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ABSTRACT

This review focuses on the role of adipose tissue in obese individuals in the development of 
metabolic diseases, and their consequences for metabolic and functional derangements in the 
heart. The general idea is that the expansion of adipocytes during the development of obesity 
gives rise to unhealthy adipose tissue, characterized by low-grade inflammation and the release 
of proinflammatory adipokines and fatty acids (FAs). This condition, in turn, causes systemic 
inflammation and elevated FA concentrations in the circulation, which links obesity to several 
pathologies, including impaired insulin signaling in cardiac muscle and a subsequent shift in 
myocardial substrate oxidation in favor of FAs and reduced cardiac efficiency. This review also 
argues that efforts to prevent obesity-related cardiometabolic disease should focus on anti-
obesogenic strategies to restore normal adipose tissue metabolism.
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INTRODUCTION

Obesity causes adverse metabolic effects and is a major risk factor for metabolic diseases, 
such as type 2 diabetes and fatty liver disease, which increase the risk of coronary heart 
disease (CHD) and ischemic stroke. Obesity is a growing health problem in both developed 
and developing countries, and in the last 20 years the world has witnessed an alarming 
increase in obesity.1 Obesity has nearly tripled worldwide since 1975, and according to the 
World Health Organization, more than 1.9 billion adults (18 years and older) were overweight 
in 2016.2 Of these, over 650 million were obese (defined as a body mass index above 30 kg/
m2). It should also be noted that 38 million children under the age of 5 were overweight 
or obese in 2019. In China, the world's most populous country, obesity has also increased 
at an alarmingly rapid rate, and during the past decade the prevalence of obesity in the 
country has tripled, while that of abdominal obesity has increased by more than 50%.3 These 
numbers are expected to rise in the future unless effective actions are taken to prevent such 
a development.2 The current rise in human obesity is primarily linked to increased energy 
intake and decreased energy expenditure, resulting in excess fat deposition in adipose tissue.4
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ADIPOSE TISSUE: AN ENERGY RESERVOIR WITH THE 
CAPACITY TO CHANGE ITS DIMENSIONS IN RESPONSE 
TO NUTRITIONAL STATUS

Storage of extra energy obtained during food abundance in adipose tissue is an essential 
physiological activity in living organisms, especially in free-ranging animals who have to deal 
with marked seasonal alterations in food availability.5 Fat storage is also important in humans 
in order to maintain metabolic homeostasis during the post-prandial period, and even more 
importantly, in humans undergoing extended periods of starvation. The adipose tissue is 
distributed throughout the body and has a large capacity to expand to accommodate excess 
energy in the form of lipids. White adipose tissue comprises two major depots, subcutaneous 
and visceral adipose tissue, the latter of which is found within the abdominal cavity and stored 
around important internal organs. Anatomically, it is further subdivided into mesenteric, 
omental, perirenal, and peritoneal depots.6,7 Although adipose tissue historically has been 
regarded as an energy storage depot, research over the last few decades has revealed that 
adipose tissue also acts as an endocrine organ. Thus, several cytokines, hormones, and 
peptides secreted by adipocytes, collectively termed as “adipokines” (e.g. leptin, resistin, 
adiponectin, tumor necrosis factor alpha [TNF-α], and interleukin [IL]-6) have been identified 
and intensively investigated to elucidate their roles in the control of energy homeostasis.8,9

Subcutaneous adipose tissue is the largest fat depot in the body. The expansion of 
subcutaneous adipose tissue occurs through the recruitment and differentiation of adipose 
precursor cells, resulting in healthy adipose tissue.10 However, when the storage capacity 
of the subcutaneous depot is exceeded, excess energy intake leads to fat accumulation in 
undesirable locations, such as the intra-abdominal depots, as well as in ectopic tissues 
such as the liver, skeletal muscle, and heart. Over time, this situation creates a condition 
commonly referred to as “lipotoxicity,” as described in more detail below.

LOW-GRADE INFLAMMATION IN OBESE ADIPOSE TISSUE

Adipose tissue is considered to be a pathogenic site of obesity-induced insulin resistance.11 
This is due to the fact that adipose tissue in obese individuals, particularly those with 
abdominal obesity, is associated with a chronic, local low-grade inflammatory response 
involving the production of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and 
chemokines.4,12-14 Numerous studies have shown that cellular stress is a major factor 
contributing to inflammation in adipose tissue.4,15 Thus, in response to nutrient excess, 
adipocytes expand and become hypertrophic. At the same time, the distance between 
blood-bearing vessels increases and oxygen diffusion becomes insufficient,16 leading to local 
hypoxia, which triggers the increased secretion of inflammatory markers.17 Characteristically, 
the adipose tissue of obese individuals shows lower blood flow, higher vasoconstriction, and 
lower capillary density than adipose tissue in non-obese individuals.15

Macrophage infiltration is another characteristic of adipose tissue in obese individuals. After 
initial rolling and attachment of monocytes to activated endothelial cells, monocytes then 
extravasate through the endothelial cell layer and differentiate into macrophages. It has been 
reported that monocyte chemoattractant protein-1 (MCP-1) secretion is markedly enhanced 
locally and in the plasma of obese rodents and humans.18,19 At the onset of an inflammatory 

9https://doi.org/10.12997/jla.2021.10.1.8

Obesity and Cardiometabolic Function

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



process, the macrophages that are usually present in the adipose tissue switch from an 
anti-inflammatory (M2) state to a pro-inflammatory (M1) state.20 More than 90% of M1-type 
macrophages are localized to dead adipocytes and form so-called "crown-like structures," 
which are a characteristic component of the immuno-histological picture of adipose 
tissue in both obese mice and humans.16 Cross-talk between adipocytes, macrophages, 
and endothelial cells may enhance the inflammatory state by increasing the secretion of 
pro-inflammatory cytokines and chemokines, which in turn can develop into local and/or 
systemic insulin resistance in a paracrine and/or endocrine fashion.

Sun et al.17 documented increased interstitial fibrosis in white adipose tissue during the 
development of obesity, which may reduce extracellular matrix flexibility and decrease the 
tissue plasticity, ultimately leading to adipocyte dysfunction. Abnormal collagen deposition, 
which characterizes fibrosis development in adipose tissue, is paralleled by the infiltration 
of macrophages and other immune cells.21 Under these conditions, fibrotic response genes 
are markedly up-regulated, and classically activated pro-inflammatory M1 macrophages are 
attracted by dead adipocytes,17 reinforcing the inflammatory process and altering adipose tissue 
metabolism. Thus, the development of hypertrophic adipose tissue (in response to excess 
energy intake), macrophage infiltration, and fibrosis are major factors initiating the local low-
grade inflammatory response in adipose tissue. On the molecular level, this process includes 
activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) β/nuclear factor kappa 
light chain enhancer of activated B cells inflammatory signaling pathways,22 which in turn 
regulate protein phosphorylation and cellular transcriptional events leading to the secretion of 
proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and chemokines, such as MCP-1.23

INFLAMMATION AND LIPID OVERLOAD CAUSE 
DYSREGULATION OF MYOCARDIAL METABOLISM AND 
VENTRICULAR FUNCTION

Low-grade inflammation in abdominal adipose tissue also contributes to hepatic 
inflammation due to portal delivery of abdominal fat—derived cytokines and lipids.11,16 Thus, 
TNF-α and IL-6 originating from adipocytes, as well as from macrophages, in adipose tissue 
and the liver22 create systemic inflammation and subsequent dysregulation of insulin action 
in peripheral tissues, such as skeletal and cardiac muscle24 (Fig. 1).

Although the role of inflammation in the etiology of myocardial insulin resistance is limited, 
Ko et al.25 reported that high-fat feeding of rats caused increased macrophage infiltration 
in myocardial tissue from these animals, as well as increased cytokine and suppressor of 
cytokine signaling proteins levels in cardiomyocytes. These observations were associated 
with reduced myocardial insulin sensitivity and glucose metabolism. It was proposed that 
cytokines from macrophages and cardiomyocytes activate their receptors and associated 
signaling pathways to increase serine phosphorylation of insulin receptor substrate 1 (IRS-1). 
This eventually leads to insulin resistance via inhibition of protein kinase B/Akt and reduced 
glucose transporter type 4 (GLUT4) translocation.26

Increased uptake of fatty acids (FAs) also plays a central role in the development of cardiac 
insulin resistance in obesity. Increased FA uptake is catalyzed, in part, by the translocation of 
FA transporters (FAT/CD36) to the sarcolemma.27-29 However, not all FAs entering the cell are 
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utilized for oxidative purposes, and long-chain FAs in the form of acyl-CoA provide substrates 
for nonoxidative processes such as triglyceride, diacylglycerol, and ceramide synthesis.30,31 
The accumulation of these substances is known to activate kinases, including JNK, IKK, and 
protein kinase C, which down-regulate insulin signaling32,33 via serine phosphorylation of 
IRS-1.27,34 Besides its adverse effects on insulin signaling and glucose metabolism, excessive 
lipid accumulation may also have direct lipotoxic effects on cardiomyocytes.30,35

The mismatch between FA uptake and oxidation by cardiomyocytes27,28 and the consequent 
myocardial lipid accumulation and insulin resistance may have serious cardiac consequences 
that ultimately lead to compromised cardiac mechanical function.35,36 Thus, reduced left 
ventricular (LV) systolic function has also been demonstrated in several animal models of 
obesity,37-39 except for some studies in diet-induced obese rats that showed unchanged or 
mildly reduced systolic function.40,41 FA binding protein 4, an intracellular lipid-binding 
protein involved in the transportation of FAs, has been suggested to be strongly associated 
with inflammation, obesity, diabetes, and cardiovascular diseases (CVD).42 Cardiac-specific 
overexpression of this protein in mice resulted in greater cardiac hypertrophy following 
transverse aorta constriction than in wild-type controls.43 Furthermore, transgenic mice 
expressing mutated lipoprotein lipase (GPI-anchored human LPL) in cardiomyocytes 
developed dilated cardiomyopathy with lipid accumulation within myocytes.44 Mice with 
cardiomyocyte-restricted knockout of the insulin receptor also exhibited reduced heart size 
and mildly impaired contractile function, indicating that insulin signaling is an important 
physiological regulator of growth and function.45,46
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Fig. 1. Increasing visceral obesity causes inflammatory responses and metabolic dysregulation in fat and liver 
tissue. This condition involves infiltration of monocytes and macrophages and subsequent secretion of pro-
inflammatory adipokines and elevated release of free fatty acids, leading to systemic inflammation, which 
promotes insulin resistance in several organs, including the heart. In addition, an elevated supply of lipids (free 
and esterified fatty acids) exceeds the fatty acid oxidation capacity and causes lipotoxicity in the myocardium, 
eventually leading to cardiac dysfunction.



Many studies have demonstrated that obesity (isolated or co-existing with hypertension) in 
humans is associated with abnormal diastolic function,47-49 whereas impairment of systolic 
function is not consistently observed.50 Obesity-related dysfunction includes left heart 
remodeling (i.e., left atrial dilatation and LV hypertrophy) as well as abnormalities in LV 
contractile and relaxation functions (i.e., LV stiffness and impaired relaxation).47,51-53 This 
condition can ultimately progress to cardiac hypertrophy and/or systolic dysfunction when 
lipotoxicity and/or local perfusion heterogeneities result in cell death and fibrosis.36,54-56

OBESITY-INDUCED ALTERATIONS IN MYOCARDIAL 
SUBSTRATE UTILIZATION: LOSS OF METABOLIC FLEXIBILITY
Approximately 50%–70% of the energy (ATP) requirement of the healthy heart is produced 
by oxidation of long-chain FAs, which are bound to albumin or esterified in circulating 
triglycerides, whereas carbohydrates, lactate, and to some extent also ketone bodies and amino 
acids account for the rest of overall ATP production.57,58 Although the normal heart seems to 
prefer FAs for the production of energy, it has the ability to change to other substrates for the 
generation of ATP to ensure that its energy demands are met. The contribution of individual 
substrates to ATP production depends on substrate availability, hormonal status, and energy 
demand, and the capacity of the heart to switch between the different energy substrates is 
referred to as “metabolic flexibility.” In the 1960s, Sir Philip Randle performed landmark 
studies showing how metabolic products of increased FA oxidation can inhibit glucose uptake 
in muscle.59 This mechanism, subsequently known as the Randle cycle, is the basis of metabolic 
flexibility in healthy individuals, which allows energy-requiring organs such as heart and 
skeletal muscle to switch between fuels, depending on nutrient composition and intake, as 
well as variations in insulin signaling. As mentioned above, the substrate transporters GLUT4 
(for glucose) and CD36 (for FAs), play a central role in this dynamic balance of substrate 
utilization.60 CD36 plays a central role in facilitating cellular long-chain FA uptake across the 
plasma membrane, acting in concert with other membrane proteins, such as FA-binding 
protein.61 With the development of insulin resistance, however, the metabolic flexibility of the 
heart (as well as skeletal muscle) deteriorates,55 so that myocardial energy production becomes 
primarily dependent on FA oxidation. As a consequence, accumulation of the intermediates 
of FA metabolism in cardiomyocytes results in a state of lipotoxicity (as discussed above),30,56 
causing cellular oxidative stress, impaired cytosolic and mitochondrial calcium homeostasis, 
and mitochondrial dysfunction.

ACUTE AND SUSTAINED ELEVATIONS OF THE FA 
SUPPLY LEAD TO INCREASED MYOCARDIAL OXYGEN 
CONSUMPTION (MVO2) AND IMPAIRED ENERGETICS

A study conducted in the beginning of the 1970s62 using a canine model reported that MVO2 
increased markedly in response to acute elevations in the plasma concentration of FA. 
In addition, higher FA oxidation and MVO2 were reported in obese relative to non-obese 
young women.63 It has been suggested that uncoupling of oxidative phosphorylation and 
induction of energy-wasting triglyceride-FA64,65 and Ca2+ cycling66 could contribute to this 
elevation in MVO2. Moreover, it was proposed that an excess substrate supply might result 
in impaired transcriptional regulation of proteins involved in the pathways of cardiac energy 
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metabolism.67 Thus, it was reported that patients undergoing coronary artery bypass graft 
surgery exhibited elevated plasma FA concentrations, which were associated with higher 
expression of cardiac mitochondrial uncoupling proteins.67 Moreover, an impaired cardiac 
energy reserve in patients with type 2 diabetes mellitus (as reflected by a lower myocardial 
phosphocreatine [PCr]/ATP ratio) was correlated with fasting plasma FA concentration,68 a 
finding that is also in line with increased mitochondrial uncoupling. Cardiac PCr/ATP ratios 
have also been documented during catecholamine stress69 or exercise70 in people with obesity 
and insulin resistance, although this response is not always observed.55 Whether a lower 
myocardial PCr/ATP ratio in diabetic cardiomyopathy is a cause or effect of the progression to 
heart failure is currently unknown.71

Cardiac efficiency is characterized by the relationship between the mechanical performance 
and energy consumption of the heart in the form of ATP utilization or oxygen consumption. 
The development of the pressure-volume conductance catheter enabled calculation of the 
total work performed by the heart during the cardiac cycle as the pressure-volume area 
(PVA), and the relationship between MVO2 and PVA can be used to calculate the oxygen used 
for mechanical activity versus the oxygen consumed for basal metabolism and excitation-
contraction coupling. Oxygen consumption for the latter 2 processes is achieved by 
extrapolating the MVO2-PVA relationship to zero work and is referred to as unloaded MVO2.72 
Around the turn of the 21st century, Korvald et al.73 showed, for the first time, that the MVO2-
PVA relationship was significantly influenced by changes in myocardial substrate metabolism 
in pigs. Thus, a change in myocardial metabolism from glucose towards higher FA oxidation 
shifted the in vivo MVO2-PVA relationship upward in a parallel manner, reflecting that hearts 
exposed to high levels of FAs used more energy, independent of the workload. This elevation 
in MVO2 was ascribed to a higher unloaded MVO2 (i.e., the use of more oxygen for basal 
metabolism and excitation-contraction coupling), and the increased ratio between MVO2 and 
work was translated into decreased cardiac efficiency. Similar observations were reported by 
How et al.74 using isolated perfused working mouse hearts exposed to different workloads. In 
the same manner as in pigs, elevation of the FA concentration in the perfusion buffer shifted 
the MVO2-PVA relationship upward, producing a near 30% increase in unloaded MVO2. It 
should be noted that the FA-induced elevation in MVO2 can by no means be explained by the 
switch in metabolism from glucose to FAs, since the difference in the phosphorylation-to-
oxidation (P/O) ratios between FA and glucose oxidation (2.33 vs. 2.58, respectively) could 
account for a maximum increase in oxygen consumption of 11%. Other mechanisms, such as 
uncoupling of oxidative phosphorylation in the mitochondria and induction of futile cycles, 
as discussed above, could explain the high MVO2 during predominant FA utilization. In line 
with this notion, Cole et al.75 reported a lower mitochondrial maximal respiratory capacity 
and efficiency (P/O ratio) in high-fat–fed rats and suggested that decreased respiratory 
coupling can contribute to the impaired cardiac efficiency observed following obesity.

CHANGES IN CARDIAC METABOLISM AND FUNCTION 
IN OBESE AND DIABETIC ANIMALS RESULT IN REDUCED 
CARDIAC EFFICIENCY

Over the years, our laboratory has studied energy metabolism and cardiac performance of 
ex vivo perfused hearts from type 2 diabetic (db/db) as well as diet-induced obese mice. In 
accordance with other researchers,76,77 we have demonstrated repeatedly that hearts from 
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these mice exhibit altered substrate metabolism, characterized by an over-reliance on FAs 
for cardiac energy production and low contribution of glucose.51,52,78 Aasum et al.51 made 
the important observation that changes in cardiac metabolism in db/db mice preceded the 
development of cardiac dysfunction (Fig. 2) (including increased susceptibility to ischemia-
reperfusion), indicating a causal relationship between altered cardiac metabolism and the 
development of ventricular dysfunction in diabetes.

Later studies demonstrated ventricular dysfunction, not only in db/db hearts, but also 
in hearts from diet-induced obese mice.51,52,78-80 As mentioned above, these hearts show 
metabolic shifts towards predominant FA utilization, and the MVO2-PVA relationships 
obtained from these hearts were also lifted upward relative to those of normal mouse 
hearts53,79 (Fig. 3A). These results therefore demonstrate that not only acute elevation in 
myocardial FA oxidation (as discussed above), but also chronic elevation of FA oxidation, 
results in decreased cardiac efficiency (i.e. the ratio between MVO2 and cardiac work). 
Furthermore, by unloading and chemically arresting hearts, it was shown that the increased 
oxygen consumption of hearts in diet-induced obese mice was due to increases in both 
excitation-contraction coupling and basal metabolism (Fig. 3B).53
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Fig. 2. Age-dependent changes in myocardial substrate oxidation and ventricular function in control (db/+, red columns) and type 2 diabetic (db/db, yellow 
columns) mice. (A) Reduction of glucose oxidation in db/db hearts after 10–12 weeks, while fatty acid oxidation had already significantly increased at 6 weeks 
(B), preceding the decline of left ventricular function (C), measured as PSP times CO. Modified from Aasum et al.51 
PSP, peak systolic pressure; CO, cardiac output. 
*p<0.05 vs. db/+; †p<0.05 vs. 6 week.
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Further examination of ventricular function in hearts from both diabetic and obese mice 
by pressure-volume analysis clearly revealed diastolic dysfunction, both in hearts from db/
db mice74 and in hearts from diet-induced obese mice53 This change in LV function was 
reflected in a marked leftward shift in the pressure-volume loop (Fig. 3C), indicative of 
the development of concentric remodeling.79,81,82 In accordance with previous studies on 
diabetes-induced cardiac remodeling, the hearts exhibited increased fibrosis, impaired 
metalloproteinase expression, and elevated oxidative stress.83,84 Park et al.85 also reported 
that chronic high-fat feeding and obesity in mice impaired myocardial glucose metabolism, 
which was associated with ventricular hypertrophy and cardiac dysfunction. The same group 
reported that diet-induced obesity in mice led to increased macrophage and cytokine levels 
in the heart, which was associated with significant reductions in AMPK phosphorylation and 
down-regulation of glucose metabolism.25

In summary, the healthy heart is characterized by a high degree of metabolic flexibility, 
allowing optimal matching of metabolic supply and demand. During conditions of insulin 
resistance and diabetes, the cardiac muscle is not able to switch effectively from FAs to 
glucose metabolism in the post-prandial state. As a consequence, the heart becomes 
metabolically less flexible and ineffective in adapting its fuel preferences to altered energy 
supply and demand. When relying primarily on FA oxidation for energy production, the heart 
uses more oxygen for a given workload, compared with a heart oxidizing a mixture of FAs and 
glucose. The FA-induced elevation in MVO2 is due to increased oxygen use for non-contractile 
processes (i.e., basal metabolism and excitation-contraction coupling). The development 
of both ventricular dysfunction and mechanoenergetic impairments in diabetes/obesity is 
clearly multifactorial and complex and, in addition to alterations in myocardial substrate 
utilization, the involvement of Ca2+ handling, oxidative stress, mitochondrial dysfunction, 
and structural remodeling has been proposed.49,50,65,86-88 Diabetes is also associated with 
impaired myocardial Ca2+ handling, including increased ryanodine receptor 2 Ca2+ leak,88,89 
which most likely contributes to the increased oxygen consumption demonstrated herein and 
in previous studies.75,79,80,90,91

TREATMENT STRATEGIES

The obvious solution to prevent adipose tissue inflammation and the accompanying 
metabolic and cardiovascular complications is to apply strategies for the targeted reduction 
of this particular fat store in obese individuals. Lifestyle interventions, including changes 
in diet and physical activity, remain the cornerstone of treatment for obesity and insulin 
resistance. Both reduced calorie intake and increased calorie expenditure via daily exercise 
should result in weight loss, but these interventions have not been effective in achieving 
lasting weight loss. A major part of lost weight is regained within 1 year following the end of 
treatment, and almost all weight is regained within 5 years.92,93 The pharmaceutical industry 
has therefore developed a number of anti-obesogenic medications, including some developed 
for maintenance of insulin sensitivity. However, several of these agents have been withdrawn 
from the market due to safety concerns.93 A new class of anti-diabetic drugs, sodium-glucose 
cotransporter-2 inhibitors,94 could hold promise for combatting the obesity epidemic in the 
future. Although their main effects are to inhibit glucose reabsorption in the renal proximal 
tubular cells and to reduce blood glucose levels through increased glycosuria, some of these 
drugs (dapagliflozin and canagliflozin) have been shown to reduce body weight through 
reductions in fat mass, including both visceral fat and subcutaneous fat.36,95 Liraglutide 
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(Saxenda) is a glucagon-like peptide-1 receptor agonist that was developed for the treatment 
of type 2 diabetes. It turned out, however, that liraglutide is also an effective treatment for 
obesity,96 in part through its actions in the limbic system of the brain,97 regulating appetite 
and calorie intake. Pharmacotherapies to prevent obesity will not be further discussed in this 
review, however, and readers should refer to sources such as the comprehensive review by 
Van Gaal and Dirinck.93

In the final section, we will briefly focus on the use of marine omega-3 FAs in the control 
of energy homeostasis and their potential role in weight management due to their anti-
inflammatory and insulin-sensitizing effects. Long-chain omega-3 polyunsaturated FAs 
(PUFAs) from fish oil are considered to have beneficial health effects.98 Thus, treatment of 
severely obese non-diabetic patients with eicosapentaenoic acid and docosahexaenoic acid 
was shown to reduce adipose tissue mass and systemic inflammation.99 A recent meta-
analysis of 13 randomized controlled trials, which included over 120,000 participants, 
confirmed that PUFA supplementation reduces the risk for CHD and CVD, myocardial 
infarction, and death due to CHD and CVD.100,101 A systematic review and meta-analysis by 
Natto et al.102 also concluded that PUFA consumption may be associated with lower plasma 
levels of inflammatory biomarkers in patients with diabetes. However, results regarding 
the effects of PUFAs on glucose metabolism, insulin resistance, and type 2 diabetes are 
less clear,103 most likely due to differences in the choice of PUFA preparation, dosage, and 
intervention.104 Although the benefits of PUFA intake remain controversial for some diseases 
and conditions, the anti-inflammatory effects of these compounds are well accepted.105

We have previously reported that dietary supplementation with a small amount of oil from 
the marine crustacean, Calanus finmarchicus, reduced both intra-abdominal and hepatic fat 
deposition, while simultaneously exerting a strong anti-inflammatory action in adipose 
tissue during high-fat feeding in male C57bl/6J mice.13 Recently, we also reported106 that 
dietary supplementation with Calanus oil was able to prevent the obesity-induced decline in 
myocardial glucose utilization in hearts from high-fat–fed mice. More importantly, post-
ischemic recovery of these hearts was significantly better than that of hearts from mice on a 
non-supplemented high-fat diet, indicating the cardioprotective properties of the Calanus oil 
in obesity. Of note, this effect was achieved with a much lower dose (2%, w/w) than was used 
in similar experiments in the past.107 It should be emphasized that the above study included 
female mice, and in contrast to results obtained with male mice that obesity impaired 
the recovery of cardiac function after an ischemic insult,53,78,80 we observed that the post-
ischemic recovery of ventricular function in hearts from high-fat—fed female mice was not 
impaired relative to hearts from mice receiving normal chow. This result confirms previous 
observations by Edland et al.,108 who reported that cardioprotection was afforded by long-
term feeding of an obesogenic high-fat diet in hearts from female mice. In addition to other 
possible sex differences, mRNA expression of TNF-α and IL-6 in adipose tissue was hardly 
detectable in response to high-fat feeding in the female mice, in contrast to previous results 
with male mice.12,13 The low inflammatory status could probably be explained by the finding 
that high-fat feeding induced only a relatively mild degree of adiposity in the female mice, so 
that the signal for adipokine secretion17 was missing. In addition, it has been reported that 
the genes involved in inflammation are more highly up-regulated in males than in females.109 
Still, dietary Calanus oil resulted in less deposition of intra-abdominal fat than in untreated 
high-fat–diet mice. The underlying mechanism is not clear, but increased adipose tissue 
lipolysis and/or decreased lipogenesis, as well as increased hepatic drainage of FAs from the 
abdominal fat stores, are possibilities that could be further investigated. Although clinical 
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studies are sparse, recent studies in elderly untrained overweight participants110 suggested 
that a combination of moderate exercise and intake of oil from C. finmarchicus may promote 
fat loss. It was also shown that wax ester—bound PUFAs from Calanus oil were significantly 
incorporated into the membranes of red blood cells, thereby increasing the omega-3-index.111

CONCLUSION

Adipose tissue appears to act as a priming tissue that initiates inflammation in obesity in 
response to excess energy intake. Thus, obesity-induced dysfunction of visceral and ectopic 
adipose tissue, including the release of proinflammatory cytokines and FA, is a major 
contributor to potential pathogenic mechanisms leading to insulin resistance and type 2 
diabetes. Preclinical studies have demonstrated that these conditions are associated with 
a marked shift in myocardial metabolism towards predominant FA utilization for energy 
production. Over time, this switch in myocardial metabolism leads to a lipotoxic milieu and 
subsequent metabolic and functional derangements in the heart. Prevention of obesity-
related cardiometabolic disease should therefore focus on anti-obesogenic strategies to 
restore normal adipose tissue metabolism, and understanding the inflammatory responses 
in adipose tissues of obese individuals is therefore of clear clinical importance.
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