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Abstract:  The results of reliability analysis for heterogeneous data can differ substantially 

from those in a homogeneous case. Covariates can introduce observed and unobserved 

heterogeneity among data failures collected from a specific equipment in which they 

working at different locations under various operational and environmental conditions (e.g. 

operator skill, maintenance strategies, low temperature, etc). In most reliability studies 

observed heterogeneity due to observed covariates are discussed. However, unobserved 

heterogeneity for unobserved reasons, which may have a significant impact on reliability, 

are neglected. This can lead to erroneous model selection for the time to failure of the item, 

as well as wrong conclusions and decisions. There is a lack of systematic approach, to model 

the unobserved covariate in the area of reliability analysis. In this study, the required 

statistical tests and available models for observed and unobserved heterogeneity in the 

reliability analysis of failure data are reviewed, and then a methodology is developed to 

facilitate the application of these models. The methodology is based on the mixed 

proportional hazards model and its extension, which provides an appropriate tool for 

modeling observed and unobserved heterogeneity under the different types of maintenance 

strategies. In the second part of the study the application of the proposed methodology is 

shown by investigating of observed and unobserved heterogeneity in the failure data of chain 

part from three excavators that put into service at Golgohar Sirjan Iron Mine in Iran. 

Keywords: Reliability, Observed Covariate, Unobserved Covariate, Gamma Frailty Models, Mixed 

Proportional Hazard 
 

1- Introduction  

In many reliability studies, data sets are assumed to be homogeneous, where the failure data are 

independent and identically distributed (1–3).  However, in reality they are often working at 

different locations under various operational and environmental conditions (e.g. operator skill, 

maintenance strategies, low temperature, etc). (4). This may introduce heterogeneity into the 

data (5,6). In general, differences in failure intensity are called heterogeneities and can be due 

to either observed or unobserved influence risk factors, which are called covariates (7–9). 

Covariates describe the item’s characteristics or the environment in which the item operates 

(10) and they may have different levels. For example, as a covariate on the reliability of a pump, 

vibration may be of high, low or medium levels (11). Observed covariates may have different 

levels and effects and they are recorded with the failure data. For example, as a observed 

covariate on the reliability of a pump, vibration may be of high, low or medium levels (11). 

They can be time-dependent or time-independent. Time-dependent observed covariates vary 

continuously with time. Unobserved covariates are independent variables that may have a 
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significant impact on failure time of an equipment however they are not available in the failure 

database (12). 

Unobserved covariates may lead to unobserved heterogeneity (11,13,14). For example, in a 

production process, some pumps may have a soft foot problem, due to a defect in the installation 

process. The soft foot problem will put the bearing in an over-stressed situation; this should be 

considered as a covariate for reliability analysis. In the case that there is no information 

regarding soft foot in the failure database of the bearing, an unobserved covariate should be 

defined, to capture the effect of soft foot on the reliability of the bearing. 

In general, due to the quality of manufacturing, installation, operation and maintenance 

procedures, some items may become frailer, while others are more robust. In the presence of 

unobserved covariates, different items may have different levels of frailty. Unobserved 

covariates are typically unknown or not available for each item; hence, they cannot be explicitly 

included in the analysis. The result of our literature review revealed that, in many cases, 

unobserved covariates are eliminated during the failure data analysis (7,9,11,12,15). However, 

if unobserved covariates are neglected, the result of the reliability analysis only represents the 

reliability of items with an average level of frailty and not that of the individual items. High-

risk items (high frailty) tend to fail earlier than low-risk items (low frailty) for unobserved 

reasons, and, thus, the population composition changes over time. Hence, in time, the analysis 

represents the item with low frailty, and the estimated reliability increases more with time than 

the reliability of a randomly selected item of the population (16,17). 

The Cox regression model family, such as the proportional hazards model (PHM) and its 

extension, is the most dominant statistical approach for capturing the effect of covariates on the 

reliability performance of an item (4,11,15,18–22). In PHM, the hazard rate of an item is the 

product of a baseline hazard rate and a positive functional term that describes how the hazard 

rate changes as a function of covariates. However, the PHM is very sensitive to the omission of 

the covariates and is unable to isolate the effect of unobserved covariates (11). The frailty model 

introduced by Clayton (23) and Vaupel et al. (14) is used to describe the influence of unobserved 

covariates in a proportional hazards model. A frailty model is a random effects model for time 

variables, where the random effect (the frailty) has a multiplicative effect on the hazard (13,21). 

Gamma distribution, inverse Gaussian or exponential distribution can be used to model the 

frailty (4,12,13,24). 

Recently, some studies in the reliability field have used the frailty model to model the effect of 

missing covariates on the reliability of an item (4,7,22,25). However some of them are related 

to the application of a frailty model in reliability engineering with a focus on maintenance 

purpose.. Asha (26) incorporated the frailty model into the load share systems and describe the 

effect of observed and unobserved covariates on the reliability analysis. Xu and Li (27) obtained 

stochastic properties of univariate frailty models, which are a special case of multivariate frailty 

models, and Misra (28) used stochastic orders to compare frailty models arising from different 

choices of frailty distribution. Giorgio et al. (9) applied the model to a real set of failure time 

data of powertrain systems mounted on 33 buses, employed on urban and suburban routes in 

Italy Slimacek and Lindqvist (30) have implemented frailty model and Poisson process to show 

unobserved covariates effect on the reliability of wind turbines. Finkelstein (29) Studied the 

ability to survive a single shock and the intensity of these shocks in time on system reliability. 

He noted that heterogeneity is a natural feature in many populations and frailty model gives an 

appropriate tool and flexible way to description of lifetimes. 
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However, these studies do not discuss how the time-dependent covariates should be handled in 

the frailty model. Moreover, the required statistical tests for the investigation of observed and 

unobserved heterogeneity among the failure data are not discussed.. To overcome these 

challenges, the main contribution of this paper is to present a methodology for failure data 

analysis in the presence of unobserved and observed covariates. The framework is based on the 

mixed proportional hazards model, which was originally developed by Lancaster (31) in order 

to determine the causes of variation among unemployed persons in the length of time they are 

out of work.  

. This paper is organized as follows. In section 2 the basic concept is presented. Section 3 

describe the proposed methodology. Thereafter, the application of the methodology will be 

illustrated in the reliability analysis of a mining excavator in Section 4. Finally, Section 5 

provides the conclusions.  

2- Basic concept  

The COX regression models for reliability analysis considering the effect of covariates can be 

categorized into two main families: i) the mixed proportional hazard model family and ii) the 

proportional hazard model family. In these models, the hazard rate of an item is the product of 

a baseline hazard rate and a positive functional term that describes how the hazard rate changes 

as a function of unobserved and observed covariates. The baseline hazard rate is assumed to be 

identical and equal to the total hazard rate when the observed and unobserved covariates have 

no influence on the failure pattern (11). The family of mixed proportional hazard models is able 

to handle the effect of unobserved covariates. 

2-1- Mixed proportional hazard model (MPHM) family  

 In the mixed proportional hazards model, the baseline hazard acts multiplicatively on the i) 

observed covariate function 𝜓(𝑧; 𝜂) and ii) a time-independent frailty function 𝛼𝑗. Suppose we 

have a fleet of j items, the hazard function for an item at time t > 0 is: 

𝜆𝑗(𝑡; 𝑧; 𝛼) = 𝛼𝑗𝜆0(𝑡)𝜓(𝑧; 𝜂) 
(1) 

where 𝜆0(𝑡) is an arbitrary baseline hazard rate, dependent on time alone, z is a row vector 

consisting of the observed covariates associated with the item, 𝜂 is a column vector consisting 

of the regression parameters for identified observed covariates, and 𝛼𝑗 is a time-independent 

frailty function for item j and represents the cumulative effect of one or more unobserved 

covariates. The baseline hazard rate (𝜆0(𝑡)) may either be left unspecified or can be modeled 

used a specific parametric form such as Weibull distribution or Non-Homogeneous Poisson 

Process (NHPP). 

According to the mixed proportional hazards model, the fleet of items (the population) is 

represented as a mixture, in which the 𝜆0(𝑡) and 𝜓(𝑧; 𝜂) are common to all items, although each 

item has its own frailty. The observed and unobserved covariates can affect the hazard rate, so 

that the actual hazard rate (𝜆𝑗(𝑡; 𝑧; 𝛼)) is either greater (e.g. in the case of higher vibration level 

or poor maintenance) or smaller (e.g. better training for operators, installation of a new 

ventilation system) than the baseline hazard rate. Moreover, the equipment with 𝛼𝑗 > 1 are 

frailer and may have decreased time to failure. The items for whom 𝛼𝑗 < 1 are less frail and they 

tend to be more reliable.  
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Different functional forms of 𝜓(𝑧; 𝜂) and 𝛼𝑗 may be used to model the observed and unobserved 

covariate functions. For example, the exponential form 𝑒𝑥 𝑝(𝑧𝜂), the logistic form 𝑙𝑜𝑔(1 +

exp(𝑧𝜂)), the inverse linear form 1
(1 + 𝑧𝜂)⁄ , and the linear form (1 + 𝑧𝜂) are some of the 

functions used for observed covariate function (11,32,33). Moreover, gamma, inverse Gaussian 

and exponential distribution are used to model the frailty function (21,34,35). Generally, the 

exponential distribution for 𝜓(𝑧; 𝜂) and gamma distribution, with the mean equal to one and 

variance of θ, are the most generally used functions for observed and unobserved distribution, 

respectively. 

  

In Eq. (1), the assumption is that all covariates are time-independent. However, in reality, there 

are many cases where the covariates are time-dependent. It is of great practical importance to 

decide whether covariate effects are constant over time or their effects change (36). For 

example, a covariate that is used to represent crack growth may change over the operational 

time of the item. Such a covariate is time-dependent (11); hence, it should be modeled as a 

time-dependent covariate by using the crack propagation geometry. The hazard rate of an item 

in the presence of time-dependent covariates (𝑧(𝑡)) takes the following form (12):  

𝜆𝑗(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝑗 . 𝜆0(𝑡)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿) 
 (2) 

where 𝑧(𝑡) is a row vector consisting of the observed time-dependent covariates associated with 

the item (e.g. ambient temperature, pressure on the failure time, etc.) 𝜂 and 𝛿 are the 

corresponding regression coefficients (i.e., the effect size) of time-independent and time-

independent observed covariates. As Eq. (2) is an extension of Eq. (1) in this paper, Eq. (2) is 

named as extension mixed proportional hazards model (EMPHM).  

 Considering gamma distribution (with the mean to one and variance 𝜃) for unobserved 

covariates and exponential function for observed covariates, the reliability function can be 

written as (12):  

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = [1 − 𝜃ln (𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡))]−1/𝜃 
(3) 

where 𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡) is the item reliability function considering and considering the exist of p1 

time-independent observed covariates and p2 time-dependent observed covariates. It can be 

estimated by:  

𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡)) = [𝑒𝑥𝑝 (− ∫ 𝜆0(𝑥)𝑒𝑥𝑝 [∑ 𝛿𝑠𝑗𝑧𝑠𝑗(𝑡)

𝑝2

𝑗=1

] 𝑑𝑥

𝑡

0

)]

exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ]

 (4) 

If all the covariates are time-independent Eq.(4) reduce to: 

𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡)) = 𝑅0(𝑡)exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ] (5) 

where 𝑅0(𝑡) is baseline reliability function, 𝜂𝑖 represents regression parameters for i time-

independent covariate (𝑧𝑖). Thus, Eq. (3) can be written as: 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = [1 − 𝜃ln (𝑅0(𝑡)exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ]]

−1/𝜃

 (6) 

Which is named as the mixed proportional hazard model (MPHM). 
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2-1-1- Shared frailty model  

In some cases, a group of items share the same frailty value (37). For example, consider a 

company where identified excavators are utilized in two different shifts: night and day. Here, 

the shift can be considered a shared frailty. A shared frailty is a group-specific latent random 

effect that multiplies into the hazard function and will generate dependence between those items 

which share frailties (12). The distribution of the shared frailty is gamma, with mean 1 and 

variance to be estimated from the data. For data consisting of n groups, with the sth group 

comprised of ns items (s = 1,...,n), the shared-frailty model can be written as: 

𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝜆0𝑠(𝑡)exp [∑ 𝜂𝑠𝑖𝑧𝑠𝑖 + ∑ 𝛿𝑠𝑗𝑧𝑠𝑗(𝑡)

𝑝2

𝑗=1

𝑝1

𝑖=1

] 
(7) 

That is, for any member of the ith group, the standard hazard function is now multiplied by the 

shared frailty, αs. In the case that there is no time dependent covariates Eq.(7) will reduce to: 

𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝜆0𝑠(𝑡)exp [∑ 𝜂𝑠𝑖𝑧𝑠𝑖

𝑝1

𝑖=1

] 
(8) 

2-1-2- Stratification approach model 

In the case of existence time-dependent covariates (𝑧𝑗(𝑡)), the stratification approach can be 

used (15). In this approach it is possible to categorize a categorical or time depended covariate 

with several categories into different stratum with different baseline hazards for each category. 

For example, in the case where we are going to model the effect of ambient temperature on the 

reliability of a pump which is installed outside, then the collected failure data can be categorized 

into four groups, based on the seasons (spring, summer, fall and winter). Figure 1 shows a 

graphical representation of this example, where i is the number of failures occurring within each 

stratum. 

tj,0 tj,1 tj,2 tj,i tj+1,0 tj+1,1 tj+1,2
tj+1,i

Stratum j Stratum j+1

 

Figure 1: A graphical representation of the strata for a data set 

In the stratification approach, the baseline hazard function differs for defined strata, but the 

regression coefficients are the same for all covariates. Hence, the hazard rate for the system in 

strata r in the presence of unobserved covariates will be: 

𝜆𝑟(𝑡; 𝑧; 𝛼) = 𝛼𝑟 . 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(9) 

where 𝜆0𝑟 is the baseline hazard for stratum r, and, if there is no unobserved covariate, then 

Eq.(9) will be reduced to:  

𝜆𝑟(𝑡; 𝑧) = 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(10) 
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2-2- Proportional hazard model family  

The main assumption in the proportional hazard model family is that all influence covariates 

are identified and there is no omission of covariates (no unobserved covariates). In the case that 

of no unobserved covariates’ effect on the hazard rate of the item, then, in Eq. (3) gamma 

distribution will be equal to 1 and the successive equation is: 

 
𝛼

1

𝜃
−1

𝑒
−

𝛼

𝜃

Г (
1

𝜃
) 𝜃

1

𝜃

= 1 
(11) 

and the hazard rate can be written as: 

𝜆(𝑡; 𝑧; 𝑧(𝑡)) = 𝜆0(𝑡)exp [∑ 𝜂𝑖𝑧𝑖 + ∑ 𝛿𝑗𝑧𝑗(𝑡)

𝑝2

𝑗=1

𝑝1

𝑖=1

] 
(12) 

In the literature, this model is mainly referred to as an extension of proportional hazard model 

(EPHM) (15,38). Proportionality assumption implies that the effect of a covariate is 

independent of time and the ratio of any two hazard rates is constant with respect to time, i.e.: 

𝜆1(𝑡; 𝑧1; 𝛼)

𝜆2(𝑡; 𝑧2; 𝛼)
=

𝜆0(𝑡)exp (𝜂1𝑧1)

𝜆0(𝑡)exp (𝜂2𝑧2)
= exp(𝜂1𝑧1 − 𝜂2𝑧2) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(13) 

where 𝑧1and 𝑧2 are any two different sets of time-independent observed covariates assumed to 

be associated with the item. If there is no time-dependent covariate, then Eq.Error! Reference 

source not found. will reduce to the PHM as follows: 

𝜆(𝑡; 𝑧) = 𝜆0(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(14) 

2-3- Parameter estimation 

For EMPHM, given the relationship between the hazard rate and the reliability functions, it can 

be shown that the conditional (item) reliability function, 𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼), conditional on the 

frailty, 𝛼, is (12): 

𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼) = {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼 
 (15) 

The unconditional (population) reliability function can then be estimated by integrating out the 

unobserved 𝛼. If 𝛼 has probability density function g(α), then the population or unconditional 

reliability function is given by: 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = ∫ {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼𝑔(𝛼)𝑑𝛼
∞

0

 
(16) 

where we use the subscript θ to emphasize the dependence on the frailty variance θ. The 

relationship between the reliability function and the hazard function still holds unconditional 

on α, and, thus, we can obtain the population hazard function using (12): 
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𝜆𝜃(𝑡; 𝑧; 𝑧(𝑡)) = −
𝑑

𝑑𝑡
𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))[𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))]−1 

(17) 

Having the gamma distribution with unobserved covariates (12): 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = [1 − 𝜃𝑙𝑛{𝑅(𝑡; 𝑧; 𝑧(𝑡))}]
−1

𝜃⁄  (18) 

Having the event times (𝑡0𝑖, 𝑡𝑖 , 𝑑𝑖), for 𝑖 = 1, , 𝑛 with the ith observation corresponding to the time 

span (𝑡
0𝑖

,  𝑡𝑖] , with either failure occurring at time 𝑡𝑖 (𝑑𝑖 = 1) or the failure time being right-

censored at time 𝑡𝑖 (𝑑𝑖 = 0), the likelihood function for reliability data is given by:  

𝐿𝑛𝐿 = 𝑙𝑛 ∏
{𝑅𝜃𝑖(𝑡0𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)}1−𝑑𝑖{𝑓𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)}𝑑𝑖

𝑅𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡))

𝑛

𝑖=1

 
(19) 

where, fθi is the probability density function.  

In a shared frailty model for failure data of unrepairable units, that is, to the so called “classical 

distributions”, suppose we have data for i = 1,...,n groups, with j = 1,...,ni observations per 

group, consisting of the trivariate response (t0ij , tij , dij), which indicates the start time, end time, 

and failure/censoring for the jth item from the ith group, while the shared frailties follow a 

gamma distribution, Li can be expressed compactly as (12): 

𝐿𝑖 = [∏{𝜆𝑖𝑗(𝑡𝑖𝑗)}
𝑑𝑖𝑗

𝑛𝑖

𝑗=1

]
Γ(1

𝜃⁄ + 𝐷𝑖)

Γ(1
𝜃⁄ )

𝜃𝐷𝑖 {1 − 𝜃 ∑ 𝐿𝑛
𝑅𝑖𝑗(𝑡𝑖𝑗)

𝑅𝑖𝑗(𝑡0𝑖𝑗)

𝑛𝑖

𝑗=1

}

−1
𝜃⁄ +𝐷𝑖

 
(20) 

where 𝐷𝑖 = ∑ 𝑑𝑖𝑗
𝑛𝑖
𝑗=1 . Given the unconditional group likelihoods, we can estimate the regression 

parameters and frailty variance θ, by maximizing the overall log-likelihood 𝐿𝑛𝐿 = ∑ ln 𝐿𝑖
𝑛
𝑖=1 . In 

shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization 

is in terms of θ alone. For fixed θ, the second step consists of fitting a standard Cox model via 

penalized log-likelihood, with the νi introduced as estimable coefficients of dummy variables 

identifying the groups. The same approach can be used to estimate the likelihood functions for 

EPHM, MPHM and PHM. For more information, see (7,11,12). 

In a minimally repaired system (NHPP), the times between failures (TBF) are not independent 

and identically distributed random variables (except for the special case of constant failure 

intensity, that is, of homogeneous Poisson process), and the log-likelihood function relative to 

"m" minimally repaired systems, whose failure intensity is given by Eq.(2), results in (12): 

𝑙𝑛𝐿 = 𝑙𝑛 [∏ ∫ 𝑔(𝛼) (∏ 𝑓(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑛𝑗

𝑖=1

)
𝑅(𝑇𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑅 (𝑡𝑛𝑗,𝑗; 𝑧, 𝑧(𝑡), 𝛼)
𝑑𝛼 

𝑚

𝑗=1

] 
(21) 

where 𝑔(𝛼) denotes the pdf of the frailty parameter 𝛼, 𝑛𝑗 is the number of observed failures of 

the j-th system, 𝑡𝑖,𝑗(𝑖 = 1, … , 𝑛𝑗; 𝑗 = 1, … , 𝑚) is the i-th failure time of the j-th system observed up 

to 𝑇𝑗, 𝑡𝑜,𝑗 = 0. Where conditional pdf of the failure time 𝑡𝑖,𝑗, given the previous failure time 

𝑡𝑖−1,𝑗, is (12): 

𝑓𝑇(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼) = 𝛼𝜆0(𝑡𝑖,𝑗)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿)
𝑅(𝑡𝑖,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑅(𝑡𝑖−1,,𝑗; 𝑧, 𝑧(𝑡), 𝛼)
 

(22) 
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The reliability function, 𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼), conditional on the frailty, 𝛼, is (12): 

𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼) = [𝑒𝑥𝑝 (− ∫ 𝜆0(𝑡𝑖,𝑗)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿)𝑑𝑥

𝑡

0

)]

𝛼

 
 (23) 

The log-likelihood function relative to "m" repairable systems subject to perfect repairs 

(renewal process), whose hazard function is given by Eq.(2), results in:  

𝑙𝑛𝐿 = 𝑙𝑛 [∏ ∫ 𝑔(𝛼) (∏ 𝑓(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑛𝑗

𝑖=1

) 𝑅(𝑋𝑗; 𝑧, 𝑧(𝑋𝑗), 𝛼)𝑑𝛼

𝑚

𝑗=1

] 
(24) 

where, here, 𝑥𝑖,𝑗 = 𝑡𝑖,𝑗 − 𝑡𝑖−1,𝑗  (𝑖 = 1, … , 𝑛𝑗; 𝑗 = 1, … , 𝑚) is the i-th time between failures 

(TBF) of the j-the system, 𝑋𝑗 = 𝑇𝑗 − 𝑡𝑛𝑗,𝑗 , and the (unconditional) pdf of the TBF 𝑥𝑖,𝑗 is: 

𝑓𝑋(𝑥𝑖,𝑗; 𝑧, 𝑧(𝑡), 𝛼) = 𝛼𝜆0(𝑥𝑖𝑗)𝜓(𝑧, 𝑧(𝑥𝑖𝑗); 𝜂; 𝛿)𝑅(𝑥𝑖𝑗; 𝑧, 𝑧(𝑡), 𝛼) 
(25) 

Only in absence of unobservable heterogeneity, the log-likelihood function in Eq.(24) reduces 

to the log-likelihood in Eq.(19). Indeed, in presence of unobserved heterogeneity, the same 

value of the frailty variable 𝛼 characterizes the whole path of each repairable system, so that 

the whole conditional likelihood function 𝐿𝑗|𝛼 of each system "j", given 𝛼, must be multiplied 

by 𝑔(𝛼), and hence integrated on 𝛼. In addition, it must be mentioned that the log-likelihood 

function in Eq. (24) becomes much more complex when the j-th system is observed starting 

from a generic time which is not a failure time. 

3- Proposed framework 

The systematic framework for reliability analysis of reliability data in the presence of observed 

and unobserved covariates (or heterogeneity) is described in Figure 2. This methodology is 

based on four important steps: 

• Establishing the context and data collection 

• Identifying the baseline hazard rate, based on maintenance nature  

• Modeling the effect of the covariates  

• Parameter estimation  

As this figure shows, in the first step, the context should be established. In this step, all external 

and internal parameters to be taken into account when analyzing failure data and setting the 

scope and assumptions for the reliability analysis should be defined. External context is the 

external environment in which the item is going to work such as ambient temperature, pressure, 

humidity, etc. Internal context is the internal conditions related to the item itself and the 

company running and maintaining the item, including the repair and physics of failure, operator 

condition, maintenance crew, etc. Understanding the external and internal context is important 

in order to identify the observed covariates. For example, based on the physics of failure, road 

condition can contribute to the failure of a excavator in a mine; hence, it should be considered 

as a covariate in the reliability analysis of the excavator. In this step, the possible relationships 

between different covariates should be investigated, as well as the possible level for each of 

them.  
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In the next step, failure data and all possible observed covariates associated with each failure 

should be collected. 

Heterogeneity test for 

unobserved covariates 

Data and information collection

•  Failure data 

•  Associated observed covariates for each failure 

• The value/level of observed covaraites

Are there any time 

dependent covariates?

No Yes

Time-dependency test of 

observed covariates
Unobserved 

covariates? 

Unobserved 

covariates? 

Proportional Hazard Model 

(Eq. 14)

Mixed Proportional Hazard 

Model (Eq. 6) or Shared 

frailty (Eq.8)

Extension of the Mixture 

Proportional Hazard 

Model(Eq. 2), Shared 

frailty modle (Eq.7) or 

Stratification model (Eq.9)

Stratification approach 

(Eq.10) or Extension of 

proportional hazard model 

(EPHM) (Eq.12)

Yes No Yes No

Parameter estimation 

Establishing the context 

• Setting the scope 

• Setting assumptions 

• Establishing external parameters 

• Establishing internal parameters

• Etc. 

Identifying the baeline hazard rate based on the repair assumption 

• Renewbale process, Classical distribution (e.g. Weibull , lognormal, 

etc.)

• NHPP, HPP

• Etc.

Modeling the effect of the covariates 

Heterogeneity test for 

unobserved covariates 

 

Figure 2: A framework for reliability model selection in the presence of observed and unobserved 

covariates 

Thereafter, based on the nature of the failure data (e.g. trend behavior of the data) and the type 

of repair strategy, the appropriate baseline hazard should be selected for the data. For example, 
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the common assumption for a repairable system can be i) perfect repair or good-as-new 

condition, ii) minimal repair or bad-as-old condition, or iii) jumps in the hazard rate after repair 

or different baseline hazard rate. Under the perfect repair strategy, the item is restored to as 

‘good-as-new’ condition and the main assumption is that the hazard rate is reset to that of a new 

system after maintenance. If the times between failures are independent and identically 

distributed (iid), it can be concluded that the item went through perfect repair (21). In such 

cases, classical distribution, such as Weibull distribution, can be used to model the baseline 

hazard rate. 

In the case of minimal repair (bad-as-old), an item has the same intensity function after repair 

as before the failure. The failure times when minimal repair is carried out can be thought of as 

a non-homogeneous Poisson process (NHPP). In other words, the baseline hazard rate will be 

modeled using a non-homogeneous Poisson model. However, it should be mentioned that, on 

some occasions, such as overhaul, the system may return to as ‘good-as-new’ condition. Under 

this condition, it is assumed that the NHPP is cyclic, with each cycle starting as a renewal 

process and, within the cycle, failure times follow the NHPP. In this case, the failure data will 

then be categorized by these occasions (for example, overhaul) and then a stratification 

approach is used to estimate the effect of each covariate, while the baseline hazard rate is 

modeled by NHPP model. However, when a fleet of items is analyzed, after some time and 

undergoing several repairs, the baseline hazard rate will change. For example, in some cases, 

as the number of failures increases, the average failure time decreases; hence, the baseline 

hazard rate will not be identical for a particular failure number. Here, the failure data can be 

categorized based on the failure number; it can be used to define strata, and then the 

stratification approach can be used to model the fleet failure data. 

In general, the first step in analyzing the collected failure data of a repairable system is to check 

the trend of the failure data. In the case that the data shown trend the NHPP or trend renewal 

process (TRP) can be used to model the baseline hazard rate. However, when there is no trend 

in the data, classical distribution, such as Weibull distribution, can be used to model the baseline 

hazard rate. However, some goodness-of-fit test, such as residual test, should be used to find 

the best fit distribution for failure data. For more information regarding the trend test, see (7).  

In the next step, the time dependency of observed covariates should be checked. Later, the 

failure data need to be investigated for unobserved covariates. Data sets without unobserved 

heterogeneity will be analyzed using the classical proportional hazards model, including the 

proportional hazards model (when all observed covariates are time-independent) and the 

extension of the proportional hazards model (in the presence of time-dependent covariates). 

Moreover, data sets with unobserved heterogeneity will be analyzed using the mixed 

proportional hazards model family. 

3-1- Time dependency test of observed covariates 

There are two general approaches for checking the time dependency of covariates: i) the 

graphical procedure and ii) the goodness-of-fit testing procedure (15). The developed graphical 

procedure can generally be categorized into three main groups: i) cumulative hazards plots, ii) 

average hazards plots and iii) residual plots (11). For example, in cumulative hazards plots, the 

data will be categorized based on the different level of the covariate that is to be checked for 

time dependency. Consider that a covariate can be categorized into r levels, in which the 

covariate is equal to zr. Thereafter, the hazard rate can be written as: 
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𝜆𝑟(𝑡; 𝑧; 𝛼) = 𝛼𝑠. 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(26) 

where 𝜂𝑖𝑧𝑖 is the same as before, with 𝜂𝑟𝑧𝑟 omitted, with i=1,2,…p1 and j≠r. If the PH assumption 

is justified, then we will end up with: 

𝜆0𝑟(𝑡) = 𝐶𝑟𝜆0(𝑡), 𝑎𝑛𝑑 𝐶𝑟 = 𝛼𝑠exp (𝜂𝑟𝑧𝑟) 
(27) 

A similar relation can be concluded for the cumulative baseline hazard rate. Hence, if the 

assumption of PH is justified, then the plots of the logarithm of the estimated cumulative 

baseline hazard rates against time for defined categories should simply be shifted by an additive 

constant, 𝜂
𝑟
. In other words, they should be approximately parallel and separated, corresponding 

to the different values of the covariates. Departure from parallelism of the above plots for 

different categories may suggest that 𝑧𝑟  is a time-dependent covariate. For a review of other 

graphical approaches, see (11,15,39–41).  

In the same way as the cumulative baseline hazard rate, a log–log Kaplan-Meier curve over 

different (combinations of) categories of variables can be used to check the assumption of PH. 

A log–log reliability curve is simply a transformation of an estimated reliability curve that 

results from taking the natural log of an estimated reliability probability twice. If we use a PHM 

or MPHM and plot the estimated log–log reliability curves for defined categories on the same 

graph, the two plots would be approximately parallel (11). In the residuals plot in the first step, 

the residual should be estimated by using the estimated values of the cumulative hazard rate, 

𝐻0(𝑡𝑖), and the regression vector 𝜂 as: 

𝑒𝑖 = −𝐻0(𝑡𝑖)exp (𝜂𝑟𝑧𝑟) 
(28) 

If the PH assumption is justified, then the logarithm of the estimated reliability function of 𝑒𝑖 

against the residuals should lie approximately on a straight line with slope -1 (11,42). A 

transformed plot of the partial residual suggested by Schoenfeld can also be used as an 

exploratory tool to detect the time-varying effects of a covariate, even when the a priori form 

of time dependence is unknown (43–45). The Schoenfeld Residuals Test is analogous with 

testing whether the slope of the scaled residuals on time is zero or not. If the slope is not zero 

then the proportional hazard assumption has been violated (45). When the covariates are 

quantitative, using graphical approaches is challenging, as it is difficult both to define different 

levels for quantitative covariates and to decide whether the plots are parallel or not. In such 

cases, it is better to use a goodness-of-fit testing procedure such as the chi-squared goodness-

of-fit test (3,46,47), the log rank test (3,46), the likelihood ratio test (3,46), score tests (46,48), 

the doubly cumulative hazard function (49), the Wilcoxon test (50) and generalized moments 

specification tests (51). For example, if the PH assumption is justified, the different two-sample 

tests, e.g. generalized Wilcoxon and log rank tests, should have the same results (11).  

3-2- Heterogeneity test for unobserved covariates 

Several statistical tests are available in the literature for identifying and quantifying the effects 

of unobserved heterogeneity. For example, Kimber (52) developed a Weibull-based score test 

for heterogeneity and then demonstrated its application in two case studies on infant nutrition. 

Under the assumption that the data follow a stratified proportional hazards model, where the 

hazard rate can be different within different strata, Gray (53) used the martingale residuals to 

test for variation over groups in reliability data. Commenges and Andersen (54) used marginal 

partial likelihood to develop a score test of homogeneity for reliability data, when the frailty 
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model is used to model the covariates. The score test is valid for general distributions of the 

frailty variable, not only for the frequently used gamma distribution. In the meta-analysis, 

Cochran’s Q test (Q test) is normally used to check the homogeneity among data sets. However, 

the Q test only checks the presence versus the absence of heterogeneity; it does not report on 

the extent of such heterogeneity. However, these statistical tests and their applications are 

limited, mainly due to their requirements, in terms of data and assumptions. Each test is the 

optimum to detect the heterogeneity of a specific form (55,56). For example, a shortcoming of 

the Q statistic is that it has poor power to detect true heterogeneity, among studies when the 

meta-analysis includes a small number of studies, and excessive power to detect negligible 

variability with a high number of studies. Recently, the I2 index has been proposed to quantify 

the degree of heterogeneity in a meta-analysis (57). A likelihood ratio test, the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) are common tests for 

checking the hypothesis of the presence of heterogeneity against the null hypothesis of non-

heterogeneity (�̂� = 0). In general, the AIC performs well when heterogeneity is small, but, if 

heterogeneity is large, the BIC will often perform better (7,10,58). For example, in the case of 

Weibull distribution for the baseline hazard rate, likelihood ratio can be written as:  

𝑅𝐻 = 2 (ln 𝐿(�̂�, �̂�, �̂�, �̂�) − 𝑙𝑛𝐿(�̂�0, �̂�0, �̂�0, 0 )) 
(29) 

Here, �̂� and �̂� are estimated parameters for Weibull distribution, �̂� is the regression coefficient 

for observed covariates and �̂� can be interpreted as the degree of heterogeneity (7). These 

parameters can be estimated by maximizing the full likelihood function. On a 5% significance 

level, the null hypothesis (no heterogeneity) will be rejected if 𝑅 ≥ 2.706. Moreover, under the 

minimal repair strategy, a power law can be used to represent the intensity function. Under the 

assumption of the power law intensity function, in order to check whether a significant amount 

of heterogeneity among units exists, a three-step likelihood ratio test procedure can be 

performed (7). As the first step, the null hypothesis, say 𝐻0: 𝜆1 = 𝜆2, 𝜆𝑚  = 𝜆0 , 𝛽1 = 𝛽2, 

𝛽𝑚  = 𝛽0 , should be tested against the alternative hypothesis,  𝐻1: 𝜆1 ≠ 𝜆2, 𝜆𝑚  ≠ 𝜆0 , 𝛽1 ≠ 

𝛽2, 𝛽𝑚  ≠ 𝛽0. In the second and third steps, common λ, uncommon β and uncommon λ, 

common β should be carried out respectively (9).  

4- Mixed proportional hazards modeling of unrepairable systems: Case study 

The excavator as one must important machine in mine needs to have strong undercarriage and 

chain to provide excellent reliability and durability during working on rocky ground or blasted 

rock. Thus, the case study refers to chain failure data of three Caterpillar 390DL excavators 

(Figure 3) put into service in Golgohar Sirjan Iron Mine in Iran during two years.  

 

Figure 3: Undercarriage of excavator system and chain part of excavator 

Chain part 

Undercarriage of excavator 
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This mine is located in the south-west of Kerman Province, Iran and it contains six ore bodies 

spread over an area of 40 km2 that named by 1, 2, 3, 4, 5 and 6. 

The main design characteristics (weight, size, maximum capacity, etc.) of the Excavators are 

identical. The number of observed failures of the excavators, 𝑛𝑖, ranges from 24 to 51 for a 

total 𝑛𝑇= ∑ 𝑛𝑖 = 1034
𝑖 . We used the trend test and the serial correlative to check the assumption 

independent and identically distributed (iid) assumption in the collected data.  

In this paper the serial correlation tests were performed by T-test (TSTA) and Ljung-Box-Q 

(LBQ) statistics. TSTA and LBQ statistics compare the values of the test statistic with the 

critical values 1.960 and 3.841 at 5% level of significance at log 1 for accepting the null 

hypothesis of no autocorrelation in the systems is verified. Trend test was performed by three 

analytical tests including MIL-Hdbk-189 (MIL), Laplace’s and Anderson-Darling (A-D). 

The results of the trend and correlation tests for each excavators are presented in Table 1. As 

shown, the test statistics of TSTA and LBQ confirm the acceptance of no autocorrelation of the 

log1.  

Table 1- Trend and serial correlation tests of each system 

System 
Trend Tests Serial correlation tests 

Subject MIL Laplace’s A-D TSTA LBQ 

Excavator 1 

Test Statistic 13.74 4.64 13.29 

0.86 0.82 P-Value 0 0 0 

DF 50 

Excavator 2 

Test Statistic 18.52 4.02 9.52 

1.18 1.57 P-Value 0 0 0 

DF 50 

Excavator 3 

Test Statistic 57.04 3.24 6.93 

0.55 0.32 P-Value 0 0.001 0 

DF 100 

 

Also, the null hypothesis (H0: No Trend) was not rejected at a 5% significance level (p-

value>α). Thus, we can conclude that the data were independent and identically distributed. 

Hence, the classical distribution can be used to model the baseline hazard rate. The Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) can be used to find the 

best fit distribution for the baseline hazard rate (60). The candidate distribution with the smallest 

AIC and BIC value is the best fit distribution to model the baseline hazard rate. 

According to the framework in Figure 2, in addition to failure data (TBF), all associated 

observed covariates should be collected. To this aim, the observed covariates should be 

identified. Table 2 shows the selected observed covariates. As the table shows, 5 observed 

covariates are identified which may affect the reliability of the excavators. For example, here 

in this analysis, the rock type is considered as an observed covariate. This is due to the fact that 

the current operation and the maintenance strategy differ in the two types, which may have 

affected the excavators’ failure rate. Moreover, the training processes for operator differ in these 

types, which may lead to different levels of skill among operators and, consequently, different 

levels of stress on the excavators. This can lead to different failure rates for identified excavators 

in these companies. The numbers in the brackets in Table 2 are used to nominate (formulate) 
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the covariates. For example, excavators work in three different shifts: namely, morning, 

afternoon, and night shifts; here, 3, 2 and 1 are used to represent these shifts, respectively.  

Table 2: The identified observed covariates for the excavators 

Covariate Covariate level Covariate Covariate level 

Working shift (zs) 

Morning shift [3] 

Excavator Code (ze)  

Machine No.1 [1] 

Afternoon shift [2] Machine No.2 [2] 

Night shift [1] Machine No.3 [3] 

Machin movement (zm)  

Little [<=3 m] 
Rock type (zr)  

West [1] 

Medium [3-13 m] Ore [2] 

Large [13 m <] 
Precipitation (zp) Continuous covariate 

Temperature (zt) Continuous covariate 

 

Table 3 shows a sample of failure data and their associated observed covariates. According to 

the framework in Figure 2, after collecting the data on failures and observed covariates, the 

time dependency of the covariate should be checked. Here, the graphical approach (a ln–ln 

reliability curve) is used to check the time dependency of all the covariates. 

Table 3: A sample of failure data and their associated observed covariates 

N. failure TBF Status 
Covariates 

𝐳𝐬 𝐳𝐭 𝐳𝐩 𝐳𝐫 𝐳𝐦 𝐳𝐞 

1.00 5061.43 0.00 3.00 15.94 0.00 2.00 3.00 1.00 

2.00 914.80 1.00 3.00 8.78 0.00 2.00 3.00 1.00 

3.00 1770.59 1.00 3.00 11.36 0.20 2.00 3.00 1.00 

4.00 16.24 1.00 3.00 13.71 0.00 2.00 1.00 1.00 

5.00 6.78 1.00 3.00 13.71 0.00 2.00 1.00 1.00 

Figure 4 shows the –ln (-ln reliability) against the ln (analysis time) for an observed covariates: 

namely, Machin movement (zm). As this graph show, the curves are approximately parallel; 

hence, the assumption of proportionality is correct for the data sets, and it can be concluded that 

the covariates are time-independent. The –ln (-ln reliability) for other covariates confirms the 

same result.  

 

Figure 4: The log minus log graph for time between failures of the excavators, based on movement 

covariate 
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We used an analytical test to check the PH assumption in this study. The test of Harrell and Lee 

(1986) is a variation of a test originally proposed by Shenfield (1982) and is based on the 

residuals. The PH testing approach is attractive because it provides a test statistic and p-value 

(P(PH)) for checking the PH assumption for a given predictor of interest. Thus, a more objective 

decision provide by a statistical test than graphical approach. The P(PH) is used for evaluating 

the PH assumption for that variable. Table 4 is illustrated statistical of PH test for all covariates. 

The P(PH) values for α=0.05 are quite high for all variables satisfying the PH assumption. 

Table 4: Analytical test approach results for PH assumption 

Covariates  ρ χ2 Df. P(PH) 

𝐳𝐬 -0.05595 0.3 1 0.5842 

𝐳𝐭 -0.05343 0.25 1 0.6182 

𝐳𝐩 0.00836 0 1 0.95 

𝐳𝐫 -0.10143 1.14 1 0.286 

𝐳𝐦 0.01796 0.03 1 0.8742 

𝐳𝐞 -0.00187 0 1 0.9852 

 

In the next step of the framework, the presence of unobserved covariates (heterogeneity test) 

should be checked. For this, the best fit distribution for the baseline hazard rate needs to be 

identified. The AIC and BIC procedures are applied to select the best fit distribution for the 

baseline hazard rate, as well as to check the heterogeneity of data. Table 5 shows the values of 

the AIC and BIC for the different nominated distributions for the baseline hazard rate with the 

same covariates under two assumptions: i) with frailty and ii) without frailty. As the result in 

Table 5 shows, the Weibull MPHM is the most suitable model for the data, as it has the smallest 

AIC or BIC among all the models. Therefore, the model with unobserved heterogeneity can 

give a better estimation of reliability of the excavators. 

Table 5: Goodness of fit of different reliability models 

Model Observations d.f. AIC BIC Log likelihood 

With frailty 

Exponential MPHM 103 8 315.1397 336.2175 -149.570 

Weibull MPHM 103 9 306.9757 330.6882 -144.488 

Gompertz MPHM 103 9 311.9349 335.6475 -146.968 

Without frailty 

Exponential PHM 103 7 313.3724 331.8155 -149.686 

Weibull PHM 103 8 314.8206 335.8984 -149.410 

Gompertz PHM 103 8 309.9349 331.0128 -146.968 

 

Moreover, we used the ratio test to also check the unobserved heterogeneity in unrepairable 

part. Under the assumption of Weibull MPHM, while i) the gamma distribution represents the 

frailty model (with mean equal to one and variance equal to 𝜃) and ii) there is no time-dependent 

covariates, the hazard rate can be written as: 

𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) =
𝛼

1
𝜃

−1𝑒−
𝛼
𝜃

Г(
1
𝜃

)𝜃
1
𝜃

. (𝑚𝑡𝑚−1)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(30) 

For this, likelihood ratio tests are performed as below: 
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𝑅𝐻 = 2 ((ln 𝐿(�̂�, �̂�, �̂�, �̂�) − 𝑙𝑛𝐿(�̂�0, �̂�0, �̂�0, 0 ))) = 9.84  
(31) 

The p-value for RH=9.84 will be equal to 0.001, which hints at the existence of an unobserved 

covariates’ (unobserved heterogeneity) effect on the reliability of the excavators. Hence, the 

Weibull MPHM should be used to analyze the data. There is software available, which can 

estimate the parameters in MPHM, such as Stata, R and SAS. Table 6 and Table 7 show the 

results of the analysis in STATA.  

Table 6: The result of covariates effect analysis under the assumption of MPHM 

Covariate Coef. Std. Error Z P>|Z| [95% Conf. Interval] 

zs 0.094 0.287 0.330 0.744 -0.469 0.656 

zt 0.018 0.028 0.630 0.528 -0.037 0.072 

zp -2.615 9.615 -0.270 0.786 -21.460 16.230 

zr 0.547 0.456 1.200 0.230 -0.347 1.441 

zm -3.274 0.744 -4.400 0.000 -4.732 -1.816 

ze 0.927 0.339 2.730 0.006 0.262 1.592 

 

Table 7: The constant value, baseline and unobserved parameters estimation of MPHM 

Parameters Coef. Std. Error [95% Conf. Interval] 

Constant value -5.709 1.896 -9.425 -1.994 

Baseline Weibull Ancillary parameter (m) 1.940 0.403 1.291 2.913 

Variance of Gamma Distribution (θ) 1.576 0.714 0.649 3.829 

 

The result of the analysis in Table 7 shows that, constant value is -5.709 and Machine movement 
(𝑧𝑚) and Excavator code (𝑧𝑒) have a significant effect on the excavators’ reliability. Based on 

Eq.18 the unconditional reliability of Weibull MPHM can be written as:  

𝑅𝜃(𝑡; 𝑧) = [1 − 𝜃𝑙𝑛 (e(−(𝑡𝑚)(exp[Constant value+∑ 𝜂𝑖𝑧𝑖
𝑝1
𝑖=1 ] )) )]

−1
𝜃⁄

 (32) 

Having the regression coefficient for covariates, the unconditional reliability of the excavators 

will be equal to: 

𝑅𝜃(𝑡; 𝑧) = [1 − 1.576𝑙𝑛 (e
(−(𝑡1.94)(exp(−5.709−3.274zm+0.937ze) ))

 )]

−1
1.576⁄

 (33) 

Figure 5 shows the unconditional and conditional hazard functions of the excavators. Figure 5-

a, is population hazard function where the curve is unconditional on the frailty and is "averaged" 

over the frailty distribution and Figure 5-b, is individual hazard function that are conditional on 

a frailty value of one (𝛼𝑗 = 1 in Eq. 1). As the figure 5 shows, there is a big difference between 

the hazard rate of the excavators’ population and that of an individual excavator.  
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  (a) (b) 
Figure 5: a) The unconditional (population) hazard function of the excavators on the mean of 

covariate, b) the excavator conditional (individual) hazard function on the mean of covariate 

 

In the next step, in order to compare how much bias will be associated with analysis if the effect 

of unobserved covariates is ignored, analysis is performed on the assumption that there are no 

effects of unobserved covariates. The result of analysis, using Gompertz-PHM as the selected 

model, is shown in Table 8 and Table 9. 

Table 8: The result of covariates effect analysis under the assumption of Gompertz-PHM 

Covariates Coef. Std. Error z P>|z| [95% Conf. Interval] 

𝐳𝐬 -0.125 0.136 -0.920 0.359 -0.392 0.142 

𝐳𝐭 0.009 0.014 0.620 0.536 -0.019 0.037 

𝐳𝐩 0.884 4.008 0.220 0.825 -6.971 8.739 

𝐳𝐫 0.269 0.252 1.070 0.285 -0.224 0.762 

𝐳𝐦 -1.606 0.172 -9.320 0.000 -1.943 -1.268 

𝐳𝐞 0.365 0.149 2.450 0.014 0.073 0.657 

 

Table 9: The constant value, baseline and unobserved parameters estimation of Gompertz-PHM 

Parameters Coef. Std. Error [95% Conf. Interval] 

Constant value -2.844 0.728 -4.271 -1.416 

Baseline Gompertz Ancillary parameter (γ) -0.001 0.000 -0.001 0.000 

 

The results of the analysis under the assumption of Gompertz-PHM showed that Machine 

movement (𝑧𝑚) and Excavator code (𝑧𝑒) have a significant effect on the excavators’ reliability. 

Having the regression coefficient for covariates, the reliability of the excavators will be equal 

to: 

𝑅(𝑡; 𝑧) = e
((

𝑒−0.001𝑡−1
0.001

)(exp (−2.884−1.606zm+0.365ze)))

 (34) 

As you can see in Table 10, the regression coefficients of the observed covariates that have a 

significant effect on the hazard rate are different estimations in PHM than in MPHM. 
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Table 10: The difference between the effect of each covariate in PHM and MPHM 

Covariates 
Exp (coef.) 

Differences 
MPHM PHM 

zm 0.038 0.201 81% overestimate 

ze 2.527 1.440 -43% underestimate 

 

Figure 6 compares the excavators’ hazard and cumulative hazard rates in both models. As this 

figure shows, after approximately 300 hours we gain different hazard rates which hints that the 

unobserved covariates have a significant effect on the hazard rates of excavators; ignoring this 

factor may mislead a further decision on the operation and maintenance strategy.  

 

  
(a) (b) 

Figure 6: Comparison of the a) hazard function and b) cumulative hazard function under the Weibull- 

MPHM and Gompertz-PHM 

 

 

 

 

 

 

 

5- Conclusion 

The results of reliability analysis for heterogeneous data can differ substantially from those in 

a homogeneous case. In most cases, failing to account for heterogeneity would lead to 
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significant differences in the estimation of the effects of covariates. Our recommendation is that 

all data sets should be checked for unobserved heterogeneity, using an appropriate statistical 

test. In the analysis of the data sets with observed and unobserved heterogeneity, in the first 

step, the time dependency test of the observed covariates needs to be performed. Thereafter, the 

presence of unobserved covariates should be checked, using an appropriate statistical test. 

Finally, considering the type of repair strategy carried out on the item, the most appropriate 

model among the mixed proportional hazards model family should be selected. The large 

variability in failure data and the differences in failure intensity of the excavators indicate 

heterogeneity among the collected data, which can be explained by observed and unobserved 

covariates. The analytical approach is used to check the trend and correlation of failure data. 

The result showed no trend and correlation among the data which can justify the iid assumption. 

Hence, the renewal process can represent the baseline hazard of excavators. The result of time-

dependency and heterogonous tests (ratio test) indicated that all identified observed covariates 

are time-independent and that there is an unobserved heterogeneity among the failure data. This 

means that some other factors, which were not included in this study, might have an effect on 

the reliability of the excavators. Therefore, we need to further explore and model the effect of 

the unobserved factors, to enhance the accuracy of the estimation. Having these results and the 

developed framework (Figure 2), the mixed proportional hazards model (MPHM) are used to 

analyze the data. The result of analysis showed that the two of the identified observed covariates 

have a significant effect on the hazard rate of the excavators. Ignoring the effect of unobserved 

covariates, and using PHM instead of MPHM, will 43 percent underestimate the effect of 

Excavator type and 81 percent overestimate the effect of Machin movement. Moreover, under 

the assumption of PHM baseline is different when MPHM is used to model the failure data. 

Thus failure rate of these model completely different. Hence, for any decisions on the operation 

and maintenance strategy, the effect of unobserved covariates should be considered. 
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