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Abstract—Bringing together a number of cutting-edge technolo-
gies that range from storing extremely large volumes of data all the
way to developing scalable machine learning and deep learning al-
gorithms in a distributed manner and having them operate over the
same infrastructure poses unprecedented challenges. One of these
challenges is the integration of European Space Agency (ESA)’s
Thematic Exploitation Platforms (TEPs) and data information
access service platforms with a data platform, namely Hopsworks,
which enables scalable data processing, machine learning, and
deep learning on Copernicus data, and development of very large
training datasets for deep learning architectures targeting the
classification of Sentinel images. In this article, we present the
software architecture of ExtremeEarth that aims at the develop-
ment of scalable deep learning and geospatial analytics techniques
for processing and analyzing petabytes of Copernicus data. The
ExtremeEarth software infrastructure seamlessly integrates exist-
ing and novel software platforms and tools for storing, accessing,
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processing, analyzing, and visualizing large amounts of Copernicus
data. New techniques in the areas of remote sensing and artificial
intelligence with an emphasis on deep learning are developed. These
techniques and corresponding software presented in this article are
to be integrated with and used in two ESA TEPs, namely Polar and
Food Security TEPs. Furthermore, we present the integration of
Hopsworks with the Polar and Food Security use cases and the
flow of events for the products offered through the TEPs.

Index Terms—Artificial intelligence (AI), copernicus, deep
learning, earth observation (EO), extremeearth, food security,
hopsworks, linked geospatial data, polar regions, remote sensing.

I. INTRODUCTION

OR more than 20 years, Earth observation (EO) satellites

developed and operated by the European Space Agency
(ESA) have provided a wealth of data. In the coming years,
the Sentinel missions,' along with the Copernicus contributing
missions,? as well as earth explorers [1] and other third-party
missions [2] will provide routine monitoring of our environment
at a global scale, thereby delivering an unprecedented amount of
data. This expanding operational capability of global monitoring
from space, combined with data from long-term EO archive,
will provide users with unprecedented insight into how oceans,
atmosphere, land, and ice operate and interact as part of an
interconnected earth system. The Copernicus mission, with its
free and open Sentinel satellite data, is opening the way toward
systematic large-scale scientific EO analysis relying on quality-
controlled and calibrated data.

A. Copernicus

The European Union’s EO flagship program for monitoring
the planet Earth and its environment is called Copernicus. The
Copernicus program consists of a complex set of systems that
collect data from satellites and in situ sensors, process these data,
and provide users with reliable and up-to-date information on
a range of environmental and security issues. The EO satellites
that provide the data of Copernicus are the Sentinels, which are
developed for the specific needs of the Copernicus program,
and the contributing missions, which are operated by national,
European, or international organizations. The access to Sentinel

![Online]. Available: https:/sentinels.copernicus.eu
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data is regulated by the EU law, and it is full, open, and free.
Information extracted from Copernicus data is made available to
users through the Copernicus services addressing six core the-
matic areas: land monitoring, marine environment monitoring,
atmosphere monitoring, emergency management, security, and
climate change.

The land monitoring service provides geographical informa-
tion on land cover and its changes, land use, water management,
forest monitoring, agriculture and food security, soil quality,
etc. The marine environment monitoring service includes the
monitoring for marine safety and transport, variability, and dy-
namics of the ocean and marine ecosystems for the global ocean,
ocean forecasting, and the polar environment. The atmosphere
monitoring service provides continuous data and information
on atmospheric composition. The emergency management ser-
vice provides all actors involved in the management of natural
disasters, man-made disasters such as floods, forest fires, and
earthquakes, and humanitarian crises with timely and accurate
geospatial information collected from satellite remote sensing.
The Copernicus service for security applications supports secu-
rity challenges such as maritime surveillance and border control.
Finally, the climate change service of Copernicus provides au-
thoritative information about the past, present, and future climate
in Europe and the rest of the world.

Animportant activity related to Copernicus is ESA’s Thematic
Exploitation Platforms (TEPs). A TEP is a collaborative virtual
work environment addressing a class of users and providing
easy access to EO data, algorithms, computing, and networking
resources required to work with them, through one coherent
interface. The fundamental principle of the TEPs is to move the
user to the data and tools as opposed to the traditional approach
of downloading, replicating, and exploiting data locally. Another
important development in the context of Copernicus is the im-
plementation of five Copernicus Data and Information Access
Services (DIAS).

The availability of the growing volume of diverse environ-
mental data from multiple distributed sources in space represents
a unique opportunity for scientific research and applications.
Nevertheless, the task of achieving its full potential in terms of
extracting valuable knowledge and commercial value at the ex-
treme scale of data expected in Copernicus is a major challenge
associated with this opportunity. In this article, we present the
ExtremeEarth software infrastructure that builds on seamless in-
tegration of both existing and novel software platforms and tools
for storing, accessing, processing, analyzing, and visualizing
large amounts of Copernicus EO data. ExtremeEarth facilitates
the application of deep learning techniques for the analysis of EO
data, in particular classification tasks. The knowledge extracted
from the satellite data is then encoded as linked geospatial data
and integrated with other open linked data sources. Relevant
technologies enable both EO and non-EO expert users to pose
queries over this information in order to develop prototype envi-
ronmental and business applications. One of the main objectives
of the ExtremeEarth project is the development of distributed
deep learning classification architectures tailored to the specific
properties of Copernicus EO data using deep learning techniques
and extreme geospatial analytics. The information provided
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by the Copernicus satellite data is then used for knowledge
extraction, focusing explicitly on the following two use cases.

B. Polar Use Case

This use case exploits long time series of Sentinel-1 synthetic
aperture radar (SAR) images to model processing architectures
and algorithms to cope with the extreme analytics and big data
issues affiliated with sea ice monitoring [3]. High-quality, timely,
and reliable information about sea ice and iceberg conditions
is significantly important to ensure that vessels can navigate
efficiently and safely with reduced risk to the environment.
This information is used by vessels in many fields, including
cargo transport, fisheries, tourism, research vessels, resource
exploration and extraction, destination shipping, and national
coast guard vessels. The purpose of the ExtremeEarth Polar use
case is to generate high-resolution ice charts from large volumes
of hybrid Copernicus data.

C. Food Security Use Case

This use case aims at the assessment of high-resolution water
availability maps for agricultural areas, allowing a new level
of detail for wide-scale irrigation support for farmers [4] and
agricultural stakeholders by combining Sentinel-2 multispectral
images with crop growth modeling to provide water availability.
Water availability is an important EO-based product that can
support farmers in decision making and irrigation information
management. The deep learning architecture presented for this
use case enables a processing chain that generates crop type and
crop boundaries maps, using Sentinel-2 data for training.

The implementation of the Food Security use case draws on
the following information:

1) crop type and leaf area index computed using Sentinel-2

images;

2) biomass, water demand, soil moisture, snow storage, Snow
runoff, and groundwater computed using the proprietary
land surface modeling software PROMET of VISTA?;

3) snowmelt from Sentinel-1 data;

4) snow cover products from the Copernicus services; and

5) snow water equivalent from in situ sensors.*

Activities have been started in the two European catchments
Danube and Douro, where irrigation has a significant role in
Food Security.

D. End-User Services

The end-user services that ExtremeEarth targets are related
to the previous two use cases. For example, as part of the
Polar use case, deep learning techniques for automated sea
ice mapping have been developed. National sea ice services
around the world produce operational sea ice charts, often on a
daily basis by manual and human-oriented interpretation. These
usually contain information about sea ice concentration or a
combination of sea ice concentration, ice edges, and ice type.
For sea ice data analysis, SAR imaging plays a key role as

3[Online]. Available: https://www.vista-geo.de/en/
4[Online]. Available: https://www.snowsense.de
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the images acquired by satellite can continue to be collected
during all weather conditions and through the polar night [5].
However, manual interpretation is a time-consuming task, and
the ice information can be out of date with low coverage of the
Earth’s surface. By taking advantage of a high volume of satel-
lite SAR images and high-performance computing, the Polar
use case aims to propose robust models considering advanced
deep learning architectures to automate sea ice analyses with
Arctic-wide coverage. For the Food Security use case, deep
neural network architectures tailored to Copernicus data have
been developed. These techniques can help the end-users to
integrate different EO information and modeling using big data
for watershed monitoring and irrigation recommendation of
agricultural crops in drought-volatile areas by combining long
time series of Sentinel-2 multispectral images with crop growth
modeling to provide large-scale as well as high-resolution water
availability and water demand maps. Also, the deep learning
architectures trained on Sentinel-2 data will generate crop type
and crop boundaries maps.

E. Contributions

Our main contributions are centered around the two use cases
of the ExtremeEarth software architecture. We summarize our
main contributions as follows.

1) We present the software architecture of ExtremeEarth
that aims at the development of scalable deep learning
and geospatial analytics techniques for processing and
analyzing petabytes of Copernicus data.

2) For the Polar use case, we present deep-learning-based
models for sea ice classification considering SAR im-
agery. The most important capability of these models is
to classify sea ice and water distinctively in SAR images
representing different geographic locations and timing.

3) We extensively evaluate our deep-learning-based models
using our collected dataset to extract more relevant fea-
tures when sea ice analysis is performed. Meanwhile, we
cope with the overfitting problem by proposing a modi-
fied version of the VGG-16 model and the augmentation
technique.

4) For the Food Security use case, a machine-learning-based
approach has been defined to automatically extract a large
training set for crops classification data leveraging pub-
licly available crop type maps. The training set is obtained
without the need for additional inputs.

5) To generate the crop type and crop boundary maps, a long
short-term memory (LSTM)-based architecture is used for
the classification of dense time series of Sentinel-2 images.
This peculiar multitemporal deep learning architecture is
able to capture the temporal evolution of the phenological
characteristics of the different crop types, thus producing
accurate crop classification map.

6) We compared the proposed deep learning model for the
Food Security use case with state-of-the-art multitemporal
models used for crop type classification.

7) We present a set of linked data tools and methods that
go beyond the state of the art in the area of big linked
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geospatial data. These tools are used to transform the
knowledge produced by the deep learning algorithms into
linked data, interlink this knowledge with other available
datasets in order to increase its value, store these datasets
and allow the user to pose rich geospatial queries, and
finally define a federation of such endpoints and pose
geospatial queries over combining information from all
these endpoints.

F. Outline

The rest of this article is organized as follows. Section II
discusses related work, and Section III provides a detailed
overview of the high-level layered architecture of the Ex-
tremeEarth platform architecture. Section IV explains how the
TEP applications work and provides a description of their ar-
chitecture in the context of ExtremeEarth. Section V describes
how the ExtremeEarth infrastructure has been architectured
around Hopsworks to tackle large-scale machine learning and
deep learning challenges in a way that takes the processing and
management of earth data and knowledge beyond the current
state of the art. Linked geospatial data applications are presented
in Section VI, and Section VII describes in detail how different
components of the ExtremeEarth platform fully integrate into
the project’s overall infrastructure to provide unified EO data
and knowledge solution with Copernicus data. Section VIII
highlights the deep learning classification models developed in
the ExtremeEarth infrastructure. Finally, Section IX concludes
this article and suggests directions for future research work.

II. RELATED WORK

Deep learning techniques have been used in analyzing satellite
data in different areas. Highly scalable artificial intelligence (AI)
techniques based on deep neural network architectures have
recently been developed by companies such as Google and Face-
book. However, similar architectures for satellite images that can
manage the extreme scale and characteristics of Copernicus data
are missing today. The deep neural network architectures can
classify effectively and efficiently multimedia images because
they have been trained using extremely large benchmark datasets
consisting of millions of images (e.g., ImageNet [6]) and have
utilized the power of big data, cloud, and GPU technologies.
Training datasets consisting of millions of data samples in
the Copernicus context do not exist today and published deep
learning architectures for Copernicus satellite images typically
run on one GPU and do not take advantage of recent advances
like distributed scale-out deep learning [7]. In addition to this,
many techniques for knowledge discovery and data mining from
satellite images and related geospatial datasets, as well as tools
for linked geospatial data integration, querying, and analytics
have been developed so far. However, none of these tools scales
to the many petabytes of data, information, and knowledge
present in the Copernicus context. For example, the state-of-
the-art geospatial Resource Description Framework (RDF) store
Strabon can only handle up to 100 GB of geospatial data [8].
To address these issues, we present the ExtremeEarth software
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architecture for Copernicus EO data by leveraging machine-
learning- and deep-learning-based techniques. We show how we
go beyond the state of the art by scaling to the petabytes of data
using Hopsworks and demonstrate our big data technologies in
two of the ESA TEPs: Polar and Food Security.

A. Polar Use Case

Over the past decade, probabilistic/statistical methods, clas-
sical machine learning methods, and deep-learning-based meth-
ods have been developed for sea ice classification. For example,
Moen et al. [9] introduced a Bayesian classification algorithm
based on statistical and polarimetric properties for automatic
segmentation of SAR sea ice scenes into a specified number
of ice classes. Fors et al. [10] investigated the ability of var-
ious statistical and polarimetric SAR features to discriminate
between sea ice types and their temporal consistency within a
similar Bayesian framework. Yu ef al. [11] presented a sea ice
classification framework based on a projection matrix, which
preserves spatial localities of multisource image features from
SAR and multispectral images. They obtained a set of fusion
vectors that preserved the local similarities. The classification
was then obtained in a sliding ensemble strategy.

Considering the machine learning methods, Lit et al. [12]
introduced a sea ice classification method based on the extrac-
tion of local binary patterns. They used a bagging principal
component analysis to generate hashing codes of the extracted
features. Finally, these hashing codes were fed into an extreme
learning machine for classification. Park ef al. [13] extracted
texture features from SAR images and trained a random forest
classifier for sea ice classification. Their method classified a
SAR scene into three generalized cover types, including ice-
free water, integrated first-year ice, and old ice. Zhang et al.
[14] introduced a conditional random field classifier for sea ice
classification using Sentinel-1 (S1) data. The literature is very
limited when it comes to deep-learning-based methods for sea
ice classification. Castelluccio et al. [15] fine-tuned two existing
architectures to perform semantic classification of remote sens-
ing data, namely the CaffeNet and the GoogleNet, and showed
significant performance improvements. Wang et al. [16], [17]
used deep ad-hoc convolution neural networks (CNNs) for ice
concentration estimation. Kruk er al. [18] used DenseNet [19]
for finding ice concentration and ice types considering dual-
polarization RADARSAT-2 SAR imagery by combining the
HH and HV polarizations for the input samples. Han et al.
[20] used a hyperspectral sea ice image classification method
based on the spectral-spatial—joint features with deep learning.
Gao et al. [21] proposed a deep fusion network for sea ice
change detection based on SAR images. They exploited the
complementary information among low-, mid-, and high-level
feature representations.

B. Food Security

When considering the production of crop classification maps
using remote sensing data, the temporal dimension plays an
important role since the spectral and textural properties of the
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crop change according to the corresponding growth cycle [22]. In
this context, the dense time series provided by Sentinel-2 at high
spatial resolution allow one to accurately model the phenological
trends of different cultivation [23]. Due to their spectral prop-
erties and several multitemporal radiometric indices that can be
extracted (e.g., normalized vegetation index or enhanced vegeta-
tion index), several approaches have been defined to exploit such
data for crop mapping [22] and monitoring [23], [24]. Although
shallow models based on hand-crafted features can achieve good
crop classification results [22], deep learning models outper-
formed such methods because of their enhanced capability of
modeling the temporal information and extracting high-level
abstract features [25]. Standard deep learning architectures such
as CNNs [26] are not suited for this peculiar classification task,
since they focus only on spatial and spectral information. By
neglecting the temporal one, they fail in discriminating crop
types indistinguishable when relying on single date remote
sensing data. To effectively address the crop type mapping, two
main categories of multitemporal deep learning architectures
have been considered in the literature: 1) recurrence-based deep
learning models and (2) time-convolutional-based deep learning
models.

The most relevant property of recurrence-based deep learning
models is the looped connections between neurons, which al-
lows for modeling the sequential or temporal information using
an internal state memory. In [27], Turkoglu et al. present the
STAR recurrent neural network (StarRNN) composed of STAck-
able recurrent cells, which allows the accurate classification of
temporal sequences of data. Gated-recurrent-unit-based models
have been successfully used to perform temporal analysis [28].
The two gates (i.e., reset gate and update gate) are used together
with the hidden state to keep track of the relevant temporal
information. However, one of the most used recurrent neural
networks (RNNs) for crop classification is the LSTM due to
its capability of preserving the memory of a large number
of past observations, making it suited for the problem under
analysis [29], [30]. The effectiveness of these types of net-
works for crop classification of Sentinel-2 time series has been
proved by a comparison with other several methods presented
in [29].

In time convolutional deep learning models, a 1-D convo-
lution applied over the temporal dimension is used to extract
information from the profiles [31], [32]. Such an approach has
been integrated into different architectures and layers. Among
them, we recall the network proposed in [32], where three
convolutional layers, with equal-sized filters, are followed by
dense and softmax layers. A similar structure is provided by
the OmniscaleCNN [33], which is composed of three con-
volutional layers having different filter sizes followed by a
global average pooling and a dense layer. In [31], Zhong
et al. proposed an architecture composed of temporal convo-
lutional layers and an inception module to model both the
short temporal variations and seasonal trends. A comparison
of RNNs and time convolutional neural networks is presented
in [25] showing in general higher performances for the former
groups.
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Fig. 1. Overview of ExtremeEarth platform infrastructure.

III. LAYERED ARCHITECTURE OF THE EXTREMEEARTH
SOFTWARE INFRASTRUCTURE

This section presents a detailed overview of the high-level lay-
ered architecture of the ExtremeEarth software infrastructure.

The ExtremeEarth software architecture builds on the in-
tegration of ESA TEPs, DIAS, and Hopsworks. It enables
high-performance scalable distributed data processing and deep
learning on Copernicus EO data. As shown in Fig. 1, the
ExtremeEarth infrastructure consists of four layers with the
TEPs in the product layer, Hopsworks in the processing layer,
CREODIAS in the data layer, and infrastructure as a service
(TaaS) in the physical layer.

A. Product Layer

This layer provides a collaborative virtual work environment,
through TEPs, that operates in the cloud and enables access to
the products, tools, and relevant EO, and non-EO data. For more
details about TEPs, we refer our readers to Section IV.

B. Processing Layer

The processing layer provides the Hopsworks data-intensive
Al platform. Hopsworks is an open-source platform that
provides an execution environment for data science and data
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engineering, which supports the design, distributed training,
and operation of both end-to-end machine learning and deep
learning pipelines at scale. As part of ExtremeEarth, Hopsworks
is deployed on CREODIAS. Hopsworks has certain unique
features that make it appropriate for the development of deep
learning algorithms for EO data. It provides tools to:

1) build end-to-end machine learning pipelines;

2) manage feature store, machine learning artifacts, and as-
sets such as experiments and models;

3) build first-class support for popular open-source machine
learning frameworks such as TensorFlow, PyTorch, Keras,
and scikit-learn; and

4) integrate with data science tools such as Jupyter note-
books, and infrastructure monitoring functionalities.

C. Data Layer

The data layer offers a cloud-based platform that facilitates
and standardizes access to EO data through a DIAS. It also
provides centralized access to Copernicus data and information,
as well as to processing tools. TEPs are installed and run on
a DIAS infrastructure, which in the case of ExtremeEarth is
CREODIAS.

CREODIAS Platform: 1t is a cloud infrastructure adapted to
the processing of big amounts of EO data, including an EO data
storage cluster and a dedicated IaaS cloud infrastructure for the
platform’s users. The EO data repository contains Sentinel-1,
2, 3, and 5-P, Landsat-5, 7, 8, Envisat, and many Copernicus
services data. The infrastructure and the services offered are
optimized for use of EO data and support scientific, operational,
and commercial applications. The main idea of the CREODIAS
platform is based on combining a big data repository with
customer accessible big processing power. CREODIAS offers
several main categories of commercial services such as comput-
ing, storage, data, virtual networking, security, and monitoring
services. It also offers three types of processing elements: virtual
machines, dedicated servers, and containers.

D. Physical Layer

The physical layer contains the cloud environment’s compute,
storage, networking resources, and hardware infrastructures. As
explained below, Hopsworks users and developers use TEP to
develop processing algorithms online, with all the processing
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done in the cloud, eliminating the need for people to download
data to their local computers, and install the software. A TEP
also hosts an online collaboration hub, where experts and users
can exchange ideas, codevelop algorithms, and work together
across the globe to refine and improve information extraction
methods and develop new ones. The Hopsworks platform pro-
vides services to move the processing to where the data are, and
it is based on a cloud computing approach.

IV. TEPS IN EXTREMEEARTH

Copernicus data today is freely available not only through the
Copernicus Open Access Hub but also through the five DIAS,
where computing power is also available close to the data. Some
related facilities of the EO ecosystem in Europe are the TEPs
of the ESA, where user communities can collaborate using a
virtual workspace, where EO data, non-EO data, tools, and
computing power are available. TEPs provide users with access
to preprocessed EO data and services, which form the basis for
creating training datasets. These preprocessed data are managed
by TEPs but are stored in the CREODIAS infrastructure, for
example in an object store. Today, most of the TEPs run on a
DIAS (e.g., the Food Security and the Polar TEPs run on CRE-
ODIAS). The CREODIAS infrastructure provides easy access
and processing of petabytes of EO data in a scalable framework.
As we can see in Fig. 1, CREODIAS is the source of the raw
EO data. It provides various protocols including OGC WES,
a representational state transfer (REST) API, and OData [34]
as interfaces to the EO data. This helps users of Hopsworks
to directly access raw EO data from their applications and
services running on the Hopsworks platform. CREODIAS and
its administrative tools enable TEPs to spawn and manage virtual
machines and storage by using CloudFerro, which provides an
OpenStack-based cloud platform to TEPs. Hopsworks is then
installed on virtual machines within the TEP domain so that it
can access compute and storage resources provided by the TEPs.
In addition to this, TEPs also provide users with data to be served
as input to the machine learning models from various sources.
Such sources include the data provided by CREODIAS, higher
level satellite data products processed with TEP services, and
external services that the TEP can connect to.

As explained in Section I, TEPs allow users to easily get
access to satellite data and extract useful information out of
them using analytic tools without the need to download any
dataset. ESA’s EO exploitation platforms initiative aims at cre-
ating an ecosystem of interconnected TEPs addressing seven
main themes, i.e., Coastal, Forestry, Hydrology, Geohazards,
Polar, Urban, and Food Security. In the context of ExtremeEarth,
we focus only on how the Polar and Food Security TEPs are
integrated into the ExtremeEarth infrastructure. We believe that
the ExtremeEarth infrastructure can also be extended and used
for deploying other TEPs as well. Even though the transfer and
integration of Hopsworks to TEPs is quite new, we believe this
is exploitable. As soon as Hopsworks is installed within the
TEP environment, in principle, it is possible to share the object
store and data exchange. Since all TEPs have an API for data
retrieval and passing of information by exploiting the APIs of
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Hopsworks, we argue that our infrastructure can also generally
work with other TEPs. The use of the Hopsworks platform by
the other TEPs can be accomplished in a similar way that the
Polar and Food Security TEPs are explained in our article.

The way the ExtremeEarth architecture’s components interact
with each other has been designed to be as agnostic as possible to
the specific DIAS and TEPs involved. Hopsworks, as the key ma-
chine learning component of the architecture, is a cloud-agnostic
platform that can be installed and operated on different cloud
infrastructures. To achieve this, Hopsworks is shipped with its
own installer software that is responsible for installing all the
platform’s components. In the ExtremeEarth project, we have
demonstrated the successful deployment of Hopsworks on the
CREODIAS cloud infrastructure, which is based on OpenStack,
an open standard cloud computing platform commonly used by
other DIAS.> The communication between Hopsworks and the
TEPs is done by using open standards and best practices, such as
REST, which can easily be utilized to integrate additional TEPs
in our proposed architecture. For more information about the
users interaction with the ExtremeEarth architecture and flow
of events, we refer the reader to Section VII.

A. Polar TEP

The Polar TEP is developed as part of ESA’s activities to ad-
dress the growth in volume and complexity of EO data available
for the polar regions. EO is especially important in the polar
regions at a time when climate change is having a profound
impact, and excitement about new economic opportunities is
driving increased attention and traffic, resulting in concerns
about the state of the region’s delicate ecosystems. Develop-
ing tools to model, understand, and monitor these changes is
vitally important to better predict and mitigate the resulting
global economic and environmental consequences. The Polar
TEP provides new ways to exploit EO data for polar research
scientists, industry, operational service providers, regional au-
thorities, and in support of policy development. The demand
for this functionality is expected to rise significantly, given
plans for new polar-focused instruments, including anticipated
Sentinel expansion missions. It facilitates the development of
new processors, algorithms, and data products based on the
data and knowledge resources available on the platform and
enhances the collaboration between polar researchers. The Polar
TEP also provides a complete working environment, where users
can access algorithms and data remotely, providing computing
resources and tools that they might not otherwise have, avoiding
the need to download and locally manage large volumes of data.
This new way of working encourages wider exploitation of polar
EO data.

The Polar TEP is based on the CREODIAS infrastructure,
providing access to a wide range of EO data including the Coper-
nicus Sentinel missions. It integrates data discovery and access
for polar EO and complementary datasets, a scalable processor
execution environment, analytical tools, and the possibility to
share results and collaborate. Users are enabled to create, apply,

3[Online]. Available: https://www.copernicus.eu/en/access-data/dias
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Fig. 3. High-level architecture of the Polar TEP.

and visualize their own data processors and products. The Polar
TEP resources are accessed through a web portal. Its platform
architecture is open, scalable, and infrastructure-independent to
the maximum possible extent to allow easy expansion of the
platform’s capabilities. The high-level architecture of the Polar
TEP is shown in Fig. 3.

Polar TEP has mainly three different function groups that
handles data discovery, processor execution, and collaboration
and administration. The three key functionality groups of the
Polar TEP, which are shown in Fig. 2, are described as follows.

1) Data Functions: The first group of functions is concerned
with searching, processing, exploring, and sharing data on the
Polar TEP, which include the following.

a) Data search: Users can search and retrieve polar EO
and other data on the platform and from third-party data
providers. The User Access Portal contains a search inter-
face with an interactive map to select areas of interest to
search in and further parameters to narrow down the result
list.

Data conversion: Users can convert data from and to well-
known EO data formats using dedicated processors and
libraries in the development environment.

Data visualization: Users can visualize EO data in order
to explore it with a visualization tool integrated with the
user access portal.

Data publishing and administration: Users can generate
new data using processors in the execution environment
and publish and share this data. Resource administrators
can check and review, publish, and retract data to ensure
compliance with the Polar TEP terms of service.

2) Processor Functions: The second group of functions is
concerned with searching, executing, developing, and sharing
processors on the Polar TEP.

a) Processor search: Users can search for processors already

published on the platform to apply them to their own data.
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The corresponding components from the component view
are the user access portal and execution environment.

b) Processor execution: Users can start the execution of
existing processors in the execution environment through
the user access portal, review the execution status based
on feedback from the processor, and view the processor
outputs.

¢) Processor development: More experienced users can de-
velop new processors on the Polar TEP, supported by de-
velopment tools offered by the platform. They can review
and adapt the algorithms published and shared by other
platform users and benchmark and compare their devel-
opments. These activities are supported by documentation
and community moderators.

d) Processor publishing and administration: The developed
processors from the previous section can be published and
shared with the community. Community moderators can
check and review, publish, and retract processors to ensure
compliance with the Polar TEP terms of service.

3) Collaborative and Administrative Functions: The last
group of functions covers the collaborative and administrative
functions.

a) Collaboration and documentation: Users and moderators
can collaborate through the platform using forum, Wiki,
and GitLab. They can review existing documentation, doc-
ument their own algorithms and processors, share research
results, and compare benchmarks.

b) Administration and accounting: Users have to accept the
Polar TEP terms and conditions when logging in for the
first time. User and resource administrators can activate
and retire user accounts, assign permissions, provide re-
sources, review resource usage, and use these tools to
ensure compliance with the Polar TEP terms of service.
They can also communicate with users through e-mail or
through collaboration tools.

Fig. 3 summarizes the high-level architecture of the Polar TEP.
Polar TEP uses open standard interfaces (Web Processing Ser-
vice (WPS), OpenSearch/CSW, and SAML) for communication
between different components.

B. Food Security TEP

The Food Security TEP® provides a platform for the extraction
of information from EO data for services in the food security
sector mainly in Europe and Africa. Thereby, it targets to foster
smart data-intensive agriculture and aquaculture applications in
the scientific, private, and public domain. The Food Security
TEP user community is interested in applications ranging from
small-scale farming advice up to regional and national analysis
of crop development. Users accessing the platform are from a
wide range of fields including public science and app developers,
the finance and insurance sectors, as well as local and national
administration and international agencies.

6[Online]. Available: https:/foodsecurity-tep.net
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Current and past projects in Europe and Africa using the
Food Security TEP showed that a dedicated cloud-based plat-
form for EO applications leads to easier cooperation between
international project partners. The Food Security TEP platform
as a service (PaaS) increases the available information for
agricultural and aquacultural management even in regions with
relatively poor infrastructure, while securing data ownership for
all partners [35].

The technical infrastructure is a web-based PaaS developed by
CGl Italy,” which leverages the most advanced cloud computing
technologies. Food Security TEP provides easy access to all
Copernicus data and a wealth of additional data sources. It fa-
cilitates the implementation of specific services, by adding new
processing algorithms and allowing their execution, monitoring,
and maintenance. The main point of access to the platform is
the Open Expert Interface providing the main functionalities of
the platform and access to a variety of tools and datasets. The
platform allows data visualization also on mobile devices and
the provision of customized products and services to selected
users.

With regard to key functionalities, the Food Security TEP, in
principle, provides the same functions as shown for the Polar
TEP in Fig. 2 with slight differences.

1) The only missing function compared to Fig. 2 is Data Con-
version per se, which is not covered by explicit platform
services. Developers need to exploit well-known open
libraries to create this function.

2) Food Security TEP is currently enhanced to provide an ad-
ditional function, namely the Execution of Remote Proces-
sors in other cloud environments provided as WPS-based
application deployment and execution services.

Fig. 4 summarizes the high-level architecture of the Food
Security TEP with its API Manager at the core. This allows users
to access certain platform functionalities not only through the
GUISs but also through the Food Security TEP public REST API.
Besides user interaction, the Ul component provides information
on the accounting of resource consumption based on a virtual
platform currency (TEP coin). As Food Security TEP follows
the principle of a collaborative platform, authorization to nearly
all contents of the platform is managed by the respective com-
ponents. The platform offers scaling capabilities by allocating

7[Online]. Available: https://www.cgi.com/italy/en
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and releasing processing resources based on actual consumption
and user configuration. In addition, the platform federates other
platform services exploiting standard interfaces (WPS). Finally,
all data, processing jobs, and services available on the platform
are managed by the Food Security TEP’s Catalogues, which
allows sharing and publication based on flexible user grouping.

V. HOPSWORKS

This section describes how the ExtremeEarth infrastructure
has been architectured around Hopsworks to tackle large-scale
machine learning and deep learning challenges and take pro-
cessing and management of earth data analytics and knowledge
beyond the current state of the art.

Hopsworks provides a horizontally scalable platform for
building end-to-end machine learning and deep learning
pipelines with GPUs and SDKs for hyperparameter tuning and
elastic model serving. It offers a convenient collaborative en-
vironment for developing machine learning models and putting
them into production. For example, a user can import a specific
dataset in a project, transform it into RDF,? and securely share
the results with other projects or users, who then can perform
further processing, such as interlinking or querying. Hopsworks
supports role-based access control with dynamic roles for users
accessing and processing such datasets, which enables data
owners to securely give access to datasets in a project, given that
the data cannot be exported outside the project or cross-linked
with other data sources outside the project. This security model
is built on TLS certificates and enables both authorization and
authentication in the underlying communication protocol. In
order to perform these tasks, users and developers only need to
interact through the self-service user interface of the platform,
which offers ready-to-use deployments of popular cloud data
storage and processing tools like Apache Hive, Apache Spark,
and Apache Kafka as well as popular machine learning frame-
works such as Tensorflow, PyTorch, and scikit-learn. Also, using
this interface, the users can collaborate in order to specify and
execute their data pipeline in a Jupyter Notebook and effortlessly
monitor the execution progress and inspect the results.

A. Machine Learning Pipeline

Hopsworks provides SDKs in Python and Scala to help de-
velopers work with its provided set of services that support the
full machine learning and deep learning lifecycle (shown Fig. 5),
including the following:

8[Online]. Available: https://www.w3.org/RDF/
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Fig. 6. Data Ingestion sources for a deep learning pipeline.

1) data management with HopsFS, Hive, Apache Kafka, and
Elasticsearch;

2) training machine learning and deep learning models on
both GPUs and CPUs, including distributed training on
GPUs;

3) serving of models in production using Kubernetes, with
Hopsworks providing authorized, audited access to scale-
out models on TensorFlowServing, SparkML, or scikit-
learn; and

4) model management and monitoring with Apache Spark
Streaming application analyzing model usage in near real
time.

B. Data Ingestion

The first step in building a scalable deep learning pipeline is to
locate the sources where the input data reside. Then, processes
need to be established that ingest data from the sources into the
platform where the deep learning pipeline runs. These sources
can be quite diverse in the format they use to store data and the
protocols they implement to deliver data over to other systems.
Such sources include raw data that can come from devices
connected to the Internet of Things, images from satellites,
structured data from data warehouses, financial transactions
from real-time systems, social media, etc. Fig. 6 illustrates where
in the deep learning pipeline the external systems reside. In the
context of ExtremeEarth, we show the different ways, in which
Hopsworks has been extended to make satellite imagery data
easily ingested in the platform for further processing.

C. Feature Store

Feature engineering can be described as the process with
which domain knowledge on ingested data is applied, in order
to create features that are used in further training stages of the
deep learning pipeline. With the continuous growth in input data
and increased complexity of deep learning pipelines, the need
for a framework that facilitates feature engineering and reduces
the complexity of managing features becomes evident. To im-
prove the management of curated feature data, Hopsworks has
been extended with a new framework called Feature Store. The
Feature Store acts as the central management layer for curated
feature data in an organization, and it serves as the interface
between data engineering and data science teams. As depicted

SN
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Fig. 7. Feature Store as the link between feature engineering and training.
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in Fig. 7, the motivation of feature engineering is to generate
reusable features that can be shared across different teams in an
organization and can facilitate the development of new machine
learning models. The advantages of the Feature Store include
reusing features across pipelines, feature discoverability with
free-text search across an organization’s feature data, applying
software engineering principles onto machine learning features
with versioning, documentation, and access-control, and time
travel by fetching past feature data that were used for training a
particular model. It also brings scalability in terms of being able
to manage multiple petabytes of feature datasets, so that data
scientists can gather useful insights regarding data distribution
and correlation.

To achieve all the aforementioned properties, the Feature
Store is implemented on scalable and fault-tolerant services.
Offline data are stored in Apache Hive [36], a scalable data
warehouse built on top of Apache Hadoop, and online data are
stored in MySQL Cluster (NDB). Offline features can be used for
training and are used mostly in batch-oriented use cases, where
past feature data can be fetched or huge volumes of feature data
can be analyzed to generate statistics. Online features need to
be accessible in real time for pipelines that need to get data at
prediction time. Besides storing data, the Feature Store utilizes
the Spark integration in Hopsworks to compute and analyze
features. Fig. 8 shows the main components of the Hopsworks
Feature Store.
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D. Training

Building machine learning models is an iterative process as
models need to be build based either on new training data or
feedback from model validation. As such, the task of doing
distributed training on large datasets in order to build and deploy
models is nontrivial. The process of using training samples,
finding the best hyperparameters, and building a model can
be referred to as an experiment. The experiment framework in
Hopsworks has been extended with Maggy [37], an open-source
PySpark-based framework for asynchronous hyperparameter
tuning, ablation studies, and distributed training of machine
learning models. The programming model of Maggy is based
on the distribution oblivious training function [38], in which the
users factor out dataset creation and model creation code into
their own separate functions and pass them as parameters to the
training function. The resulting code can then be used to launch
different experiments (hyperparameter tuning, ablation studies,
or training) either in parallel or a single-host fashion, without
requiring any further changes to the code.

For hyperparameter tuning, Maggy currently ships with im-
plementations of Random Search, and Bayesian Optimization
(with Tree Parzen Estimators [39] and Gaussian Processes [40])
as optimizers, as well as HyperBand [41] and ASHA [42], and
a median stopping rule for early stopping. However, Maggy
provides base classes for both the optimizers and the early
stopping rules as part of a developer API to make it extensible, so
that users can implement their own optimizer or early stopping
rules. To run a hyperparameter tuning experiment, the users have
to define a search space for their target hyperparameters and
specify the optimization algorithm and early stopping rule. For
ablation studies, Maggy ships with a leave-one-component-out
(LOCO) ablator, which removes one component out of the
training process at a time. A component can be one or a group
of dataset features, one or a group of network architecture
layers, as well as “modules” of network architecture, such as
Inception-v3 inception modules [43]. Similar to hyperparameter
tuning experiments, here, instead of a search space, the users
have to define a list of the components that are to be ablated
(i.e., excluded), and specify the ablation policy (e.g., LOCO).
Maggy would then automatically create the corresponding trials
for the ablation study and run them in parallel.

E. Model Serving and Monitoring

The last stage of the deep learning workflow is threefold:
export, serve for inference, and monitor the model. Once a model
is developed and exported using the stages in the deep learning
pipeline, it needs to be served so that external clients can use
it for inference. After the model is deployed, its performance
also needs to be monitored in real time so that users can decide
when it would be the best time to trigger the training stage.
Hopsworks has been extended to provide support for Tensor-
Flow Serving and Flask model servers to deploy models trained
with Tensorflow or any other Python library such as scikit-learn.
Hopsworks has been extended with a Kubernetes cluster on
which docker containers are deployed that run TensorFlow
serving and a Flask server. Additionally, KFServing has been
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Fig. 9. Model serving and monitoring architecture [45].

installed in the Kubernetes cluster to deploy more complex
inference pipelines composed of the model server, an infer-
ence logger container, and a transformer component. KFServing
provides additional features such as pre- and postprocessing of
inputs and outputs during model inference, multimodel serving,
scale-to-zero support, multiarmed bandits, or A/B testing. Users
have the option to choose whether to use KFServing or the
docker containers provided by Hopsworks. Moreover, users can
select the minimum number of instances for a model serving in
runtime; therefore, Hopsworks provides users with the important
property of elasticity.

In the context of ExtremeEarth, inference requests are proxied
through the Hopsworks REST API to provide secure multitenant
access to Hopsworks where role-based access control is done
based on projects. Project members are allowed to submit re-
quests only to the models being served from within their projects.
Inference requests are logged in Apache Kafka [44], which is
provided as a multitenant service in Hopsworks. The overall
architecture of model serving and monitoring in Hopsworks is
depicted in Fig. 9. The snippet of codes presented in Listings
1-3 shows end-to-end examples of model serving on Hopsworks
using TensorFlow.

Listing 1: Querying the model repository for best MNIST
model.

from hops import model

from hops.model import Metric

MODEL_NAME="mnist"

EVALUATION_METRIC="accuracy"

best_model = model.get_best_model

(MODEL_NAME,

EVALUATION_METRIC, Metric.MAX)

print ('Model name: ‘' + best_model
[ 'name’])

print ('Model version: '
["version’]))

print (best_model [ 'metrics’])

Listing 2: Creating model serving of exported model.

from hops import serving

\# Create serving

\# optionally, add the kfserv-
ing flag to deploy the model

+ str (best_model
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\# server using this serv-
ing tool. Iif not specified,

\# it is deployed using the serv-
ing tool by default

\# on the current Hopsworks ver-
sion (docker or kubernetes)

serving_name = MODEL_NAME

model_path="/Models/" + best_model
[ "name’ ]

response = gerving.create_or_update
(serving_name,

model_path,

model_ version=best_model[’version’],

model_server="TENSORFLOW_SERVING",

kfserving=False)

\# List all available serv-
ings in the project

for s in serving.get_all():

print (s.name)

Listing 3: Sending prediction requests to the served model
using Hopsworks REST APL

import numpy as np

import json

TOPIC_NAME = serving.get_kafka_topic
(serving_name)

NUM_FEATURES=784

for 1 in range(20):

data = {

"signature_name": "serving_default",

"instances": [np.random.rand
(NUM_FEATURES) .tolist ()]

}

response = serving.make_inference_
request (

serving_name, data)

F. Resource Management

When developers use TensorFlow/Keras/PyTorch to train
deep neural networks in Hopsworks, the latter uses PySpark
to transparently distribute the python code to containers with
GPUs. Hopsworks enables automated machine learning (Au-
toML), automated search for good neural network architectures
and hyperparameters by running parallel experiments on differ-
ent combinations of hyperparameters and model architectures.

In PySpark, Hopsworks runs a different experiment on each
Executor. Not all of the experiments will finish at the same
time, some experiments may finish early, some later. Moreover,
GPUs cannot currently be shared by concurrent applications.
Population-based approaches for AutoML typically proceed in
stages or iterations, meaning that all experiments wait for other
experiments to finish, resulting in idle GPU time. That is, GPUs
lie idle waiting for other experiments to finish. As such, there
is the problem of how to free up the GPUs as soon as its
experiment is finished. Hopsworks leverages dynamic executors
in PySpark/YARN to free up the GPUs attached to an Executor
immediately if it sits idle waiting for other experiments to finish.
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As shown in Fig. 10, each Spark Executor runs a local Ten-
sorFlow process. Hopsworks also supports managing a project’s
Python environment and dependencies across the cluster using
Conda. Hopsworks supports the creation of Projects, and each
Project has its own Conda environment that lives inside a Docker
container. When a PySpark job is launched, it pulls the Docker
container of the project the job belongs to. This way, users can
install whatever libraries they like using Conda and pip and then
use them directly inside Spark Executors. It makes program-
ming PySpark one step closer to the single-host experience of
programming Python. Hopsworks also supports Jupyter and the
SparkMagic kernel for running PySpark jobs.

G. Storage

Hops is a next-generation distribution of Apache Hadoop,
with a heavily adapted implementation of Hadoop Filesystem
(HDFS). HopsFS is a new implementation of the HDFS, which
supports multiple stateless NameNodes, where the metadata is
stored in an in-memory distributed database. HopsFS enables
NameNode metadata to be strongly consistent, customized, and
analyzed. HopsFS replaces HDFS’s Active-Standby Replication
architecture with a set of stateless NameNodes backed by an in-
memory, shared-nothing NewSQL database. HopsFS provides
the database abstraction layer API as an abstraction layer over
the database and implements a leader election protocol using
the database. This means that HopsFS no longer needs services
like quorum journal nodes, Zookeeper, and the Snapshot server
required by Apache HDFS. HopsFS has been proven to scale to
millions of operations per second [46].

H. Storing Small Files

Big data developers may need to store and access many
datasets as image files, stored in a distributed file system.
However, according to Uber [36], it is complex and costly to
implement multiple round trips to the filesystem at a large scale
especially using modern distributed file systems such as HDFS
and object stores such as S3. Uber’s proposed solution is to
pack image files into larger Apache Parquet [47] files. HopsFS
solves this problem by transparently integrating nonvolatile
memory express (NVMe) disks into its HDFS-compatible file
system [48]. Modern distributed file systems such as HDFS and
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S3 are designed around large blocks optimized to overcome slow
random I/O on disks, while new NVMe hardware supports fast
random disk I/O and potentially small blocks sizes. However, as
NVMe disks are still expensive, it would be prohibitively expen-
sive to store tens of terabytes or petabyte-sized datasets on only
NVMe hardware. The hybrid solution in Hops involves storing
files smaller than a configurable threshold (default: 64KB, but
scales up to around 1 MB) on NVMe disks in its metadata layer.
On top of this, files under a smaller threshold, typically 1 kB, are
replicated in-memory in the metadata layer due to their minimal
overhead.

1. Storage Cost Reduction

HopsFS is extended with two ways for reducing storage
costs that can occur due to the deluge of data provided by
the Copernicus program. First, HopsFS is extended to provide
native support for cloud-native storage solutions and protocols
such as AWS S3 and Azure ADLS. Effectively, HopsFS is
able to store its data that are split into blocks directly to the
aforementioned storage services. This alleviates the need for
acquiring additional local storage in the form of disks and also
provides a more intuitive user and developer experience when
working with the Hopsworks data storage layer. AWS S3 is
of particular for the ExtremeEarth project as it is the protocol
utilized by CREODIAS to provide the Copernicus data,” for
example, data retrieved from Sentinel satellites to the users and,
therefore, Hopsworks.

Second, HopsFS provides erasure-coding functionality in or-
der to decrease the storage capacity that is required for EO data
without the loss of high availability. HopsFS offers a powerful,
on a per-file basis configurable, erasure-coding API. Codes can
be freely configured and different configurations can be applied
to different files. Given that Hops monitors the erasure-coded
files directly in the NameNode, maximum control over encoded
files is guaranteed. Apache HDFS stores three copies of data
to provide high availability. So, for example, one petabyte of
data actually requires three petabytes of storage. For many
organizations, this results in enormous storage costs. HopsFS
also supports erasure coding to reduce the storage required by
44% compared to HDFS, while still providing high availability
for the data. The erasure-coding API offers the ability to request
the encoding of a file while being created. This has the benefit
that file blocks can initially be placed in a way that meets
placement constraints for erasure-coded files without needing to
rewrite them during the encoding process. The actual encoding
process will take place asynchronously on the cluster.

The erasure-coding API also offers the ability to request the
encoding for existing files. A replication factor to be applied
after successfully encoding the file can be supplied together
with the desired codec. Here, the actual encoding process will
take place asynchronously on the cluster too. Every path in
HDFS has a replication factor. If erasure coding is enabled for
that path, then erasure coding overrides the replication factor
settings. However, if erasure coding is disabled for a path, the

°[Online]. Available: https://creodias.eu/faq-s3
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erasure-coding API allows the default replication factor in HDFS
for that specific path to take effect. A replication factor can be
supplied and is guaranteed to be reached before deleting any
parity information. Deletion of encoded files does not require
any special care since the system automatically takes care of the
process.

VI. LINKED GEOSPATIAL DATA
A. Linked Data Tools

The following linked data tools are integrated with
Hopsworks.

1) Semantic Catalogue for EO Data: In order to extend the
capabilities for EO data discovery and access utilizing infor-
mation and knowledge extracted from Copernicus data, we
have designed a semantic catalogue for the Polar and Food
Security ontologies [49]. Based on these ontologies, we take the
results of the machine learning algorithms and translate them
to the RDF model using the tool GeoTriples-Spark and store
this information to a Strabo2 SPARQL endpoint. Finally, this
Strabo2 SPARQL endpoint is deployed in Hopsworks and can
be accessed by the Polar and Food Security TEPs through an
HTTP-based RESTful API according to the W3C standard.'” In
both developed ontologies, all the extracted features are linked
to the main observation class, which is linked to the respective
satellite image it belongs to with the haslmagelD property. This
allows us to use the semantic catalogue in fwo ways.

1) Access the Strabo2 SPARQL endpoint through its URL or
HTTP requests and pose GeoSPARQL queries to retrieve
satellite images based on the semantic information that the
ontologies provide.

2) Use the existing CREODIAS semantic search API'! and
access the Strabo2 SPARQL endpoint using SPARQL
SERVICE'? for federation. This method allows us to en-
hance the existing catalogue API with the semantic search
features provided by the Strabo2 endpoint. The linking
of information in the two SPARQL endpoints is achieved
through the satellite image ID string.

2) GeoTriples-Spark: It is an extension of GeoTriples that
enables the transformation of big geospatial data into RDF
graphs. The implementation is based on Apache Spark and it
currently supports the transformation of CSV, GeoJSON, and
ESRI Shapefiles. The initial data sources first need to be loaded
into HopsFS, and then GeoTriples-Spark runs as a Spark job
handled by HopsYARN, without directly interacting with any
other components on Hopsworks.

As we can see in Fig. 11, the GeoTriples-Spark loads the
data from HopsFS as multiple partitions, where for each one
of them, a Spark Task is spawn, responsible for transforming
the data of the partition. In each task, an RML Processor is
employed, which maps the input data into RDF triples by ap-
plying certain transformation rules. Those transformation rules,
which are defined by the user in an RML mapping file, are

10[Online]. Available: https://www.w3.org/TR/sparql1 1-http-rdf-update/
"[Online]. Available: https://browser.creodias.eu/
12[Online]. Available: https://www.w3.org/TR/sparql1 1-federated-query/
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functions that define how the input data will be mapped into RDF
triples. This RML file is loaded by the driver, which extracts
the transformation rules and broadcasts them to all executors.
Except for the broadcast of the transformation rules, there is
no need for further data shuffling as the transformation of each
partition does not affect the transformation of the rest. Moreover,
regarding the execution of ESRI Shapefiles, we use the library
Apache Sedona'? (formerly known as GeoSpark), which is an
in-memory cluster computing framework that extends Spark
with spatial computations, like spatial indexing.

3) JedAl-spatial: Tt discovers spatial relations between two
different input datasets of linked geospatial data. As shown in
Fig. 12, JedAl-spatial runs as a Spark job handled by Hop-
sYARN, without directly interacting with any other component
on Hopsworks.

Initially, the two input datasets to be interlinked, the source
and the target one, are loaded as Resilient Distributed Datasets
(RDDs) that are spatially partitioned according to Apache Se-
dona’s Quad-Tree. All RDDs are partitioned using the same
partitioner, and thus, the topologically close geometries belong
to partitions with the same partition id. The source and target
RDDs with the same partition id are then merged such that
each partition contains all geometries from both datasets that
lie within its area. This way, we ensure that all geometries that
are likely to satisfy a topological relation coexist in the same
partitions. Subsequently, each Executor receives one of these
partitions as input, during the Map phase. To apply Filtering, it
indexes the source geometries, and for each target geometry
t, it estimates the tiles that intersect its Minimum Bounding

13[Online]. Available: http://sedona.apache.org/
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Rectangle. Using the index, it retrieves the distinct source ge-
ometries in these tiles. Note that every geometry that crosses the
borders between two partitions is added to both during spatial
partitioning. To avoid the resulting redundancy, the reference
point technique is used, i.e., JedAl-spatial ensures that every pair
is verified only in the partition that contains the top left corner of
their intersection. Note that the granularity of Filtering requires
some simple computations by the Driver, which broadcasts the
results (Az, Ay) to the Executors. Finally, each Executor per-
forms the necessary processing, such as Scheduling, and applies
Verification to estimate the topological relations of every target
geometry with all source geometries that pass the Filtering step.
After examining the resulting Intersection Matrices, the set of
qualifying pairs of geometries PQ is aggregated during Reduce
phase.

4) Strabo2: Tt performs GeoSPARQL query answering on
RDF datasets stored in Hopsworks. Strabo2 has two modules.
The first module is responsible for data import and storage. This
module is executed as a Spark job handled by Hops YARN, which
reads the RDF datasets from HopsFS and creates tables in the
HIVE database of the corresponding Hopsworks project, accord-
ing to an optimized schema, stored in compressed PARQUET
format, as shown in the bottom part of Fig. 13. The second mod-
ule is responsible for GeoSPARQL query execution. This mod-
ule receives a GeoSPARQL query, and it performs a cost-based
translation into Spark SQL, enhanced with spatial operators
offered by the Apache Sedona framework. This module can also
be executed as a Spark job, using as an input the GeoSPARQL
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query either directly, or by executing all GeoSPARQL queries
contained in files in a given directory in HopsFS passed as an
argument. Though this method of execution is simple and can
be directly submitted to HopsYARN for management, it does
not offer interactivity. For this reason, we offer a second way
to execute this module in the form of an endpoint, where it
accepts requests and returns results in an interactive manner.
For example, using this mode of execution, Strabo2 can act as
an endpoint for the Semagrow federation engine. In order to
directly use the Spark installation running in Hopsworks, this
module must start a Spark session in cluster mode, and keep
it open, as it accepts and executes the GeoSPARQL queries.
Unfortunately, creating Spark sessions in cluster mode cannot
be integrated with the HopsYARN resource manager. For this
reason, in order to achieve full integration with Hospworks, we
are developing a solution that uses Apache Livy for maintaining
the Spark session.

5) Semagrow: The GeoSPARQL query federation engine
Semagrow [50] is used for integrating several heterogeneous
big linked geospatial data sources under a single GeoSPARQL
endpoint. Semagrow receives a GeoSPARQL query through
its endpoint, decomposes the query, performs the necessary
GeoSPARQL queries in the federated endpoints, combines the
results accordingly, and presents the result to the user. The
implementation of Semagrow is based in the rdf4j framework,
including its geospatial support, which has been extended with
optimization techniques especially for geospatial linked data. In
the context of integration with Hopsworks, we have used Sema-
grow to combine big linked geospatial data served by Strabo2
with external geospatial resources (see Fig. 14). Besides data
integration between data served by Hopsworks and external data
sources, this also achieves providing access to the data served
by Hopsworks that completely implements the GeoSPARQL
specification, as Semagrow is a complete GeoSPARQL imple-
mentation and automatically fills in any functionality missing in
the access methods of the data sources it federates.
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TABLE I
PERFORMANCE OF GEOTRIPLES-SPARK FOR THE TRANSFORMATION OF BIG
GEOSPATIAL DATA
Input Size  Overall Time Output Size

(GB) (minutes) (GB)
100 4.3 428

250 9.9 1,068

500 17.6 ~2,500

1000 34.3 ~5,100

B. Experimental Evaluation of Linked Geospatial Data Tools

Let us now discuss the performance of three of the linked
geospatial data tools presented: GeoTriples-Spark, JedAl-
spatial, and Strabo2.

Table I shows the performance of GeoTriples-Spark in the
transformation of big geospatial data into RDF. The input data
consists of extracts of the OpenStreetMap'* project in the form of
multiple ESRI shapefiles. For the transformation, we used up to
30 Executors equipped with two cores each and 2 GB of memory.
In the end, we managed to transform 1 TB of input geometries in
34 min. An important issue that arises with very large input files
is the size of the output files, as this is significantly bigger than
the initial input, due to the nature of RDF triples. To solve this
issue, we are streaming the produced triples directly in Strabo2,
instead of writing them on the disk. This will facilitate access
to the produced graphs and will enable us to pose GeoSPARQL
queries efficiently.

To evaluate the performance of Geospatial Interlinking, we
used JedAl-spatial to link a source dataset of 72.3 million
geometries with a target one containing 114.8 million geometries
(Dg in [51]). Restricting the maximum number of examined
geometry pairs to 20 million, we achieved the performance in
Table II. In all cases, the entire process is completed within 20
min, as JedAl-spatial fully exploits the parallelization capabili-
ties of the ExtremeEarth platform. The original configuration of
JedAl-spatial [51] corresponds to CF, JS, and XQ, which select
the geometry pairs to be investigated based on the tiles they share
in the grid index. That is, they favor the geometry pairs with the
highest co-occurrence frequency in the tiles of the index. We
significantly improve their performance by introducing a new
pair selector, called MBRO, which promotes the pairs with the
largest overlap of their minimum bounding rectangles. MBRO
raises both Recall and Precision of the best original config-
uration, 2, by 18%. Given that MBRO considers evidence
that is complementary to that of the original pair selectors, we
can combine them into hybrid selectors, namely CF - MBRO,
JS - MBRO, and XQ-MBRO. In all cases, the performance of the
original selector raises to a significant extent. Most importantly,
x2-MBRO improves the performance of MBRO by another 2%,
thus corresponding to the best overall configuration. Note also
that in most cases, JedAl-spatial improves the performance of
the baseline random selector by three to two times.

Regarding the experimental evaluation of Strabo2, we have
performed experiments with both real-world and synthetic

4[Online]. Available: https://www.openstreetmap.org/#map=16/37.9745/
23.7404
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TABLE II
PERFORMANCE OF JEDAI-SPATIAL WHEN INTERLINKING 72.3M WITH 114.8M GEOMETRIES, WHILE CONSIDERING UP TO 20M PAIRS

Random | JedAl-spatial
Selector [ CF | JS | x2 | MBRO | CEMBRO | JSMBRO | x?"MBRO
Recall 0.106 0.131 | 0.376 | 0.387 0.456 0.454 0.408 0.465
Precision 0.006 0.007 | 0.019 | 0.020 0.024 0.024 0.021 0.024
Run-time (min) - 18.6 19.8 18.5 20.6 222 19.7 19.8
@ ExecutionTime == I|deal speedup
600000 = £2) HOPSWORKS
Training phase Train model
_E, M Polar TEP Web UL Polar TEP Processor
-E 271074 User asks to process
= satellite image(s)
.% with processor Pre-processing
3 200000 T
3222042623 o Serve model with
Prediction phase __REST AP TensorFlow Serving
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Input Size (GB) R?ISLLI; is made ' e
available in portal
either on the rl:mp or
Fig. 15.  Strabo2 scalability with varying dataset size (64 executors). asiadownload link

datasets, with sizes that exceed the capabilities of the centralized
Strabon system. Specifically, the real-world dataset used is the
scalability dataset of the Geographica2 benchmark [8], which
is a fusion of Open Street Maps with Corine Land Cover. The
original datasets have been extended to more countries, now
consisting of 1.08 billion triples (198 GB in plain text). For this
dataset, we have performed the three queries of the benchmark.
These are queries of varying selectivity. One query contains a
spatial filter over the whole dataset, and the other two are heavy
spatial join queries. Execution times in hops with 64 executors
for these three queries are 30, 407, and 100 s, respectively.

It is worth mentioning that centralized Strabon cannot import
datasets of this size. The synthetic dataset used also comes from
the Geographica2 benchmark, and it contains a minimal ontol-
ogy that follows a general version of the schema of Open Street
Maps. It contains 36 queries of spatial selections and spatial
joins with different selectivities and different spatial predicates
(intersects, within, and touches). We have successfully executed
the query set in Hops for a dataset with a scale factor of 12 228,
which contains 2.35 billion triples (0.46 TB in plain text scale
factor 12 228). In order to examine the scalability of Strabo2
with respect to dataset size, we used different scale factors of
the scalability benchmark on a setting with 64 executors in Hops,
where each executor contains two cores and 8 GB of memory.
The average execution time for the 36 queries in each dataset is
presented in Fig. 15.

VII. INTEGRATION OF THE EXTREMEEARTH PLATFORM
COMPONENTS AND FLOW OF EVENTS

In this section, we define the high-level architecture and
semantics of the integration of Hopsworks with the Polar and
Food Security TEPs in ExtremeEarth. The APIs used for the
integration of the ExtremeEarth components via the interlayer
interfaces of the software platform are also described here.

Fig. 16. Interaction of the machine learning model on Hopsworks with the
Polar TEP processor.

A. ExtremeEarth Infrastructure Integration of Components

As shown in Fig. 1, the ExtremeEarth infrastructure consists
of four layers with TEPs in the product layer, Hopsworks
in the processing layer, CREODIAS in the data layer, and
TaaS in the physical layer. Fig. 1 contains the numbered labels
highlighting the different integration points of the DIAS, TEPs,
and Hopsworks. Integration includes defining the user roles and
processors to be implemented in order to provide a seamless
experience for ExtremeEarth users. This integration is split into
at least two iterations; the first iteration develops functional
products that will satisfy the requirements of the use cases, and
the second iteration builds on the first one to automate as many of
the manual processes of the first iteration as possible. A detailed
description of each integration point is provided in the following.

1) Raw EO data: DIAS and CREODIAS in particular provide
EO data access to services and applications running on
their platforms. This includes the downstream of Coperni-
cus data as it is generated by satellites, such as the Sentinel
constellations. At an infrastructure level, these data are
persisted at an object store with an S3 object interface,
managed by CREODIAS. This infrastructure comes with
s3fs, a tool that emulates filesystem storage using an S3
object interface.'

2) Preprocessed data: TEPs provide the developers of the
deep learning pipelines with preprocessed EO data, which
form the basis for creating training and testing datasets.
These preprocessed data are managed by TEPs but is
stored in the CREODIAS infrastructure. Developers of
the deep learning pipeline can also define and execute
their own preprocessing, if the preprocessed data are not

15[Online]. Available: https://github.com/dask/s3fs
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3)

4)

5)

6)

7)

already available. To do that, various third-party libraries
and frameworks can be implemented and used in different
programming languages such as Python, C++, and Java. To
further assist ExtremeEarth users with preprocessing data,
Hopsworks provides APIs to run programs in languages
other than Python, which is the de-facto language of
machine learning frameworks and libraries.

Object store: CREODIAS provides an object store used
for storing data produced and consumed by the TEP ser-
vices and applications. In ExtremeEarth, this object store
is used primarily for storing training data required by the
Polar and Food Security use cases. These training data are
provided as input to the deep learning pipelines.

EO Data Hub Catalog: This service is provided and
managed by CREODIAS. It provides various protocols,
including OGC WFS, a REST API, and OData [34], as
interfaces to the EO data. The Data Hub uses cloud infras-
tructure and methods to efficiently process and distribute
data in a matter of seconds. It removes the major hassle
of downloading, archiving, and processing petabytes of
data and simply makes the full and global archive easily
available immediately via web services. EO Data Hub
technology is designed to work with original EO data,
avoiding the need for computing-intensive preprocessing
and additional storage for processed tiles [34].
TEP-Hopsworks EO data access: Users can directly ac-
cess raw EO data from their applications running on
Hopsworks. Multiple methods, e.g., object data access
API (SWIFT/S3), filesystem interface, etc., are provided
for accessing Copernicus and other EO-data available on
CREODIAS.

TEP-Hopsworks infrastructure integration: Hopsworks
and both the Polar and Food Security TEPs are installed
and operated on a DIAS infrastructure, which in the
case of ExtremeEarth is the CREODIAS infrastructure.
CREODIAS and its administrative tools enable TEPs
to spawn and manage virtual machines and storage by
using CloudFerro, which provides an OpenStack-based
cloud platform to TEPs. Hopsworks is then installed on
virtual machines within the TEP domain so that it can
access compute and storage resources provided by the
TEPs.

TEP-Hopsworks API integration: Hopsworks is provided
within the TEP environment as a separate application
and is mainly used as a development platform for the
deep learning pipelines and applications of the Polar and
Food Security use cases. These applications are exposed
in the form of processors to the TEP users. Practically,
a processor is a Polar TEP abstraction that uses deep
learning models that have previously been developed by
the data scientists of the ExtremeEarth use cases. Hence,
Polar TEP users are presented with a geographical map,
where they can select data from a specific region and
time frame as input to one of the available processors.
This means that the machine learning model is developed
within Hopsworks and then served to users as a processor
in Polar TEP, where they can make use of increased

TEP user 7

Fig. 17.
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data access and options for batch or triggered processing
capabilities.

Hopsworks-TEPs datasets: TEPs provide users with ac-
cess to data to be served as input to processors from
various sources. Such sources include the data provided
by CREODIAS and external services that the TEP can
connect to. For the Polar use case, Sentinel- 1 data is the pri-
mary data source that is readily available on CREODIAS.
For the Food Security use case, preprocessed Sentinel-2
data is the primary data source. The preprocessing takes
place on the Food Security TEP, where cloud-masking,
atmospheric correction, and extraction of leaf area index
is performed before handing the data to Hopsworks. The
preprocessed data are stored in an object storage provided
by CREODIAS and, thus, made available to Hopsworks
users by exchanging authentication information.

Linked Data tool integration: Linked data applications are
deployed as Hopsworks jobs using Apache Spark. A data
scientist, as shown in Fig. 17, can use GeoTriples-Spark to
transform big geospatial data into the RDF, according to
the ontologies developed for the Food Security and the
Polar use cases [49]. Then, JedAI-Spatial can be used
for spatial interlinking. The resulting RDF data will be
stored in Strabo2 [52], where the data scientist can pose
GeoSPARQL queries using the Apache Livy interface
for interacting with Spark. Moreover, a user can pose
GeoSPARQL queries in Semagrow to combine the big
linked geospatial data served by Strabo2 with external
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geospatial sources. As an example, such integration allows
the validation of Food Security data using external geospa-
tial datasets. Strabo2 and Semagrow will be deployed
using the JBoss application server running in Hopsworks
and can be accessible as standard SPARQL endpoints from
other modules of the Hopsworks platform, based on the
SPARQL HTTP protocol.'®

Building and serving models in ExtremeEarth: The Polar
and Food Security use cases are the two main scenarios of
the ExtremeEarth software architecture for the application of
large-scale Copernicus EO data. For the Polar use case, the Polar
TEP has established an instance of the Hopsworks platform on
CREODIAS to allow the development of deep learning models,
as explained above. The resulting processor is integrated into the
Polar TEP, as described above. For the Food Security use case,
the instance of the Hopsworks platform on CREODIAS, set up
for the Polar use case, is jointly used. There are two methods
by which the trained model can be served via the Polar TEP:
(i) The model can be exported from Hopsworks and make it
fully embedded into the Polar TEP processor. (ii) The model
can be served online on Hopsworks and a processor on Polar
TEP submits inference requests to the model serving instance
on Hopsworks and returns the results. In method (i), which is
also supported in Food Security TEP, once the machine learning
model is developed, it can then be transferred from Hopsworks
to the Polar or Food Security TEP by using the Hopsworks REST
API and Python SDK. TEP users can integrate the Hopsworks
Python SDK into the processor workflow to further automate the
machine learning pipeline lifecycle. In method (ii), Polar TEP is
able to submit inference requests to the model being served by
the online model serving infrastructure run on Kubernetes and
hosted on Hopsworks.

The Food Security TEP provides deployment of deep learning
models as TEP services using method (7). As the currently
employed models require satellite data time series separately
preprocessed on the Food Security TEP, training data are first
made available to the Data Scientist on Hopsworks via exchange
of authentication information. A trained model is then exported
from Hopsworks and embedded as a processing service in Food
Security TEP, where it can be independently run with prepro-
cessed input data, shared, published, and further customized
by the service owners for utilization by the wider TEP user
community.

Hopsworks provides a REST API for clients to work with
model serving, and authentication is done in the form of API
keys managed by Hopsworks on a per-user basis. These keys can,
therefore, be used by external clients to authenticate against the
Hopsworks REST API. The TEP end-user would experience al-
most no difference between these two methods of model serving.
However, the implementation is considerably different. Fig. 16
shows how the machine learning model on Hopsworks can be
linked to the Polar TEP processor. It shows how the classification
step takes a patch or a set of patches (a batch) and transmits the
image patches over the network to the Hopsworks REST API
endpoint before the model is served by the Hopsworks.

16[Online]. Available: https://www.w3.org/TR/sparql1 1-protocol/
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B. ExtremeEarth Flow of Events

Fig. 17 shows the flow of events of the products offered by
the TEPs using Hopsworks. Details about the specific APIs and
services used in each event are presented as follows.

1) EO data scientists log in to Hopsworks.

2) Read and preprocess raw EO data in Hopsworks, TEP, or

in the local machine.

3) Create training datasets based on the intermediate prepro-

cessed data.

4) Develop deep learning pipelines.

5) Perform linked data transformation, interlinking, and stor-

age.

6) Log in to the Polar or Food Security TEP applications.

7) Select Hopsworks as the TEP processor. The processor

starts the model serving in Hopsworks via the REST API.
The processor also downloads the model from Hopsworks
via the REST API and serving is done within the TEP
application.

8) Submit federated queries with Semagrow and use the

semantic catalogue built into Hopsworks.

VIII. DEEP LEARNING CLASSIFICATION MODELS

ExtremeEarth aims to advance the state of the art by develop-
ing ad-hoc distributed deep learning architectures tailored to
the peculiar properties of Copernicus Sentinel satellite data.
The ExtremeEarth infrastructure has developed and continues
to develop prototype deep learning models for the Polar and
Food Security use cases mostly targeting classification tasks
to classify the objects, linked data to build maps (e.g., sea ice
mapping for Polar use case and crop type maps for the Food
Security use case).

A. Deep Learning Models for the Polar Use Case

The Polar use case exploits a large volume of Sentinel-1 (S1)
SAR images to model various deep learning-based architec-
tures. The purpose is to handle the extreme analytics and big
data challenges associated with sea ice classification. By taking
advantage of Hopsworks, we developed an ad-hoc architecture
and explored an existing and deeper network for sea ice clas-
sification. The ad-hoc architecture is flexible, but it generally
requires the optimization of many hyperparameters. The existing
deeper architecture reduces the modeling aspect of the network
design. However, training existing architecture entails a large
amount of data and long training times. Our ad-hoc architecture
comprises three convolution layers and three max-pooling lay-
ers. For these layers, the number of kernels/filters are 32, 64,
and 64, respectively. Our model also uses three fully connected
layers with 1024, 512, and 2 nodes, respectively. We also exploit
a regularization strategy namely to deal with the problem of
overfitting. For the existing deeper architecture, we exploited the
VGG-16 model [53] for sea ice classification. For the ad-hoc and
existing VGG-16 architectures, the number of fully connected
layers is the same. We trained the VGG-16 architecture from
scratch using our sea ice training dataset. We also consider the
transfer learning strategy to train the VGG-16 architecture. In
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TABLE III
COMPARISON OF THE VALIDATION ACCURACY OF DIFFERENT MODELS:
CONSIDERING TWO DIFFERENT PIXEL RESOLUTIONS

Training Strategies Validation  Resolution  Resolution
Accuracy in Pixels in Meters
Ad hoc CNN 98.53% 32 x 32 1280
VGG-16 trained from scratch + augmentation 99.79% 32 x 32 1280
VGG-16 Modified + augmentation 99.89% 32 x 32 1280
VGG-16 Modified + augmentation 99.30% 20 x 20 800

fact, training the architecture from scratch provides insight into
the impact of a deeper network on the sea ice classification task.

For training the ad-hoc and existing architectures, we used
an in-house dataset for sea ice classification [54]. This dataset
is based on Sentinel-1 Extended Wide Level-1 Ground Range
Detected scenes. Training is done in the sensor range—azimuth
geometry with a pixel spacing of 40 m x 40 m. The dataset
was acquired north of the Svalbard archipelago in the winter
months between September and March during the period 2015—
2018. This dataset was preprocessed by applying the standard
ESA thermal noise removal algorithm, calibrated using the oy
lookup table, and multilooked using a 3 x 3 boxcar filter. We
extracted patches from the images of this dataset for five classes
namely: Water [including ice-free water (windy)], ice-free water
(calm), and open water in leads, Brash/Pancake Ice, Young Ice,
Level First-Year Ice, and Deformed Ice (including both first-
year and multiyear ice). For binary Water/Ice classification, we
combined the extracted patches into two classes, namely Water
and Ice. The models take three channels as input, consisting
of HH and HV o0 intensities in dB, as well as the angle of
incidence. Additionally, we also modified the VGG-16 model
by reducing the max-pooling layers. This modification allows
us to feed smaller patches to get higher resolution results. We
present the results of our ad-hoc and the existing VGG-16 model
in Table I1I using different setups. Our modified VGG-16 model
trained from scratch showed 99.89% validation accuracy, and the
ad-hoc architecture achieved 98.53% validation accuracy. We
also found the effect of using different patch sizes for the three-
channel cases. Fig. 18 depicts results from the modified VGG-16
model considering 32x32 patch size for binary classification.
The first row indicates the input images and the second row
indicates the processed images. In our experiments, the training
and validation data are stored on Hopsworks and trained models
are served via Hopsworks through the suggested pipeline.

B. Deep Learning Model for the Food Security Use Case

The deep learning model developed for the Food Security
use case exploits the large volume of multitemporal multispec-
tral Sentinel-2 images to generate high-spatial-resolution crop
type and crop boundaries maps. Although Sentinel-2 allows
for accurate crop type mapping, this particular classification
task presents many challenges. Agricultural areas are usually
dominated by few common crops, which are extensively culti-
vated (e.g., corn and wheat). This leads to very different prior
probabilities for different crop types. Such imbalanced datasets
have to be properly handled to avoid low classification results
on minority classes. Indeed, the accurate classification of minor
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Fig. 18.  Classification results from north of Svalbard using a to 32 x 32 patch
size. Ice is annotated in white, water is annotated in blue and the land mask is
shown in black.

crop types is still of interest to the local authorities and important
to achieve accurate agricultural mapping. Moreover, one of the
most critical issues of large-scale crop type mapping is the
harmonization of the time series from the temporal viewpoint.
To achieve accurate classification results, it is necessary to have
a precise characterization of the phenological trends of the crop
categories. The main problem is related to the fact that time series
acquired over different Sentinel-2 tiles present unequal lengths
and are characterized by variations in the temporal sampling
rate. Moreover, for some geographical regions, the cloud and
snow coverage can be so heavy in some months that several
optical images should be discarded, thus affecting the temporal
sampling of the tile.

To address these challenges, the proposed system architecture
is based on two main steps: 1) the temporal harmonization of
the time series of Sentinel-2 images acquired over different
tiles; and 2) the training of the weighted multitemporal deep
learning architecture able to handle imbalanced classification
problems. For each Sentinel-2 tile, the corresponding time series
is converted into a stack of 12 monthly composites considering a
statistic-based approach that works at a pixel level. The images
acquired within each month are collapsed into a single one com-
puting their median per pixel per band [55]. This step allows us
to sharply reduce the impact of cloud coverage while generating
a consistent multitemporal spectral signature across tiles. Then,
a multitemporal deep learning model designed for mitigating
the imbalanced classification problem is trained. The adopted
architecture is a multilayer LSTM, which performs a pixel-level
classification [56]. The capability of the LSTM to handle the
temporal information is crucial to accurately model the temporal
dynamics of the crops and to capture their phenological growth
[29]. To mitigate the problem of having severely imbalanced
training data, we trained a weighted LSTM according to the
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procedure proposed in [57]. In the first training phase, the
weights of the LSTM cost functions are defined per crop type
according to the number of samples of each class. This step is
carried out under the assumption that the number of samples per
class is proportional to the prior probability of the different crops.
Such weight initialization avoids that the gradient is mainly
dominated by the contributions of the dominant classes. The
network weights obtained at the end of the first phase are then
used as the initial ones of the second training phase, which is
performed using the standard cost functions.

To successfully train the deep network, a considerably high
amount of training samples is required. To solve this problem,
we leveraged existing publicly available crop type maps based
on farmer’s declarations. Such maps are produced in the context
of the Common Agricultural Policy of the European Union [58].
The crop types are collected with surveys within the subsidy
application process, while the polygon field boundaries are the
ones provided by the Land Parcel Identification System. In
particular, the 2018 Austrian crop type map was considered
[59]. Although the reliability of the map is high, a machine-
learning-based procedure was defined to automatically extract
labeled units having a high possibility to be correctly associated
with their labels [55]. The obtained training dataset is made
up of more than 1 million samples associated with 15 crop

categories, namely, “grassland,” “maize,” “legumes,” “winter
caraway,” “winter wheat,” “rapeseed,” “potato,” “rye,” “winter
barley,” “beet,” “spring barley,” “soy,” “sunflower,” “permanent
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plantations,” “triticale,” and “other crops.” Note that while the
2018 Austrian crop type map can be used to perform crop
parameter estimation at country scale for one specific year,
the extracted training set can be used to train deep learning
models able to generate multiyear crop classification maps and
to classify a study area larger than the Austrian country.

The preliminary experimental analysis presented has been
carried out in the European Danube catchment, considering
15 Sentinel-2 tiles covering the Austrian country. Different
tiles were used to define the training set (13 tiles), test set
(one tile), and validation set (one tile) to consider spatially
uncorrelated samples for training, validating, and testing the
model. To accurately represent the phenological trend of the
crop types, we focus the attention on the images acquired
in the agronomic year from September 2017 to August 2018
(i.e., the period from one year’s harvest to the next one for
an agricultural commodity). The architecture has been trained
and validated on the Hopsworks platform through a grid search
approach for the selection of the best network parameters. The
hyperparameters were chosen by testing several combinations
of network layers L € {2,3,4} and number of cells per layer
€ {100, 125,200, 225,300}. At each training step, the calcula-
tion of the cross-entropy loss is computed and backpropagated
through the network layers. The weights are optimized through
an RMSprop optimizer [60]. The learning rate has been set to
1073 and the weight decay to 0.4.

To assess the effectiveness of the proposed weighted LSTM,
we validate the results obtained considering 1) the Austrian crop
type map and 2) the 2018 Land Use and Cover Area frame
Statistical Survey (LUCAS) database [61]. Both the validation
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analysis allow us to have statistical independent evaluation.
While the results on the Austrian Map are computed considering
the validation tile (T33UVP) not included in the training set,
the LUCAS database is made up of reference samples col-
lected with field surveys. In the latter, all the crop types were
evaluated. In the former, only the crop types present in the
database were considered (i.e., “grassland,” “maize,” “winter
wheat,” “rapeseed,” “potato,” “rye,” “beet,” “soy,” “sunflower,”
and “permanent plantations”).

What should be noted is how the integrated ExtremeEarth
tools were used to carry out the quantitative evaluation of the
obtained classification map considering the LUCAS database.
LUCAS reports exact point coordinates, both the theoretical
target and the actual GPS signal at the time of the observation.
However, matching these data to the obtained crop classification
map is not trivial. To handle the different spatial resolution of
the two data sources, the standard approach typically used to
integrate in situ and EO data associates each surveyed point to
the closest instance present in the classification map. Although
the application of this deterministic rule is conceptually straight-
forward, in operational scenarios, this may lead to wrong results.
As the surveyor is actually situated on the road and not inside the
crops, in agricultural areas with several adjacent crops for each
LUCAS point, even GPS accuracy may lead to the wrong match.
A more robust approach is looking for inconsistencies between
LUCAS datapoints and the classification maps produced by EO
data. Intuitively, the idea is that for every LUCAS point, there
must be at least one crop with the same label and in reasonable
proximity to the LUCAS point; otherwise, this LUCAS point is
a negative validation point in the sense that at least one nearby
shape is mislabeled (although we do not automatically know
which one). To achieve accurate validation results, for each
LUCAS point, we analyzed its surrounding area in a radius of
10 m, i.e., the spatial resolution of the obtained classification
map. From the computational point of view, executing distance
queries at such a large scale can be challenging: the obtained
classification map extends for 83.879 km and is made up of
936 566 instances, which has to be linked to the 8841 field sam-
ples for the considered study area. This was executed by using
Strabo2 on Hops to serve the large-scale crop type classification
map and Semagrow to federate the EO-generated maps with
the LUCAS dataset while mapping between the different crops
codelists.

The weighted LSTM was compared with two benchmark
methods widely employed in the literature for crop type map-
ping, namely, the time convolutional-based model TempCNN
[32] and the recurrence-based model StarRNN [27]. Table IV
shows the numerical results obtained on both the validation
datasets. The LSTM obtained on the validation tile an overall ac-
curacy (OA%) of 85.39%, outperforming both the benchmarks
methods that achieved 81.71% and 81.17% for TempCNN and
StarRNN, respectively. The capability of the weighted LSTM
to better handle the severely unbalanced classification problem
is confirmed by the median F-score (F1%), which is 84.08%,
78.33%, and 83.73% for the weighted LSTM, TempCNN, and
StarRNN, respectively. Similar results are achieved on the LU-
CAS database, where the weighted LSTM achieved the highest

9 < 9 <
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TABLE IV
CROP TYPE CLASSIFICATION RESULTS OBTAINED ON THE MAP VALIDATION
TILE (T33UVP) AND THE LUCAS DATABASE

Map (T33UVP) LUCAS
Method OA % F1% OA% F1%
TempCNN [32]  81.71 78.33 89.94  80.79
StarRNN [27] 81.17 83.73 89.53  82.24
LSTM Weig. 85.39 84.08 89.72  84.20

The proposed weighted LSTM is compared with two benchmark methods: 1) the time-
convolutional-based model TempCNN and 2) the recurrence-based model StarRNN.
The overall accuracy (OA%) and the median F-score (F1%) are reported per method.
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Fig. 19. Qualitative examples of the obtained crop type map are reported
together with one Sentinel-2 image of the time series. The different crop types
are depicted in different colors.

median F-score (F1%) 84.20% compared to 80.79% and 82.24%
for TempCNN and StarRNN, respectively. The highest OA%
is obtained by the TempCNN (89.94%) compared to 89.72%
and 89.53% for the weighted LSTM and StarRNN, respectively.
Fig. 19 shows qualitative examples of the obtained crop type
map result. Although the proposed deep learning models provide
a result at pixel level, the crop types and crop boundaries are
accurately detected by the proposed system architecture.

IX. CONCLUSION

In this article, we present the software architecture of Ex-
tremeEarth that aims at the development of scalable deep learn-
ing and geospatial analytics techniques for processing and an-
alyzing petabytes of Copernicus data. The main contributions
presented in this article are centered around the Polar and Food
Security use cases of the ExtremeEarth software architecture.

For the Polar use case, we investigated the potential of differ-
ent CNN models for sea ice classification. The results showed
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that the complex architecture with deeper layers (such as those
based on the VGG network) typically obtains more relevant
features and subsequently shows better classification results.
Moreover, we evaluated the value of data augmentation and a
modified VGG-16 architecture to prevent overfitting caused by
a scarce training dataset and obtain better resolution. We also
showed the robustness of the proposed models when applied to
SAR scenes collected at different spatial locations and times.
Additive system noise in SAR images is a serious challenge to
obtain refined sea ice maps. In this sense, scarce training data
escalate this issue; therefore, we will address this specific issue
in future works. Additionally, we note that sea ice classifica-
tion represents a fairly new application area for deep learning
architectures.

SAR input images do not always have clear boundaries be-
tween classes and are not as rich in distinct corners, edges, and
line features as images in computer vision. Future work will
carefully analyze the extracted feature extraction modules in
order to find the proper depth needed for the architecture to
extract the relevant information. We will furthermore investigate
semisupervised approaches to remedy the scarce training issue
and investigate the impact of adding additional input layers
containing derived quantities motivated by a physics-based un-
derstanding of SAR imaging of sea ice.

For the Food Security use case, we presented an approach for
crop type mapping using Sentinel-2 time series based on a deep
learning architecture. The proposed method is able to generate
a crop type map characterized by a very detailed classification
scheme made up of 16 crop types. The proposed approach first
harmonizes the time series producing monthly composite to
guarantee homogeneous data across different tiles and mitigate
the cloud cover issues. Then, it exploits a very large training
dataset to successfully train the considered multitemporal deep
learning architecture, an LSTM model. Finally, the LSTM is
used to perform crop type mapping for the whole study area. The
LSTM-based approach is proved to be effective for this task since
its recurrent structure can model the phenological evolution
of the crop types. This is confirmed by the numerical results,
where the proposed deep learning model is able to achieve
an OA of 85.39% and 89.72% on the map and the LUCAS
validation datasets, respectively. As future developments, we
aim to enlarge the considered study area to map the agricultural
land surrounding the Austrian territory (i.e., including Hungary,
Moravia, Slovakia, etc.). To this end, Sentinel-2 tiles where no
ground reference data will be classified. Moreover, to provide a
more comprehensive environmental monitoring of the consid-
ered study area, we aim to generate multiyear crop type maps.
In particular, we aim to focus on the Sentinel-2 time series of
the following agronomic years (i.e., from September 2018 to
August 2019 and from September 2019 to August 2020). Such
experimental analyses allow us to better assess and evaluate the
robustness and the generalization capability of the considered
multitemporal deep learning model from the spatial and tem-
poral viewpoint. To accurately achieve these goals, fine-tuning
strategies will be investigated.

The implementations of the Polar and Food Security
use cases utilize the four linked geospatial data systems
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presented: GeoTriples-Spark, JedAl-spatial, Strabo2, and Sema-
Grow. GeoTriples-Spark is a new version of GeoTriples, which
is able to transform big geospatial data into RDF. For this system,
we showed that it is capable of transforming up to terabytes of
input geospatial data in a reasonable amount of time. We have
also presented JedAl-spatial, a system for interlinking geospatial
data sources expressed in RDF. We have shown how to improve
the performance of JedAl-spatial, significantly increasing the
number of topological links it produces when allocated to lim-
ited computational resources. We have also presented Strabo2,
the first distributed geospatial RDF store, and a preliminary
evaluation of its performance and scalability. We are currently
working on improving the efficiency of Strabo2 using data
compression and better selectivity estimates for query planning,
and we plan to perform a more thorough experimental evaluation
with larger datasets. Finally, we presented SemaGrow, the only
federation system for linked geospatial RDF stores available in
the literature up to now. We are currently working on efficient
federated query processing techniques and integrating them in
SemaGrow.

Summarizing the contributions of ExtremeEarth, we can point
out to its advances in deep learning for sea ice classification
and crop type mapping, the new improved versions of the linked
geospatial data systems that scale to big data, and the integration
of these components in a software architecture that is used to
implement the two use cases.
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