainties that could lead to inaccurate damage detection of structures. Bayesian
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methods have proven to be themost rigorous probabilistic framework for iden-
tifying target variables, and evaluate corresponding uncertainties using the
available information (see [252]). Therefore, further investigations in this area
was done, when studying problems tackled in a Bayesian framework. Tech-
niques for non-separable function spaces were suggested. This made the back-
ground for Paper E, where some new contributions have been stated and
proved. In this paper we initiate the study of solving some signal processing
problems within the Bayesian framework and non-separable spaces. For appli-
cations such an approach is important in situations where classical approxima-
tions cannot be done.

Summing up, Papers A and B form a basis for this PhD thesis. Papers C, D
and E gives some other new contributions of importance for future research
in this area. All these contributions contain results of interest also in pure
mathematics. Papers A and B are intended to be able to be used for direct
applications. All Papers A, B, C, D and E are typical papers in what we call
“Engineering Mathematics”, which means that they contain results of interest
for concrete applications in engineering sciences, but also in puremathematics.

Onemain idea is that the research described in these papers can be of great
importance for the challenges related to the new Hålogaland bridge in Narvik.
Hence, in Paper F of this PhD thesis, we have reported investigations related
to the challenges in the suspensions bridges around the world. Moreover,
the challenges that already have appeared in Hålogaland bridge is described,
along with the measures taken to overcome them. We hope that this can be
the starting point for our planned future research where Statens Vegvesen
(the Norwegian Public Roads Administration) and COWI can be our main
collaboration partners. We have already initiated very promising preliminary
discussions with them.

1.1 A short description of the results in papers A - F

1.1.1 Paper A

In Paper A we review some OMA methods that are used to find modal pa-
rameters of complex civil engineering structures (e.g. bridges, dams, high-rise
buildings, etc.), that are difficult to excite with artificial excitation forces. Such
methods use ambient vibrations from wind and traffic as unknown inputs, and
output-only analysis is done to determine the resulting vibration modes.

There are mainly three approaches that are used to do an assessment
of the conditions of the structures which are well acknowledged: dynamic
analysis of the finite element model (FEM), finite element model updating and
OMA. Dynamic analysis of the FEM is used to calculate mode shapes and
mode frequencies of structures. In this approach bending and strains of the
structures are compared against bending and strains of FEM. FEM is the most
appropriate tool for modelling the structure, and is based of the following
second order differential equation:
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1. Introduction

M
d2u(t)
dt2

+ C2
du

dt
+Ku(t) = B2f(t), (1.1)

where M is the mass matrix, C2 is the damping matrix, K is the stiffness
matrix and B2 is the selection matrix (input matrix), f(t) is a vector with nodal
forces and u(t) is a vector with nodal displacements (see [199]). Mathematical
modelling to compute the modal parameters is explained in detail in Paper B.

High accuracy is needed in the FEM for implementing structural control and
SHM strategies. This accuracy depends on the type of FEM used to represent
the structural elements, as well as the properties assigned to these elements.
FEM has a lot of uncertainties in deciding the boundary conditions, geometry
or material properties that change when the material deteriorates. Thus, there
is a need to calibrate the FEM based on information from the real structure.

A numerical optimization technique, known as FEM updating, is used to
calibrate the key parameters in the FEM of the structure. This minimizes
the smallest possible difference between the measured vibrations and the
simulated vibrations. FEM updating techniques can be classified as: updating
using modal data, updating using frequency response functions, and updating
using gradient and gradient free methods.

Damages in a structure affects its dynamic properties. In order to do
damage detection by use of SHM, one of the most important parameters that
needs a good estimation is the modal damping, since it is more sensitive to
damages in comparison to mode frequencies (see [58]). OMA is a tool which
can do good estimation of modal parameters. OMA methods can be classified
as time domain methods, frequency domain methods and time-frequency
methods. Two of the most popular time domain methods, namely the auto
regressive moving average (ARMA), and stochastic subspace identification (SSI)
methods, are described in this paper.

Time domain methods deal with the free responses that are present over
the entire time span. However in the frequency domain, eachmode has a small
frequency band where the mode dominates. Hence in the frequency domain
we have an advantage of natural modal decomposition by just considering the
different frequency bands where the mode dominates (see [33]). This is the
major advantage of this approach. Some of the most popular frequency do-
main methods, basic frequency domain (BFD), frequency domain decomposi-
tion (FDD), poly-reference least square complex frequencymethod (p-LSCF) are
discussed in Section 4 of this paper.

An application of OMA on a steel truss bridge is also presented in Paper
B. This steel truss bridge is located over the Åby river, about 45 Km west of
Piteå in northern Sweden. The bridge was to be replaced by a new bridge in
2012. Vibration measurements were performed on the bridge while the old
bridge was still in use. In addition to ambient vibrations (i.e. excitation’s by the
wind and river), a train was running over the bridge before each measurement.
Modal analysis was performed on the data with the ARTemis software (see [90]).
The software was able to identify 9 modes. For more details of the experiment,
see Section 5 of this paper and the research report [93].
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A short description of the results in papers A - F

OMA techniques have been used for applications in many areas especially
where the structures are difficult to excite. Research groups around the
globe are working on projects in the area of OMA, that have applications for
historical structures, lighthouses, dam structures, stadium buildings, onshore
wind turbines and bridges. OMA has a much wider scope than the other
two methods (FEM and FEM updating), and research groups around the world
are exploring areas of civil engineering, mechanical engineering, aerospace
engineering and offshore engineering with these techniques under different
conditions.

The FDD and SSI methods have become the most popular techniques for
OMA in the past decade, but in order to do damage detection, these techniques
have some limitations. Therefore in Paper B we do a comprehensive study of
signal processing techniques that are important for SHM and OMA.

The results in Paper A are related to the following publications: [17], [18], [19],
[22], [23], [24], [29], [33], [34], [35], [36], [39], [40], [41], [43], [45], [46], [47], [50],
[57], [58], [63], [75], [76], [80], [85], [90], [93], [94], [134], [137], [140], [147], [153],
[155], [160], [163], [167], [172], [176], [178], [179], [180], [181], [182], [183], [196], [199],
[203], [206], [207], [208], [245], [251], [253], [256], [266], [271] and [273].

1.1.2 Paper B
Ageing of civil engineering infrastructures such as dams, bridges, tunnels and
buildings, causesmany problems with great consequences, both from practical
and economical points of view. The main aim of this paper, together with [225],
is to describe the state of the art of known methods, and how to tackle this
important problem using mathematical methods. A brief description of the
methods, as well as comparison between themethods is provided in this Paper.
Moreover, in this articlewe also include a newapplication ofOMA, on a high-rise
building in Luleå, Sweden, where some of the most popular OMA techniques
have been applied.

As a continuation of Paper A, we present mathematical modelling of vibrat-
ing structures and explain how the eigen frequencies and modal damping fac-
tors can be computed. In general, civil engineering structures such as bridges,
dams, high rise buildings, are made from materials such as concrete, glass,
steel, etc. that do not have ideal linear behaviour and exhibit non-linear stress-
strain characteristics (see [116]). Moreover, due to ageing and degradation, such
structures deviate from their ideal expected behaviour. In order to study such a
non-linear behaviour, more advanced signal processing techniques are needed
to do vibration analysis. A detailed mathematical framework of signal process-
ing techniques used in the study of OMA and SHM can be found in [24], [32],
[33], [47], [75], [196] and [253].

During the last decade, research in the area of OMA and its applications
in SHM have seen a tremendous growth. The development of automated
OMAwith high accuracy in the estimation of modal parameters from structural
response, opened up new prospects for structural damage detection. More
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recent developments in the field of OMA make modal based SHM a fairly
mature technology (see [197]). Signal processing methods like Fourier based
transforms such as the short-time Fourier transform (STFT), the fast Fourier
transform (FFT), the wavelet transforms, quadratic time frequency methods,
multiple signal classification (also called the Music algorithm), the S-transform
and the Hilbert-Huang transforms (HHT) are described and discussed in this
paper. Some details concerning these methods can be found in [100] and [131].

Furthermore, some concrete results of OMA of a high-rise building are
presented and illustrated in this paper. The building under investigation was
Luleå fire tower, located in northern Sweden. The structure of this fire station is
special due to symmetry reasons, as it can have multiple modes with the same,
or almost the same frequency. The tower has three concrete walls covered
with bricks, and a front wall consisting of glass windows with steel beams, see
Figure 1. Here and below all references of figures and tables are described in
Paper B. The sensor placement and floor design is also illustrated anddescribed
in Figure 1. Table 1 of this paper shows the sensor location, and the letters
corresponds to the locations as described in the measurement plan.

The modal analysis software ARTeMIS was used to find different modes
of the structure from the recorded data. Figure 2 shows the mode shapes
that were found with the FDD method, and Table 2 represents the frequencies
at which the mode shapes were found. Moreover, Figure 3 shows the mode
shapes found with the EFDD method, and Table 3 represents the frequencies
at which themode shapeswere found, alongwith standing frequency, damping
ratio as well as standing damping ratio.

In this Paper B we also briefly present some recently developed signal
processing methods and algorithms which have a potential for OMA and SHM,
and should be analysed in more detail. In particular, Section 5 of Paper
B focus in this direction, and new methods like the fast S-transform, the
synchrosqueezed wavelet transform, the emperical wavelet transform, the
adaptive optimal kernel time-frequency analysis and the enhanced fast Fourier
transform are described.

Summing up, I believe that Papers A and B can be very useful as a basis
when investigating the problems related to signal processing techniques for
detecting damages in engineering structures.

The results in Paper B are related to the following publications: [1], [5], [13],
[14], [15], [16], [24], [25], [27], [28], [31], [32], [33], [35], [37], [38], [43], [46], [47],
[49], [51], [52], [53], [54], [55], [60], [61], [62], [64], [68], [69], [75], [77], [79], [82],
[83], [84], [87], [89], [91], [93], [99], [100], [101], [104], [106], [107], [108], [109], [110],
[112], [116], [117], [118], [122], [123], [124], [131], [135], [138], [141], [142], [145], [146],
[150], [151], [157], [158], [159], [160], [165], [172], [176], [180], [192], [193], [195], [196],
[197], [199], [205], [216], [217], [221], [223], [225], [227], [236], [237], [238], [239],
[243], [244], [249], [250], [253], [256], [257], [258], [259], [260], [261], [265], [267],
[269], [272], [274], [275], [276], [277], [278].
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A short description of the results in papers A - F

1.1.3 Papers C and D
In Papers C and D we prove some new Fourier inequalities for unbounded
systems. To shortly describe the background of such research, the following
result derived by Lars-Erik Persson in his PhD thesis from 1974 (see [186] and
also [184]) is our starting point.

Theorem A. Let 0 < p < ∞ and Φ = {e2πikt}+∞
k=−∞ be the trigonometrical

system.
a) If there exists a positive number δ > 0 so thatψ(t)t−δ is an increasing function
of t and ψ(t)t−( 1

2−δ) is a decreasing function of t, then( ∞∑
k=1

(
a∗kψ(k)

)p 1
k

) 1
p

6 C‖f‖Lψ,p .

b) If there exists a positive number δ > 0 such that ψ(t)t− 1
2−δ is an increasing

function of t and ψ(t)t−1+δ is a decreasing function of t, then

‖f‖Lψ,p 6 C

( ∞∑
k=1

(
a∗kψ(k)

)p 1
k

) 1
p

,

where {a∗k}∞k=0 is the non-increasing rearrangement of the sequence
{|ak|}∞k=−∞ of Fourier coefficients of f with respect to the system Φ.

Here, as usual, the generalized Lorentz space Lψ,p consists of the functions
f on [0, 1] such that ‖f‖Lψ,p <∞, where

‖f‖Lψ,p :=


( 1∫

0
(f∗(t)ψ(t))p dtt

) 1
p

, for 0 < p <∞,

sup
06t61

f∗(t)ψ(t), for p =∞,
(1.2)

where f∗ denotes the non-increasing rearrangement of the function |f | (see
e.g. [220]).

Remark 1.1.1. Theorem A may be regarded as a unification and generalization of
several classical results e.g. those by Marcinkiewicz, Zygmund, Hausdorff, Young,
Paley, Riesz, Pitt and Stein. A very good description of this prehistory of Theorem A
is given in the PhD thesis of Kopezhanova from 2017 (see [129]).

Theorem A was generalized to the case with a general bounded orthogonal
system (this means that |an| 6 C < ∞,∀n) in [129] and [130]. However,
it is not known whether or not Theorem A can by generalized to the case
with unbounded orthogonal systems. However, some results are known
also for this case but in more restrictive cases e.g. for Lebesgue spaces,
see for example various contributions by Marcinkiewicz and Zygmund [152],
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Kolyada [127], Kirillov [125], Flett [78], Maslov [154], Stein [233], Bochkarev [30],
Nursultanov [169] and Tleukhanova and Mussabaeva [242].

For several applications e.g. some considered in this PhD thesis, it is
important to generalize such results to the case with unbounded orthogonal
systems. For example many systems related to wavelet theory are of this type.
Here we only give the following example:

Example 1.1.2. (a) {χn}–orthonormal system of Haar functions (see e.g. [129]).
The functions χn(t) are defined as follows: χ1(t) := 1 for t ∈ [0, 1] and for
n = 2m + k, k = 1, . . . ,m andm = 0, 1, . . . put

χn(t) =


√

2m, t ∈ ( 2k−2
2m+1 ,

2k−1
2m+1 ),

−
√

2m, t ∈ ( 2k−1
2m+1 ,

2k
2m+1 ),

0, t∈̄
[
r
mk
, r+1
mk

]
.

The value of χn(t) in a discontinuity point t is defined as

χn(t) = 1
2 lim
ε→0

[χn(t+ ε) + χn(t− ε)].

For more such important examples of unbounded orthogonal systems see
Remark 4.11 in [10]
By an unbounded orthogonal system {ϕn} in L2[0, 1] we mean that (see [5])

‖ϕn‖s ≤Mn, n ∈ N, (1.3)

Moreover, let

µn = µ(s)
n := sup{‖

n∑
k=1

ckϕk‖s :
n∑
k=1
|ck|2 = 1}, ρn :=

( ∞∑
k=n
|ak|2

) 1
2
, (1.4)

for some s ∈ (2,+∞). HereMn ↑ andMn ≥ 1 (see e.g. [152],).
The two main theorems from paper C generalize and unify some other

recent results, e.g. by Akishev, Lukassen and Persson (see [8]), in this general
context. The main results in this paper read as follows:

Theorem 1.1.3. Let {ϕn}∞n=1 be an orthogonal system, which satisfies the condition
(1.3), s ∈ (2,+∞] , 0 < θ ≤ 2, and the function ψ satisfy the conditions 1 < αψ =
βψ = 21/2, ψ(t)

t1/2 ∈ SV L and

sup
x∈(0,1]

t1/2

ψ(t) <∞.

If {an} ∈ l2 and

Λψ,θ (a) =
∞∑
n=1

(
ψ((1 + µn)−1)√

(1 + µn)−1

)θ
(log(1 + µn))( 1

θ−
1
2 )θ (

ρθn − ρθn+1
)
< +∞,
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A short description of the results in papers A - F

where µn and ρn are defined by (1.4), then the series
∞∑
n=1

anϕn (x) converges in the

space Lψ,θ to some function f ∈ Lψ,θ and ‖f‖Lψ,θ 6 C(Λψ,θ)1/θ.

Theorem 1.1.4. Let {ϕn}∞n=1 be an orthogonal system, which satisfies the condition
(1.2), s ∈ (2,+∞] , 2 < θ < +∞ and α < 0 and the function ψ satisfy the conditions
1 < αψ = βψ = 21/2, t

1/2

ψ(t) ∈ SV L and

sup
x∈(0,1]

ψ(t)
t1/2 <∞.

If the function f ∈ Lψ,θ, then Aψ,θ(f) 6 C ‖f‖ψ,θ , where

Aψ,θ(f) :=
∞∑
n=1


√(

1 + µνn+1−1

)−1

ψ((1 + µνn+1−1)−1)


θ (

log
(
1 + µνn+1−1

))1− θ2

(
νn+1−1∑
k=νn

a2
k(f)

) θ
2


1
θ

,

µj are defined by (1.4) and ak(f), k ∈ N, as usual denote the Fourier coefficients
with respect to the system {ϕn}∞n=1.

Here, as usual, we denote by SV L the set of all non-negative functions on
[0, 1] of ψ(t) for which (log 2/t)εψ(t) ↑ +∞ and (log 2/t)−εψ(t) ↓ 0 for t ↓ 0 (see
[224] and [240] ). Moreover, for the function ψ we define the "indices"

αψ := limt→0
ψ(2t)
ψ(t) , βψ := limt→0

ψ(2t)
ψ(t) .

It is known that 1 ≤ αψ 6 βψ 6 2 (see e.g. [218]).
In paper D we do some further generalizations and unifications (also of the

related Jakson-Nikolśkii type inequalities) of several classical and new results
(eg. by J. Marcinkiewiez, A. Zygmund, S.V. Bochkarev, V.I. Ovchinnikov, V.A.
Raspopova, V.A. Rodin, L.R.Ya Doktoroski, N. Fleukhanova, G. Mussabaeva and
others) in this general context. The main theorems in this paper reads:

Theorem 1.1.5. Let ψ be a function satisfying the conditions 1 < αψ = βψ = 21/2,
t1/2

ψ(t) ∈ SV L,

sup
t∈(0,1]

ψ(t)
t1/2 <∞,

and assume that the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfies
the condition (1). Then, for any function f ∈ Lψ,q , 2 < q 6 ∞, the following
inequality holds:

[∑
k∈A

|f̂(k)|2
] 1

2 6 C‖f‖ψ,q
[
ln(1 +

∑
j∈A

M2
j )
] 1

2−
1
q

√
(1 +

∑
j∈AM

2
j )−1

ψ((1 +
∑
j∈AM

2
j )−1) ,

9



1. Introduction

where A is a nonempty set in N and C is positive constant which depends only on q
and r.

Theorem 1.1.6. Let the function ψ satisfy the conditions 1 < αψ = βψ = 21/2,
ψ(t)
t1/2 ∈ SV L,

sup
t∈(0,1]

t1/2

ψ(t) <∞, (6)

let the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfy the condition (1)
and fn(x) =

∑n
k=1 ckϕk(x).

1) If 1 < q < 2, then

‖fn‖ψ,q 6 C


√(

1 +
∑n
j=1 M

2
j

)−1

ψ((1 +
∑n
j=1 M

2
j )−1)


−1 (

log
(

1 +
n∑
k=1

M2
k

)) 1
q−

1
2 ‖fn‖2

for some constant C depending only on q.
2) If 1 < p < 2 < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q

(
log(1 +

n∑
k=1

M2
k )
) 1
p−

1
q

for some constant C depending only on p and q.
3) If 2 < p < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q

(
log(1 +

n∑
k=1

M2
k )
) 1
p−

1
q

for some constant C depending only on p and q.

The results in Paper C are related to the following publications: [8], [9], [30],
[71], [78], [96], [125], [127], [129], [130], [132], [136], [152], [154], [164], [169], [174],
[184], [185], [186], [187], [216], [218], [220], [224], [225], [233], [240], [242].

The results in Paper D are related to the following publications: [2], [3], [4],
[5], [6], [7], [8], [9], [12], [21], [30], [65], [66], [67], [88], [113], [114], [119], [130], [152],
[161], [162], [166], [168], [170], [171], [174], [184], [201], [218], [219], [220], [235], [241],
[242].

1.1.4 Paper E
In this paper we discuss the study of some signal processing problems within
the Bayesian frameworks and semigroups theory, in the case where the func-
tion space under consideration may be non-separable. For applications, the
suggested approach is of special interest in situations where approximation in
the norm of the space is not possible.

10



A short description of the results in papers A - F

This paper was inspired by the survey paper [97] on the Bayesian approach
to signal processing problems, in which the signal is a solution of a stochastic
partial differential equation (SPDE). The goal of the approach discussed in the
mentioned survey, was to find the signal as a solution to the SPDE, taking
into account the noisy observations. The Bayesian interface is a probabilistic
method of interference, that allows to form probabilistic estimates of certain
parameters from a given series of observations.

This approach helps to avoid dealing with the algorithms to which the use
of known methods based on application of the standard Markov chain Monte
Carlo (MCMC) method after a discretization leads. One of the disadvantages
of such algorithms, is that they perform poorly under refinement of the
discretization (see [97] and the references given therein).

The use of a proper mathematical formulation of the problems on domain
space while working with probability measures on function spaces, leads to
efficient sampling techniques, defined on the path-space as the domain space,
and therefore is robust under the introduction of discretization. A wide variety
of signal processing problems is overviewed in [97]. These problems lead to a
posterior probability measure on a separable Banach space.

The theory of parabolic equations has deep connections with functional
analysis, especially with the theory of evolution equations with unbounded op-
erators in Banach spaces, and the theory of semigroups. The theory of stochas-
tic processes, especially the theory of Markov processes and stochastic differ-
ential equations, very closely interacts with the theory of parabolic equations
(see [103]).

In this paper, we suggest an approach for the study of properties of
solutions to such equations in the case of non-separable function spaces.
Moreover, in the case of problems formulated as filtering problems in addition
to smoothing problems, an approach based on study in the framework of
weighted nonstandard function spaces could also be useful.

To prove our main results (Theorems 3.1 and 3.3), we use the following well
known theorem (see [188] , Theorem 3.1):

Theorem B Let E be a Banach space. Consider a closed linear operator A
with the domain D(A) dense in E and non-empty resolvent set. Suppose that
the Cauchy problem {

ut = Au,
u|t=0 = u0.

, (1.5)

is uniquely solvable for every u0 ∈ D(A). Then there exists a semigroup Tt of
the class C0 which solves the Cauchy problem (1.5).

Here, as usual, that the semi-group Tt is of the class C0 means that

lim
t→0
‖Ttf − f‖E = 0.

11
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By using Theorem B a solution of the Cauchy problem via semigroup theory
is derived and the twomain results (Theorems 3.1 and 3.3) are proved in Section
3:

Theorem 1.1.7. Let the Banach space E and the operator A satisfy all the
assumptions of Theorem B and letX be an arbitrary Banach space, non-necessarily
separable, such that X ↪→ E. Then u(t) ∈ X, t > 0 for all u0 ∈ DX(A), if
the operator Tt, t > 0 is bounded in X. Suppose that the Cauchy problem (1.5)
is uniquely solvable for every u0 ∈ D(A). Then there exists a semigroup Tt of the
class C0 which solves the Cauchy problem (1.5).

Theorem 1.1.8. Let u0 ∈ Lp,λ(Rn), 1 < p < ∞, 0 < λ < n. Then the unique
solution u(x, t) of the problem{

∂u(x,t)
∂t = k(∆u)(x, t), x ∈ Rn

u(x, 0) = u0(x), x ∈ Rn,
(1.6)

has the property u(·, t) ∈ Lp,λ(Rn) uniformly in t ∈ R+. The convergence

‖Ttu0 − u0‖Lp,λ(Rn) → 0 as t→ 0 (1.7)

holds if u0 is in the Zorko subspace Zp,λ(Rn) of Lp,λ(Rn).

Here, as usual, Lp,λ(Rn) denotes the Morrey space defined by the norm

‖f‖Lp,λ(Rn) := sup
x∈Rn

sup
r>0

(
1
rλ

∫
B(x,r)

|f(y)|p dy
) 1
p

.

Moreover, Zp,λ(Rn) is the subspace of Lp,λ(Rn) such that

lim
h→0
‖f(·+ h)− f(·)‖Lp,λ(Rn) = 0.

This paper is the first where non-separable function spaces have been used
to give a new possibility to avoid approximation problems for example in signal
processing related to damage detection in bridges.

Summing up, we think that our Paper E can be very useful as a basis when
investigating such types of problems in engineering sciences.

The results in Paper E are related to the following publications: [20], [42],
[48], [59], [70], [72], [73], [86], [97], [103], [121], [126], [128], [133], [148], [156], [177],
[188], [194], [198], [200], [204], [210], [211] [213], [214], [234], [268], [279].
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A short description of the results in papers A - F

1.1.5 Paper F
In Paper F, a very general description of the Hålogaland bridge is presented,
along with its basic design. The Hålogaland bridge is a part of European Route
E6. The bridge has been featured on the Science Channel show "Building
Giants", and the episode was titled "Arctic Mega Structure." The book titled
"Hålogalandsbrua: Superbru i verdensklasse" (in Norwegian), is an important
and very well written book. Along with the emphasis on development and
construction, the book provides an insight knowledge to explain the fact that
why it took so long to put infrastructure in place in northern Norway. The book
provides lots of useful information and details the entire project (see [115]).

Challenges connected to the Hålogaland bridge are also discussed in this pa-
per, along with the precautionary measures that have been taken to overcome
these challenges. A brief discussion is made about how Gulf stream and wind
under arctic conditions can have impact on the Hålogaland bridge.

Particularly, in case of suspension bridges, main suspension cables and
hangers can suffer from severe corrosion and fatigue damage, as discussed
in the research report [102]. Such damages can have a critical effect on the
lifetime of the bridges.

Especially in northern Norway and the countries inside the arctic circle,
where the weather conditions are extreme and due to the climate changes
storms are getting bigger and sea waves are becoming more violent. The
problems arising due to extremeweather and corrosion are alsomore sensible
as salting of roads in winter further speeds up the process.

Therefore, structures need more routine checkups to carry out operation
and maintenance activities to get a reduced downtime. The Hålogaland bridge
is of great importance, as the cargo related to fishing is expected to quadruple
in the next 10 years, and its downtime can have a huge economic impact.

Moreover, in Paper F various challenges that have appeared in the past in
the suspension bridges have been discussed with concrete examples. Various
vibration baseddamagedetection (VBDD) techniques that can beused to detect
such damages are also mentioned. It is clear that there are many factors that
influence the deterioration of bridges such as environmental factors like wind,
rain, storms, earthquakes and overloading of structures.

Localization is an issue with VBDD techniques due to the presence of
uncertainties. As a result different approaches can lead to inaccurate damage
detection results. Among various approaches Bayesian methods have proven
to be themost rigorous probabilistic framework to identify target variables and
evaluate corresponding uncertainties using the available information.

In order to have accurate vibration analysis, it is important to have accu-
rate signals/data from the industry standard vibration transducers such as ac-
celerometers. In SHMsystem, data retrieved from the sensorsmight have some
deviation or unwanted characteristics that needs to be resolved. Therefore, pre-
processing of data is required before the data can be prepared for analysis and
interpretation.

For a bridge of the scale of Hålogaland bridge in arctic environment where

13



1. Introduction

weather changes fast and conditions are extreme, SHM in real-time will gener-
ate a lot of data. Therefore, a good data management system with the use of
artificial intelligence can make the process of of damage detection and mainte-
nance operations more efficient.

Finally, in Paper F we also include some suggestions for future research
connected to Hålogaland bridge, where the new findings in Papers A-E can be
used.

The results in Paper F are related to the following publications: [5], [8], [10],
[11], [26], [44], [56], [63], [231], [74], [75], [79], [81], [92], [95], [97], [98], [102], [105],
[111], [115], [120], [139], [173], [175], [189], [190], [191], [202], [209], [212], [215], [216],
[222], [225], [226], [228], [229], [230], [231], [232], [246], [250], [252], [254], [255],
[262], [263], [264] and [270].
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ABSTRACT. We consider the generalized Lorentz space Lψ,q defined via a continuous and concave function ψ and
the Fourier series of a function with respect to an unbounded orthonormal system. Some new Fourier and Jackson-
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1. INTRODUCTION

Let the function ψ be continuous and concave by [0, 1], ψ(0) = 0 and 0 < q 6∞. Such functions
are called Φ functions. The generalized Lorentz space Lψ,q is the set of measurable functions f
on [0, 1] for which

‖f‖ψ,q :=

( 1∫

0

f∗
q

(t)ψq(t)
dt

t

)1/q

<∞,

where f∗ is the non-increasing rearrangement of the function |f | (see e.g. [36]).
For a given function ψ(t), t ∈ [0, 1], we define

αψ := limt→0

ψ(2t)

ψ(t)
, βψ := limt→0

ψ(2t)

ψ(t)
.

It is known that 1 6 αψ 6 βψ 6 2 (see e.g. [35]) .
Note that for ψ(t) = t1/p, the space Lψ,q coincides with the Lorentz space Lp,q , 0 < q, p < ∞,
which consists of all functions f such that (see e.g. [38, p. 228])

‖f‖p,q :=




1∫

0

f∗
q

(t)t
q
p−1dt




1/q

.
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In particular, for the case p = q, we have the usual Lebesgue space with the norm (quasi-norm
if 0 < q < 1)

‖f‖q :=

( 1∫

0

|f(x)|qdx
)1/q

, 0 < q <∞.

Let q, p ∈ (0,+∞) and α ∈ R = (−∞,+∞). The Lorentz-Zygmund space Lp,q(logL)α is the set
of all functions f measurable on [0, 1] for which (see e.g. [37])

‖f‖p,q,α :=





1∫

0

(f∗(t))q(1 + | log t|)αqt qp−1dt





1
q

< +∞.

For A,B the notation A � B means that there exits positive constants C1, C2 such that C1A 6
B 6 C2A.
We consider the orthonormal system {ϕn}n∈N ⊂ L2[0, 1] (see [22, p. 58]) satisfying the condi-
tion

‖ϕn‖r :=
(∫ 1

0

|ϕn(x)|rdx
) 1
r 6Mn, n ∈ N (1)

for some r ∈ (2,+∞]. Here, we assume that {Mn} is a non-decreasing sequence.
Let f̂(n) be the Fourier coefficients of the function f with respect to the orthonormal system
{ϕn}n∈N.
J. Marcinkiewicz and A. Zygmund [22] proved some inequalities for the sums of the Fourier
coefficients of the orthogonal system {ϕn}n∈N satisfying condition (1) and norms of the func-
tion f ∈ Lp, 1 < p < ∞. Later, many authors investigated this problem in other functional
spaces (for example, see [3], [6], [7], [8], [11], [13], [21], [30], [32], [33], [42] and bibliographic
references in them).
In particular, the following statement is known (see S.V. Bochkarev [11]):

Theorem 1.1. Let {ϕn}n∈N be an orthonormal system of complex-valued functions

‖ϕn‖∞ 6M, n = 1, 2, .... (2)

for some M <∞. Then, for any 2 < q 6∞ and n = 2, 3, ..., the following inequality holds:
[ n∑

k=1

(f̂∗(k))2
] 1

2 6 CM‖f‖2,q(log n)
1
2− 1

q .

In the case q = ∞, Theorem 1.1 was previously proved by V.I. Ovchinnikov, V.D. Raspopova
and V.A. Rodin [32].
In the case when {ϕn}n∈N is a trigonometric system, in the Lorentz-Zygmund spaceL2,q,(logL)α

H. Oba , E. Sato and Y. Sato [30] stated and proved the following:

Theorem 1.2. Let 2 < q 6∞, n > 3 and α ∈ R. Then the following inequality holds:
[ n∑

k=1

(f̂∗(k))2
] 1

2 6 CAn‖f‖2,q,α

for some constant C which is independent of n and f , and An is as follows:

An =





(log n)
1
2− 1

q−α, if α < 1
2 − 1

q ,

(log(log n))α, if α = 1
2 − 1

q ,

1, if α > 1
2 − 1

q .
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A generalization of this theorem for the orthonormal system {ϕn}n∈N satisfying condition (2)
was proved by L.R.Ya. Doktorski (see [13]). Moreover, N. Tleukhanova and G. Mussabaeva
[42] for the orthonormal system {ϕn}n∈N satisfying condition (2) proved the inequality

sup
n∈N

1

n1/2(log(n+ 1))
1
2− 1

q

n∑

k=1

f̂∗(k) 6 C‖f‖2,q (3)

for any function f ∈ L2,q, 2 < q 6∞.
Most results concerning Fourier inequalities are derived for bounded orthonormal systems.
However, for several applications it is also important to derive such results for unbounded
orthonormal systems like those described in our final Remark 4.11. One aim of this paper is to
further complement our recent research in this direction (see [6], [7] and [8]) and also prove and
discuss some new related Nikol’skii type inequalities of this type. Let us first mention that in
[3] for an unbounded orthonormal system {ϕn}n∈N, the following statement was proved (for
the case α = 0, see [2]).

Theorem 1.3. Let the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfy the condition (1).
Then, for any function L2,q(logL)α, 2 < q 6∞, α < 1

2 − 1
q , n ∈ N, the following inequality holds:

[ n∑

k=1

|f̂(k)|2
] 1

2 6 C‖f‖2,q,α
[
ln(1 +

n∑

j=1

M2
j )
] 1

2− 1
q−α

.

For a trigonometric polynomial

Tn(x) =

n∑

k=−n
ake

ikx, n ∈ N

the following Jackson–Nikol’skii inequality is well known (see [17], [27])

‖Tn‖q 6 2n1/p‖Tn‖p (4)

for 1 6 p < q 6 ∞. This inequality is also called the inequality of different metrics for a
trigonometric polynomial.
For case 0 < p < q 6 ∞, inequality (4) was proved in [16] and [10]. Moreover, for p = 0 < q <
∞, it was proved by V.V. Arestov [10].
Nowadays, there are various generalizations of the Jackson-Nikol’skii inequality (see [5], [12],
[29] and the bibliography therein). One of the generalizations is its extension to polynomi-
als in orthonormal systems of functions. In particular, M.F. Timan [40] proved the following
statement:

Theorem 1.4. Let 1 6 p 6 2, p < q 6∞ and {ϕn}∞n=1 be a uniformly bounded sequence of orthonor-
mal systems of functions. Then for the polynomial

fn(x) =

n∑

k=1

ckϕk(x), n ∈ N,

holds the following inequality:
‖fn‖q 6 Cn1/p−1/q‖fn‖p. (5)

A multidimensional version of inequality (5) in the spaces Lp was established by R.J. Nessel
and G. Wilmes [25], [26]. The Jackson-Nikol’skii inequality for polynomials in a uniformly
bounded system of functions in some symmetric spaces was proved by V.A. Rodin [34]. More-
over, L.R.Ya. Doktorski and D.Gendler [14] proved the inequality of different metrics for poly-
nomials in a uniformly bounded orthonormal system of functions in the Lorentz–Zygmund

111



294 Gabdolla Akishev and Lars Erik Persson and Harpal Singh

space. Jackson–Nikol’skii inequality is also known for polynomials in an unbounded orthonor-
mal system of functions (see, for example, [19], [20], [23], [24]).
In this paper, we complement the results above by proving some new Fourier and Jackson-
Nikol’skii type inequalities in the generalized Lorentz space Lψ,q and in unbounded systems
satisfying (1).
In Section 2, we present and discuss our main results. The announced generalizations and
unifications of Fourier type inequalities can be found in Theorem 2.1 while the corresponding
results concerning Jackson-Nikol’skii type inequalities are given in Theorem 2.2. These detailed
proofs are presented; in Section 3 and Section 4 is reserved for some concluding remarks and
result (see Proposition 4.1).

2. THE MAIN RESULTS

We denote by SV L (slowly varing) the set of all non-negative functions on [0, 1] of ψ(t) for
which (log 2/t)εψ(t) ↑ +∞ and (log 2/t)−εψ(t) ↓ 0 for t ↓ 0 (see e.g. [8]).
First, we formulate the following generalization and unification of Theorem 1.1, Theorem 1.2
for the case α < 1

2 − 1
q , assertion 1) of Theorem 1.3 and inequality (3):

Theorem 2.1. Let ψ a function satisfying the conditions 1 < αψ = βψ = 21/2, t
1/2

ψ(t) ∈ SV L,

sup
t∈(0,1]

ψ(t)

t1/2
<∞,

and assume that the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfies the condition (1).
Then, for any function f ∈ Lψ,q, 2 < q 6∞, the following inequality holds:

[∑

k∈A
|f̂(k)|2

] 1
2 6 C‖f‖ψ,q

[
ln(1 +

∑

j∈A
M2
j )
] 1

2− 1
q

√
(1 +

∑
j∈AM

2
j )−1

ψ((1 +
∑
j∈AM

2
j )−1)

,

where A is a non-empty set in N and C is positive constant which depends only on q and r.

Corollary 2.1. Let ψ be a function satisfying the conditions of Theorem 2.1 and the orthonormal system
{ϕn}n∈N for some r ∈ (2,+∞] satisfying the condition (2). Then, for any function f ∈ Lψ,q, 2 < q 6
∞, we have the inequality

[ |A|∑

k=1

(f̂∗(k))2
] 1

2 6 C‖f‖ψ,q
[
log(1 + |A|M2)

] 1
2− 1

q

√
(1 + |A|M2)−1

ψ((1 + |A|M2)−1)
,

where |A| is the number of elements in the set A ⊂ N.

Corollary 2.2. Let ψ be a function satisfying the conditions of Theorem 2.1 and let the orthonor-
mal system {ϕn}n∈N for some r ∈ (2,+∞] satisfying the condition (2). Then, for any function
f ∈ Lψ,q, 2 < q 6∞, the following inequality holds:

sup
n∈N

n−1/2
[
log(1 + nM2)

] 1
q− 1

2

( √
(1 + nM2)−1

ψ((1 + nM2)−1)

)−1 n∑

k=1

f̂∗(k) 6 C‖f‖ψ,q.

Remark 2.1. In the case ψ(t) = t1/2 from Corollary 2.1 and Corollary 2.2, we accordingly obtain the
statement of Theorem 1.1 and inequality (3).

Remark 2.2. In the case ψ(t) = t1/2(1 + | log t|)α and {ϕn} the trigonometric system from Corollary
2.2, we obtain the statement in Theorem 1.2 for α < 1

2 − 1
q .
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Remark 2.3. If ψ(t) = t1/2(1 + | log t|)α and the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞]
satisfies condition (2), then from Corollary 2.2, we obtain assertion 1) of Theorem 1.3.

Remark 2.4. In the case ψ(t) = t1/2 and A = {1, ..., n}, it was proved in [11] that the inequality
in Corollary 2.1 is exact for the multiplicative Crestenson–Levy system . This fact for a trigonometric
system in the Lorentz–Zygmund space L2,q,(logL)α was proved in [30]. By also using Theorem 2 in
[5], we obtain the following statement:

Corollary 2.3. Let ψ be a function satisfying the conditions of Theorem 2.1, 2 < q <∞ and {einx}n∈Z
be the trigonometric system. Then

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
�
√

(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2− 1

q

.

Next, we state a Jackson–Nikol’skii type inequality which generalizes some results for the
trigonometric system in [17] and [27], [28] (for a complementary bibliography see also [4], [5]).

Theorem 2.2. Let the function ψ satisfy the conditions 1 < αψ = βψ = 21/2, ψ(t)
t1/2 ∈ SV L,

sup
t∈(0,1]

t1/2

ψ(t)
<∞, (6)

let the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfy the condition (1) and fn(x) =∑n
k=1 ckϕk(x).

1) If 1 < q < 2, then

‖fn‖ψ,q 6 C




√(
1 +

∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)




−1

(
log
(

1 +
n∑

k=1

M2
k

)) 1
q− 1

2 ‖fn‖2

for some constant C depending only on q.
2) If 1 < p < 2 < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q
(

log(1 +
n∑

k=1

M2
k )

) 1
p− 1

q

for some constant C depending only on p and q.
3) If 2 < p < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q
(

log(1 +
n∑

k=1

M2
k )

) 1
p− 1

q

for some constant C depending only on p and q.

3. PROOFS

Proof of Theorem 2.1. Let f ∈ Lψ,q. This function can be represented as f(x) = f1(x) + f2(x),
where

f1(x) =

{
f(x), when |f(x)| 6 f∗(τ),

0, when |f(x)| > f∗(τ),

f2(x) = f(x)− f1(x), 0 < τ < 1.
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Then, by the Minkowski inequality, we have that
[∑

k∈A
|f̂(k)|2

]1/2
6
[∑

k∈A
|f̂1(k)|2

]1/2
+
[∑

k∈A
|f̂2(k)|2

]1/2
. (7)

Now, we prove that each of the functions fi, i = 1, 2, satisfies the inequality

[∑

k∈A
|f̂i(k)|2

]1/2
6 C(q, r)

(
ln(1 +

∑

k∈A
M2
k )
) 1

2− 1
q

√
(1 +

∑
j∈AM

2
j )−

r
2(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

‖f‖ψ,q. (8)

According to the Parseval equality for an orthonormal system and Hölder’s inequality for θ =
q
2 > 1, 1

θ + 1
θ′ = 1 for the function f1, we find that

∑

k∈A
|f̂1(k)|2 6 ‖f1‖22 6

∫ 1

τ

f∗
2

(t)dt 6 ‖f‖2ψ,q
[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′
. (9)

Since t1/2

ψ(t) ∈ SV L, then t1/2

ψ(t) logε 2/t 6 τ1/2

ψ(τ) logε 2/τ for t ∈ [τ, 1], ∀ε > 0. Therefore

[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′ 6

( τ1/2

ψ(τ)

)2

log2ε 2/τ
[∫ 1

τ

(log 2/t)−2εθ′t−1dt
] 1
θ′
. (10)

Choose the number ε ∈ (0, 1
2 − 1

q ). Then, 1− 2εθ′ > 0 so that
∫ 1

τ

(log 2/t)−2εθ′t−1dt =
1

1− 2εθ′

[
(log 2/t)1−2εθ′ − 1

]
.

Therefore, from inequality (10), it follows that
[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′ 6 1

1− 2εθ′

( τ1/2

ψ(τ)

)2

(log 2/t)
1
θ′ . (11)

Now by using inequalities (9) and (11), we obtain that
(∑

k∈A
|f̂1(k)|2

) 1
2 6 1

1− 2εθ′
τ1/2

ψ(τ)
(log 2/τ)

1
2− 1

q ‖f‖ψ,q. (12)

In this formula, we put τ = (1 +
∑
j∈AM

2
j )−

r
r−2 . Then, for the function f1 from (12), we can

conclude that
(∑

k∈A
|f̂1(k)|2

) 1
2

6C
(

ln(1 +
∑

k∈A
M2
k )
) 1

2− 1
q

√
(1 +

∑
j∈AM

2
j )−

r
2(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
ln(1 +

∑

k∈A
M2
k )
) 1

2− 1
q ‖f‖ψ,q,

so (8) holds with i = 1. For the function f2 ∈ Lr′ by the definition of the coefficient expansions
and Hölder’s inequality (2 < r < +∞, r′ = r

r−1 ), we have that

|f̂2(k)| =
∣∣∣
∫ 1

0

f2(x)ϕk(x)dx
∣∣∣ 6 ‖f2‖r′‖ϕk‖r 6Mk‖f‖r′ .

Hence,
∑

k∈A
|f̂2(k)|2 6 ‖f2‖2r′

∑

k∈A
M2
k =

( τ∫

0

f∗
r′

(t)dt

)2/r′∑

k∈A
M2
k . (13)
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Since the function f∗ is non-increasing and ψ is non-decreasing, then

‖f‖ψ,q >
( x∫

x/2

f∗
q

(t)ψq(t)
dt

t

)1/q

> f∗(x)ψ(x/2)

( x∫

x/2

dt

t

)1/q

= f∗(x)ψ(x/2)(ln 2)1/q, x ∈ (0, 1].

Therefore, from inequality (13), it follows that

∑

k∈A
|f̂2(k)|2 6 ‖f‖2ψ,q

( τ∫

0

ψ−r
′
(t/2)dt

)2/r′∑

k∈A
M2
k . (14)

Since t1/2

ψ(t) ∈ SV L, then

( τ∫

0

ψ−r
′
(t/2)dt

)2/r′

=

( τ∫

0

( √t/2
ψ(t/2)

)r′
(t/2)−r

′/2dt

)2/r′

6
( √τ/2
ψ(τ/2)

logε
2

τ/2

)2
( τ∫

0

(log
2

t/2
)−εr

′
(t/2)−r

′/2dt

)2/r′

. (15)

If 0 < t < τ , then (log 2
t/2 )−ε < (log 2

τ/2 )−ε, for ε > 0. Therefore, by using (15), we obtain that

( τ∫

0

ψ−r
′
(t/2)dt

)2/r′

6
( √τ/2
ψ(τ/2)

)2
( τ∫

0

(t/2)−r
′/2dt

)2/r′

= (
2

2− r′ )
2/r′
( √τ/2
ψ(τ/2)

)2

(τ/2)
2
r′−1 = (

2

2− r′ )
2/r′
( 1

ψ(τ/2)

)2

2−
2
r′ τ

2
r′ .(16)

Now, it follows from inequalities (14) and (16) that
(∑

k∈A
|f̂2(k)|2

)1/2

6 C‖f‖ψ,q
1

ψ(τ)
τ

1
r′
(∑

k∈A
M2
k

)1/2

.

In this formula, we put τ = (1 +
∑
j∈AM

2
j )−

r
r−2 . Then

( n∑

k=1

|f̂2(k)|2
)1‘/2

6 C‖f‖ψ,q
1

ψ((1 +
∑n
j=1M

2
j )−

r
r−2 )

(
1 +

n∑

j=1

M2
j

)− r
r′(r−2)

( n∑

k=1

M2
k

)1/2

= C
1

ψ((1 +
∑n
j=1M

2
j )−

r
r−2 )

(
1 +

n∑

j=1

M2
j

)− r
2(r−2) ‖f‖ψ,q.

Now, taking into account that 1/2− 1/q > 0, we get from here that
(∑

k∈A
|f̂2(k)|2

)1‘/2

6C 1

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
1 +

∑

j∈A
M2
j

)− r
2(r−2)

(
log
(

1 +
∑

j∈A
M2
j

))1/2−1/q

‖f‖ψ,q,
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so (8) holds also for i = 2. From inequalities (7) and (8), it follows that
(∑

k∈A
|f̂(k)|2

)1‘/2

6C 1

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
1 +

∑

j∈A
M2
j

)− r
2(r−2)

(
log
(

1 +
∑

j∈A
M2
j

))1/2−1/q

‖f‖ψ,q. (17)

Since t1/2

ψ(t) ∈ SV L and
(

1 +
∑
j∈AM

2
j

)− r
2(r−2)

<
(

1 +
∑
j∈AM

2
j

)−1

, then

√(
1 +

∑
j∈AM

2
j

)− r
(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

6

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log

2
(

1 +
∑
j∈AM

2
j

)−1

)−ε(
log

2
(

1 +
∑
j∈AM

2
j

)− r
(r−2)

)ε

6

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log 2

(
1 +

∑

j∈A
M2
j

))−ε( r

r − 2
log 2

(
1 +

∑

j∈A
M2
j

))ε

=
r

r − 2

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

. (18)

It follows from inequalities (17) and (18) that

(∑

k∈A
|f̂(k)|2

)1‘/2

6 r

r − 2

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log
(

1 +
∑

j∈A
M2
j

))1/2−1/q

‖f‖ψ,q.

The proof is complete. �

Proof of Corollary 2.1. In view of the fact that Mj = M, j = 1, 2, ... and the property of non-
increasing rearrangement of numbers, it yields that

∑

k∈A
|f̂(k)|2 =

|A|∑

k=1

(f̂∗(k))2,

so the proof follows by just applying Theorem 2.1. �

Proof of Corollary 2.2. According to Hölder’s inequality, we have that

n∑

k=1

f̂∗(k) 6 n1/2
( n∑

k=1

(f̂∗(k))2
)1/2

.

Therefore, the assertion of Corollary 2.2 follows by applying Corollary 2.1 withA = {1, 2, ..., n}.
�
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Proof of Corollary 2.3. For the set A = {−n, ...,−1, 0, 1, ..., n} from Corollary 2.1, we get

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
6 C

√
(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2− 1

q

.

To prove the reversed inequality, we consider the trigonometric polynomial

fn(x) =

n∑

k=−n
ake

ikx.

Then, by using Theorem 2 in [5] for ψ1(t) = t1/2, τ1 = 2, ψ2(t) = ψ(t), τ2 = q, we have that

sup
fn 6=0

‖fn‖2
‖fn‖ψ,q

> C
√

(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2− 1

q

.

Therefore

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
> sup
fn 6=0

‖fn‖2
‖fn‖ψ,q

> C
√

(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2− 1

q

.

The proof is complete. �

Proof of Theorem 2.2. For the generalized Lorentz space Lψ,q, we have the relation (see [2])

‖f‖ψ,q � sup
‖f‖

ψ̄,q
′61

∣∣∣∣
∫ 1

0

f(x)g(x)dx

∣∣∣∣ , (19)

where ψ̄(t) = t
ψ(t) , t ∈ (0, 1], 1 < q <∞, q′ = q

q−1 . Since the system {ϕn} is orthonormal, then
∫ 1

0

fn(x)g(x)dx =
n∑

k=1

ckĝ(k), g ∈ Lψ̄,q′

for any n ∈ N.
Note that condition (6) implies that

sup
t∈(0,1]

ψ̄(t)

t1/2
<∞.

By applying Hölder’s inequality, Theorem 2.1, and Parseval’s equality, we obtain that
∣∣∣∣
∫ 1

0

fn(x)g(x)dx

∣∣∣∣ 6
( n∑

k=1

|ck|2
)1/2( n∑

k=1

|ĝ(k)|2
)1/2

6 C

√(
1 +

∑n
j=1M

2
j

)−1

ψ̄((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑

j=1

M2
j

))1/2−1/q′

‖g‖ψ̄,q′‖fn‖2.

Therefore, in virtue of relation (19), we have that

‖fn‖ψ,q 6 C
ψ((1 +

∑n
j=1M

2
j )−1)

√(
1 +

∑n
j=1M

2
j

)−1

(
log
(

1 +
n∑

j=1

M2
j

))1/q−1/2

‖fn‖2

and 1) is proved.
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We will now prove the second statement. Since 1 < p < 2, according to item 1), it yields that

‖fn‖ψ,p 6 C




√(
1 +

∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)




−1

(
log
(

1 +
n∑

k=1

M2
k

)) 1
p− 1

2 ‖fn‖2. (20)

Moreover, since 2 < q <∞, by Theorem 2.1 and Parseval’s equality, we find that

‖fn‖2 6

√(
1 +

∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑

j=1

M2
j

))1/2−1/q

‖f‖ψ,q. (21)

Now from inequalities (20) and (21), it follows that

‖fn‖ψ,p 6 C
(

log
(

1 +

n∑

j=1

M2
j

))1/p−1/q

‖f‖ψ,q

and 2) is proved.
Finally, let 2 < p < q < +∞. In the generalized Lorentz space Lψ,q, the following inequality
hold (see [36], p. 491):

‖g‖ψ,p 6 ‖g‖
1
τ
− 1
p

1
τ
− 1
q

ψ,q ‖g‖
1
p
− 1
q

1
τ
− 1
q

ψ,τ (22)

for 1 < τ < p < q < +∞. Choose the number τ ∈ (1, 2). Then, according to the second
statement, we have that

‖fn‖ψ,τ 6 C
(

log
(

1 +

n∑

j=1

M2
j

))1/τ−1/q

‖f‖ψ,q. (23)

Now by in equality (22) setting g = fn and taking into account (23), we obtain that

‖fn‖ψ,p 6 ‖fn‖
1
τ
− 1
p

1
τ
− 1
q

ψ,q



C

(
log
(

1 +

n∑

j=1

M2
j

))1/τ−1/q

‖f‖ψ,q





1
p
− 1
q

1
τ
− 1
q

= C
(

log
(

1 +
n∑

j=1

M2
j

))1/p−1/q

‖f‖ψ,q

and also 3) is proved. The proof is complete. �

4. CONCLUDING REMARKS RESULT

Remark 4.5. In the case ψ(t) = t1/p(1 + | log t|)α, 1 < p <∞, Theorem 2.2 was previously proved in
[3]. For the case α = 0 see also [2].

Remark 4.6. In the case ψ(t) = t1/p(1 + | log t|)α, 0 < p < 2, Theorem 2.2 for polynomials in a
uniformly bounded system was proved in [14], Theorem 3 i).

Remark 4.7. A similar statement as that in Theorem 2.1 was recently proved and discussed in [8].

Remark 4.8. It is well-known that each concave function ψ = ψ(t) has the quasi-monotonicity prop-
erties that ψ(t)

t is non-increasing and ψ(t) is non-decreasing. Moreover, the definition of the SV L clam
means that the functions satisfy two quasi-monotonicity conditions but now on a logarithmic scale.
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These facts opens the possibility that some of the results in this paper can be further generalized in this
direction.

From Theorem 2.1 and Theorem 2.2, we can also derive the following generalization of a result
in [5]:

Proposition 4.1. Let the functions ψ1 and ψ2 satisfy the conditions 1 < αψ1
= βψ2

= 21/2, t1/2

ψ1(t) ∈
SV L, t1/2

ψ2(t) ∈ SV L,

sup
t∈(0,1]

ψ2(t)

ψ1(t)
<∞ (24)

and assume that the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfies condition (1). If
1 < p 6 2 < q <∞, then for any polynomial

fn(x) =
n∑

k=1

ckϕk(x),

the following inequality holds:

‖fn‖ψ1,p 6 C
ψ1((1 +

∑n
j=1M

2
j ))−1

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑

k=1

M2
k

)) 1
p− 1

q ‖fn‖ψ2,q.

Proof. Since t1/2

ψ1(t) ∈ SV L and 1 < p 6 2, according to the first statement of Theorem 2.2, the
following inequality holds:

‖fn‖ψ1,p 6 C




√(
1 +

∑n
j=1M

2
j

)−1

ψ1((1 +
∑n
j=1M

2
j )−1)




−1

(
log
(

1 +
n∑

k=1

M2
k

)) 1
p− 1

2 ‖fn‖2.

Taking into account that t1/2

ψ2(t) ∈ SV L and 2 < q <∞ by Theorem 2.1, we have that

‖fn‖2 6 C




√(
1 +

∑n
j=1M

2
j

)−1

ψ2((1 +
∑n
j=1M

2
j )−1)



(

log
(

1 +
n∑

k=1

M2
k

)) 1
2− 1

q ‖fn‖ψ2,q.

From these inequalities, it follows that

‖fn‖ψ1,p 6 C




√(
1 +

∑n
j=1M

2
j

)−1

ψ1((1 +
∑n
j=1M

2
j )−1)




−1

(
log
(

1 +
n∑

k=1

M2
k

)) 1
p− 1

2

×

√(
1 +

∑n
j=1M

2
j

)−1

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑

k=1

M2
k

)) 1
2− 1

q ‖fn‖ψ2,q

=
ψ1((1 +

∑n
j=1M

2
j )−1)

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑

k=1

M2
k

)) 1
p− 1

q ‖fn‖ψ2,q

for 1 < p 6 2 < q <∞. The proof is complete. �
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Remark 4.9. To investigate a statement as that Proposition 4.1 in the case of 1 < p < q 6 2 is
an interesting open question. This case for polynomials in the trigonometric system was investigated
in [5]. Furthermore, it seems to be possible to consider Proposition 4.1 also in the more general case
1 6 βψ2 < αψ1 6 2 .

Remark 4.10. In [4], it was proved that condition (24) implies that Lψ1,p ⊂ Lψ2,q , 1 < p < q < ∞,
in the case ψ1 = ψ2 see [36].

Remark 4.11 (Final Remark). Most results concerning Fourier and Jackson–Nikol’skii type inequal-
ities are derived for the case with bounded orthonormal systems. But since there are many important
unbounded orthonormal systems, it is of importance to develop the theory to cover such cases too. Ex-
amples of such unbounded systems are the following:
(a) {χn}–orthonormal system of Haar functions (see e.g. [9]). The functions χn(t) are defined as follows:
χ1(t) := 1 for t ∈ [0, 1] and for n = 2m + k, k = 1, . . . ,m and m = 0, 1, . . . put

χn(t) =





√
2m, t ∈ ( 2k−2

2m+1 ,
2k−1
2m+1 ),

−
√

2m, t ∈ ( 2k−1
2m+1 ,

2k
2m+1 ),

0, t∈̄
[
r
mk
, r+1
mk

]
.

The value of χn(t) in a discontinuity point t is defined as

χn(t) =
1

2
lim
ε→0

[χn(t+ ε) + χn(t− ε)].

(b) Let there be given an infinite sequence of integers {pn} such that pn > 2 (n = 1, 2, ...). We put
mn = p1...pn, n > 1. Then for any point t ∈ [0, 1] \A, there exists the unique expansion

t =

∞∑

k=1

αk(t)

mk
, αk(t) = 0, 1, ..., pk − 1,

whereA = { l
mk
}, l = 0, 1, . . . ,mk. The generalized Haar system χ{pk} := {χn(t)} on [0, 1] is defined

as follows (see [15]):
χ1(t) = 1 for t ∈ [0, 1] and if n > 2, then n = mk + r(pk+1 − 1) + s, where m0 = 1 and mk =
p1p2...pk; k = 1, ...; r = 0, 1, ...,mk − 1; s = 1, 2, ..., pk+1 − 1.
We put

χn(t) := χ
(s)
k,r(t) :=





√
mkexp

2πisαk+1(t)
pk+1

, t ∈
(

r
mk
, r+1
mk

)
∩B,

0 , t∈̄
[
r
mk
, r+1
mk

]
,

where B := [0, 1] \ A. At the remaining points of the interval (0, 1), χn(t) is equal to the half-sum of
its right-hand and left-hand limits on the set [0, 1] \ A, and at the endpoints of [0, 1], to the limits from
within the interval.
(c) Other generalizations of the Haar system were defined by A.M. Olevskii [31] and A. Kamont [18].
Jackson–Nikol’skii inequalities for polynomials in the χ{pn} system in the Lebesgue spaces Lp and
Lorentz spaces Lp,τ were proved in [1], [19], [39] and [41].
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Abstract

In this paper we discuss the study of some signal processing prob-
lems within Bayesian frameworks and semigroups theory, in the case
where the Banach space under consideration may be non-separable.
For applications the suggested approach may be of interest in situa-
tions where approximation in the norm of the space is not possible.
We describe the idea for the case of the abstract Cauchy problem
for the evolution equation and provide more detailed example of the
diffusion equation with the initial data in the non-separable Morrey
space.

2020 Mathematics Subject Classification: 58D25, 46B26, 47D03,
47D06, 62C10, 35R60.
Key words and phrases: equations in function spaces; operator
semigroup; parabolic equation; evolution equation; non-separable Ba-
nach space; Morrey spaces; diffusion equation; stochastic partial dif-
ferential equation, Bayesian approach.

1 Introduction

Bayesian methods have proven to be the most rigorous probabilistic frame-
work to identify target variables and evaluate the corresponding uncertainties
using the available information. As known, the Bayesian interface is a prob-
abilistic method of interference that allows to form probabilistic estimates
of certain parameters from a given series of observations. We refer, for in-
stanse, to the survey paper [9] for the Bayesian approach to signal processing
problems in which the signal is a solution of a stochastic partial differential
equation (SPDE).

In the survey [9], a focus there was to show that the idea to work with
probability measures on a suitable function space is a key idea, which leads to
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the notion of a well-posed signal-processing problem. This approach helps to
avoid dealing with the algorithms to which the use of known methods based
on application of the standard Markov chain Monte Carlo (MCMC) method
after a discretization leads. One of the disadvantages of such algorithms is
that they perform poorly under refinement of the discretization.

The use of a proper mathematical formulation of the problems on domain
space while working with probability measures on function spaces, leads to
efficient sampling techniques, defined on path-space as the domain space,
and therefore robust under the introduction of discretization. A wide variety
of signal processing problems is overviewed in [9]. These problems lead to a
posterior probability measure on a separable Banach space. The separability
of a Banach space provides a possibility for approximation in the space.
However, when looking at the problems tackled in Bayesian frameworks, it is
also of interest to explore what potential ”gains” and/or ”losses” might be in
the case where the space is not necessarily separable. Such kind of questions
sometimes are discussed also at some on-line forums. In this note we touch
some questions concerning such issues.

As known, the theory of Markov stochastic processes is a natural source
of interesting parabolic equations. When passing to a macro description of
such processes with respect to the densities of transition probabilities, un-
der special conditions there appear partial differential equations. It is worth
mentioning that A.P. Kolmogoroff yet in 1934 (see [12]), proceeding from
the problems of the theory of probability, defined and studied an interest-
ing equation, which he called the equation of diffusion with inertia. The
properties of solutions of such equations and the methods of their study, for
natural reasons, are very closely related to the properties of solutions of the
heat equation and diffusion equations. Parabolic equations of diffusion-type
and their various generalizations are known to be widely studied and may be
found in various books, in particular in the Hörmander books [10].

Study of such equations under special conditions and in various function
spaces could make possible a more precise observing the results and the
possibilities of their further applications.

The theory of parabolic equations has deep connections with functional
analysis, especially with the theory of evolution equations with unbounded
operators in Banach spaces and the theory of semigroups.

The theory of stochastic processes, especially the theory of Markov pro-
cesses and stochastic differential equations, very closely interacts with the
theory of parabolic equations.
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In this paper, we suggest an approach for the study of properties of so-
lutions to such equations in the case of non-separable function spaces. In
case of problems formulated as filtering problems in addition to smoothing
problems, an approach based on study in the frameworks of weighted non-
standard function spaces could also be useful.

One of the main approaches to evolution equations relates to the theory
of semigroups of operators. This approach is under discussion in our paper
with respect to the Cauchy problem for an abstract evolution equation.

2 Solution of Cauchy problem via semigroups

One of the approaches to the study of evolution equations is based on the use
of semigroups of operators. This approach has a long history for about 80
years. Already in the paper [18] of 1954, the reader can find a comparison of
different settings of the Cauchy problem for an abstract evolution equation,
for which the operator semigroups approach is applicable. The presentation
of this approach may be found in a big variety of books and surveys. We refer,
for instance, to [1], [2], [6], [7], [13], [15], [20], [21], [22] and [28] on semigroups
of operators and their applications to partial differential equations.

Below we provide necessary standard definitions concerning operator semi-
groups.

A family of continuous linear operators Tt, t > 0, in a Banach space E is
called a semigroup of operators if

TtTs = Tt+s, t > 0, s > 0 and T0 = I.

A semigroup of operators is called strongly continuous if

Ttf → Tsf in E as t → s, s > 0, for all f ∈ E.

A semigroup Tt is said to be of class C0 if

lim
t→0

∥Ttf − f∥E = 0.

The operator

Af := lim
t→0

1

t
(Ttf − f) ,

defined for f ∈ E whenever this limit exists, is called the infinitesimal oper-
ator of the semigroup Tt. If the operator A admits an extension to a closed
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operator Ā, then the operator Ā is referred to as the generator of the semi-
group Tt.

More information on semigroups of operators may be found e.g. in the
books [2], [16], [17] and [28].

To describe the principal idea of the operator semigroup approach, we
consider the standard Cauchy problem

{
ut = Au,
u|t=0 = u0

, (2.1)

where u is the unknown function and A is a linear operator. It may be
a function u(x, t), where x ∈ Ω ⊆ Rn, t > 0 and A = ∆ = ∂2

∂x21
+ · · · ∂2

∂x2n

being the classical Laplace operator corresponding to the heat or diffusion
processes. More generally, it may be in abstract form, i.e. u is an element
of a Banach space E, depending on parameter t > 0, with the derivative
ut =

∂u
∂t

interpreted in a proper sense and A is a linear operator with the
domain D(A) ⊂ E (now we present a formal procedure, precise assumptions
and formulations being considered later).

Formally solving the equation ∂u
∂t

= Au as an ordinary differential equa-
tion and taking the initial condition into account, we get

u = etAu0,

assuming that etA is well defined. Formally again {etA}t>0 is a semigroup.
Thus, we say that the semigroup Tt = etA solves the Cauchy problem (2.1).
Certainly, this formal procedure needs justification. Such a justification needs
certain assumptions on the space E and the operator A and is well known in
the literature. These assumptions usually include the notion of non-positivity
or resolvent set of the operator A and the condition

D(A) = E. (2.2)

For our goals in the sequel, we underline that in applications the condition
(2.2) is in fact the assumption that the space E is separable. In this paper
we discuss a possibility to adjust the above operator semigroup procedure
for non-necessarily separable spaces.

The similar procedure is also known to be applied to non-linear partial
differential equations, for instance, in the case when the operator A in (2.1) is
non-linear. However, then the construction of the corresponding semigroup
Tt is more complicated.
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Concretely for the abstract Cauchy problem (2.1) the semigroup approach
under various assumptions is dispersed in the literature and goes back to the
paper [18].

The proof of the following theorem was given in [18, Theorem 3.1], see
also [21].

Theorem 2.1. Let E be a Banach space. Consider a closed linear oper-
ator A with the domain D(A) dense in E and non-empty resolvent set. Sup-
pose that the Cauchy problem (2.1) is uniquely solvable for every u0 ∈ D(A).
Then there exists a semigroup Tt of the class C0 which solves the Cauchy
problem (2.1).

Remark 2.2. There are known sufficient conditions for the unique solv-
ability of the Cauchy problem supposed in Theorem 2.1 given in terms of the
generator of the semigroup Tt, see e.g. [18, Theorem 3.3].

3 What can be saved if the Banach space is

non-separable?

Note that the assumption that the domain of the operator is dense in the
considered Banach space in general reassumes non-separable spaces. In this
section we provide some arguments which allow us to include non-separable
spaces into the operator semigroup approach. We explain these arguments
for the model case of the Cauchy problem (2.1). Let X be a non-separable
space. Consider any Banach space E presumably separable, such that X ↪→
E and the operator A obeys Theorem 2.1 in the space E. By DX(A) and
DE(A) we denote the domains of the operator A in the spaces X and E,
respectively. Then clearly for f ∈ DX(A) ⊆ DE(A) by Theorem 2.1 we have
the solution u(t) = Ttu0 ∈ E for all t > 0. However, our interest is to know
that u(t) ∈ X, t > 0 and u(t) → u0 in X as t → 0. The requirement that
u(t) ∈ X, t > 0, is easily covered by the assumption that the operators Tt
are bounded in X for t > 0. However, we cannot assume that Tt is of class
C0 in X, since the latter in general does not hold in non-separable spaces.
Anyway, we have a weaker convergence ∥u(t) − u0∥E → 0 as t → 0. Thus,
dealing with a smaller space X ↪→ E, from the known solvability in the
space E we can gain the information that u(t) ∈ X, t > 0, but have to keep
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a weaker E-convergence of u(t) to u0. We summarize this in the form of the
following theorem:

Theorem 3.1. Let the Banach space E and the operator A satisfy all
the assumptions of Theorem 2.1, and let X be an arbitrary Banach space,
non-necessarily separable, such that X ↪→ E. Then u(t) ∈ X, t > 0 for all
u0 ∈ DX(A), if the operator Tt, t > 0 is bounded in X. Suppose that the
Cauchy problem (2.1) is uniquely solvable for every u0 ∈ D(A). Then there
exists a semigroup Tt of the class C0 which solves the Cauchy problem (2.1).

In the above scheme X could be an arbitrary space. There is known a
variety of non-separable function spaces. Apart of the well known space L∞

of essentially bounded functions in Analysis and PDEs there are also known
such non-separable spaces as Hölder spaces, Morrey spaces and recently de-
veloped grand Lebesgue spaces. Observe that grand Lebesgue spaces proved
to be very important in some applications to PDEs, see for instance the
papers [4] and [26]. In the example below we take as X the Morrey space
Lp,λ(Rn). Note that Morrey spces are very popular both in analysis and ap-
plications to PDEs, see for instance the books [8] and [25].

Let us consider an example of the diffusion equation

{
∂u(x,t)
∂t

= k(∆u)(x, t), x ∈ Rn

u(x, 0) = u0(x), x ∈ Rn,
(3.1)

where k > 0. We take E = Lqβ(Rn), 1 < q < ∞, β ∈ R, where Lqβ(Rn) is the
weighted Lebesgue space defined by the norm

∥f∥Lqβ(Rn) =



∫

Rn

∣∣∣∣
f(x)

(1 + |x|)β
∣∣∣∣
q

dx




1
q

,

and choose X = Lp,λ(Rn), 0 < p < ∞, 0 < λ < n, where Lp,λ(Rn) is the
Morrey space defined by the norm

∥f∥Lp,λ(Rn) := sup
x∈Rn

sup
r>0


 1

rλ

∫

B(x,r)

|f(y)|p dy




1
p

.

It is a non-separable space. For more details on Morrey spaces we refer
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to the book [14]. The subspace of functions f ∈ Lp,λ(Rn), such that

lim
h→0

∥f(·+ h)− f(·)∥Lp,λ(Rn) = 0

is referred to as the Zorko space, see [29]. The Zorko space is a proper sub-
space of the Morrey space and it is known that this is the maximal subspace
of the Morrey space where the heat semigroup is of the class C0, see [11,
Lemma 3.1].

The embedding X ↪→ E in this case holds under the conditions

q < p and β >
λ

p
+ n

(
1

q
− 1

p

)
, (3.2)

as derived from [24, Corollary 3.14].
As is well known, the solution of the problem (3.1) is given by the semi-

group

u(x, t) = Ttu0(x), Ttu0(x) :=

∫

Rn

Kt(x− y)u0(y)dy, (3.3)

where

Kt(x) =
1

(4πkt)
n
2

e−
|x|2
4kt .

The fact that this semigroup is of class C0 in the space Lq(Rn) is well known.
In the lemma below we justify that the same holds for the weighted Lebesgue
space Lqβ(Rn).

Lemma 3.2. Let q > 1, and 1
q
+ 1

q′ = 1. Then the semigroup (3.3) is of

class C0 in the space Lqβ(Rn) if − n
q′ < β < n

q
.

Proof. The kernel Kt(x) of the convolution operator (3.3) has the form

Kt(x) =
1

(
√
t)n

K1(x)

(
x√
t

)
.

Convolution operators with such a delation kernel are uniformly in t domi-
nated by the maximal operator, provided that K1(x) is radial, integrable on
Rn and as a radial function is increasing on R+, see [27]. Hence

|Ttu0(x)| ≤ cMu0(x), Mf(x) = sup
r>0

1

rn

∫

|y−x|<r

|u0(y)|dy. (3.4)

7

131



The maximal operator M is bounded in the weighted space Lqβ(Rn) if −β

lies in the ”Muckenhoupt interval”
(
−n
q
, n
q′

)
, see [5]. Thus, the operators

Tt, t ∈ R+ are even uniformly in t bounded in Lqβ(Rn).
It remains to verify that

lim
t→0

∥Ttu0 − u0∥Lqβ(Rn) = 0.

This can be checked by the standard procedure via approximation of u0 ∈
Lqβ(Rn) by C∞

0 -functions in Lqβ(Rn) and using the uniform boundedness of
Tt. The proof is complete. 2

Finally, we present the following statement for the non-separable Morrey
space Lp,λ(Rn) :

Theorem 3.3. Let u0 ∈ Lp,λ(Rn), 1 < p < ∞, 0 < λ < n. Then the
unique solution u(x, t) of the problem (3.1) has the property u(·, t) ∈ Lp,λ(Rn)
uniformly in t ∈ R+. The convergence

∥Ttu0 − u0∥Lp,λ(Rn) → 0 as t → 0 (3.5)

holds if u0 is in the Zorko subspace Zp,λ(Rn) of Lp,λ(Rn).

Proof. We embed the space Lp,λ(Rn) into the space Lqβ with some q and
β, which is possible under the conditions (3.2). Choose also β < n

q
and

observe that the interval
(
λ
p
+ n

q
− n

p
, n
q

)
is non-empty. Then in view of this

embedding and Lemma 3.2 for the solution u(x, t) we have the representation
(3.3). Then the uniformness

sup
t>0

∥u(·, t)∥Lp,λ(Rn) = sup
t>0

∥Ttu0∥Lp,λ(Rn) ≤ ∞

of the inclusion u(t) ∈ Lp,λ(Rn) follows from the uniform point-wise domina-
tion of the semigroup Tt by the maximal operator, see (3.4), and the bound-
edness of the maximal operator in Morrey spaces. The latter was proved in
[3], se also the proof for more general class of sublinear operators in [23].

As for the convergence ∥Ttu0−u0∥Lp,λ(Rn) → 0 as t → 0, it certainly does
not hold for all u0 ∈ Lp,λ(Rn), see counterexample in [11, Example 3.4].

The convergence (3.5) with u0 ∈ Zp,λ(Rn) for the heat semigroup was
proved in [11, Lemma 3.1].
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Observe that in any case we have such a convergence for all u0 ∈ Lp,λ(Rn)
in a weaker norm ∥ · ∥Lqβ(Rn), for β > λ

p
and arbitrarily close to λ

p
, since q

in (3.2) may be chosen arbirtarily close to p. Convergence in Lqβ(Rn)-norm

becomes ”less weak” when β → λ
p
).

2

Remark 3.4. Theorem 3.3 may be extended to the so called generalized
Morrey spaces (see their definition e.g. in [19]) via the use of embedding
between Morrey and Lebesgue spaces obtained in [24].
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Abstract

In this article a brief description of the H̊alogaland suspension bridge is presented, along
with some of the challenges which already have appeared. Moreover, the problems and chal-
lenges which have appeared in a number of bridges of this type in the past are reported.
Further, some vibration analysis techniques and concrete examples to detect damages in
suspension bridges are discussed. New research can be needed to overcome some of the not
solved research challenges. In this article, we propose some new methods which can be useful
in this connection, namely to develop the Fourier theory and proved the corresponding in-
equalities in unbounded systems and to develop signal processing techniques in non-separable
function spaces within Bayesian framework.

Keywords: Fourier analysis, Function spaces, Bayesian methods, Operation modal anal-
ysis, Structural health monitoring, Damage detection, Suspension bridges, High-rise building,
Off-shore Structures, Global warming, Arctic conditions
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1 Introduction

Bridges are the major transportation infrastructure assets of a region, which propel regional
cooperation, social development and stimulate economic growth. Suspension bridges are very
expensive civil engineering structures where the deck is hung below the suspension cables on
vertical suspenders. Suspension bridges are increasingly used in the creation of new civil in-
frastructure as they are very flexible structures and have an ability in bridging larger spans.
Moreover, suspension bridges are rich in architectural features and once the construction is
finished, few materials are required for maintenance in comparison to other types of bridge
constructions.

The effects of traffic and environmental loading are carefully accounted in the design of the
bridges and included in the life cycle assessment and bridges are also subjected to periodic
inspection, and maintenance. However, the aging process and the bridge performance from the
wind, traffic and surrounding environment are interesting to monitor to understand the overall
aging process and support the life cycle cost assessment.

Especially in northern Norway extreme arctic conditions further speed up the aging process.
Moreover, due to global warming storms are getting bigger and waves in the sea are becoming
more violent. Proper monitoring and maintenance of bridges is performed to identify and correct
in a proactive manner any unexpected deterioration and avoid significant effect on economic and
social development.
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Structural health monitoring (SHM) covers, among others, the process of implementing a
damage detection and characterization procedure for engineering structures. Here damage is
defined as a change in the geometric properties of the structural system or a change in the
boundary conditions of structural system, a change in the boundary conditions, or a change in
system connectivity, that adversely affects the performance of the structural system (see [10]).
SHM can help to timely carry out the maintenance operations that could help mitigate the
problem of reduced performance or failure of the structure. Thus, SHM is one significant focus
area to ensure the safety and serviceability of bridges, and further reducing the downtime as a
result of long-term degradation and extreme loading.

In order for SHM to be successful, monitoring objectives should be defined together with
bridge owners to ensure data acquired can be used to answer specific and relevant questions for
the operation and maintenance of bridges. Moreover, the full potential of SHM is only unlocked
when a holistic approach is taken combining all sources of information, e.g. inspection, tests
and monitoring data in assessment processes.

The research in this paper is inspired by some challenges related to the new H̊alogaland
suspension bridge in Narvik. Moreover, the challenges which have appeared in a number of
bridges of this type in the past are reported. Furthermore, we describe some vibration analysis
techniques and concrete examples to detect damages in suspension bridges. We suggest that
new research can be needed to overcome some of the not solved challenges. In this article,
we propose some new methods which can be useful in this connection, namely to develop the
Fourier theory and prove the corresponding inequalities in unbounded systems and to develop
signal processing techniques in non-separable function spaces within Bayesian framework. We
also include a description of the special fact that the challenges occurring in the H̊alogaland
bridge are strongly influenced by Gulf stream and arctic conditions. Finally, some suggestions
of supporting research for the future is proposed.

The paper is organized as follows: In Section 2 the announced description of the H̊alogaland
suspension bridge is presented. Some challenges that have appeared in the the H̊alogaland
suspension bridge are described along with the procedures that were done to overcome these
challenges is discussed in Section 3. The H̊alogaland suspension bridge is located inside the
arctic circle. Therefore, in this section also some special challenges naturally occur, which are
also briefly mentioned. Furthermore, several problems, challenges and accidents that appeared
in the history all over the world are described and discussed in Section 4. Some research based
on vibration based damage detection for suspension bridges is presented and analyzed in Section
5. Section 6 is reserved to present some more challenges that appear in signal processing of data.
Pre-processing of data is required as it can appear some errors in synchronization of sensors as
well as some errors can appear while recording the data. In Section 7 the new supporting results
in the area of non-separable function spaces within statistical Bayesian framework are described
related to approximation problems in signal processing (for more details see [30]). Some related
research concerning Fourier analysis especially concerning inequalities appear in Section 8. In
general, Fourier inequalities are proved for bounded systems, but some practically used Fourier
methods (e.g. the Haar wavelets system) are unbounded, therefore we propose to develop the
theory for such unbounded orthonormal and orthogonal systems for future use (for more details
see [2] and [3]). Finally, some concluding remarks are presented in Section 9.

2 The H̊alogaland suspension bridge

The H̊alogaland bridge is the longest suspension bridge within the arctic circle area at the time
of construction. It is the second longest suspension bridge in Norway. Figure 1 shows the actual
picture of the H̊alogaland bridge, this picture is taken by Rune Dahl. It is a part of the European
Route E6. Construction work of the bridge was featured on the Science Channel show Building
Gaints, titled Arctic Mega Structure. The bridge is 1533 m long and has 3 spans. The longest
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suspension span has a length of 1145 m that is connected by 2 viaducts, one from Karistrand
and the other from Øyjord. The viaduct from Karistrand has a length of 250 m and while the
viaduct from Øyjord has a length of 148m. The structure is supported by 2 suspension cables
with a diameter of 47 cm and a length of 1621 meters that weights about 2000 tonnes each.

The ”A shaped” towers are build in reinforced concrete, where steel is embedded inside
concrete. The Karistranda tower has a height of 179.1 m while the Øyjord tower has a height
of 173.5 m. A geometrical drawing of the bridge is shown in Figure 2 [37]. The steel box girder
constitutes the actual bridge deck in the suspension span. It is constructed as a trapeze-shaped
closed steel box as shown in Figure 3 [37]. There are a total of 30 steel box girders of length 40
meters that weight about 7000 tonnes of steel. Figure 2 and Figure 3 are taken from the technical
brochure available on the website of Statens Veivesen (see [37]). Detailed design and technical
information is available in the technical report [7] and the book [20]. The construction work
began on February 2013 and the project was completed in 2018 at a cost of approximately NOK
4 billions. The Prime minister of Norway Erna Solberg inaugurated the bridge on December 9,
2018, and the bridge was opened to traffic the same day.

A detailed design of the H̊alogaland bridge and its various construction phases can be found
in [7]. The first 35 mode shapes of the bridge are shown in the Appendix F of this report. Fur-
thermore, the eigenfrequencies are determined for the finished bridge, free system construction
stage, and for the system with the buffer fixed at Karistranda. Figure 4(taken from the report
[7]) shows the first 5 mode shapes (isometric view) and mode frequencies of the H̊alogaland
bridge with finished system. These modes are as per the updated system of H̊alogaland bridge
with all the assumptions. But, in reality the original system may vary, as it is difficult to deter-
mine exact boundary conditions. It may be interesting to do OMA of the H̊alogaland Bridge and
get the final system be updated to real case scenario, that can provide interesting information
about the H̊alogaland bridge and further confirm the detailed analysis carried out during the
design. It shall be noted that the complex and detailed analysis carried out during design and
the safety parameter provided by the code system provide the structure with proper safety and
integrity. An OMA of the bridge can further confirm the analyses and find areas of focus and
optimization.

3 Challenges connected to the H̊alogaland Bridge

3.1 Appeared challenges

On January 14, 2019 some fractures in one of the anchor bolts holding the main cables in place
was found to have cracked. The Norwegian Public Roads Administration inspected the support
system of the cables to find the cause, but the bridge was kept open to road users after a
safety assessment while the investigations were carried out. Review of the documentation about
production and the tests were carried out, and it was found that material failure or incorrect
assembly are possible explanations [36].

It was decided to inspect and monitor all the 344 bolts that are fastened to support the
cables. The total number of strands is 44 and the cable strand that was anchored by these
two rods has a very small load only, i.e. the 43 other cable strands has to carry the total load.
This is shared evenly, meaning that each of the 43 strands has now higher load than before. In
addition, there is a small reserve in the design, so even with 43 strands, the total capacity is still
meeting the full demands of the project. Therefore, the loss of two rods (effectively one cable
strand) does not by itself lead to any concern in regards to general safety or functionality of the
bridge, even when the bridge will be subjected to design loads from traffic and wind.

The probable cause of this fracture in the bolt, is called ”hydrogen-induced stress crack
growth” [40]. On December 20, 2019, the expert group appointed by the Norwegian Public
Road Administration made a final statement on this case. According to this group, the type
of material used in the bolts gives a very high strength and hardness, but at the same time it
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Figure 1: The H̊alogaland Bridge, the longest suspension bridge in the arctic region.

is sensitive to brittle fractures if not produced with careful workmanship. The most probable
reason that triggered the fracture in the bolt was being exposed to the weather and strong wind
for a certain period of time during the construction period and the water accumulated around
them. The weather is a trigger but not a root cause for the fractured bolts and similar high
strength bolts are used on other bridges. The bolts were regularly monitored and inspected
since the fracture was discovered. No more cracks in rest of the bolts have been reported. The
load bearing capacity of the bridge is stable. However, still there is uncertainty in the bolts
that has weakness. So a decision to replace the bolts with weakness was made, to remove this
uncertainty. The situation was classified as not critical, so the maintenance work can be carried
out over a period of time [39].

Quite recently in February 2021 northern Norway was hit by the storm ”Frank.” The storm
had a significant impact on the H̊alogaland bridge. Several of the vibration dampers on the
bridge were completely or partially destroyed, while some parts fell into the sea when the storm
was ranging. This damage has no effect on the strength and load-bearing capacity of the bridge.
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Figure 2: Specifications of the H̊alogaland bridge .

Figure 3: Cross-section view of the stiffening girder of the H̊alogaland bridge.

According to the project manager Hans Jack Arntzen all the vibration dampers have been
inspected after the storm and some of the damaged dampers have been sent to the manufacturer
to find the cause of the damage. This vibration damping system is well tested and has been
mounted on many bridges across the globe and according to supplier no such damage has been
reported earlier. Now, The Norwegian Public Roads Administration is waiting for the results
and tests reports from the manufacturer while monitoring the vibration dampers that are still
mounted [38].

Some problems from the icing on the suspension cables of the H̊alogaland Bridge had also
been reported. Most of the suspension bridges can really withstand the additional load of snow
or ice mass, but the real problem lies in the melting phase when the large chunk of ice are prone
to drop from suspension cables and can damage cars or pedestrian. According to the COWI,
similar problem appeared in the Øresund bridge that links Sweden and Denmark (see [28]). But
the recommended solution was to install the heating cables at the locations where most icing
occurred or just shut the bridge and manually remove the ice.

3.2 Effects of gulf stream and wind under arctic conditions

Reinforced concrete structures (RCS) is not so vulnerable to damages if the temperature is
continuously positive or continuously negative. RCS is more exposed to damages when there
is a continuous variation between positive and negative temperatures. Especially, in Narvik
region, there is a lot of fluctuation in temperature due to the gulf stream in winter. Gulf stream
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Figure 4: The first 5 mode shapes (isometric view) and mode frequencies of H̊alogaland bridge.
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is the reason that the sea port in Narvik is ice free in the winter. This continuous variation of
temperature is very harsh for RCS. Further, the H̊alogaland bridge is exposed to saline conditions
and even roads in the arctic are salted to remove icing.

Frost damage in concrete occurs due to differing thermal expansion of ice and concrete
and by the volume expansion of water that freeze in the concrete pores (see [6]). The process
accelerates in presence of saline conditions. Due to the difference in the thermal expansion of ice
and concrete, stress arises, which further leaves the ice in tension if the temperature drops [16].
This leads to a phenomenon called surface scaling, where a crack in the brine ice penetrates in
the substrate. This superficial damage results in spalling of concrete surface, while the concrete
beneath is not so much unaffected.

Due to the volume expansion of the freezing water restrained by the surrounding concrete
can lead to the formation of micro and macro cracks in the concrete body. This can cause severe
known as internal frost damage [16], which affects the compressive strength, tensile strength,
elastic modulus, fracture energy and the bond between the reinforcing bar and surrounding con-
crete in the damaged regions of the structure (see [26], [33] and [9]). Therefore, this continuous
variation of temperature resulting from gulf stream in winter and salting of roads are bringing
additional challenges for the H̊alogaland bridge. Moreover, the H̊alogaland bridge is further
exposed to the winds coming from the sea towards the Ofoten fjord. This also bring variation
in temperatures. The most crucial factor with this phenomenon is that the bridge is exposed to
more vulnerable conditions on one side (i.e. direction of wind from sea to fjord) than the other.

3.3 Global warming and future analysis

Due to climate warming sea ice extent is reducing, sea levels are rising and increased storminess
make low-lying arctic coastal regions susceptible to storm surges [41]. Climate warming together
with reduced sea ice extent, result in strong wave action and the wave height integrated over
the open water seasons has increased dramatically (see [24]). Further analyses indicate that
this surge in storms will make arctic coastal regions increasingly hostile environment. The
arctic ocean and the arctic coast are projected to harbour more intense summer storms, with
an increase of 1-2 arctic cyclone per summer [23]. The warming Atlantic water layers has a
noticeable impact on the sea ice in the Nordic seas and Barents sea. More and more open water
combine with the prevailing atmospheric pattern of airflow and leads to strong storms (e.g.
Storm Frank in December 2015 that leads to high energy transport to the high arctic [4]. Storm
Frank caused strong winds in Europe. The authors of the article [4] found two other stronger
storms in the past one in December 1986 and the other in December 1999 that had an stronger
intensity and the authors also compiled a list of the strongest North Atlantic cyclones in the
table S1 of supplementary section.

Structures in the arctic environment are exposed to extreme weather conditions that degrade
the performance and leads to faster wear and tear. As we have seen from the trends that
the storms in the arctic region are not just increasing, but also getting more intense. This
will have more impact on the structures. In future, civil engineering structures will need more
routine checkups to carry out operation and maintenance activities to have a reduced downtime.
Especially in arctic regions a lot of logistics are needed to carry out such an activity and it gets
very expensive. A good solution of this problem could be a hybrid system for the SHM of civil
engineering structures that can analyse the condition of the structure after severe storms. To
maximize the benefit of such an approach, clear objectives and performance indicators should
be defined prior to the implementation of a SHMS. In fact, this could contribute reducing the
downtime of structure or recommending timely maintenance so the structure can be saved from
deterioration.
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4 Suspension bridge challenges in general

There are many factors that influence the structural deterioration of bridges and hence cause
damage to their components. Changes in the load patterns on bridges due to an increase
in traffic, results in exceeding the load carrying capacity of structural components (see [44]).
Moreover, different environmental conditions such as floods, hurricanes, storms, tornadoes and
earthquakes accelerate the structural deterioration of bridges. According to [31] overloading,
environmental deterioration and lateral excitation caused by vehicles have crucial effects on
bridge deterioration.

Life expectancy of a suspension bridge is directly correlated to the conditions of the cable
system, and the major problems that arise in suspension bridges are the corrosion in the cable
system and wire breaks [44]. Corrosion is an electrochemical process, in which the corroding
metal is oxidised in the presence of humid environment and presence of humidity further accel-
erate this process. According to [17], corrosion in the cable system begins when moist air and
water get through the coating system due to imperfections in coating. If the water and moist
air get inside the cable system, then its evaporation is impossible. This is a consequence of the
fact that the wires in the cable system get exposed to the moist environment for a long time.
Examples of corrosion in the suspension bridge cables can be found in [44] and the report [17].
In the earlier times it has been a negligence in maintenance of the suspension bridges in USA
for many years, as a result many of them became structurally deficient due to corrosion. In a
similar study conducted in Japan, it was found that the newest suspension bridges cables have
corrosion issues (see [12]). On H̊alogaland bridge, de-humidification system of the main cables
are installed to protect the main cables from corrosion.

Hangers are very crucial components of the suspension bridges, that are exposed to severe
corrosion. Due to corrosion, structural capacity of the hangers decreases and this can lead to
sudden failure. This sudden failure of hangers causes strong vibrations and as a result there
could be huge changes in the internal forces of the suspension bridge. It is noted that design
of modern bridges account for hanger rupture load cases. Furthermore, hangers are detailed
to prevent water ingress and thereby corrosion. Hangers from the H̊alogaland bridge have
high-density polyethylene (HPDE) sheathing. Therefore, corrosion in hangers have detrimental
influences on the capacity and serviceability of the structure and in the extreme case it results
in bridge failure [44].

In 2001, Yibin Southgate bridge in China collapsed and fell down in the river after 8 ver-
tical cables broke. In an another incidence Kutai Kartanegara Bridge in Indonesia suffered a
progressive collapse resulting from one broken hanger (see [27]). The incidence on the Kutai
Kartanegara bridge took place when the workers were performing maintenance on the hangers.
It led to mass casualties, 11 people were killed and more than 30 were missing.

In hanger breakage event, there is a great bending moment in the girders. The bending
moment is not just confined to the girders that are adjacent to the broken hanger near the tower
but also in the section of girders that are far away from the broken hanger. Moreover, it also
causes large dynamic responses in the stiffening girders even in the sections that are far away
from the broken hanger. Due to mechanical degradation of the hangers resulting from corrosion,
there is a slight increase in the structural dynamic responses of the girders(see [45]).

Progressive collapse is evaluated with respect to demand capacity ratio (DCR), which is
defined as the ratio of the force in the structural member after the instantaneous removal of a
column for each scenario to the member capacity [25]. A structural member is classified as failed
if DCR value exceeds more than 2 for a typical structural configuration. The hangers that are
adjacent to the broken hanger receives most of the redistributed load and becomes the critical
member. DCR of a hanger progressively decreases with the growth of corrosion. Corroded
hangers should be replaced in time in order to improve the structural robustness after sudden
breakage of a hanger.

Suspension bridges are susceptible to long term fatigue damage as a result of many service
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years and increased loading. This leads to weakening of some components or parts of the
structure. The main cables are protected with corrosion protection systems, that shields the
load carrying wires from visual inspections. These factors further reveals the importance of
SHM in informing operation and maintenance strategies for suspension bridges for their safer
performance. Some examples where SHM systems have been installed in long span bridges are
the Skarnsundet bridge in Norway, the new HaengJu Bridge in Korea, The Storck’s bridge in
Switzerland and the New Carquinez bridge in California [44]. In the following Section we define
structural damage and various vibration based damage detection methods.

5 Vibration based damage detection

Structural damage is defined as the weakening of a structure that leads to reduced performance
as well as a deviation in the structure’s original geometric or material properties, that causes
undesirable stress, displacement or vibrations. A damage in a structure can be linear if the
structure remains linearly elastic after damage or else it is classified as non-linear damage.
Main objectives of the damage detection methods can be classified at 5 levels: determination
of the existence of damage, determination of the location of damage, determination of the type
of damage, determination of the extent of damage and lastly the prediction of the remaining
service life after the damage [10]. First 4 levels are classified as damage diagnosis state, while the
last level is damage prognosis state. Damage diagnosis and prognosis are very challenging for
complex civil structures like suspension bridges, thus this research focuses on damage detection
for suspension bridges using vibration response.

In the article [35], we have discussed the mathematical modelling of the vibrating structure
and various techniques for the dynamic analysis of structures are described in [34]. Vibration
based damage detection is based on the fact that their is change in the structural properties
i.e. change in mass, damping and stiffness due to damage. This change in structural properties
arising due to damage, causes change in modal properties i.e., mode shape, natural frequency
and modal damping. Since dynamic characteristics of a structure are functions of its stiffness and
mass, the variation in modal properties can be an effective indicator of structural deterioration.

Models that are based on vibration based damage detection (VBDD) method uses analytical
model to identify damage. These analytical models are finite element (FE) model or updated FE
model. Thus there is an interest for model updating of analytical FE model in order to detect
damage (see [34]). This model updating based approach is expensive and time consuming but it
has been used in large civil engineering structures like bridges successfully. On the other hand
non-model based damage detection methods are not so expensive and quite straightforward since
they don’t require an analytical model. They are also referred to as damage index (DI) methods.
In these methods, the changes in modal parameters between the intact and damaged states are
used to develop the DI for the damage detection of the structure under consideration.

DI’s computed using primary vibration properties are classified as: natural frequency based
methods, damping based methods, and direct mode shape methods. DI’s computed using sec-
ondary vibration properties can be classified as curvature mode shaped based methods, flexibility
based methods and modal strain energy based methods. These methods have been discussed in
detail in the PhD thesis of Wickramasinghe (see [44]) along with its advantages and disadvan-
tages.

VBDD contains many uncertainties along with measurement noises, modelling errors and
methodology errors. Neglecting these uncertainties could lead to inaccurate damage detection
results. Researchers have proposed statistical damage identification based approaches such as
statistical pattern recognition [14] , perturbation techniques [18] and Bayesian methods [5] and
[19]. In these approaches uncertainties in vibration data are described as random variables.
OMA has gained huge popularity in the last decade in theoretical development as well as practical
applications. In the articles [34] and [35] we have discussed experimental results of OMA for

9 147



a steel truss bridge and a high-rise building, respectively. It is very challenging and difficult
to control the test environment for OMA. Thus uncertainty plays a crucial role in OMA and
needed to be backed by a statistical interference problem to provide robustness of the mode
identification results [48]. (Italy and portugal oma based damage detection add material, rune
bricnker and carlos vantura)

Various statistical approaches have been developed to quantify uncertainty over the decades,
but two main approaches are non-Bayesian approach and Bayesian approach. Examples of non-
Bayesian approaches are frequency domain maximum likelihood (ML) technique and stochas-
tic subspace identification (SSI) based methods (see [34]). Significant development has been
achieved in structural dynamics that is based on Bayesian statistical framework. Bayesian fast
Fourier transform (BFFT) (see [49]) and Bayesian spectral density approach (BSDA) ([21]) are
computationally demanding and mathematically rigorous. A two stage fast Bayesian spectral
density approach (FBSDA) based on the framework of BFFT and BSDA was developed (see
[46] and [47]), where a variable separation techniques was presented to separate the spectrum
variables (such as: frequency, damping ratio, PSD of modal excitation and prediction error) and
spatial variables (such as: mode shape). This resulted in the reduction of dimension involved
for computation and have ease of implementation. A successful implementation of a two stage
FBSDA has been reported on a long-span suspension bridge [22]. In the next section new results
in the non-separable function space, with in the Bayesian framework are discussed.

6 Pre-processing of data and data management

In order to do effective vibrational analysis, one of the most important requirements is to have
as accurate signals as possible from the industry standard vibration transducers such as ac-
celerometers. Depending upon the need of the application, the signal can be processed directly
or be improvised by using mathematical integrators to other units of vibration measurements.
The signal can be conditioned using high pass or low pass filters with respect to the frequency
of interest. In order to have the required results, the signal might be averaged and sampled
multiple times. The other important thing required is to decide on the number of samples and
the sampling rate.

In a SHM system, the acceleration data retrieved from the site might require some pre-
processing to prepare data for analysis and interpretation. However, it can be some unwanted
characteristics that needs to be resolved (see [8]) e.g.:

• Lack of synchronization in the system clocks of various data-loggers in the distributed
monitoring system.

• Due to high-speed data acquisition, it is a possibility that there could be some gaps in the
data files due to missed samples.

• There could be a duplication of data samples.

• It is a possibility that there could be a slow drift of the voltage measurement baseline over
time that could lead to constant baseline offset in acceleration time history signals.

• There could be a disturbance form electrical noise at harmonics of electrical frequency that
can lead to high-frequency noise in the data.

• Data from a dynamic event could be partitioned in multiple separate files due to an
interruption in the communication system or a conflict originating during data collection
and transmission.

• There might be a possibility that a data file can contain data from multiple triggered data
events.
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Due to all these factors, file sorting and processing of raw data is performed in order to
fix the problems mentioned above and generate suitable data that could be used for analysis
and visualization. Data processing, data visualization and data analysis techniques used in the
Confederation bridge, in Canada are explained in detail in [8]. In order to have high precision in
the measurements, accelerometers are needed to be calibrated between different measurement
occasions. A simple calibration method has been proposed in [13]. This technique is non-
iterative. Therefore there are no complicated convergence issues in relation to input parameters
and round-off errors. The technique requires fewer arithmetic operations in comparison to other
iterative approaches. An algorithmic framework for the reconstruction of time-delayed and
incomplete binary signals from the energy-lean SHM system has been discussed in [29].

For a bridge of the size of the H̊alogaland Bridge in Arctic environment where the weather
changes too fast and conditions are extreme, SHM in real-time will generate a lot of data. For
a project of such a scale it will be good to have data management with the use of artificial
intelligence(AI) where the useful data and information can be extracted and can help to further
automate the process of damage detection. Department of Computer Science and Computational
Engineering at UiT-The Arctic University of Norway, Campus Narvik has already invested in
AI based server that can be used, if there comes a project for the SHM of H̊alogaland Bridge
with UiT Campus Narvik as a partner.

7 Signal processing problems in non-separable function spaces

Vibration based damage detection techniques contains lots of uncertainties that leads to inac-
curate damage detection results. Researchers all over the world have proposed and worked to
develop statistical damage detection approaches based on vibration data, where uncertainties
are described as random variables. Various approaches include perturbation techniques, Monte
Carlo simulations, statistical pattern recognition and Bayesian methods. Bayesian methods have
proven to be the most rigorous probabilistic framework to identify target variables and evaluate
corresponding uncertainties using the available information (see [43]). In the preliminary stage
of structural failure, damage usually occur at limited locations in the structure. Sparse Bayesian
learning has been widely applied to sparse signal reconstruction and compressed sensing for the
development of structural damage identification. Bayesian interface is a probabilistic method of
interference that allow to form probabilistic estimates of certain parameters from a given series
of observations. This method can be used in a couple of different ways in SHM including model
updating, monitoring by inferring structural parameters over time, as well as in determining the
optimal placement of sensors.

In reference [15] to the review paper on a Bayesian approach to signal processing problems,
signal is a solution of a stochastic partial differential equation (SPDE). Main objective of this ap-
proach is to find the signal as a solution of the SPDE, taking into account the noisy observations
of its solution. In the overview, a focus there is on showing that the idea to work with proba-
bility measures on function space, that lead to the formulation of a well-posed signal-processing
problem. With this approach one can avoid dealing with the algorithms where methods based on
application of the standard Markov chain Monte Carlo (MCMC) method after a discretization
leads. A major disadvantages of such algorithms is that they function badly under refinement
of discretization.

Providing a proper mathematical formulation of the problems on domain space while working
with probability measures on a function space, leads to efficient sampling techniques, defined on
path-space as the domain space, and therefore it is robust under the introduction of discretization
[30]. In article [15], a wide variety of signal processing problems is over-viewed which leads to a
posterior probability measure on a separable Banach space. In our submitted article [30] main
aim was to go a step further ahead and investigate cases, when studying problems tackled in a
Bayesian framework, is in non-separable space. Therefore, techniques for non-separable function
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spaces are suggested. Further, in cases where problems are formulated as filtering problems
in addition to smoothing problems, development of an approach based on the framework of
weighted function spaces is very useful.

In the new article [30], some new contributions in this connection have been stated, proved
and discussed. This article is the first where non-separable function spaces has been used to give
a new possibility to avoid approximation problems in signal processing e.g. related to damage
detection in bridges.

For new contributions in this see [30].

8 Some new Fourier based inequalities in unbounded orthogonal
and orthonormal systems

Fourier series as defined in the books [11] and [42] is an expansion of a periodic function, in
terms of sinusoids, combined by a weighted summation. Fourier series uses the orthogonality
relationship of the sine and cosine functions. The computation and study of Fourier series
is known as an important part of harmonic analysis. In engineering sciences, the process of
decomposing a function into oscillatory components is called Fourier analysis, while the process
of reconstructing the function from these pieces is known as Fourier synthesis. Fourier transform
and inverse Fourier transform as defined in [35] is used to transform a time domain signal with
given properties to frequency domain. In terms of mathematics, Fourier transform and inverse
Fourier transform are analogies of the Fourier analysis and Fourier synthesis for functions on
unbounded intervals. Discrete version of the Fourier transform can be computed much faster
and more efficiently by fast Fourier transform (FFT) algorithm.

In the papers [34] and [35] we have discussed various Fourier based methods that are used
in OMA and SHM when the task of signal processing is required. We presented how frequency
domain decomposition (FDD) was used together with fast Fourier transform (FFT) to find the
modal parameters of a steel truss bridge and Lule̊a fire house tower. For the applications of
FFT the system to be analysed should be linear and the data that has to be processed should
be strictly periodic or stationary, else it can lead to misleading results [35]. Short time Fourier
transform (STFT) as suggested by Dennis Gabor uses a window function and can overcome
some of the limitations of FFT.

As for now, a lot of theoretical research has been carried out for Fourier coefficients in
bounded orthogonal and orthonormal systems, but it has lots of limitations. Moreover some
practically used Fourier methods, e.g. Haar wavelets are unbounded. This motivated us to fur-
ther explore and analyse inequalities for Fourier coefficients in unbounded orthogonal systems
based on [1] and new results are presented in [2]. In this work a number of classical Fourier
inequalities related to Fourier coefficients in unbounded orthogonal systems are generalized and
complemented in generalized Lorentz spaces. Some new Fourier and Jackson-Nikol´skii inequal-
ities in unbounded orthonormal systems have been stated, proved and discussed in [3]. In this
article, we consider the Fourier series of the function with respect to unbounded orthonormal
system and the generalized Lorentz space is defined via a continuous and concave function. The
derived results generalize and unify several well known results. Our actual interest is equipped
with some applications related to structural problems in engineering, see e.g. PhD thesis of Seger
[32] and the papers [34] and [35]. These structural problems focus about the safety of structure
especially detecting damages in dams, bridges, high rise buildings and tunnels. Authors of [1],
[2], [3], [34] and [35] believe that further development of this theory in unbounded systems can
help to overcome some of the shortcoming of the Fourier methods already in use for SHM and
OMA.
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9 Concluding Remarks

Remark 9.1 A limited research has been conducted for the damage detection in suspension
bridges using VBDD methods to detect damages in main girder, towers, bearings. Damage de-
tection in the main cables and hangers has not been fully examined for the case of single and
multiple damages under moderate damage conditions. Hence, more research and use of such
methods can contribute to solve the mentioned problems. In particular,it is worth developing
a VBDD method considering different vibration modes (vertical, lateral, torsional and coupled
modes) when damage occurs in the main suspension cable and hangers considering their domi-
nant modes of vibration. Sensitivity analysis assessing the deterioration extent needed for detec-
tion as well as an assessment of the effect of ambient and operational conditions on vibrational
responses are considered key elements of future research initiatives.

Remark 9.2 Several minor damages and challenges on the newly constructed H̊alogaland bridge
has been reported by Statens Veivesen. As seen in the literature various similar bridges across
the world has problems related to corrosion and damage in main suspension cables and hang-
ers. Implementation of a SHM system, with clear objectives agreed with relevant stakeholders
prior to its installation, for the H̊alogaland bridge can help in informing proactive operation
and maintenance strategies. This will enhance the safety of the users and the maintenance
workers. Moreover, the bridge is newly build, it will be of interest how the crucial parameters
changes in arctic conditions, that will provide valuable information for the future construction
of infrastructure in arctic regions.

Remark 9.3 Furthermore, development of Fourier analysis and inequalities also in unbounded
orthogonal and orthonormal system can provide or help in the improvement of the signal pro-
cessing techniques used for the damage detection in suspension bridges and related structures.

Remark 9.4 Data management system along with the use of AI can help in the automation
and improving the efficiency of SHM for complex civil engineering structures like the H̊alogaland
bridge.

Remark 9.5 BFFT, BSDA and two stage FBSDA based approaches has shown significant im-
provements in the OMA of civil engineering structures. However, in the theory some approxima-
tion problems appear. Hence, in order to overcome these problem we suggest to use non-separable
spaces with applications on signal processing techniques with in Bayesian framework can provide
more insights on Bayesian state-approach for damage detection for suspension bridges and other
civil engineering structures such as dams, tunnels and high-rise buildings.

Remark 9.6 From the literature on global warming and the Arctic environment it can be con-
cluded that the storms in the Arctic are not just increasing, rather they are getting bigger and
stronger. Thus the behaviour of the H̊alogaland bridge in the changing arctic conditions will be
very useful information that can further help in the improvements of future constructions in the
extreme Arctic environment.

Acknowledgement

• I am grateful to Roy Evind Antonsen (Project Leader, Staten Veivesen) for his help and
support for this work.

• I am specially thankful to Professor Per Johan Nicklasson, Lars-Erik Persson, Dag Lukkassen,
and Natasha Samko for some generous advices, which have improved the final version of
this paper.

13 151



• I thank my dearest friend and professional photographer Rune Dahl for providing me the
picture of the H̊alogaland bridge for this article. This photograph is a copyright of Rune
Dahl.

14152



References

[1] G. Akishev, D. Lukkassen, and L. E. Persson. Some new Fourier inequalities for unbounded
orthogonal systems in Lorentz–Zygmund spaces. Journal of Inequalities and Applications,
2020(1):1137–1155, 2020.

[2] G. Akishev, L. E. Persson, and H. Singh. Inequalities for the Fourier coefficients in un-
bounded orthogonal systems in generalized Lorentz spaces. Nonlinear Studies, 27(4), 2020.

[3] G. Akishev, L. E. Persson, and H. Singh. Some new Fourier inequalities and Jackson–
Nikol´skii type inequalities in unbounded orthonormal systems. Constructive Mathematical
Analysis, 4(3):291–304, 2021.

[4] V. A. Alexeev, J. E. Walsh, V. V. Ivanov, V. A. Semenov, and A. V. Smirnov. Warming in
the Nordic Seas, North Atlantic storms and thinning Arctic sea ice. Environmental research
letters, 12(8):1–14, 2017.

[5] J. L. Beck and L. S. Katafygiotis. Updating models and their uncertainties. I: Bayesian
statistical framework. Journal of Engineering Mechanics, 124(4):455–461, 1998.

[6] S. Chatterji. Aspects of the freezing process in a porous material–water system: part 1.
freezing and the properties of water and ice. Cement and Concrete Research, 29(4):627–630,
1999.

[7] COWI. H̊alogaland bridge detailed project and global analysis model. Technical Report
130033/101, Staten vegvesen, Region Nord, 2014.

[8] S. L. Desjardins, N. A. Londono, D. T. Lau, and H. Khoo. Real-time data processing,
analysis and visualization for structural monitoring of the Confederation bridge. Advances
in Structural Engineering, 9(1):141–157, 2006.

[9] G. Fagerlund, G. Somerville, and J. Jeppson. Manual for assessing concrete structures
affected by frost. Division of Building Materials, Lund Institute of Technology, Lund,
Sweden, 2001.

[10] C. R. Farrar and K. Worden. Structural Health Monitoring: A Machine Learning Perspec-
tive. John Wiley & Sons, 2012.

[11] G. B. Folland. Fourier analysis and its applications, volume 4. American Mathematical
Society, 2009.

[12] K. Furuya, M. Kitagawa, S.-i. Nakamura, and K. Suzumura. Corrosion mechanism and
protection methods for suspension bridge cables. Structural engineering international,
10(3):189–193, 2000.

[13] N. Grip and N. Sabourova. Simple non-iterative calibration for triaxial accelerometers.
Measurement Science and Technology, 22(12):125103, 2011.

[14] M. Gul and F. N. Catbas. Statistical pattern recognition for structural health monitoring
using time series modeling: Theory and experimental verifications. Mechanical Systems
and Signal Processing, 23(7):2192–2204, 2009.

[15] M. Hairer, A. M. Stuart, and J. Voss. Signal processing problems on function space:
Bayesian formulation, stochastic PDEs and effective MCMC methods, 2011.

[16] K. Z. Hanjari, P. Kettil, and K. Lundgren. Modelling the structural behaviour of frost-
damaged reinforced concrete structures. Structure and Infrastructure Engineering, 9(5):416–
431, 2013.

15 153



[17] T. Hopwood II and J. H. Havens. Inspection, prevention, and remedy of suspension bridge
cable corrosion problems. Technical Report UKTRP-84-15, University of Kentucky, 1984.

[18] X. Hua, Y. Ni, Z. Chen, and J. Ko. An improved perturbation method for stochastic finite
element model updating. International Journal for Numerical Methods in Engineering,
73(13):1845–1864, 2008.

[19] Y. Huang, C. Shao, B. Wu, J. L. Beck, and H. Li. State-of-the-art review on Bayesian
inference in structural system identification and damage assessment. Advances in Structural
Engineering, 22(6):1329–1351, 2019.

[20] Y. Jacobsen. H̊alogalandsbrua superbru i verdensklasse. Media Services AS, 2018.

[21] L. S. Katafygiotis and K.-V. Yuen. Bayesian spectral density approach for modal updating
using ambient data. Earthquake engineering & structural dynamics, 30(8):1103–1123, 2001.

[22] Z. Li, M. Q. Feng, L. Luo, D. Feng, and X. Xu. Statistical analysis of modal parameters of a
suspension bridge based on Bayesian spectral density approach and SHM data. Mechanical
Systems and Signal Processing, 98:352–367, 2018.

[23] Y. J. Orsolini and A. Sorteberg. Projected changes in Eurasian and Arctic summer cyclones
under global warming in the Bergen climate model. Atmospheric and Oceanic Science
Letters, 2(1):62–67, 2009.

[24] I. Overeem, R. S. Anderson, C. W. Wobus, G. D. Clow, F. E. Urban, and N. Matell. Sea
ice loss enhances wave action at the Arctic coast. Geophysical Research Letters, 38(17):1–6,
2011.

[25] Portland Cement Association. An engineer’s guide to: Concrete buildings and progressive
collapse resistance, 2005.

[26] T. C. Powers. A working hypothesis for further studies of frost resistance of concrete. ACI
Journal Proceedings, 41(1):245–272, 1945.

[27] W. Qiu, M. Jiang, and C. Huang. Parametric study on responses of a self-anchored sus-
pension bridge to sudden breakage of a hanger. The Scientific World Journal, 2014, 2014.

[28] J. H. Roldsgaard, A. Kiremidjian, C. T. Georgakis, and M. H. Faber. Preliminary prob-
abilistic prediction of ice/snow accretion on stay cables based on meteorological variables.
In 11th international conference on structural safety & reliability conference, 2013.

[29] H. Salehi, S. Das, S. Chakrabartty, S. Biswas, and R. Burgueño. An algorithmic frame-
work for reconstruction of time-delayed and incomplete binary signals from an energy-lean
structural health monitoring system. Engineering Structures, 180:603–620, 2019.

[30] N. Samko and H. Singh. A note on contributions concerning non-separable spaces with
respect to signal processing within Bayesian frameworks. Stochastics and Partial Differential
Equations: Analysis and Computations, 2021. (Submitted).

[31] N. Schneidewind et al. IEEE reliability society technical operations annual technical report
for 2010. IEEE Transactions on Reliability, 59(3):449–482, 2010.

[32] A. Seger. Some new contributions related to structural problems in engineering. PhD thesis,
UiT The Arctic University of Norway, 2020.

[33] T. Shih, G. Lee, and K.-C. Chang. Effect of freezing cycles on bond strength of concrete.
Journal of structural engineering, 114(3):717–726, 1988.

16154



[34] H. Singh and N. Grip. Recent trends in operation modal analysis techniques and its appli-
cation on a steel truss bridge. Nonlinear Studies, 26(4):911–927, 2019.

[35] H. Singh, N. Grip, and P. J. Nicklasson. A comprehensive study of signal processing
techniques of importance for operation modal analysis (OMA) and its application to a
high-rise building. Nonlinear Studies, 26(4):1–23, 2021.

[36] Statens Vegvesen. Ekstra inspeksjoner etter brudd i ett stag. https://www.vegvesen.no,
(accessed: 01.04.2021), (in Norwegian).

[37] Statens Vegvesen. The H̊alogaland bridge– Technical brochure.
www.vegvesen.no/Europaveg/e6halogalandsbrua, (accessed: 01.04.2021).

[38] Statens Vegvesen. H̊alogalandsbrua p̊a E6 nord for Narvik p̊aført mindre skader etter
stormen Frank. https://www.vegvesen.no, (accessed: 01.04.2021), (in Norwegian).

[39] Statens Vegvesen. Reklamasjonskrav etter boltebrudd trekkes. https://www.vegvesen.no,
(accessed: 01.04.2021), (in Norwegian).
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