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Abstract. Wind power forecasting is crucial for wind power systems, grid load balance, 

maintenance, and grid operation optimization. The utilization of wind energy in the Arctic 

regions helps reduce greenhouse gas emissions in this environmentally vulnerable area. In the 

present study, eight various models, seven of which are representative machine learning 

algorithms, are used to make 1, 2, and 3 step hourly wind power predictions for five wind parks 

inside the Norwegian Arctic regions, and their performance is compared. Consequently, we 

recommend the persistence model, multilayer perceptron, and support vector regression for 

univariate time-series wind power forecasting within the time horizon of 3 hours. 

1. Introduction 

Wind energy is one of the fastest-growing renewable energy sources [1]. It is regarded as an attractive 

alternative to conventional energy sources generated from fossil fuels. Wind power, invested 

tremendously, has become an essential component in the state grid's operations in many nations [2]. 

Arctic regions are plentiful for wind resources. One reason is the Earth's atmospheric circulation, and 

the cold climate with less vegetation and trees makes wind energy easily accessible. Specifically, the 

Norwegian coastline is regarded as the area with one of the best wind energy resources in Europe wind 

energy [3]. However, this area's landscape is extremely complex due to the glacier erosion, which makes 

much wind local phenomenon and arduous to forecast.  

Meanwhile, electricity-generating from wind power fluctuating from time to time because of the 

inherent characteristics undulations of wind. The knowledge of forecasting wind power can help whittle 

down the drawbacks of fluctuating wind power [4]. So, it is beneficial to investigate the wind power 

generation data and use proper methods to make predictions for the electricity generated by wind parks. 

In particular, hourly wind power forecasting is essential for maintaining the real-time grid and electricity 

market deals. 

This paper does a systematic evaluation for the time-series forecasting of five wind farms with sufficient 

wind resources in the Norwegian Arctic region. The persistence model and seven most commonly used 

machine learning algorithms are researched in modeling, and their performance is compared. It is 

organized as follows: In section 2, we describe the sites and wind power data, section 3 includes a short 

introduction to each machine-learning model, while section 4 describes the statistical measured used for 

comparison. Results are presented in section 5, and we conclude our findings in section 6. 

2. Wind parks and data description 
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In this paper, we concentrate on five wind parks in Northern Norway. The five wind farm power data, 

measured hourly, used in the research are taken from the Norwegian Water Resources and Energy 

Directorate (NVE). We choose the wind power data from 0:00 1st January 2017 to 23:00 31st December 

2017. The number of the measured data is 8760 for each wind farm. The total size of wind power data 

is 43800 without any missing values. The annual mean powers, their standard deviations [5] of the five 

wind farms in 2017 are presented in Table 1. 

Table 1. Five wind parks and statistics of the data. 

Wind Park Mean power (MW) Standard deviation (MW) 

Nygårdsfjellet 11.132 11.833 

Fakken 15.239 15.858 

Raggovidda 21.782 16.869 

Kjøllefjord 12.349 12.786 

Havøygavlen 10.311 11.037 

 

Data scaling is a standard method to normalize the range of data. When using it in machine learning, the 

gradient descent converges much faster with feature scaling than without it [6]. The data are scaled with 

min-max normalization between 0.2 and 0.8 for practical reasons. 

 𝑥′ = 𝑎 +
(𝑥−𝑚𝑖𝑛(𝑥))(𝑏−𝑎)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 (1) 

where a and b are the min and max values of the normalization scale. 

3. Forecasting algorithms 

For machine learning models in regression analysis, numerous changes are proposed by researchers, and 

it is impossible to conduct all of the existing differences in models. Therefore, our strategy is to consider 

each model's basic version for the comparative research on different hourly wind power forecasting 

algorithms. 

The eight prediction models, one baseline model, and seven machine learning models are chosen since 

they are the most commonly used models. 1. Persistence Model, 2. Support Vector Regression (SVR), 

3. K-Nearest Neighbor regression (KNN), 4. Multilayer Perceptron (MLP), 5. Radial Basis Functions 

(RBF), 6. Classification and Regression Trees (CART), 7. Random Forests (RF) and 8. Stochastic 

Gradient Boosting (SGB). 

Method 1 is the comparison baseline in general, and methods 2 to 6 are representative machine learning 

algorithms with a single learner. The rest are two types of ensemble machine learning methods. 

Ensemble learning is an algorithm in which many base learning algorithms are organized to establish a 

new integrated learning model [7]. The followings are brief descriptions of each model. 

Persistence: the persistence model considers that the wind power at t + n is equal to wind power at t, 

where n is the following n steps in time series.   

Support Vector Regression: SVR is the regression process conducted by the Support Vector Machine 

algorithm. SVR can make a non-linear regression because it provides kernel functions that map data 

from the input space to a high dimensional feature space where the linear regression is performed [8]. 

Standard kernel functions are linear, polynomial, and gaussian [9]. In this study, we set the coefficient 

C as 1.0 and the RBF kernel function. 

K-Nearest Neighbor: KNN regression is a nonparametric machine learning algorithm based on the K-

Nearest Neighbor classification, which focuses on feature similarity of different distance functions [10]. 

In the study, we conduct grid searches for K from 1 to 10 to find an appropriate K value and choose the 

KNN model with K equals 3, which performs the best in the investigations. 

Multilayer Perceptron: MLP is a network of perceptrons. The perceptron computes a single output from 

multiple real-valued inputs by forming a linear combination according to its input weights and possibly 
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putting the output through some non-linear activation function [11]. In this study, the topology of MLP 

comprises three layers: one node input layer, ten nodes hidden layer, and one node output layer. 

Radial Basis Functions: RBF network is a feed-forward network and similar in structure to the multilayer 

network. It utilizes radial basis functions as its activation functions [12]. In this paper, the topology of 

RBF is the same as the MLP. 

Classification and Regression Trees: CART regression is a machine learning algorithm based on a tree-

like recursive partition of the inputs [13]. The tree establishment processes are conducted from the root 

node to the leaves nodes to make mean square error reach an acceptable setting threshold and realize a 

final decision tree. 

Random Forest: RF is an efficient bagging ensemble machine learning algorithm because it has good 

performance and relatively low computational cost. RF is based on the construction of a multitude of 

regression trees. Each tree is trained by using a bootstrap sample extracted from the whole training set 

[14]. 

Stochastic Gradient Boosting: SGB is a popular ensemble boosting tree learning algorithm, constructs 

additive regressions by sequentially fitting a simple parameterized function (base learner) to current 

"pseudo" residuals by least-squares at each iteration [15]. 

4. Experimental setup   

4.1. Multi-steps Forecasting 

The forecasting for short-term wind energy generation usually needs to provide multi-step (hourly ahead) 

predictions. There are two basic strategies for multi-step predictions in time-series forecasting: direct 

forecasting and iterative forecasting [16].   

In the study, we focus on direct forecasting for wind power from t1 to t3. Namely, we conduct three 

modeling processes from one hour ahead to three hours ahead for each wind park. The direct forecasting 

formula is displayed in equation (2): 

 𝑃
∧

𝑡+𝑛 = 𝑓𝑡+𝑛(𝑃𝑡) + 𝑒𝑛, 𝑛 = 1,2,3  (2) 

where 𝑃
∧

𝑡+𝑛 is the n steps wind power forecasting, ft+n is the forecasting model, en is the model error. 

Besides, the dataset is divided into training and testing sets. In the training process, the ten folds cross-

validation is used to establish forecasting models, and these models are checked with two metrics in the 

testing set.  

The procedure of forecasting is illustrated in Figure. 1. 

4.2. K Folds Cross-validation and Two Evaluation Metrics  

K-folds cross-validation is a vital and popular validation method for machine learning. It can ensure that 

every sample in the original data set can appear in the training and test sets. In this study, we take ten 

folds as common utilizations. 

Two evaluation metrics are applied to the model evaluation. The first metric is the Mean Absolute Error 

(MAE); the second metric is the Root Mean Square Error (RMSE). The lower values of these two metrics 

are related to better performance. The definitions for MAE and RMSE are shown in equations (3) and 

(4): 

  𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖|𝑛

𝑖=1

𝑛
 (3) 

  𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖)2𝑛

𝑖=1

𝑛
 (4) 
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Figure 1. The procedure of algorithms for wind power forecasting. 

5. Results   

The MAE of multi-step forecasts for five wind parks is displayed in Figure. 2. It is shown that as the 

forecasting step adds, the MAEs of all models increase. Persistence models perform as well as SVR 

models in all wind parks, the KNN, MLP, RBF, and CART have similar MAEs, and nearly all of them 

have more unsatisfactory results than the persistence and SVR do. The ensemble learning methods show 

the largest MAEs. The averages (shorten as ML Average) of MAEs of machine learning algorithms for 

a forecasting process are calculated and compared with the persistence and SVR models in the growth 

rate with the forecasting step's increase. MAE's growth rate is shown in Table 2. The persistence model's 

MAEs generally increase faster than the average level of machine learning models and SVR, which 

means the persistence model's performance drops more quickly than machine learning models in terms 

of MAE for all the wind parks. 

 

(a) One hour ahead forecasting. 

 

 

 

(b) Two hours ahead forecasting  (c) Three hours ahead forecasting 

Figure 2. The MAE of eight forecasting models. 
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Table 2. The growth rate of MAE. 

1 to 2 step Persistence ML Average SVR 

Nygårdsfjellet 56.31% 58.22% 55.91% 

Fakken 48.30% 48.54% 48.98% 

Raggovidda 55.78% 52.28% 54.19% 

Kjøllefjord 49.13% 45.41% 45.99% 

Havøygavlen 53.48% 48.10% 47.97% 

2 to 3 step Persistence ML Average SVR 

Nygårdsfjellet 27.88% 28.95% 27.77% 

Fakken 23.82% 22.10% 22.25% 

Raggovidda 27.22% 27.19% 26.38% 

Kjøllefjord 24.08% 22.04% 22.29% 

Havøygavlen 25.44% 23.13% 22.01% 

 

The RMSE of multiple steps predictions for five wind parks is shown in Figure. 3. RMSEs of all models 

increases with the forecasting step increases from 1 to 3. The MLP, RBF, and SVR have the best 

performance in RMSE, in which MLP has the lowest overall RMSE. The persistence, KNN, CART, and 

SGB have similar RMSEs, and nearly all of them have worse results than MLP, RBF, and SVR. The RF 

model has the highest RMSE. The averages of NMSEs of machine learning algorithms for a forecasting 

process are also calculated and compared with the persistence and MLP models in the growth rate with 

the increasing prediction step. The growth rate of NMSE is shown in Table 3 which shows that all 

models' RMSE growth rates decrease as the forecasting step increases. The RMSEs of the persistence 

model generally grow faster than the average level of machine learning models and MLP, which 

demonstrates the performance of the persistence has a more unsatisfactory performance of RMSE than 

machine learning models, which is similar to the results of MAE. 

 

(a) One hour ahead forecasting. 

 

 

 

(b) Two hours ahead forecasting  (c) Three hours ahead forecasting 

Figure 3. The RMSE of eight forecasting models. 
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Table 3. The growth rate of RMSE. 

1 to 2 step Persistence ML Average MLP 

Nygårdsfjellet 51.70% 49.48% 51.80% 

Fakken 44.90% 41.74% 43.10% 

Raggovidda 51.36% 44.82% 47.81% 

Kjøllefjord 46.09% 40.66% 41.82% 

Havøygavlen 49.39% 41.16% 42.77% 

2 to 3 step Persistence ML Average MLP 

Nygårdsfjellet 24.28% 22.99% 24.12% 

Fakken 20.75% 19.01% 18.86% 

Raggovidda 24.43% 22.14% 21.58% 

Kjøllefjord 21.17% 19.17% 19.46% 

Havøygavlen 22.81% 18.91% 19.32% 

 

Moreover, based on the above results, it can be seen that the persistence, SVR, and MLP models have 

similar advantageous performance. However, the apparent differences between them are not intuitively 

apparent from Figure. 2 and Figure. 3. To understand more about the models themselves and their 

effectiveness in wind power forecasting for different wind farms. We take the one-way analysis of 

variance (ANOVA) for five wind farms with the average MAE and RMSE of these three algorithms for 

three-time steps.  

H0: The three algorithms do not have significant differences in temporal average performance. 

Ha: They have significant differences. 

From the ANOVA, its F distribution is with 2 and 12 degrees of freedom. The F values of MAE and 

RMSE equal 1.509 and 1.116, respectively, related to p-values of 0.26 and 0.359. The two p-values are 

both larger than 0.05. So, the H0 cannot be rejected. It is concluded that there exists statistical evidence 

that these three algorithms, on average, do not perform differently in wind power forecasting in our 

cases. 

6. Conclusion 

We conduct the univariate time-series forecasting with eight algorithms introduced above to make 1, 2, 

and 3 hours ahead of wind power predictions for five wind parks inside the Norwegian Arctic regions. 

As a result of the study, the following conclusions can be demonstrated. 

There are only slight differences in performance between the persistence method and machine learning 

methods for the univariate time-series wind power forecasting in our cases. The typical machine learning 

algorithms SVR and MLP perform as well as the persistence model. However, the ensemble learning 

methods like RF and SGB have relatively disappointed prediction results.  

MAE's best machine learning performance is SVR, whose average MAE is almost the same (0.18% 

lower) with the persistence model, which shows the all weighted equally individual differences between 

wind power predictions by the persistence and SVR are smaller than other machine learning algorithms 

in this study. Meanwhile, MLP has the best performance in RMSE, which is 5.4% lower than the 

persistence model. RBF and SVR also have lower RMSE than the persistence model does. These mean 

the wind power forecasted by Persistence model has more large error than these machine learning 

algorithms.  

In terms of predicted time steps, the persistence model's performance decreases faster than the average 

performance of machine learning models, especially in the measurement of RMSE, which means the 

persistence model is relatively unstable in the horizon of and more sensitive with the forecasting time. 

Given that computing time and model complexity, we recommend the persistence model and SVR for 

univariate time-series wind power forecasting for the five wind parks within the time horizon of 3 hours. 



2021 3rd Asia Conference on Automation Engineering (ACAE 2021)
Journal of Physics: Conference Series 2141 (2021) 012016

IOP Publishing
doi:10.1088/1742-6596/2141/1/012016

7

 

 

 

 

 

 

For more accurate predictions within 3 hours or longer time ahead forecasting, the improved machine 

learning models and methods considering methodological or topographic factors should be utilized. 
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