
1. Introduction
Diagnosing the magnitude of a climate forcing is necessary to determine the climate responses to this forcing. 
However, defining a clear separation between forcing and response is challenging, and no clear distinction exists 
(Sherwood et al., 2015). In this study we attempt to apply a separation within a linear temperature response frame-
work, incorporating also the possibility of globally nonconstant atmospheric feedbacks. We test this method on 
models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5).

In the most common forcing-feedback framework, the radiative imbalance at the top of the atmosphere (𝐴𝐴 𝐴𝐴 ) is 
described as

𝑁𝑁 = 𝜆𝜆𝜆𝜆 + 𝐹𝐹 𝐹 (1)

where 𝐴𝐴 𝐴𝐴  is the temperature response, 𝐴𝐴 𝐴𝐴 is the feedback parameter, and 𝐴𝐴 𝐴𝐴  is the radiative forcing, all evaluated as 
global means. According to this equation, forcing is the initial radiative imbalance, before the global mean sur-
face temperature starts to respond. However, as discussed by Hansen et al. (2005); Richardson et al. (2019), there 
are many ways of defining the forcing, allowing various rapid adjustments before diagnosing the radiative im-
balance. Forcing estimates are therefore method and model dependent. Some studies even consider multi-annual 
adjustments associated with ocean inertia (Menzel & Merlis, 2019; Rugenstein, Gregory, et al., 2016; Williams 
et al., 2008). A motivation for this study is therefore to find an estimation method aiming for a clean separation 
between forcing and response. By design, our method aims at finding the forcing estimates that are the most 
predictable for the surface temperature responses.

The uncertainties associated with forcing estimates are large, not only due to the different rapid adjustments 
between models (Smith et al., 2018), but also due to differences in the parameterizations of the radiative transfer 
(Soden et al., 2018). The instantaneous forcing spread contributes to about half of the total intermodel spread 
in forcing (Chung & Soden, 2015), and the remaining spread is largely due to fast cloud adjustments (Zelinka 
et al., 2013). These uncertainties have led to an effort aiming at better characterizing the forcing used for the 
new CMIP6 model versions (Forster et al., 2016; Pincus et al., 2016). These studies recommend using fixed-
SST forcing, largely due to the reduced level of noise by this method as compared to regression-based estimates. 
Fixed-SST forcing estimates are made by diagnosing the top of atmosphere radiative imbalance after fixing the 
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sea-surface temperatures and letting the atmosphere adjust. These effective forcings include rapid adjustments, 
for example, atmospheric temperature and cloud adjustments, and are found to be better predictors of global sur-
face temperature responses than instantaneous forcing estimates (Richardson et al., 2019). There is, however, sub-
stantial land warming in these simulations. Our main motivation is to improve forcing estimates based on already 
existing simulations, which can be used for models where fixed-SST forcing is unavailable, and to circumvent the 
problem of land warming in fixed-SST simulations.

In experiments with a time-varying forcing, forcing estimates may be even more uncertain than in idealized 
experiments with constant forcing. Forster et  al.  (2013), hereafter F13, computes forcing time series 𝐴𝐴 𝐴𝐴 (𝑡𝑡) by 
rearranging Equation 1. Their method consists of first determining 𝐴𝐴 𝐴𝐴 following the regression method of Gregory 
et al. (2004) using idealized step-forcing simulations, and then using time series of 𝐴𝐴 𝐴𝐴(𝑡𝑡) and 𝐴𝐴 𝐴𝐴 (𝑡𝑡) from any exper-
iment to compute what they call adjusted forcing:

𝐹𝐹 (𝑡𝑡) = 𝑁𝑁(𝑡𝑡) − 𝜆𝜆𝜆𝜆 (𝑡𝑡) (2)

We note that adjusted forcing in F13 does not mean the same as adjusted forcing in Hansen et al. (2005), where 
the latter allows only fast stratospheric adjustments to take place before the forcing is estimated from the top of 
the atmosphere imbalance in an idealized step-forcing experiment. Forcing estimates based on regressions in a 
Gregory plot, such as in Andrews et al. (2012) and F13 are what Forster et al. (2016) refers to as regression-based 
methods, assuming a constant feedback parameter.

However, several recent studies have pointed out that 𝐴𝐴 𝐴𝐴 is not a constant (Andrews et al., 2015; Armour et al., 2013; 
Geoffroy, Saint-Martin, Bellon, et al., 2013; Gregory & Andrews, 2016; Proistosescu & Huybers, 2017; Rugen-
stein et  al.,  2020). Armour et  al.  (2013) demonstrate that locally constant feedbacks can result in a globally 
time-dependent feedback parameter because the pace of sea surface temperatures (SST) equilibration depends 
on the location, weighting the local feedbacks differently with time. Other studies demonstrated that also locally, 
feedbacks change magnitude with equilibration time (e.g., Andrews & Webb, 2018; Andrews et al., 2015; Dong 
et al., 2019, 2020; Proistosescu & Huybers, 2017; Rugenstein, Caldeira, & Knutti, 2016) and also throughout the 
historical time period (Armour, 2017; Dessler, 2020; Gregory & Andrews, 2016; Marvel et al., 2018; Paynter 
& Frölicher, 2015). The tropical Pacific, the relative warming of midlatitude or global oceans to the West Pa-
cific warm pool, the North Atlantic, and the mid- and high latitudes have all been suggested to influence global 
feedbacks (e.g., Andrews & Webb, 2018; Dong et al., 2020; Trossman et al., 2016; Winton et al., 2010; Zelinka 
et al., 2020). The mechanism most often invoked is the dependence of lower tropospheric stability on the ratio 
of local and remote SSTs. Regions warming faster than the West Pacific warm pool—which sets the temperature 
of the free troposphere through deep convection—show a reduced lower tropospheric stability, a decrease in 
low-cloud coverage, and thus, a strong cloud and net radiative effect at the top of the atmosphere (e.g., Ceppi 
& Gregory, 2017; Zhou et al., 2016). In the CMIP6 models, the shortwave cloud feedbacks in the extratropics 
appear to be more important for the nonconstancy of 𝐴𝐴 𝐴𝐴 than clouds in the tropics (Bacmeister et al., 2020; Zelin-
ka et al., 2020), but the relatively short record of global cloud observations makes it difficult to assess cloud 
modeling against the observations (Loeb et al., 2020). Other studies highlight the dependence of feedbacks on 
temperature and radiative forcing (Bloch-Johnson et al., 2021; Meraner et al., 2013; Rohrschneider et al., 2019).

The nonconstancy of 𝐴𝐴 𝐴𝐴 implies that the forcing definition in Equation 2 is ambiguous. This is particularly appar-
ent for strong temperature responses, when 𝐴𝐴 𝐴𝐴𝐴𝐴  more strongly affects the determination of the value of 𝐴𝐴 𝐴𝐴  . Here 
the magnitude and time-dependence of 𝐴𝐴 𝐴𝐴 are particularly important. Larson and Portmann (2016) demonstrated 
for instance that 𝐴𝐴 𝐴𝐴 obtained from regressions in the first 20  years’ time period of abrupt4𝐴𝐴 xCO2 gives higher 
forcing estimates compared to regressions in 150 years’ time period. This is one of several reasons why Forster 
et al. (2016) recommends fixed-SST methods instead of regression methods to determine the forcing.

We explore how an alternative definition of effective forcing with a time-scale dependent 𝐴𝐴 𝐴𝐴 differs from estimates 
by F13. To compute these alternative estimates, we decompose the temperature response assuming it responds 
linearly to the forcing, and we demonstrate that the linear temperature response to the new forcing is close to 
the modelled temperature response in future scenarios for most CMIP5 models. By a linear response, we mean 
the temperature response determined from a linear non-homogeneous system of differential equations, whose 
solution can be expressed as a convolution between a Green’s function and the forcing. Our results suggest that 
this forcing estimate appears more appropriate for estimating temperature responses using linear response models 
than previous estimates.
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Our method is an iterative routine, starting with the F13 estimate of forcing, then computing the linear response 
to this forcing, which is further used to compute a new forcing estimate, etc., until convergence to a final forcing 
estimate is obtained. Theory and methods are described in Section 2, and the results are shown in Section 3. In 
Section 4, we discuss the assumptions made in our method, and how it compares to other forcing estimates, before 
we conclude in Section 5.

2. Theory and Methods
The time-scale dependence of 𝐴𝐴 𝐴𝐴 is analyzed by making use of the same decomposition as in Proistosescu and 
Huybers (2017), hereafter PH17. While PH17 use the method to better understand estimates of climate sensi-
tivity, we are interested in the intersect of the fit with the vertical axis, the initial radiative imbalance. We also 
estimate parameters using a different approach, mainly because our method simplifies the comparison to methods 
based on single regression estimates in Gregory plots. The equations that will be presented in this section pro-
vide interpretations of the different 𝐴𝐴 𝐴𝐴 ’s that may appear in a Gregory plot, as well as interpretations of ”forcing 
estimates” based on regressions on decadal to centennial time scales. The method is based on the assumption that 
the temperature response can be decomposed into a sum of 𝐴𝐴 𝐴𝐴 components 𝐴𝐴 𝐴𝐴 =

∑𝐾𝐾
𝑛𝑛=1 𝐴𝐴𝑛𝑛 , where each component 

is the exponential temperature response to the forcing on the time scale 𝐴𝐴 𝐴𝐴𝑛𝑛 (yrs),

𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝑐𝑐𝑛𝑛exp(−𝑡𝑡∕𝜏𝜏𝑛𝑛) ∗ 𝐹𝐹 (𝑡𝑡). (3)

the 𝐴𝐴 ∗ denotes a convolution, and the factors 𝐴𝐴 𝐴𝐴𝑛𝑛 
(

��2

�

)

 are the amplitudes of the temperature responses per unit 
forcing. As further explained in the next subsection, this temperature decomposition can be interpreted as either 
approximating different global-scale processes (such as mixed-layer vs. deep ocean responses to forcing) or as 
regions responding with different pace to the forcing (such as the tropics in general vs. regions of upwelling or 
deep ocean convection). 𝐴𝐴 𝐴𝐴𝑛𝑛 therefore depends on both the feedbacks and thermal inertia associated with different 
regions, and the fraction of the global area involved in the response at time scale 𝐴𝐴 𝐴𝐴𝑛𝑛 .

Furthermore, the method assumes that constant feedback parameters 𝐴𝐴 𝐴𝐴𝑛𝑛 exist, with 𝐴𝐴 𝐴𝐴 = 1,… , 𝐾𝐾 associated with 
each time scale, such that the terms in Equation 1 can be decomposed into the following sums:

𝑁𝑁(𝑡𝑡) =
𝐾𝐾
∑

𝑛𝑛=1

𝑁𝑁𝑛𝑛(𝑡𝑡) = 𝐹𝐹 (𝑡𝑡) +
𝐾𝐾
∑

𝑛𝑛=1

𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝐹𝐹 (𝑡𝑡) + 𝜆𝜆(𝑡𝑡)𝑇𝑇 (𝑡𝑡) (4)

By rewriting Equation 4, PH17 noted that the time-variation of 𝐴𝐴 𝐴𝐴(𝑡𝑡) can be explained as a weighted average of the 
feedbacks associated with different components 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑡𝑡) of the global temperature:

𝜆𝜆(𝑡𝑡) =
∑𝐾𝐾

𝑛𝑛=1 𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛(𝑡𝑡)
∑𝐾𝐾

𝑛𝑛=1 𝑇𝑇𝑛𝑛(𝑡𝑡)
 (5)

We note that in a 4𝐴𝐴 xCO2 experiment, we define the forcing to be a constant, and the slope 𝐴𝐴 𝐴𝐴(𝑡𝑡) must be interpreted 
as the slope of a line drawn between the fixed forcing 𝐴𝐴 𝐴𝐴  and a point (𝐴𝐴 𝐴𝐴 (𝑡𝑡), 𝑁𝑁(𝑡𝑡) ). This slope may differ from a 
linearization around a point (𝐴𝐴 𝐴𝐴 (𝑡𝑡), 𝑁𝑁(𝑡𝑡) ) by regressing a range of points (see discussion on feedback definitions 
in Rugenstein & Armour, 2021).

Armour et  al.  (2013) suggested a similar decomposition, but interpreted the components as locally constant 
feedbacks multiplied by local temperatures with different time evolution. However, recent studies suggest that 
non-local feedbacks are also important (Andrews et al., 2015; Bloch-Johnson et al., 2020; Dong et al., 2019; Zhou 
et al., 2016), meaning that temperature changes in one region, and in particular the West Pacific, can influence 
feedbacks globally.

2.1. Linear Model and Response

A simple model of temperature changes in the climate system can be constructed by considering different boxes 
or components that store and exchange energy. If assuming that all anomalous heat fluxes are linearly related to 
temperature anomalies in the system, the heat uptake in all boxes can be written into a linear non-homogeneous 
system
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𝐂𝐂𝑑𝑑𝐓𝐓(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐊𝐊𝐓𝐓(𝑡𝑡) + 𝐅𝐅(𝑡𝑡) (6)

By choosing the vector of temperature change components 𝐴𝐴 𝐓𝐓 to be 𝐴𝐴 𝐴𝐴 -dimensional, the system describes 𝐴𝐴 𝐴𝐴 com-
ponents that will respond on 𝐴𝐴 𝐴𝐴 different time scales, and the vector 𝐴𝐴 𝐅𝐅 the atmospheric forcing acting directly on 
each component. The vector 𝐴𝐴 𝐅𝐅 could in principle contain different forcings in different regions. The heat capac-

ities 
(

� ��
�2�

)

 associated with each component are along the diagonal of the diagonal 𝐴𝐴 𝐴𝐴 ×𝐴𝐴 matrix 𝐴𝐴 𝐂𝐂 , and coeffi-

cients for heat exchange between components and heat loss to the atmosphere 
(

�
�2�

)

 constitute the matrix 𝐴𝐴 𝐊𝐊 . The 
left-hand side of this equation describes the heat uptake of each component, and the sum of all heat uptakes must 
equal the net radiative imbalance 𝐴𝐴 𝐴𝐴 . In this sum of all components, all fluxes between components cancel out, 
and the sum reduces to Equation 4.

Linear systems like this have been widely studied, often using one, two or three boxes (e.g., Fredriksen & Ryp-
dal, 2017; Geoffroy, Saint-Martin, Olivié, et al., 2013). Symmetric matrices 𝐴𝐴 𝐊𝐊 will describe diffusive heat fluxes 
depending on the temperature difference between two boxes, and feedback parameters will appear on its diago-
nal. Non-symmetric parts may be due to the dependence of temperature anomalies in one box only. For instance 
change in sinking processes due to temperature anomalies in the North Atlantic regarded as one box, may by mass 
continuity induce horizontal mass and hence energy fluxes from adjacent ocean basins regarded as other boxes, 
independent of the temperature change in these boxes. 𝐴𝐴 𝐊𝐊 may also incorporate heat fluxes to the deep ocean if 
assuming they can be modelled as linear functions of temperature components (e.g., Geoffroy, Saint-Martin, 
Olivié, et al., 2013; Held et al., 2010).

By applying the method variation of parameters, it can be shown that the solution to Equation  6 is (see the 
Supporting Information S1):

𝐓𝐓(𝑡𝑡) = ∫

𝑡𝑡

−∞
𝑒𝑒(𝑡𝑡−𝑠𝑠)𝐂𝐂−1𝐊𝐊𝐂𝐂−1𝐅𝐅(𝑠𝑠) 𝑑𝑑𝑠𝑠𝑑 (7)

showing that the temperature at time 𝐴𝐴 𝐴𝐴 is a response to the forcing experienced at all previous times 𝐴𝐴 𝐴𝐴 . If the matrix 
𝐴𝐴 𝐂𝐂−1𝐊𝐊 has only negative eigenvalues, 𝐴𝐴 − 1∕𝜏𝜏𝑛𝑛 , the solution for each temperature component 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) will be a weighted 

sum of 𝐴𝐴 𝐴𝐴 exponential responses to the global average forcing 𝐴𝐴 𝐴𝐴  with time scales 𝐴𝐴 𝐴𝐴𝑛𝑛 (where the weights 𝐴𝐴 𝐴𝐴𝑛𝑛 are 
determined by eigenvalues, eigenvectors, and heat capacities),

𝑇𝑇𝑘𝑘(𝑡𝑡) = ∫

𝑡𝑡

−∞

𝐾𝐾
∑

𝑛𝑛=1

𝛽𝛽𝑛𝑛𝑒𝑒(𝑠𝑠−𝑡𝑡)∕𝜏𝜏𝑛𝑛𝐹𝐹 (𝑠𝑠) 𝑑𝑑𝑠𝑠 (8)

Furthermore, the global surface temperature is a weighted average of the components 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) :

 
� (�)

�
∑

�=1

�� ∫

�

−∞
�(�−�)∕��� (�) ��

 (9)

where we define the new weights 𝐴𝐴 𝐴𝐴𝑛𝑛 to be an area-weighted average of the weights 𝐴𝐴 𝐴𝐴𝑛𝑛 . If the forcing is not the same 
in all regions, Equation 9 is still valid if the regional forcings are scaled versions of the global average forcing. 
We recognize Equation 9 as a convolution between a Green’s function 𝐴𝐴 𝐴𝐴(𝑡𝑡) and a forcing 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , consistent with 
Equation  3: 𝐴𝐴 𝐴𝐴 (𝑡𝑡) = 𝐺𝐺(𝑡𝑡) ∗ 𝐹𝐹 (𝑡𝑡) = ∫ 𝑡𝑡−∞ 𝐺𝐺(𝑡𝑡 − 𝑠𝑠)𝐹𝐹 (𝑠𝑠)𝑑𝑑𝑠𝑠 , with 𝐴𝐴 𝐴𝐴(𝑡𝑡) =

∑𝐾𝐾
𝑛𝑛=1 𝐴𝐴𝑛𝑛(𝑡𝑡) =

∑𝐾𝐾
𝑛𝑛=1 𝑐𝑐𝑛𝑛exp(−𝑡𝑡∕𝜏𝜏𝑛𝑛) , assuming 

negative eigenvalues.

2.2. Estimating Linear Response in Abrupt 4xCO2 Experiments

To simplify the estimation of parameters of these responses (time scales 𝐴𝐴 𝐴𝐴𝑛𝑛 and amplitudes 𝐴𝐴 𝐴𝐴𝑛𝑛 ), we start by fixing 
the time scales, such that 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 depend linearly on the remaining parameters 𝐴𝐴 𝐴𝐴𝑛𝑛 . We find that the exact choice 
of time scales is not important, as long as we choose them well separated, and within the range of expected time 
scales. Annual time scales are important over land and shallow ocean areas, while decadal and centennial time 
scales are particularly important in ocean regions with mixing to the deeper oceans, and hence higher thermal 
inertia. Following PH17, we use three different time scales. They find three time scales to be the smallest number 
that well describes the temperature responses. In addition as explained later, we will assume the existence of a 
fourth time scale explaining slower temperature responses than can be observed in the records studied in this study.
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We analyze data from 21 CMIP5 models, available at https://esgf-node.llnl.gov/projects/cmip5/. The variables 
used are global annual averages of surface air temperatures (tas), and net top-of-atmosphere radiation, com-
puted as the difference between incoming shortwave radiation and outgoing longwave and shortwave radiation 
(rsdt–rlut–rsut). To minimize the effect of possible model drifts, the temperature 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and the variables used to 
compute the net top of atmosphere radiation 𝐴𝐴 𝐴𝐴(𝑡𝑡) time series are defined as deviations from linear trends in the 
corresponding time period of the control run (trend values for the abrupt4𝐴𝐴 xCO2 period are given in Table S1 in 
Supporting Information S1, and are very small). With this definition we also avoid non-zero means of 𝐴𝐴 𝐴𝐴(𝑡𝑡) in 
equilibrium, which is the case for many models (Forster et al., 2013).

The shortest time scale 𝐴𝐴 𝐴𝐴1 is chosen to be a random number between 1 and 6 years, the second time scale 𝐴𝐴 𝐴𝐴2 is a 
random factor between 5 and 10 multiplied by 𝐴𝐴 𝐴𝐴1 , and the third is a randomly chosen time scale between 80 and 
1,000 years. The random choice is done 1,000 times for each model, and finally, for each model, we keep the set 
of 𝐴𝐴 𝐴𝐴𝑛𝑛 with the best (least squares) fit to the modelled temperature evolution for 150 years after an abrupt quadru-
pling of 𝐴𝐴 CO2 . The resulting parameters are dependent on the length of the time series used. If using longer time 
series the longest time-scale responses may change the most, but these are also the least important for our 21st 
century analyses.

The temperature response for these step-forcing experiments can be found by computing the integrals in Equa-
tion 9 with a constant forcing 𝐴𝐴 𝐴𝐴4xCO2 for 𝐴𝐴 𝐴𝐴 𝐴 0 . This integral results in

𝑇𝑇4xCO2 (𝑡𝑡) =
𝐾𝐾
∑

𝑛𝑛=1

𝑎𝑎𝑛𝑛(1 − 𝑒𝑒−𝑡𝑡∕𝜏𝜏𝑛𝑛 ) (10)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝑐𝑐𝑛𝑛𝜏𝜏𝑛𝑛𝐹𝐹4xCO2 is the equilibrium temperature of each component, and the equilibrium climate sensitivity 
(ECS) is defined as 𝐴𝐴 1

2

∑𝐾𝐾
𝑛𝑛=1 𝑎𝑎𝑛𝑛 (equilibrium response to a doubling of 𝐴𝐴 CO2 ).

The expression for 𝐴𝐴 𝐴𝐴 is derived as:

𝑁𝑁4xCO2 (𝑡𝑡) = 𝐹𝐹4xCO2 +
𝐾𝐾
∑

𝑛𝑛=1
(𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛(𝑡𝑡))

= 𝐹𝐹4xCO2 +
𝐾𝐾
∑

𝑛𝑛=1

(

𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛(1 − 𝑒𝑒−𝑡𝑡∕𝜏𝜏𝑛𝑛 )
)

= 𝐹𝐹4xCO2 +
𝐾𝐾
∑

𝑛𝑛=1
𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛 −

𝐾𝐾
∑

𝑛𝑛=1
𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛𝑒𝑒−𝑡𝑡∕𝜏𝜏𝑛𝑛

= −
𝐾𝐾
∑

𝑛𝑛=1
𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛𝑒𝑒−𝑡𝑡∕𝜏𝜏𝑛𝑛

 

where we in the last step set that 𝐴𝐴 𝐴𝐴4xCO2 +
∑𝐾𝐾

𝑛𝑛=1 𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛 = 0 , due to the constraint that 𝐴𝐴 𝐴𝐴 → 0 when 𝐴𝐴 𝐴𝐴 → ∞ . Introducing 
the notation that 𝐴𝐴 𝐴𝐴𝑛𝑛 = −𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛 gives us 𝐴𝐴 𝐴𝐴4xCO2 (𝑡𝑡) =

∑𝐾𝐾
𝑛𝑛=1 𝐴𝐴𝑛𝑛(𝑡𝑡) =

∑𝐾𝐾
𝑛𝑛=1 𝑏𝑏𝑛𝑛𝑒𝑒−𝑡𝑡∕𝜏𝜏𝑛𝑛 , and 𝐴𝐴 𝐴𝐴4xCO2 = −

∑𝐾𝐾
𝑛𝑛=1 𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛 =

∑𝐾𝐾
𝑛𝑛=1 𝑏𝑏𝑛𝑛 .

The parameters 𝐴𝐴 𝐴𝐴𝑛𝑛 , 𝐴𝐴 𝐴𝐴𝑛𝑛 could be found using linear regression, but that does sometimes violate the physical as-
sumption that these should have the same sign as the forcing. Therefore we have used the non-negative least 
squares algorithm to ensure positive parameters. This is used only for finding 𝐴𝐴 𝐴𝐴𝑛𝑛 , and the resulting temperature 
responses are shown in Figure 1b). This method could in principle also have been used to find 𝐴𝐴 𝐴𝐴𝑛𝑛 , but this does 
not seem to provide a sufficiently good fit on the short scales. Instead, 𝐴𝐴 𝐴𝐴𝑛𝑛 are determined in a Gregory plot, and 
then used to compute 𝐴𝐴 𝐴𝐴𝑛𝑛 = −𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛 .

2.3. Algorithm for Estimating λn

The 𝐴𝐴 𝐴𝐴𝑛𝑛, 𝑛𝑛 = 1,… , 𝐾𝐾 are all determined from linear fits in a Gregory plot, as shown in Figure 1a). We start with 
estimating 𝐴𝐴 𝐴𝐴3 corresponding to time scale 𝐴𝐴 𝐴𝐴3 , then we estimate 𝐴𝐴 𝐴𝐴2 , and finally 𝐴𝐴 𝐴𝐴1 . We assume that the sum 𝐴𝐴

∑3
𝑛𝑛=1 𝑎𝑎𝑛𝑛 

underestimates the equilibrium response, since the sum excludes the response on the multi-millennial scale 𝐴𝐴 𝐴𝐴4 . 
However, we assume 𝐴𝐴 𝐴𝐴4 is so large that we can make the following approximations for 𝐴𝐴 𝐴𝐴 ≤ 150 years:

𝑇𝑇4(𝑡𝑡) = 𝑎𝑎4
(

1 − 𝑒𝑒−𝑡𝑡∕𝜏𝜏4
)

≈ 0 (11)

https://esgf-node.llnl.gov/projects/cmip5/
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𝑁𝑁4(𝑡𝑡) = 𝑏𝑏4𝑒𝑒−𝑡𝑡∕𝜏𝜏4 ≈ 𝑏𝑏4 (12)

Hence 𝐴𝐴 𝐴𝐴 (𝑡𝑡) ≈
∑3

𝑛𝑛=1 𝐴𝐴𝑛𝑛(𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) ≈ 𝑏𝑏4 +
∑3

𝑛𝑛=1 𝐴𝐴𝑛𝑛(𝑡𝑡) , where 𝐴𝐴 𝐴𝐴4 could be interpreted as a constant heat flux going 
into the deeper oceans, hereby not leading to surface warming on short time scales. We made the somewhat ar-
bitrary choice of setting 𝐴𝐴 𝐴𝐴4 = 5000 years, and assume 𝐴𝐴 𝐴𝐴4 = 𝐴𝐴3 . The results are not sensitive to the choice of 𝐴𝐴 𝐴𝐴4 as 
long as the approximations in Equations 11 and 12 hold. In the 150 year long runs considered in this study, we 
have no information about 𝐴𝐴 𝐴𝐴4 , but longer runs show that the feedback parameter changes little on the longer time 
scales (Rugenstein et al., 2020).

2.3.1. Determining λ3

We consider only temperatures larger than the equilibrium temperature of the first two components, such that 
𝐴𝐴 𝐴𝐴1(𝑡𝑡) + 𝐴𝐴2(𝑡𝑡) ≈ 𝑎𝑎1 + 𝑎𝑎2 , and we have: 𝐴𝐴 𝐴𝐴(𝑡𝑡) ≈ −𝜆𝜆3(𝑎𝑎3 − 𝑇𝑇3(𝑡𝑡)) + 𝑏𝑏4 . The total temperature is therefore approximat-

ed by 𝐴𝐴 𝐴𝐴 (𝑡𝑡) ≈ 𝑎𝑎1 + 𝑎𝑎2 + 𝐴𝐴3(𝑡𝑡) , resulting in 𝐴𝐴 𝐴𝐴(𝑡𝑡) ≈ −𝜆𝜆3(𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 − 𝑇𝑇 (𝑡𝑡)) + 𝑏𝑏4 . This shows that 𝐴𝐴 𝐴𝐴 is approxi-
mately a linear function of 𝐴𝐴 𝐴𝐴  with slope 𝐴𝐴 𝐴𝐴3 for 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴1 + 𝐴𝐴2 . Therefore, 𝐴𝐴 𝐴𝐴3 is computed by linear regression of 
these points, and the equilibrium temperature found by following this line until 𝐴𝐴 𝐴𝐴 = 0 . This equilibrium estimate 

Figure 1. Results for NorESM1-M: (a) The black dots and line is a conventional Gregory plot, the light blue lines 
(recognized as light-blue shading) are our fits to the black points with 1,000 different choices of time scales, and the dark 
blue fit is when using the best (least squares) fits for the temperature in (b). Vertical blue lines are the sums of equilibrium 
temperatures 𝐴𝐴

∑𝑚𝑚
𝑛𝑛=1 𝑎𝑎𝑛𝑛, 𝑚𝑚 = 1, 2, 3 . The dark (light) gray dots are 𝐴𝐴 𝐴𝐴 versus 𝐴𝐴 𝐴𝐴  after subtracting components associated with 

the third (and second) time scales, and the dashed blue lines are fits to these dots. (b) The black curve is the climate model 
temperature output, and the light blue curves are best fits to the modelled temperature using 1,000 different choices of time 
scales. The dark blue curve is the best fit, and the dashed blue curves are the individual components due to the four time 
scales which are summed to obtain this fit. (c) As panel (b), but for the change in net top of the atmosphere radiation.
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should be higher than 𝐴𝐴
∑3

𝑛𝑛=1 𝑎𝑎𝑛𝑛 , and the difference is 𝐴𝐴 𝐴𝐴4 . Whenever the unphysical result 𝐴𝐴 𝐴𝐴4 < 0 is obtained, we 
exclude the chosen time scales from our analysis.

2.3.2. Determining λ2

First we subtract our estimates of 𝐴𝐴 𝐴𝐴3(𝑡𝑡) , 𝐴𝐴 𝐴𝐴4(𝑡𝑡) and 𝐴𝐴 𝐴𝐴3(𝑡𝑡) , 𝐴𝐴 𝐴𝐴4(𝑡𝑡) from the time series 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) , respectively. 
We then obtain estimates of 𝐴𝐴 𝐴𝐴1(𝑡𝑡) + 𝐴𝐴2(𝑡𝑡) and 𝐴𝐴 𝐴𝐴1(𝑡𝑡) +𝐴𝐴2(𝑡𝑡) , and these points are the dark gray dots in Figure 1a). 
For 𝐴𝐴 𝐴𝐴1 < 𝑇𝑇1(𝑡𝑡) + 𝑇𝑇2(𝑡𝑡) < 𝐴𝐴1 + 𝐴𝐴2 , 𝐴𝐴 𝐴𝐴1(𝑡𝑡) + 𝐴𝐴2(𝑡𝑡) is approximately 𝐴𝐴 𝐴𝐴1 + 𝑇𝑇2(𝑡𝑡) , and should equal the equilibrium value 

𝐴𝐴 𝐴𝐴1 + 𝐴𝐴2 when 𝐴𝐴 𝐴𝐴1(𝑡𝑡) +𝐴𝐴2(𝑡𝑡) = 0 . In this range, 𝐴𝐴 𝐴𝐴1(𝑡𝑡) +𝐴𝐴2(𝑡𝑡) ≈ −𝜆𝜆2(𝑎𝑎2 − 𝑇𝑇2(𝑡𝑡)) , approximately linearly related 
to 𝐴𝐴 𝐴𝐴1(𝑡𝑡) + 𝐴𝐴2(𝑡𝑡) . Therefore, 𝐴𝐴 𝐴𝐴2 is estimated using a least squares algorithm forcing the linear fit to go through the 
point (𝐴𝐴 𝐴𝐴1 + 𝐴𝐴2 , 0).

2.3.3. Determining λ1

We subtract estimates of (𝐴𝐴 𝐴𝐴2(𝑡𝑡), 𝑁𝑁2(𝑡𝑡) ) from the dark gray dots to obtain estimates of 𝐴𝐴 𝐴𝐴1(𝑡𝑡) and 𝐴𝐴 𝐴𝐴1(𝑡𝑡) (light gray 
dots in Figure 1). We have now 𝐴𝐴 𝐴𝐴1(𝑡𝑡) ≈ −𝜆𝜆1(𝑎𝑎1 − 𝑇𝑇1(𝑡𝑡)) , and we can, as previously, use least squares to compute 

𝐴𝐴 𝐴𝐴1 , forcing the linear fit to pass the point (𝐴𝐴 𝐴𝐴1 , 0).

In the least squares fits, we also include an upper time limit to the set of points to be included in the calculation. 
This limit is set to the first time step after reaching 99% of the equilibrium temperature of the component of inter-
est. In this way, our slope is associated with the response on the particular time scale 𝐴𝐴 𝐴𝐴𝑛𝑛 , and little influenced by 
the fluctuations around the equilibrium values. Changing this limit to for example, 90% or 95% has only minor ef-
fects on the results. Feedback parameters associated with fluctuations around the base state, or more precisely, ra-
diative restoring coefficients are studied in several papers (Bloch-Johnson et al., 2020; Colman & Hanson, 2013; 
Colman & Power, 2010; Lutsko & Takahashi, 2018). Depending on the model, they can be similar or different 
from those associated with the final fluctuation after a quadrupling of 𝐴𝐴 CO2 (Rugenstein et al., 2020), and they may 
also differ from feedbacks associated with forced responses (e.g., Dessler & Forster, 2018; Zhou et al., 2015).

When all 𝐴𝐴 𝐴𝐴𝑛𝑛 , 𝐴𝐴 𝐴𝐴𝑛𝑛 are estimated, we compute 𝐴𝐴 𝐴𝐴𝑛𝑛 = −𝜆𝜆𝑛𝑛𝑎𝑎𝑛𝑛 and we finally have our estimate of 𝐴𝐴 𝐴𝐴4xCO2 =
∑4

𝑛𝑛=1 𝑏𝑏𝑛𝑛 . That 
is, the sum of the initial radiative imbalance of all four components.

2.4. New Estimates of Effective Forcing Time Series

Using our parameter estimates from the previous subsections, we can for any experiment use the global mean 
evolutions of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) to compute a new estimate of the effective forcing as follows:

1.  Compute 𝐴𝐴 𝐴𝐴 (𝑡𝑡) using F13’s method (a single estimate of 𝐴𝐴 𝐴𝐴 ), and take this as the initial estimate of the effective 
forcing.

2.  Use this forcing estimate and amplitudes 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝑎𝑎𝑛𝑛
𝜏𝜏𝑛𝑛𝐹𝐹4xCO2

 estimated from 4𝐴𝐴 xCO2 experiments to compute the 
components 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑡𝑡) from Equation 3 by performing convolution integrals.

3.  A new estimate of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) can then be computed as:

𝐹𝐹 (𝑡𝑡) = 𝑁𝑁(𝑡𝑡) −
∑

𝑛𝑛

𝜆𝜆𝑛𝑛𝑇𝑇𝑛𝑛(𝑡𝑡) (13)

4.  Repeat steps 2–3 until convergence of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . We have used 20 iterations.

We demonstrate how the method can be applied to study the forcing for 1% 𝐴𝐴 CO2 experiments, the historical period 
and the four representative concentration pathways (RCPs) RCP2.6, RCP4.5, RCP6.0 and RCP8.5.

3. Results
The results of the linear response fit for 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) following an abrupt quadrupling of 𝐴𝐴 CO2 are given for the 
model NorESM1-M in Figure 1, and the estimated parameters are listed in Table 1. We note from Figure 1a) that 
both the forcing and equilibrium temperature estimates are higher than when obtained from a straight line fit. The 
narrow spread of the light blue lines also indicate that the choice of time scales is of little importance, and hence 
not affecting the overall conclusions. Similar plots are shown for the other models listed in Table 1 in the Support-
ing Information S1. The uncertainty in both the forcing estimate and ECS estimate vary substantially from model 
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to model. Models with a rapid initial warming, such as GISS-E2-R, have fewer points constraining the regression 
estimate for the shortest time scale, implying larger uncertainty of the forcing.

An overview of all our estimates of the 4𝐴𝐴 xCO2 forcing is presented in Figure 2. In addition, we compare our forc-
ing estimates to regression estimates done for years 1–20 and years 1–150. In all except one model, the 1–20 years 
regression gives a higher estimate than the 1–150 years regression. And in all but two models, our best forcing 
estimate is even higher than estimates obtained from regression of years 1–20. The fixed-SST 4𝐴𝐴 xCO2 forcing 
estimates reported by Andrews et al. (2012) are higher than regression-based estimates over 150 years for most 
of the models where this is available, but smaller than our new forcing estimates.

Using global annual means of 𝐴𝐴 𝐴𝐴(𝑡𝑡) and 𝐴𝐴 𝐴𝐴 (𝑡𝑡) from the coupled models, we continue by testing the algorithm 
described in Section 2.4 for 1% 𝐴𝐴 CO2 experiments. In these experiments we expect a linearly increasing forcing, 
because to first order, for small increases in 𝐴𝐴 CO2 the forcing depends logarithmically on the 𝐴𝐴 CO2 concentration 
(Myhre et al., 1998) (see limitations of this discussed in Bloch-Johnson et al., 2021; Byrne & Goldblatt, 2014; 
Etminan et al., 2016; Gregory et al., 2015). A linear increase is indeed what we observe for NorESM1-M in 
Figure 3, for both the initial and the new forcing estimate. For the new estimate we note a high consistency be-
tween the climate model temperature output and the linear response to the forcing. This result suggests that our 
method can successfully construct forcing estimates that well predicts the surface temperature responses. Results 
for other models are similar, and are shown in the Supporting Information S1. After 140 years of 1% increase 

𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 𝐴𝐴 𝐴𝐴3 𝐴𝐴 − 𝜆𝜆1 𝐴𝐴 − 𝜆𝜆2 𝐴𝐴 − 𝜆𝜆3 𝐴𝐴 (−𝜆𝜆) 𝐴𝐴 𝐴𝐴2x (𝐴𝐴 𝐴𝐴2x ) 𝐴𝐴 𝐴𝐴2x (𝐴𝐴 𝐴𝐴2x )

ACCESS1-0 2.43 12.79 231.10 1.30 1.12 0.56 0.78 3.72 2.97 4.33 3.83

ACCESS1-3 1.13 5.80 150.10 1.46 1.30 0.56 0.82 3.60 2.89 4.12 3.53

CanESM2 2.86 26.39 279.11 1.30 1.01 0.91 1.04 4.24 3.83 3.83 3.69

CCSM4 1.04 5.52 197.28 1.32 1.77 0.90 1.18 4.02 3.47 3.19 2.94

CNRM-CM5 1.45 10.71 392.15 1.38 1.09 1.22 1.14 3.87 3.71 3.20 3.25

CSIRO-Mk3-6-0 1.62 11.29 308.98 1.86 1.12 0.41 0.63 3.94 2.58 4.94 4.08

GFDL-CM3 3.28 32.58 98.81 1.21 0.80 0.63 0.75 3.61 2.99 4.24 3.97

GFDL-ESM2G 2.98 17.50 291.97 1.76 NaN 0.90 1.29 3.65 3.09 2.67 2.39

GFDL-ESM2M 1.03 5.77 240.02 1.52 1.58 1.22 1.38 3.58 3.36 2.52 2.44

GISS-E2-H 1.56 10.43 186.27 2.02 1.83 1.40 1.65 4.21 3.81 2.39 2.31

GISS-E2-R 1.51 10.61 232.40 2.98 1.02 1.42 1.79 5.09 3.78 2.25 2.11

HadGEM2-ES 1.01 8.39 367.62 1.96 0.89 0.35 0.63 4.02 2.90 5.91 4.61

inmcm4 1.02 5.65 597.43 1.90 1.48 1.28 1.43 3.18 2.98 2.14 2.08

IPSL-CM5A-LR 1.72 16.54 163.83 1.03 0.84 0.58 0.75 3.43 3.10 4.55 4.13

IPSL-CM5B-LR 1.21 8.01 80.30 2.39 1.11 0.91 1.02 3.64 2.64 2.68 2.60

MIROC-ESM 1.78 11.32 266.35 1.96 0.92 0.68 0.91 5.37 4.26 5.21 4.67

MIROC5 2.77 15.17 89.28 1.72 1.43 1.36 1.52 4.38 4.13 2.80 2.72

MPI-ESM-LR 1.81 9.20 202.56 1.30 1.50 0.86 1.13 4.53 4.09 3.91 3.63

MPI-ESM-MR 1.02 6.23 158.54 2.27 1.45 0.94 1.18 5.15 4.07 3.67 3.46

MRI-CGCM3 1.42 11.61 233.73 2.22 1.34 0.96 1.25 4.05 3.24 2.76 2.60

NorESM1-M 1.75 9.34 273.12 1.87 1.52 0.78 1.11 3.88 3.10 3.17 2.80

Model mean 1.73 11.73 231.26 1.73 1.28 0.90 1.12 4.04 3.38 3.50 3.20

Standard 
deviation

0.69 6.58 115.35 0.45 0.30 0.31 0.31 0.56 0.50 1.02 0.78

Note. The parameters in parentheses 𝐴𝐴 (−𝜆𝜆) (𝐴𝐴 F2x ), and (𝐴𝐴 T2x ) are estimated from a single linear regression over years 1–150 in a Gregory plot. The results differ slightly 
from the numbers reported from the Gregory method by Andrews et al. (2012), possibly because of minor differences in the way global annual average values are 
constructed. For one model (GFDL-ESM2G) the best fit consists of two exponential responses, where we estimate 𝐴𝐴 𝐴𝐴2 = 0 and report 𝐴𝐴 𝐴𝐴2 = 𝑏𝑏2∕𝑎𝑎2 as “NaN”.

Table 1 
Estimated Parameters, Where We Define 𝐴𝐴 𝐴𝐴2x and 𝐴𝐴 𝐴𝐴2x to Be Half the Forcing and Equilibrium Temperature Estimated for a Quadrupling of 𝐴𝐴 CO2
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the 𝐴𝐴 CO2 concentration is quadrupled, and the linear fit to the 1% 𝐴𝐴 CO2 forcing time series evaluated in year 140 is 
yet another estimate of 𝐴𝐴 𝐴𝐴4xCO2 , which we include in Figure 2. For most models this estimate is close to our best 
estimates determined from abrupt4𝐴𝐴 xCO2 experiments.

Next we apply the algorithm to the historical and RCP experiments to compute forcing estimates for the time 
period 1850–2100. Our new forcing estimate for the historical and RCP8.5 experiment for NorESM1-M diverges 
from the forcing estimate using a single feedback parameter when approaching the end of the 21st century (Fig-
ure 4a). The difference is about 2 𝐴𝐴 𝐴𝐴 ∕𝑚𝑚2 in 2100, and smaller differences are seen during the historical period. 
As a result, the sum of the linear temperature responses we compute by convolving with the two forcing estimates 
according to Equation 3 also diverge (dashed curves in Figure 4b), reaching a difference of almost 1°C in year 
2100. We note that the linear response to our new forcing (dashed blue curve) is remarkably close to the climate 
model temperature output, indicating that our alternative forcing definition and linear response assumption is the 
better approximation for this model. This result holds also for the other RCP scenarios (see Figures S109–S111 
in the Supporting Information S1).

By computing the time-varying feedback parameter 𝐴𝐴 𝐴𝐴(𝑡𝑡) using Equation 5, we find a generally higher magnitude 
than the single estimate of 𝐴𝐴 𝐴𝐴 . During the historical period the global temperature response is often close to 0, 

Figure 2. A summary of the 4𝐴𝐴 xCO2 forcing estimates made in this study, to provide an overview of their uncertainties and 
how they compare to regression estimates. The 1%𝐴𝐴 CO2 estimates are the linear fits to the estimated 1% 𝐴𝐴 CO2 forcing time 
series evaluated in year 140, the time of quadrupling (except for the models GFDL-ESM2G and GFDL-ESM2M, where the 
estimates are instead twice the doubling estimates in year 70). Fixed-SST estimates are taken from Andrews et al. (2012) for 
the models where these are available.

Figure 3. Results for NorESM1-M: (a) The black curve is the forcing computed as in F13, using a single and constant value 
of 𝐴𝐴 𝐴𝐴 . The gray curves are the iterations of the algorithm described in Section 2.4, using three different 𝐴𝐴 𝐴𝐴 ’s, and the blue curve 
the new forcing obtained by convergence after 20 iterations. The dashed lines are linear fits to the initial and final forcing 
estimates. (b) The thick black curve is the modelled temperature change, and the black and blue dashed curves the linear 
responses to the black and blue curves in (a), applying the same response function as estimated in Figure 1b).
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causing high fluctuations in the estimated 𝐴𝐴 𝐴𝐴(𝑡𝑡) . The estimate becomes more stable for the future scenarios, where 
we find a slowly decreasing magnitude of 𝐴𝐴 𝐴𝐴(𝑡𝑡) , consistent with a higher weighting of the slow responses. For all 
years in the experiment, the magnitude of 𝐴𝐴 𝐴𝐴(𝑡𝑡) is still considerably higher than the single regression estimate, 
hence the term 𝐴𝐴 − 𝜆𝜆(𝑡𝑡)𝑇𝑇 (𝑡𝑡) gives a higher contribution to the forcing estimate. This effect on the forcing is however 
only visible when the temperature response is strong.

Repeating the analysis in Figure 4 for all models and RCP scenarios shows that the method presented here works 
well for many models, but not all (Figures in Supporting Information S1). A summary of these results are given 
in Figure 5, where panel (a) compares the mean estimated forcing over years 2091–2100 using the two different 
methods. The names of the scenarios are constructed to reflect the intended forcing in the end of the 21st century 
(van Vuuren et al., 2011), and these forcing levels are also shown for comparison. We find that model estimates 
using F13’s method are centered at lower values, while our new forcing estimates are centered close to or slightly 
above the intended levels. However, the intended forcing is difficult to prescribe as it depends on model-specific 
fast adjustments, so we can only expect these to be approximate values. The GISS-E2-R model might be consid-
ered as an outlier, and its response to abrupt4𝐴𝐴 xCO2 is also visually different from the other models.

Consistent with the increase in forcing level, we observe an increase in the estimated linear temperature responses 
in panel (b). The linear responses to F13 forcing are mostly lower than the climate model temperature output, 
and the responses to our new forcing are scattered around, with a center slightly above. Some deviation from the 
climate model temperature is expected due to internal variability, and to assess this expected uncertainty, we refer 
to the model spread of the Community Earth System Model Large Ensemble (CESM-LE) (Kay et al., 2015). Here 

Figure 4. Similar to Figure 3, but for NorESM1-M historical and RCP8.5 experiment.

Figure 5. Estimated year 2095 forcing (a) and temperature difference between the result of the linear response and the climate model output (b). For each scenario, 
the left points show results using F13’s method, and the right points show results using our method. Values in year 2095 are computed by averaging over the 10 years 
2091–2100. The forcing levels 2.6, 4.5, 6.0 and 8.5 W/𝐴𝐴 m2 are also shown for reference in (a) as horizontal black lines.
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40 model simulations for the historical + RCP8.5 scenarios from the same model show a model spread of around 
0.4 K, which is attributed to internal variability.

Using F13 forcing, the linear response is within these uncertainties for only a few models. For the new forcing, 
more models are within this uncertainty range than outside. There are also other uncertainties to consider, for 
example, associated with our parameter estimation method, probably making the expected uncertainty interval 
larger than 0.4 K. The uncertainty due to internal variability is also model-dependent (Olonscheck et al., 2020), 
hence it is difficult to identify models where our linear response hypothesis and forcing estimation method fail.

We note also that the uncertainty of the future scenario forcing estimates is strongly related to the uncertainty of 
the 4𝐴𝐴 xCO2 forcing, since both are highly influenced by 𝐴𝐴 𝐴𝐴1 (the inter-model correlation between our 4𝐴𝐴 xCO2 and 
RCP8.5 forcing is 0.82). This is particularly apparent for the GISS-E2-R model, where the response of the first 
few years is so abrupt that forcing estimates, and hence linear responses, are uncertain with both our and F13’s 
estimation method.

In the two models CNRM-CM5 and MIROC5 the two forcing estimates are very similar, because the feedback is 
close to constant for all years. For these models we find also that the forcing estimate based on a single feedback 
parameter gives a slightly better estimate of the linear response. So if the global feedback in fact is constant for 
all years considered here, using all years in the regression should give a more certain estimate of the feedback 
parameter, and therefore also more certain forcing estimates.

For the three models GFDL-ESM2G, GFDL-ESM2M, and inmcm4 we find that our method is performing less 
well (see Figures in the Supporting Information S1). The reason is probably linked to the almost constant 4𝐴𝐴 xCO2 
temperature responses over years ∼𝐴𝐴 20 − 70 , ∼𝐴𝐴 20 − 60 , and ∼𝐴𝐴 20 − 120 , respectively. Our linear response with 
exponentially relaxing temperatures always predicts continuously increasing temperatures, which therefore poor-
ly approximates these 4𝐴𝐴 xCO2 global temperatures. The flattening of the response could possibly be linked to 
changes in the ocean circulation, for example, a slowdown of the Atlantic meridional overturning circulation. In 
that case, linear systems with complex eigenvalues giving oscillatory responses could be an alternative solution. 
Hence, we will not disregard linear response in these results, but leave further testing of including oscillations in 
the responses to future studies.

4. Discussion
For most abrupt4𝐴𝐴 xCO2 experiments the Gregory plot follows a convex curve, hence our forcing estimates are 
mostly higher than those found from simple regression analyses over 150 years (Andrews et al., 2012), or using 
only the first 20 years (Andrews et al., 2015; Larson & Portmann, 2016). As suggested by PH17, this convexity 
could be explained by considering different feedback parameters associated with the different time scales of the 
responses. The time-scale dependence of the feedback parameter could be due to feedbacks varying in strength 
at different time scales, or it could be regionally different feedbacks weighted differently with time in the global 
average when the pattern of surface warming evolves. Since it is likely a combination of these circumstances, 
an interpretation of our parameters could be summarized into: 𝐴𝐴 𝐴𝐴1 : Average of annual-scale feedbacks in regions 
with strong annual-scale responses, 𝐴𝐴 𝐴𝐴2 : Average of decadal-scale feedbacks in regions with strong decadal-scale 
responses, 𝐴𝐴 𝐴𝐴3 : Average of centennial-scale feedbacks in regions with strong centennial-scale responses. Or as 
we come back to later, this description could also be considered an approximation of feedbacks changing with 
climate state.

The fixed-SST estimation method does not include time-variation and uncertainties in the feedback parameter. 
Instead, extra model simulations are made with SSTs fixed to climatological values, and the top of atmosphere 
radiative imbalance is diagnosed. A drawback of this method is that atmospheric and land surface temperatures 
are allowed to change. Hence the global temperature anomaly is not 0 when the radiative imbalance is diagnosed, 
and the forcing estimate is therefore contaminated with fast feedback processes associated with land warming. 
The fixed-SST estimates should be more comparable to our radiative imbalance after some months of adjust-
ments of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) , and Figure 2 shows that they are indeed lower than our estimates for the models where 
they are available.

Ideally the fixed-SST method should be extended to fix the land surface temperatures also, in order to provide 
a consistent framework where forcing and feedbacks are well separated. Due to technical difficulties, this has 
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only been done for one complex global climate model so far (Andrews et al., 2021). As discussed by Andrews 
et al. (2021), several methods have been suggested to correct fixed-SST estimates to account for effects of land 
temperature changes. One could for instance extrapolate the estimate to 𝐴𝐴 𝐴𝐴 = 0 using Equation 2 given that we 
know the feedback parameter, or use radiative kernels (Richardson et al., 2019). Richardson et al. (2019) call 
these estimates Adjusted Effective radiative forcing, and find also these to be the best predictors for global surface 
temperatures because they have the efficacies closest to 1.

Efficacy factors are introduced to correct for differences in how strong the climate response is to different forcing 
agents, due to for example, differences in rapid adjustments, or effects of a forcing being concentrated in certain 
regions. Forcing in experiments considered in this study are dominated by 𝐴𝐴 CO2 , a well-mixed greenhouse gas. 
Other forcings present during the historical period and future scenarios could be more spatially inhomogeneous, 
for example, aerosols, and contribute to different spatial patterns of the response. We neglect this effect when 
applying the parameters estimated for abrupt4𝐴𝐴 xCO2 experiments to other experiments, and assume the regional 
patterns to evolve similarly for different experiments. During the historical period, a changing feedback param-
eter will only result in weak changes in our forcing estimate since the temperature responses are still relatively 
weak. But if applying our method to strong forcings other than 𝐴𝐴 CO2 , the possible effect of efficacies should be 
investigated first.

When estimating a time-varying forcing, an alternative to fixing the SSTs to climatological values (as employed 
in RFMIP) is to prescribe the SSTs to for example, the simulated historical values from the coupled model (as 
employed in AerChemMIP). These methods produce relatively similar results (Forster et al., 2016), and will both 
have a lower uncertainty than regression-based estimates. Regression-based estimates are influenced by changes 
in 𝐴𝐴 𝐴𝐴 (𝑡𝑡) arising due to internal variability, for example, El Niño events, which could drive changes in 𝐴𝐴 𝐴𝐴(𝑡𝑡) . In 
prescribed-SST methods the temperature-driven changes in 𝐴𝐴 𝐴𝐴(𝑡𝑡) is subtracted, resulting in a reduced noise level 
in the forcing estimate (Forster et al., 2013).

The theory described in this study does not include an explicit temperature-dependence of the feedback parameter 
(Bloch-Johnson et al., 2021; Rohrschneider et al., 2019), since it is assumed that Equation 6 is linear and 𝐴𝐴 𝐊𝐊 is 
independent of temperature. However, our estimation algorithm does not clearly distinguish between a time-scale 
dependence and a temperature-dependence of the feedbacks, since these dependencies are intrinsically linked. In 
particular, the strong temperature responses to 4𝐴𝐴 xCO2 is invoked on the long time scales, where the responses to 
the shorter time scales have already been realised, hereby affecting the feedback parameters if they have temper-
ature dependence. If the 4𝐴𝐴 xCO2 responses have temperature-dependent feedbacks, the model needed to explicitly 
explain them becomes nonlinear, and our linear approach may perform less well in providing responses to other 
scenarios with weaker or stronger temperature responses than that of 4𝐴𝐴 xCO2 . We believe this only causes smaller 
errors in the temperature responses studied here, but it is a potential explanation for our forcing and responses for 
the future scenarios being slightly overestimated.

Linear response theory is widely used to describe responses of climate variables. If a forcing record is known, 
linear response is a computationally cheap tool to estimate for example, temperature responses compared to run-
ning a fully coupled climate model. Many studies assume a Green’s function taking a certain form, with unknown 
parameters that need to be estimated. For box models taking the form of Equation 6 the Green’s function is a sum 
of exponential functions, but power-laws with fewer parameters have also been used with success (Fredriksen & 
Rypdal, 2017; Rypdal & Rypdal, 2014). Linear responses to RCP forcing are often studied using a non-parametric 
approach developed by Good et al. (2011). In the Supporting Information S1 we show how this method relates 
to our linear model. This method was used in Good et al. (2013) to find the response to RCP scenarios using the 
forcing computed by F13. They use this to simulate only differences between RCP scenarios, while we attempt to 
simulate the full temperature evolution since the historical runs started until year 2100. Another difference to our 
approach is that we obtain a smoother estimate of the expected response to forcing, with fluctuations only com-
ing from the forcing, while the responses of Good et al. (2013) are themselves influenced by internal variability.

Larson and Portmann (2016) note that the non-parametric model written in matrix form: 𝐴𝐴 𝐘𝐘 = 𝐗𝐗Δ𝐅𝐅∕𝐹𝐹0 can be 
inverted to estimate the forcing increments 𝐴𝐴 Δ𝐅𝐅 , which can further be summed up to find the forcing time series. 
In this equation 𝐴𝐴 𝐘𝐘 is a vector of the time evolution of a climate variable, and 𝐴𝐴 𝐗𝐗 is a matrix containing the same 
variable in the abrupt4𝐴𝐴 xCO2 experiment. Their resulting forcing estimate depends also on the forcing estimate 𝐴𝐴 𝐴𝐴0 
from the abrupt4𝐴𝐴 xCO2 experiment, which introduces a potential source of bias in the estimate. Internal variability 
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from 𝐴𝐴 𝐗𝐗 and 𝐴𝐴 𝐘𝐘 can lead to a very noisy estimate, but some of this is removed when they replace the original 
abrupt4𝐴𝐴 xCO2 time series with a fitted exponential response. With our method we also greatly reduce the influence 
of internal variability from the experiment where the forcing is to be estimated by smoothing it with our linear 
response to the estimated forcing. So we can say that there is a trade-off between a noisy estimate and having 
more parameters to be estimated. The method by Larson and Portmann (2016) is treated as an alternative to the 
F13 method, but here we show how the F13 method and the linear response can be put into one framework. While 
Larson and Portmann (2016) can demonstrate that their method is not directly dependent of a changing feedback 
parameter, our method also has the power to explain why this can be the case.

5. Conclusions
The method presented here cleanly separates between forcing and responses to forcing, where the estimated 
parameters from abrupt4𝐴𝐴 xCO2 experiments are used to determine forcing and surface temperature responses for 
other experiments. The resulting RCP forcing estimates at the end of the 21st century is closer to the target levels 
than previous estimates by F13. Our high forcing estimates are strongly influenced by the high magnitude of the 
feedback parameter 𝐴𝐴 𝐴𝐴1 at annual time scales. Unfortunately this value is uncertain, as it depends crucially on the 
first few years of adjustment. Using more ensemble members of abrupt4𝐴𝐴 xCO2 experiments may help constrain 
the estimate of 𝐴𝐴 𝐴𝐴1 (Rugenstein, Gregory, et al., 2016). More members would also constrain regression estimates 
of forcing in general (Forster et al., 2016).

Forcing based on fixed-SST methods is often higher than the regression estimate over 150  years (Andrews 
et  al.,  2012; Tang et  al.,  2019), has a smaller uncertainty and is more computationally efficient (Forster 
et al., 2016). However, these forcing estimates are only available for a few models and scenarios in CMIP5. They 
will be available for more models and scenarios in CMIP6 (Smith et al., 2020), but far from all. The forcing es-
timation method presented here could therefore be a valuable supplement in the cases where fixed-SST forcing 
is unknown, particularly for models where a linear relation between 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  is a poor approximation. Improved 
forcing estimates could help to quantify the dependency of forcing value on 𝐴𝐴 CO2 concentration in studies com-
paring for example, 0.5x, 2x, 4x, 8x 𝐴𝐴 CO2 , and temperature dependence of feedbacks (Bloch-Johnson et al., 2021).

Putting forcing, linear responses, and nonconstancy of the global feedback parameter into a unified framework 
provides also an important insight into why the traditional regression-based forcing estimates may be too low. 
Furthermore, it suggests how these methods can be improved to provide better forcing estimates, resolving the 
problems caused by assuming a constant feedback parameter in regression-based methods (Forster et al., 2016).

Data Availability Statement
The CMIP5 data are available at https://esgf-node.llnl.gov/projects/cmip5/. The forcing estimates from this study 
will be stored in https://dataverse.no/, and can be accessed through https://doi.org/10.18710/IHUVTB (Fredrik-
sen, 2020). Our python code is permanently stored at https://doi.org/10.5281/zenodo.5751855 (Fredriksen, 2021).
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