
February 10, 2022 16:6 WSPC/INSTRUCTION FILE output

Using 3D Convolutional Neural Networks for Real-Time Detection of

Soccer Events

Olav A. Nerg̊ard Rongved, Steven A. Hicks, Vajira Thambawita

SimulaMet, Norway & Oslo Metropolitan University, Norway

H̊akon K. Stensland

Simula Research Laboratory, Norway

Evi Zouganeli

Oslo Metropolitan University, Norway

Dag Johansen

UIT The Arctic University of Norway

Cise Midoglu, Michael A. Riegler

SimulaMet, Norway

P̊al Halvorsen

SimulaMet, Norway & Oslo Metropolitan University, Norway & Forzasys AS, Norway

Developing systems for the automatic detection of events in video is a task which has

gained attention in many areas including sports. However, there are still a number of
shortcomings with current systems, such as high latency and determining proper timing

boundaries for events detected, making it challenging to operate at the live edge. In
this paper, we present an algorithm to detect events in soccer videos in real time, using
3D convolutional neural networks. We run and evaluate our algorithm based on on three

different real-world soccer data sets from SoccerNet, the Swedish elite series Allsvenskan,

and the Norwegian elite series Eliteserien. Overall, the results show that we can detect
highly relevant events with high recall, low latency, and accurate time estimation. Rapid

response matters most for us, but we compare our results with current state-of-the-art
that has less strict timing requirements. We conclude that our algorithm can detect most

events in real-times, but still can be improved with slightly better precision. In addition

to the presented algorithm, we perform an extensive ablation study on how the different
parts of the training pipeline affect the final results.

1. Introduction

Video streaming is the most prominent type of traffic in the Internet today, and

is expected to grow 9-fold between 2017 and 2022 [1]. Today, we have access to
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billions of hours of content through services like YouTube and Netflix, not to men-

tion hundreds of TV channels that run 24/7. Within this ecosystem, the preva-

lence of digital sports streaming is continuously growing. Televised sports events

are broadcast around the clock, and almost no aspect of the spectator sports sector

is “offline”. The global sports industry is currently estimated to be worth over $500

billion, with just under half of this turnover being generated by the spectator sports

sector. Across different sports disciplines, association football (soccer) by far has

the most market share of this $250 billion turnover (with 45%)a. The popularity

of this sport is so immense that a game can spark discussions almost immediately

upon completion, with dedicated shows and programs all around the world where

scene replays and statistics are widely used for game-related discussions.

In this context, summarization techniques have become quite important as a

means to compress the video content. For soccer, or sports in general, this summa-

rization would typically consist of game highlights such as goals, bookings (cards),

goal attempts, and penalties. Currently, the gold-standard for creating these high-

light reels is through manual annotations b as shown in Figure 1. This is a time-

consuming, tedious, and expensive operation. Automating this process, or parts of

it, would go a long way in providing fast game highlights at a much lower cost.

Furthermore, automatic detection and annotation of these events could be used for

statistical purposes, which in turn could provide value to fans, teams, or the broad-

casts themselves. The challenge is to develop a system that is accurate enough for

important events and fast enough to be used for live services in real-time.

(a) One person can follow multiple games. (b) Adding metadata.

Fig. 1: A tagging center in live operation. Several persons involved and a lot of

buttons to press. It is a cumbersome, error-prone and tedious manual process.

Event detection is useful in many scenarios. In particular, one especially inter-

esting use-case is producing game highlights while the game is ongoing. However, for

ahttps://www.torrens.edu.au/blog/business/

why-the-sports-industry-is-booming-in-2020-and-which-key-players-are-driving-growth
bhttps://forzasys.com/videos/forzify-tagging-pluss-small.mp4

https://www.torrens.edu.au/blog/business/why-the-sports-industry-is-booming-in-2020-and-which-key-players-are-driving-growth
https://www.torrens.edu.au/blog/business/why-the-sports-industry-is-booming-in-2020-and-which-key-players-are-driving-growth
https://forzasys.com/videos/forzify-tagging-pluss-small.mp4
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this to work, the detection algorithm has to process frames at the pace of the videos’

frame-rate (typically 25 frames-per-second). Real-time detection of sports events is

nothing new, but previous pursuits rely on textual information that may not always

be available [2] or require complex setups that use expensive equipment [3]. With

the recent advances in deep learning-based action recognition and detection, it may

be possible to create a data-driven model that generalizes to multiple sports and

events. In this paper, we extend our work in [4] and explore how state-of-the-art

deep learning models perform in soccer event detection. Our goal is to automati-

cally annotate soccer events in videos as close to the actual event (in real-time) as

possible. One approach to evaluate automatic event detection is through the task

of spotting measuring the distances between the actual events and the predicted

events. We build a prototype and use multiple datasets to evaluate our method

against a baseline comparison from SoccerNet [5] in terms of both accuracy and

tolerance for delays. We first provide an in-depth analysis of the performance of

different models, such as ResNet 3D (R3D), ResNet Mixed Convolution (MC3) and

ResNet (2+1)D (R(2+1)D), in terms of precision, recall, and F1 score in the scene

classification task for soccer videos. Then, following the results of the comparison,

using three different datasets, we focus on R3D, and explore and dissect the per-

formance with respect to event categories such as “Goal”, “Card”, “Substitution,

and “Background”. The results indicate that the approach presented in [6], as a

representative of the current state-of-the-art, gives a higher detection accuracy if

there is a higher tolerance for accurate time estimation. In contrast, our approach

is competitive for lower tolerance on accurate time estimation and superior when

real-time detection is required. Finally, we include an ablation study to assess dif-

ferent parts of the system where we for example use class activation maps (CAMs)

see model activation signals and analyse miss-classifications.

The rest of this paper is organized as follows: In Section 2, we give an overview

of and discuss related work. We describe our methodology and implementations

in Section 3, and outline our experiments and results in Section 4. We present an

ablation study in Section 5, before we conclude the paper in Section 6.

2. Related Works

Automatic event detection is a broad field spanning multiple different areas such as

sports. In this section, we cover the most relevant works using automatic analysis of

sports broadcasts. We split this coverage into two parts, sports analytics and action

detection, and insert our work to show how it contributes.

2.1. Action Detection

Action detection aims to detect what action occurs at certain times in a video, and

it is a challenge that has gotten much attention over the last decade. There are

several challenges when processing videos. There is often cluttered background, the

camera view can change, and there can also be motion blur in the video. There are
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also practical challenges such as high computational cost, storage requirements, a

costly and time-demanding annotation process for the datasets.

Action Recognition is the classification of short and trimmed clips of video.

Datasets such as UCF101 [7] and HMDB-51 [8] have been influential in making

the action recognition task more accessible and creating a standard benchmark to

measure the performance of the algorithms.

In previous works, features such as histogram of oriented gradients (HOG),

histogram of flow (HOF), motion boundary histograms (MBH) [9], dense trajecto-

ries [10, 11] showed good results. In 2014, Karpathy et al. [12] explored the use of

convolutional neural networks (CNNs) using two streams, cropping the center of the

image and down-sampling it as input. Moreover, Simonyan et al. [13] introduced

a two-stream CNN architecture related to the two-stream hypothesis [14], which is

an idea of humans possessing two distinct visual systems. The authors used two

separate CNNs, where a spatial CNN [15], pre-trained on ImageNet, takes RGB

input by sampling frames from video, while the temporal stream uses optical flow

fields as input. Carreira et al. [16] further extended this approach by adding 3D

convolution to the Two-Stream structure, and Feichtenhofer et al. [17] explored the

fusion process by combining 3D convolution and 3D pooling. The Two-Stream ar-

chitecture was extended with ST-ResNet [18], which adds residual connections [19]

in both streams. Combining hand-crafted features and deep-learned features have

also shown promising results [20].

Wang et al. [21, 22] proposed Temporal Segment Networks (TSN), arguing that

existing models mostly focused on short-term motion rather than long-range tem-

poral structures. TSN predicts by taking a video input, separating it into multiple

snippets, and using a two-stream network for each snippet. C3D [23] explored 3D

convolution learning Spatio-temporal features. They showed that 3D convolutions

are beneficial by adding temporal information such as motion compared with exist-

ing 2D convolutions.

Carreira et al. [16] introduced the Two-Stream Inflated 3D ConvNet (I3D)

model, tested on the kinetics-400 dataset [24], using both 3D convolution and the

inception architecture [25]. I3D works much like the two-stream networks, using

one network for the RGB stream input and a separate optical flow network. To

enable 3D convolution, they use transfer learning to initialize the 3D filters, i.e.,

they inflated filters on a pre-trained 2D CNN.

PoTion [26] used a pose detection algorithm [27] to find spatial locations frame

by frame for joints and critical parts of the human body, i.e., avoiding to rely on

only RGB or optical flow as input. Combined with RGB input, they could now use

a much smaller CNN. However, a challenge with this approach is the reliance on

promising results from the pose detection model.

Tran et al. [28] introduced Res (2+1)D, where (2+1)D convolutions are sepa-

rating the 3D convolution into two steps. The idea is that it may be easier for the

network to learn spatial and temporal features separately. Finally, SlowFast [29]

introduced the SlowFast architecture. This model is using two different frame rates



February 10, 2022 16:6 WSPC/INSTRUCTION FILE output

Using 3D Convolutional Neural Networks for Real-Time Detection of Soccer Events 5

as input. The idea is to have a high-capacity slow pathway that sub-samples the

input heavily and a fast pathway that has a significantly higher frame rate at the

cost of the capacity.

Temporal action detection aims to find a temporal interval in an untrimmed

video, together with a given action that occurs. Common datasets for this chal-

lenge are THUMOS [30] and ActivityNet [31]. One of the successful approaches has

been the sliding windows approach [30]. However, this approach is computationally

expensive and lacks flexibility due to fixed window sizes. There has been some fo-

cus on generating temporal proposals for use with a classifier [32, 33]. Inspired by

Faster R-CNN [34], Xu et al. [35] created an end-to-end model for temporal action

detection that generates temporal region proposals, followed by classification.

Spatio-temporal action detection attempts to find a temporal interval for a

given action and spatially. Finally, spotting [5] focuses on detecting sparse events in

untrimmed videos. In contrast to temporal action detection, there is no temporal

interval in which an event occurs. Instead, it is defined as an instant point in time.

2.2. Sports Analytics

In Sports Analytics, the use of machine learning has become increasingly popu-

lar over the last few years. This field is wide, encompassing sports ranging from

soccer [5] to curling [36, 37] and everything in-between [2, 38, 39, 40]. Before the

advent of machine learning, computer vision was a popular technique to analyze

sports broadcasts to generate highlight reels and produce statistics. In 2003, Ekin

et al. [41] presented a framework to summarize soccer videos using cinematic and

object-based features automatically. Later, Giancola et al. presented SoccerNet [5],

which is an open dataset for soccer video analysis. As a benchmark, the authors

performed some preliminary experiments using I3D [16], C3D [23], and ResNet [19]

pre-trained on ImageNet [42] as fixed feature extractors, followed by dimensionality

reduction with principal component analysis (PCA). Every 0.5 seconds throughout

the soccer video, the features are sampled. Afterward, the authors use convolutional

layers based on these features to capture temporal information, followed by pooling

laters and a fully connected layer. When the final trained model predicts an event,

this process is executed around the annotated event by a sliding-windows approach

and post-processing the predictions. To test this approach, the authors use a tem-

poral window ranging from 5-60 seconds. The results showed that 5-second windows

performed best given the strict requirements for distance between predicted events.

However, 20-second windows gave the best overall performance. Cioppa et al. [6]

improved the results on SoccerNet. A new loss function for temporal segmentation

is introduced. This loss function varies the loss based on whether a prediction is

located far before, just before, or far after an event.
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3. Methodology

Building on the ideas that are presented above, we aim for a system that is both

accurate and fast. In a real-time setting, latency is important, and therefore, a

reduction of the temporal window is highly desirable. It is often necessary to gather

contextual features both from the past and the future. When the model requires

information from the future, the video will need to be accordingly buffered, thus

introducing a delay. While a sliding-window approach is computationally expensive,

current hardware can still run CNNs fast enough for acceptable performance. In

many cases, the delay can be further reduced by using a higher temporal stride,

without compromising precision.

3.1. Data and Pre-processing Pipeline

To detect events in untrimmed videos, we use a sliding window approach with a

CNN classifier. To that end, we recast the problem as a classification problem locally

around each event. We sample N frames locally, centred at the temporal anchor.

Video frames that are not near an annotated event are considered as background.

Hence, this approach leaves us with a biased model due to the sparsity of events

compared with background.

Contextually, the scenes in soccer videos may also be rather similar for different

types of events, consider for example a goal attempt versus a goal, or a close-up

view on the referee pointing versus a yellow card. Therefore, we try to represent all

parts of a full videos by generating background samples to encourage the model to

learn meaningful features even when there is no typical soccer events. The borders

between background and events have some inherent ambiguity, as seen in Sigurds-

son et al. [43], who explored how the temporal extent of an event varies between

different annotators. We annotate a background set using the following rule: If the

distance between two consecutive events a and b is greater than 180 seconds, then

we annotate a new event labeled Background at at+bt
2 . With minimum 180 seconds

away from the closest annotated event, we have cleared a large enough temporal

distance to ensure that information from events is not contained within a back-

ground sample. While it is still possible to sample a replay of an event, we find it

is unlikely since replays are typically played closer to events.

Class Train Validation Test

Card 1296 396 453
Substitution 1708 562 579
Goal 961 356 326
Background 1855 636 653

Total 5820 1950 2011

Table 1: The number of samples per class.
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Card

Substitution

Goal

Background

Fig. 2: Sample frames visualized for a sample of 128 frames. The middle frame is at

the annotated time.

Table 1 shows our new dataset that contains Background. SoccerNet has 6, 637

annotations across about 784 hours of video. If we assume that a given event lasts 5

seconds, we have annotations for 5×6637 seconds of the total 784×60×60seconds.

This adds up to 1.17%, with the remaining 98.83% seconds containing something

else. Therefore, with these three classes, the vast majority of a soccer match is

background. Another weakness is that since we automatically generate new samples,

Background may in principle be annotated during replays of any of the three events.

Although highly unlikely, some ’bad’ samples may still be present.

During training, we pre-process the clips on the fly. First we resize clips to a

resolution of 112×199, followed by normalization. Subsequently, we randomly crop

a 112 × 112 clip. Finally, we randomly flip each frame with a probability of 0.5.

Since soccer fields are symmetric around the center, this will presumably make the

model more robust to events on either side. In Figure 2, we show some example

frames for the three classes.
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3.2. Model Architecture

To successfully detect events, we want models that can capture both spatial and

temporal information. ResNet 3D (R3D), ResNet Mixed Convolution (MC3) and

ResNet (2+1)D (R(2+1)D) [28] are some strong models that rely only on RGB

input. These models all have 18 layers and are available pre-trained on Kinetics-400

using 16×112×112 inputs from PyTorch [44]. Many models use optical flow [45, 13]

in order to capture temporal information. This approach has some disadvantages,

such as needing to pre-process optical flow. We also tested SlowFast networks [29].

However, potentially due to our slightly different implementation and configuration

with respect toc, as well as the lack of pre-trained weights, SlowFast performed worse

than the ResNet models. We therefore decided to focus on the ResNet models for

detection. Below, we provide a brief description of each ResNet model:

• R3D uses a stem block with a single-layered 3D convolutional block with a

3×7×7 kernel and stride 1×2×2 followed by multiple two-layered blocks

with 3×3×3 kernels throughout the network before global average pooling

and a linear output layer. This enables the model to learn spatio-temporal

features.

• R(2+1)D uses a (2+1)D convolutional stem followed by multiple two-

layered 2+1D blocks, resulting in higher cost during training mainly due to

double the number of convolutions, batch normalization, and ReLU when

compared to R3D. Tran et al. [28] argue that it may be easier to learn

spatial features and temporal features separately.

• MC3 uses both 3D and 2D convolution blocks. It should be noted that

the 2D convolution blocks in this context perform 3D convolution with

1 × S × S kernels. This model uses the basic stem as in R3D, followed by

a layer of two 3D convolutional blocks. Subsequently, the model contains

three consecutive 2D convolutional blocks are used before we perform global

average pooling and a linear output layer. Tran et al. [28] noted that the

idea here is that it may be best to get temporal features in the early layers,

focusing on spatial features deeper in the network.

To compare the model performance, we evaluated and compare all three models.

We have varied various parameters, such as different temporal input sizes, spatial

input sizes, trained versus pre-trained configurations, and so on. We use 32-frame

inputs due to high memory requirements, and experimented with a spatial resolution

of 112×112 and 224×224. The results showed negligible difference between the two.

Given the high cost of using a higher resolution, we opted for a spatial resolution

of 112× 112. In Table 2, we give an overview with the best configurations for each

model highlighted in bold. We observe that the models generally improve with more

input frames. All models seem to greatly benefit from 8 frames to 16 frames with

chttps://github.com/facebookresearch/SlowFast

https://github.com/facebookresearch/SlowFast
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about 2% accuracy improvement. The same jump is seen from 16 frames to 32

frames, with about 3% improvement for R(2+1)D and R3D. 64 frames perform

better, however interestingly, it seems that R(2+1)D does not scale as well with

more frames when compared to R3D and MC3. With almost 8% higher validation

accuracy from 8 frames to 128 frames, it seems that R3D scales best with a longer

temporal window. With 128 frames at 25 frames per second (FPS), we have a 5.12-

second input. As we increase our window, we will likely include too much irrelevant

information. Intuitively, around 5 seconds seems sufficient for a human annotator

to understand what event has taken place. However, with a 20, 30, or 40 second

window, more than one event may be present, making it less discernible. During

validation, we use the same number of frames as the model was trained on. It

may be that a larger window during validation simplifies the task for the model.

In summary, based on all these tests (Table 2), we proceed using the R3D model

pre-trained on Kinetics-400 using a 112 × 112 frame resolution and a 128-frame

temporal resolution.

Thus, our best-performing model is an 18-layered 3D ResNet as in Tran et

al. [28]. It uses 17 3D-convolution layers followed by global average pooling and an

output layer. The model is composed by using several residual blocks that contain

3D convolutions, with batch-normalization and ReLU. Additionally, the model has

been pre-trained on Kinetics-400 [24]. Due to the pooling layer, an arbitrary number

of video frames can be used as input.

3.3. Training and Implementation Details

We implemented the model in PyTorch [44] and trained on a computer consisting

of 16 Nvidia Tesla V100 GPUs, which combined has a total memory capacity of 512

Gigabytes.

Table 3 shows the time spent with our method to create the prediction signal.

Samples are 128 frames with resolution 224 × 398, which is transformed through

resizing and center cropping to 112×112 resolution, and then normalized. These are

sampled at a stride of 1 second in a single game. Most of the time is spent reading in

video frames, followed by the time for transforms. Moreover, we use SGD with 0.9

momentum for each model and a learning rate scheduler that reduces the learning

rate by a multiplicative factor of 0.1 every 10 epochs. We use an initial learning

rate of 0.001 and a mini-batch size of 64.

Finally, as discussed in Section 3.2 and Table 2, in order to find a good con-

figuration we have experimented with resolutions of 112× 112 and 224× 224, and

the number of frames ranging between 8 and 128. The best results are achieved

with the 18-layer R3D pre-trained on Kinetics-400 [24] with 128 frame inputs using

112× 112 resolution. The number of frames and the use of a pre-trained model had

significant effects on the result. This configuration of the R3D model achieves 88.4%

accuracy for classification on the validation set samples, and is hence used in the

experiments below.
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Results based on number of frames as input

Model Class Precision Recall F1-score

R(2+1)D 8f

Card 0.700 0.795 0.745
Substitution 0.854 0.769 0.809
Goal 0.887 0.840 0.863
Background 0.741 0.766 0.753

R(2+1)D 16f

Card 0.744 0.770 0.757
Substitution 0.851 0.804 0.827
Goal 0.881 0.913 0.897
Background 0.766 0.770 0.768

R(2+1)D 32f

Card 0.742 0.874 0.803
Substitution 0.888 0.849 0.868
Goal 0.896 0.947 0.921
Background 0.853 0.766 0.807

R(2+1)D 64f

Card 0.815 0.859 0.836
Substitution 0.914 0.815 0.862
Goal 0.940 0.885 0.912
Background 0.785 0.860 0.821

R(2+1)D 128f

Card 0.768 0.909 0.832
Substitution 0.938 0.810 0.869
Goal 0.928 0.907 0.918
Background 0.826 0.841 0.833

MC3 8f

Card 0.817 0.755 0.785
Substitution 0.828 0.865 0.846
Goal 0.859 0.927 0.892
Background 0.777 0.748 0.762

MC3 16f

Card 0.825 0.808 0.816
Substitution 0.867 0.890 0.878
Goal 0.869 0.916 0.892
Background 0.802 0.769 0.785

MC3 32f

Card 0.881 0.806 0.842
Substitution 0.856 0.911 0.883
Goal 0.865 0.919 0.891
Background 0.819 0.788 0.803

MC3 64f

Card 0.860 0.871 0.866
Substitution 0.880 0.909 0.894
Goal 0.878 0.949 0.912
Background 0.847 0.777 0.811

MC3 128f

Card 0.869 0.871 0.870
Substitution 0.909 0.884 0.896
Goal 0.860 0.952 0.904
Background 0.840 0.808 0.824

R3D 8f

Card 0.789 0.758 0.773
Substitution 0.827 0.852 0.840
Goal 0.856 0.916 0.885
Background 0.772 0.741 0.756

R3D 16f

Card 0.811 0.793 0.802
Substitution 0.837 0.870 0.853
Goal 0.858 0.952 0.903
Background 0.812 0.745 0.777

R3D 32f

Card 0.836 0.823 0.830
Substitution 0.861 0.915 0.887
Goal 0.894 0.947 0.920
Background 0.838 0.772 0.804

R3D 64f

Card 0.903 0.846 0.874
Substitution 0.873 0.920 0.896
Goal 0.893 0.963 0.927
Background 0.856 0.811 0.833

R3D 128f

Card 0.917 0.838 0.876
Substitution 0.880 0.916 0.898
Goal 0.912 0.955 0.933
Background 0.852 0.844 0.848

Table 2: Precision, recall, and F1-score per class for the tested models pre-trained

on the Kinetics-400 dataset with different number of consecutive frames as input.

Component Time (seconds)

Avg. Video Read/Load + Transforms 0.605930s
Avg. Transforms 0.144913s
Avg. Video Read/Load 0.460952s
Avg. GPU load 0.004735s
Avg. GPU foward pass 0.004633s
Avg. GPU load + forward pass 0.009372s
Avg. Total 0.615302s

Table 3: Average runtime over 50 samples on a single Nvidia Tesla V100 GPU.
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Fig. 3: Softmax confidence for each class over 45-minutes with ground truth.

Fig. 4: Prediction for each second after mean filtering and thresholding. Red dotted

line shows ground truth for each class.

3.4. Post-processing Output

We apply the model in a sliding window fashion with a stride of 1 second. We use

a moving average filter with a kernel size of 3 on the output signal, followed by

non-maximum suppression (NMS) for windows of 8 seconds, such that there are no
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predictions within 4 seconds of each other. Lastly, we apply a threshold in order to

remove low-confidence predictions.

4. Results and Evaluation

We have performed various experiments to test and evaluate the proposed model

and compare its performance to the state of the art.

4.1. Metrics

In our multi-class classification experiments, we have used standard metrics like

precision, recall, and F1-score. Here, the classification problem can be interpreted

as a one-vs-all binary classification for each class in which true positive (TP) is

when a model predicts the correct class, a false positive (FP) is when a class is

incorrectly predicted, a true negative (TN) when a class is correctly rejected, and

a false negative (FN), where a class was incorrectly rejected. Hence, the precision

is the ratio of correct instances among the retrieved instances and is calculated as

follows:

Precision =
TP

TP + FP
(1)

The recall is the fraction of the correct instances that were retrieved:

Recall =
TP

TP + FN
(2)

Finally, the F1 score is the harmonic mean of precision and recall:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3)

For spotting, we look at each class separately as a one-vs-all binary problem and

consider a positive prediction as a possible true positive if it is within a tolerance

δ of the ground truth event with confidence equal or higher than our threshold.

Formally, we use the condition in Equation 4:

|gtspot − pspot| <
δ

2
(4)

where gtspot is a ground truth spot, and pspot a predicted spot in seconds. We

take predictions that match the criteria in Equation 4 and create unique pairs of

predicted spots and ground truth spots. These are matched in a greedy fashion,

where each ground truth spot is matched with the closest prediction. Predicted

spots that have no match are considered a false positive. For a given gtspot, when

no predictions are made where this condition holds, we consider it a false negative.

We use the condition in Equation 4 to calculate the average precision (AP) for each

class:

AP =
∑
n

(Rn −Rn−1)Pn (5)



February 10, 2022 16:6 WSPC/INSTRUCTION FILE output

Using 3D Convolutional Neural Networks for Real-Time Detection of Soccer Events 13

Background Card Goal Substitution
Predicted label

Background

Card

Goal

Substitution

Tr
ue

 la
be

l
537 20 30 49

43 332 0 21

15 1 340 0

35 9 3 515

Confusion Matrix

0

100

200

300

400

500

Fig. 5: Confusion matrix for validation results using R3D with 128 frames.

where Rn and Pn is the recall and precision at the n’th threshold. AP is related to

the precision-recall and can be calculated as the area under the curve. This is useful

as it reduces the PR-curve to a single numeric value. Subsequently, we calculate the

mean average precision (mAP):

mAP =

∑C
i=1APi

C
(6)

where APi is AP calculated for the i’th class for C classes, mAP is the mean AP

calculated over all classes. This is then calculated for tolerances δ ranging between 5

and 60 seconds. Finally, we use the mAP scores calculated for different δ to calculate

the area under the ROC curve (AUC) and the Average-mAP score, which provides

some insight into the model’s overall performance in the range of 5 - 60 seconds.

4.2. SoccerNet Classification

Our first experiment tries to classify an event, given that we know there is an event.

Using the validation dataset described in Table 1 for testing, Figure 5 shows the

confusion matrix for our R3D model with 128 frames. Good accuracy is attained, as

most clips are correctly classified. However, there is still room for improvements. For

the events Card, Goal and Substitution, most of the errors are predictions for the

Background event type, i.e. nothing happening. We also consider the cases where

Background is wrongly predicted as one of the other three classes. The challenge

here is that Background events may contain replays of goal, goal attempts and

several conceptually similar scenes to other classes. Hence, it is a matter of definition

whether this is in fact a wrong classification or not. However, in practice this type

of error ought to be eliminated.
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Fig. 6: Recall, precision and f1-score with respect to the tolerance δ for class Card,

comparison with Cioppa et al. [6].

4.3. SoccerNet Spotting

Figure 3 depicts the softmax confidence for each class separately for a soccer half-

game of 45 minutes. The background signal dominates most of the time. However,

the signals are noisy and include multiple high responses at the wrong time.

Figure 4 shows our final predictions. After applying a threshold of 0.9, we observe

that most of the noise is removed. For the event Card, we get a false positive

long after the event itself. Looking at both Substitution and Goal, we observe that

reasonable predictions are obtained close to the ground truth. However, we also end

up with a number of false positives that are entirely unrelated.

In Figure 6, we can observe that our method reaches a plateau at about δ=10.

Our method has a small temporal receptive field of 8 seconds after all post-

processing steps, including NMS. Therefore, results at higher tolerance are of less

interest. The appropriate threshold level is estimated by the threshold that opti-

mizes f1-score at tolerance δ = 5.

4.4. Cross-dataset Evaluation

Training a model on one particular dataset does not automatically mean that the

same model generalizes well to other datasets that contain the same classes. To in-

vestigate how our approach generalizes to other soccer videos, we download an ad-

ditional 617 short clips combined from Norwegian Eliteserien and Swedish Allsven-

skan. 533 of these clips contain a goal, while 84 contain goal Attempts. As we do

not explicitly train our model on goal attempts, we expect false positives as we test

clips that are contextually similar to goals. This dataset contains clips with duration

ranging between approximately 60 to 90 seconds, where each clip includes an event

at about 25 seconds into the clip. In practice, the event generally lies within 20 to

30 seconds into the clip. Results from randomly sampled goals from Eliteserien are

shown in Figure 7a using a softmax predicted score. Since all samples are similar in
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that the event occurs at the same temporal spot, we look at the average prediction

signal over all samples. In the figure, we mark the expected goal at 25 seconds, and

the maximum prediction produced by the model. We generally see a peak of around

25 seconds, as expected. Furthermore, the model seems to produce false positives

30-60 seconds after the goal. This is consistent with replays, and highlights a lim-

itation of our model in that it cannot inherently separate the actual goal from a

replay. The results imply that we can expect the model to produce false positives

for most goals, depending on factors such as replay speed and camera angle. It may

be applicable to remove these predictions and hence errors by assuming that there

are no overlapping goals within a temporal window of length L centered at the max

prediction. In Figure 7b, we also find that there is a trend of high responses around

25 seconds. However, we note that, the prediction score from these samples is lower

compared to actual goals. This indicates that lower thresholds lead to an increased

number of false positives, hence it is crucial to use a high enough threshold.

Dataset N

Goal Allsvenskan 233
Goal Eliteserien 300
Goal attempt Allsvenskan 84

Total 617

Table 4: Statistics for Allsvenskan and Eliteserien clips.

Table 4 shows the number of goals and the number of goal attempts, and Figure 8

depicts the average prediction for two event types. In Figure 8a, we observe how

our approach generally responds to goals. This is further exemplified in Figure 8b

for the goal attempts. The general conclusion is that the prediction is very accurate

in predicting the time of the different events.

4.5. Comparison to State-of-the-art

Method mAP

SoccerNet baseline 20s [5] 49.7
Cioppa et al. [6] 62.5

Ours 32.0

Table 5: Results for the spotting task in SoccerNet.

Table 5 shows that our method scores low for the Average-mAP. However, since

our approach relies on a small temporal window of 8 seconds after post-processing,

the values calculated for tolerances δ > 8 can be misleading. Average-mAP uses a

range of tolerances from 5 to 60 seconds. Since our model relies on local information,

rather than long-range contextual information regarding events, it is expected that

increasing the tolerances will only result in finding spots that are false positives. In a
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(a) Goal clips from Eliteserien.

(b) Goal attempt clips from Allsvenskan.

Fig. 7: Predictions on random samples.

real-time setting, it may be important to have as little prediction delay as possible.

With our approach, a live prediction will have a delay of about 4 seconds. This

includes both buffering future frames and computation. The baseline model would

introduce about 10 seconds delay, and the current work in [6] about 100 seconds

delay. Evidently, long-range contextual features can boost performance, and there

is a trade-off between acceptable delay and detection performance.

5. Ablation Study

To assess different parts of the system, we have performed an ablation study.
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(a) Goal clips. (b) Goal attempt clips.

Fig. 8: The average predictions for the ’goal’ and ’goal attempts’ clips.

5.1. Local Behavior with Sliding Window

The sliding window approach was performed with a stride of 1 second. The videos’

frame rate is 25 FPS, and we could therefore sample more often, which might be

valuable. However, sampling densely at 25 times per second would be computation-

ally expensive.

To better understand the local behavior of our model and how densely we need to

sample, we perform the following experiment. First, we randomly sample 8 correctly

predicted event samples from the validation set. Next, we pad the input with 130

zero frames before and after, hence, we now have a 3 × 386 × 112 × 112 tensor.

Finally, we take a sliding-window approach, where we use a stride of 1 frame, densely

sampling predictions. It may be that some classes require longer temporal windows

for correct predictions.

In Figure 9, we can observe how the model prediction is generally strong while

close to a perfect overlap with the event, especially when within 15 frames of a

perfect overlap. Depending on the class, we also notice differences. The class Sub-

stitution has a higher AUC in our samples compared to the class Goal. Intuitively,

this may be due to the underlying length of the different events. A goal will often

contain rapid changes, while a substitution may be a more slow process.

We observe similar results for larger samples around events. Based on these ex-

periments, we conjecture that sampling too densely with a sliding window approach

is unnecessary. Since we are not required to densely sample predictions, it is easier

to run real-time.

5.2. Class Activation Maps

To understand what our model reacts to temporally and spatially, we inspect the

class activation maps (CAMs) for correct and wrong predictions. We follow the

methodology presented by Zhou et al. [46] to generate CAMs.
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Fig. 9: Softmax output for the event Goal with a stride of 1 frame over 260 frames.

Samples are correctly predicted validation samples. Red dotted line shows the out-

put prediction for the 128 frames of the event.

The model R3D uses global average pooling before a fuller connected layer after

17 convolutional layers. For R3D, with 128 frames specifically, we have a 512×16×
7×7 tensor that is reduced to 512×1×1×1 after the global average pooling layer.

These are the 512 features that are used to compute the final scores, followed by

softmax. Let Fi denote the i-th feature channel for i ∈ {1, 2, 3, ..., N}. Then, Sc is

the pre-softmax class score, computed as a weighted sum by Equation 7:

Sc = Bc +

N∑
i=1

wc
iFi (7)

Here, Bc is the bias term, wc
i are the weights, and c denotes our four different classes

Card, Substitution, Goal, and Background. Fi is calculated by Equation 8:

Fi =
1

K

∑
t,x,y

Vi(t, x, y) (8)

Vi holds our N feature volumes with K elements each, which in our case is 16×7×7 =

784, where t denotes our temporal dimension, and x, y our spatial dimensions.

Thereby:
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Sc = Bc +

N∑
i=1

wc
i

1

K

∑
t,x,y

Vi(t, x, y)

= Bc +
1

K

∑
t,x,y

N∑
i=1

wc
iVi(t, x, y)

(9)

In Equation 9, we attempt to show the relationship between the pre-average

pool feature volumes and the weights and bias used to compute the class scores Sc.

As Zhou et al. [46], we ignore the bias term moving forward as it has little impact

on the final results. We define a class activation tube (CAT) as a 3-dimensional

equivalent of CAMs as follows:

Tc(t, x, y) =

N∑
i=1

wc
iVi(t, x, y) (10)

Going from Equation 10 to our class score Sc, we need to calculate the average

over all elements and add the bias term. Since this is the case, we may find useful

information both temporally and spatially that helps us gain insight into what our

model reacts to. Figure 10a illustrates where we get our feature volumes in our

model. Additionally, we illustrate how these feature volumes are used to compute

CAT’s, as in Equation 10, in Figure 10b.

We use CATs to understand spatio-temporal features by considering the spatial

information at time t. In order to get a comparison to our input, we interpolate

our 7 × 7 maps in {Tc(t = 0, x, y), Tc(t = 1, x, y)...Tc(t = T, x, y)} using bicubic

interpolation. We also use the CATs to compute temporal signals to indicate where

in time, our model reacts. This is achieved by average pooling Tc across spatial

dimensions, resulting in a 1-dimensional signal. Due to the spatial relationship of

the spatio-temporal class activation features at time t, we refer to them as CAMs.

Furthermore, we refer to the 1-dimensional temporal signal as class activation signal.

5.2.1. Sparse CAMs

In order to gain some insight into the spatial features of the network and what the

network base its detection on, we slide our model across each sample with inputs of

128 frames, using a stride of 16 frames. For each location, we save the middle input

image and the corresponding middle CAM at Tc(8, x, y). In Figure 11, we observe

how the model seems to react strongly to a referee holding a card, i.e., the strong

red areas.

As mentioned in Section 4.2, there are also miss-classified events. Again using

the CAMs, we looked at several examples and as depicted in the example in Fig-

ure 12 could manifest that the model hardly reacts at anything. Hence, the model

incorrectly classified the sample as Background. There seem to be several causes

of miss-classifications. In the given example, we notice that the goal seems to be a
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(a) Structure in the R3D model. The feature volumes Vi are extracted prior to global
average pooling layer in order to preserve spatial and temporal information.

(b) Calculation of class activation tubes Tc.

Fig. 10: Extraction of features and calculation of CAT.

penalty, where the camera angle is somewhat unusual. Another factor might also be

that much of the scene is filled with audience members, which might be associated

with background samples.

5.2.2. Class Activation Signal

Since we are using video and a 3-dimensional CNN, we have both spatial and

temporal information. Therefore, we can focus on the temporal signal alone by

averaging across the spatial dimensions, resulting in a 1-dimensional signal.

Zhou et al. [46] showed that CAMs could be used for object detection. It may

also be possible to use this for more accurate and efficient detection of events. In

Figure 13a, we show how our model reacts in the temporal dimension. It seems

that the strongest activations occur close to the actual event. Normally, any of

these signals would be averaged and used as input into softmax to produce the final

predictions. However, this process removes temporal information that could be used
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(b) Corresponding center CAM.

Fig. 11: Results from CATs spatio-temporally for the event Card. Each small picture

has the used 112×112 resolution.
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(b) Class activation maps

Fig. 12: Example of erroneously classification of a ’Goal ’ as a ’Background ’ event.

Each small picture has the used 112×112 resolution.

for more accurate annotations. This is seen when increasing the temporal footprint
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Fig. 13: Results from CATs temporally for the event Card.

as well. Figure 13b shows that the class activation signal indicates strong reactions

at the actual event.

6. Conclusion

In this paper, we have presented a real-time algorithm to automatically detect and

annotate segments of soccer videos using CNNs. The approach uses sliding windows

to detect events and classifies them into a set number of categories. To better

understand how the algorithm detects events, we performed an extensive ablation

study and visualized the network’s layers using CAMs. Overall, we achieved an

accuracy of 88.4% on trimmed clips in SoccerNet, and an Average-mAP score of

32.0% on the spotting task of SoccerNet [5]. Compared to the results presented in the

SoccerNet papers, we achieve a slightly lower detection accuracy compared to the
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the general state-of-the-art, which has a higher tolerance for precise and accurate

time estimation. Consequently, our approach is competitive when accurate time

estimation is important (finding the event’s exact time) and better than the state-

of-the-art when a low delay is required, for example for real-time event detection.

Ongoing work includes tuning of the system to increase precision while keeping

the recall and low delay. Inspired by recent work like [47], we are also researching

how audio can be added to state-of-the-art approaches making multi-modal models.

Another interesting direction for the future is to test with more data and additional

event types in the upcoming SoccerNet-v2 dataset [48]. Finally, we conjecture that

the presented approach will scale to other sports as the algorithm is rater application

agnostic, which will be investigated in the future.
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(Curran Associates, Inc., 2019), pp. 8024–8035.

[45] J. Carreira and A. Zisserman, Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset (February 2018).
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