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Abstract 

 

The cryosphere encompasses the seasonally and perennially frozen parts of the earth and its extent is 

both sensitive to and impacts upon the global climate through surface energy and moisture fluxes and 

feedbacks. The dynamics of ice and frozen ground also impact directly on, e.g., construction and 

maintenance of roads in cold regions or transportation across floating ice sheets. Environmental 

seismology is an emerging paradigm focussing on the excitation and propagation of seismic waves with 

a non-tectonic, natural origin. Cryoseismology is an important subdiscipline within this paradigm, due 

to the dynamic stresses associated with freezing and temperature changes in ice, in addition to 

contrasting elastic properties according to, e.g., ground ice content or ice sheet thickness. While 

cryoseismology is an emerging field, close analogues may be found with well-studied engineering 

materials like concrete slabs and pavements and the transfer of knowledge from these studies formed 

an important part of this thesis. The overarching aim of this thesis was to investigate the extent to 

which seismic methods can be used to study dynamic processes and longer-term changes in the 

cryosphere. 

The thesis is structured around three case studies linking active- and passive-source seismic 

experiments with numerical models of thermal stress, seismic wave dispersion and propagation. Signal 

processing techniques such as beamforming and matched field processing were also elemental in 

connecting data with theory and tackling the important problem of estimating the source location for 

passive seismic experiments. In Paper 1, a temporary array of geophones with fine spatial sampling 

demonstrated that high ground-ice content in the near-surface during winter/spring produces a 

complex multimodal dispersion pattern analogous to asphalt pavements. A repeat deployment in the 

autumn demonstrated the potential to monitor seasonal ice content related stiffness changes in the 

subsurface using seismic surface waves excited by frost quakes. In Paper 2, the role of thermal stress 

in triggering frost quakes was further explored using borehole temperature measurements and multi-

decadal continuous seismic recordings from the small-aperture Spitsbergen seismic array (SPITS). 

Thermal contraction cracking within the frozen active layer was shown to be a plausible mechanism 

contributing to frost quake seismicity. In Paper 3, a multi-annual catalogue of explosive source seismic 

experiments conducted on first-year sea-ice in Van Mijenfjorden, Svalbard, was used to demonstrate 

the usefulness of air-coupled flexural waves for estimating the thickness of a floating ice sheet. Within 

the context of the environmental seismology paradigm, we were also able to hypothesize and 
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demonstrate the potential to record air-coupled flexural waves produced by thermal-stress related 

ice-quakes with a simple microphone, raising the potential for low-tech, inexpensive, non-contact ice 

thickness monitoring. Viewed as a whole, the case studies developed in this thesis illustrate the ability 

of seismic methods to record and monitor dynamic processes in the cryosphere over a range of 

temporal scales. Continuous passive seismic recordings with high-temporal resolution provide a useful 

complement to other geophysical and remote sensing techniques used for monitoring the dynamics 

of the cryosphere. 
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Introduction 

 

1.1 Thesis motivation and objectives 

 

Fundamentally, the objective of this thesis is to explore the connection between experimental data 

and theoretical modelling in order to advance the emerging field of cryoseismology. We set out to find 

the simplest possible dynamical or physical models that could explain observations derived from real 

cryoseismological data. The primary motivation was to improve our understanding of the complex 

physical dynamics of selected aspects of the cryosphere. These dynamics have both direct societal 

implications and application to change detection and monitoring within the broader context of climate 

warming and a rapidly changing cryosphere. The development of novel signal processing and data 

analysis techniques in order to best utilise available field data to derive information about cryospheric 

processes was also an important objective. 

 

1.2 The cryosphere and its dynamics 

 

Water is the only common substance that exists in gaseous (water vapor), liquid (water) and solid (ice) 

forms over the relatively small range of temperatures and pressures that exist on the surface of the 

Earth (Graham et al., 2010). The term “cryosphere” groups all portions of the Earth’s surface where 

water is in its frozen state, i.e., where it exists as ice or snow (Barry and Gan, 2011). Consequently, the 

cryosphere encompasses a wide variety of landforms and environments from icebergs to floating sea 

ice and ice shelves to ice sheets, glaciers and snow covers to permafrost and ground ice (see Figure i). 

The components of the cryosphere may be seasonally or perennially frozen so that its extent varies in 

phase with the seasons of the northern and southern hemispheres (Barry and Gan, 2011; Kotlyakov, 

1999). The balance of water held in the atmosphere, hydrosphere and cryosphere plays a crucial role 

in regulating global climate due to, e.g., the high heat capacity of water, latent heat exchange during 

phase transitions and the rejection of salt that occurs when sea water freezes. These processes are 

important drivers of the global thermohaline circulation that redistributes solar energy from the 

equatorial belt towards the poles and is a primary contributor to the climate that we experience in all 

parts of the world (Rahmstorf, 2003). The high albedo of ice that reflects incoming shortwave 



 

2 

radiation, compared to the low albedo of water, is also an important factor in the surface energy 

balance, affecting how much solar energy the Earth absorbs (Curry et al., 1995). 

 

Figure i – Cartoon illustrating the main components of the cryosphere (modified from Vaughan and Comiso (2014)). 
The red colour indicates the areas that are currently melting/thawing due to the anthropogenically driven long-term 
warming trend. 

The co-existence of water vapor, water and ice over the relatively narrow range of temperatures and 

pressures encountered at the surface of the Earth dictates that the extent of the cryosphere is highly 

sensitive to temperature. Under the presently warming climate, the extent of the cryosphere is 

decreasing and the melting of ice on land is a major contributor to global sea level rise (Nicholls and 

Cazenave, 2010; Rahmstorf, 2010), while thawing permafrost contributes to rapid erosion on up to 

34% of the world’s coastlines (Lantuit et al., 2013). Significantly, changes in the extent of the 

cryosphere also feedback on climate through, e.g., the albedo feedback mechanism where highly 

reflective snow/ice surfaces are replaced by less reflective water/land (McGehee and Lehman, 2012; 

Thackeray and Hall, 2019), or the release of methane (a greenhouse gas) to the atmosphere caused by 

thawing permafrost (Kohnert et al., 2017; Masyagina and Menyailo, 2020; Schuur et al., 2015). These 

feedbacks can increase the rate of climate change and further enhance the climatic forcing acting on 

the cryosphere.  

While this thesis is mainly method driven, i.e., focused on the development of concepts that are not 

specific to a single geographical area, data examples from Svalbard have nonetheless prevailed. In 

addition to reasons of geographical proximity and administrative ties to mainland Norway, Svalbard is 

particularly well suited as a natural laboratory to study dynamic processes of the cryosphere. This is 

because the rate of temperature increases across the artic is significantly higher than the global 

average (Isaksen et al., 2016; Nordli et al., 2014). As Figure ii illustrates, if we focus on winter 

temperatures over the past decades, Svalbard has experienced the largest increase in temperature of 

anywhere on the planet. One may therefore expect changes to the cryosphere over interannual to 
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interdecadal timescales to be significantly magnified on Svalbard, compared to areas where climate 

warming has progressed at a slower rate (e.g. Isaksen et al., 2007).   

 

Figure ii – (a) Winter (Dec-Feb) temperature anomalies according to the ERA5 global reanalysis (Hersbach et al., 
2020) for the period 2010-2020 compared to the 1960-1990 baseline. (b) smoothed timeseries showing trends in 
temperature anomalies at select locations relative to the same 1961-1990 baseline period modified from Holm and 
Isaksen (2019). 

So far it has been outlined how the cryosphere is crucially important to the global climate and how it 

is both affected by and feeds back on the ongoing anthropogenic climate change, that is one of the 

most important factors impacting on human development in the 21st century (Calel et al., 2020; Lamb 

and Rao, 2015; Tanner and Horn-Phathanothai, 2014). However, it is important to highlight that it is 

not only the remote effects of a changing cryosphere that are important. The cryosphere encompasses 

vast land and sea areas (Barry and Gan, 2011) and the dynamics of ice and snow in these areas impacts 

directly on the life of all organisms inhabiting these areas. In this thesis, the focus is mainly on physical 

processes, giving some examples of the relevance of these processes to human activity. However, 

while not the main focus of this thesis, it is important to remember that the cryosphere also forms an 

integral part of critical ecosystems and impacts directly on others (Elser et al., 2020; Fountain et al., 

2012; Hodson et al., 2015; Vincent et al., 2011).  

Thawing permafrost poses a significant risk to Arctic infrastructure, which may be damaged, or be 

subject to costly maintenance or stringent construction requirements due to the loss of bearing 
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capacity and/or differential subsidence due to ground ice melt (Suter et al., 2019). Erosion of thawing 

permafrost coastlines may also necessitate the costly and socially complex relocation of entire 

communities (Farbotko et al., 2020; Gudmestad, 2020; Maldonado et al., 2014). While only ~0.15% of 

the global population live north of the Arctic circle, the circumpolar Arctic is rich in resources and 

contributes ~0.6% to global gross domestic product (Larsen and Fondahl, 2015; Larsen and Huskey, 

2015; Laruelle, 2015). Infrastructure such as buildings, roads, railroads, ports and pipelines are 

vulnerable to damage due to degrading permafrost (Shiklomanov et al., 2017; Suter et al., 2019), 

potentially requiring costly mitigation strategies, increased maintenance, etc. (Larsen et al., 2008; 

Streletskiy et al., 2019). Thawing mountain permafrost has also been identified as a trigger of natural 

hazards such as rock avalanches (e.g. Frauenfelder et al., 2018). Limiting climate warming by reducing 

greenhouse gas emissions has been proposed as a plausible proactive adaption strategy that could 

significantly reduce damages to Arctic infrastructure (Melvin et al., 2017).  

 In addition to interannual long-term processes such as permafrost degradation, the short-term 

seasonal dynamics of the cryosphere can also be significant. Frost heave, the upward displacement of 

the ground surface due to the formation of ice lenses, and frost quakes, i.e., ground cracking due to 

ice formation or thermal contraction, contribute significantly to seasonal road damage (DiMillio, 1999; 

Fortier and Allard, 2005; Lai et al., 2012; Peppin and Style, 2013; Vel'sovskij et al., 2015). In this case, 

appropriate engineering and construction methods have proven to be effective in mitigating frost-

related road damage (Lai et al., 2012; Lawrence et al., 2000; Vel'sovskij et al., 2015; Øvstedal, 2012), 

though initial road cost is increased and correspondingly not all roads are constructed in this way 

(Loranger et al., 2017).  

The seasonal dynamics of the cryosphere are also important from a natural hazard and risk 

perspective. The probability of destructive snow avalanches or rockfalls are highly related to the 

physical dynamics of a layered snowpack (Schweizer et al., 2020), cornices (Vogel et al., 2012), or 

freeze-thaw dynamics in rock walls (Fischer et al., 2012; Hales and Roering, 2009). Further natural 

hazards like glacial lake outburst floods (Jökulhlaup) or lahars related to ice covered volcanoes are also 

important in some areas (Carey et al., 2021; Ding et al., 2021). The strength and thickness of floating 

sea or lake ice is also of critical importance for transport and recreational ice users such as: ice skaters 

(Rankin, 2018), vehicles from snow scooters to semi-trailers (Takizawa, 1988; Van der Sanden and 

Short, 2017), aircraft (Matiushina et al., 2016) and ice breakers including ships (Montewka et al., 2015), 

submarines (Kozin and Pogorelova, 2008) and hovercraft (Hinchey and Colbourne, 1995). 
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1.3 An introduction to cryoseismology 

 

1.3.1 The emerging field of environmental seismology 

 

Seismology is the study of elastic wave propagation through the solid earth, where earthquakes are 

the most commonly utilized seismic source (Stein and Wysession, 2009).  By contrast, environmental 

seismology shifts the focus away from tectonic earthquakes and is defined as the study of seismic 

vibrations that either have a natural, non-tectonic origin or whose propagation is perturbed by 

modifications of environmental external parameters (Larose et al., 2015). Natural phenomena capable 

of exciting seismic waves that have been utilized in seismological studies include wind and storms 

(pressure disturbances or precipitation events) in the atmosphere or ocean, water flow and sediment 

transport in rivers, movement of glaciers and ice sheets, ice fracturing, landslides, debris flows, rock 

avalanches and rockfall (Ardhuin et al., 2011; Burtin et al., 2013; Dammeier et al., 2011; Favreau et al., 

2010; Hibert et al., 2014; Larose et al., 2015).  

Environmental seismology is providing new insights into dynamic processes at or near the earth 

surface, due to high temporal sampling compared to other techniques and the richness of information 

conveyed by seismic waveforms. For example, Dietze et al. (2017) used passive seismic recordings of 

alpine rockfalls in the Swiss Alps to resolve distinct dynamic phases of these events with millisecond 

precision. These phases included detachment, free fall, intermittent impact, fragmentation, arrival at 

the talus slope and subsequent slope activity. Efficiently locating and estimating the size of large 

populations of rockfalls has also been achieved using passive seismic recordings (Hibert et al., 2014). 

Similarly, other authors have used seismic recordings to constrain the force history and frictional 

processes of landslides (Moretti et al., 2015; Moretti et al., 2020). Generally speaking, environmental 

seismology represents a paradigm shift for seismic site surveys, away from active source experiments 

and in favour of passive methods. The focus on passive surveying brings wide reaching implications. It 

simultaneously simplifies the logistics of monitoring environmental changes over longer timescales 

(e.g. Gajek et al., 2017; Hibert et al., 2017; Köhler et al., 2016; Sergeant et al., 2019), allows the 

dynamics of natural seismic sources to be studied (e.g. Dietze et al., 2017; Moretti et al., 2020) and 

lessens the environmental impact of seismic surveying (e.g. Duncan, 2005; Stemland et al., 2019) by 

eliminating the need for artificial seismic sources.  
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1.3.2 What is cryoseismology? 

 

Cryoseismology can be considered a sub-discipline within environmental seismology, focussed on the 

various components and dynamics of the cryosphere and how these excite or influence the 

propagation of seismic waves (e.g. Podolskiy and Walter, 2016). In this thesis, following the definition 

of Lacroix (1980), a cryoseism is considered as the general class of non-tectonic seismic events caused 

by freezing action in ice, ice-soil and ice-rock materials. Frost quake is correspondingly used to 

designate the sub-group of events relating to the formation of ice or its thermal expansion/contraction 

in ice-soil and ice-rock materials (e.g. Barosh, 2000; Okkonen et al., 2020). While somewhat arbitrary, 

this terminology is intuitive because frost quakes are typically associated with perma-“frost” or 

periglacial environments.  

The designation “ice quake” then groups the events relating to ice in its more or less pure form, i.e., 

glaciers (e.g. Bonnet et al., 2020; Hudson et al., 2020; Köhler et al., 2015; Podolskiy et al., 2019), ice 

sheets (e.g. Barcheck et al., 2019; Lombardi et al., 2019), sea ice (e.g. Moreau et al., 2020a) and lake 

ice (e.g. Ruzhich et al., 2009). Ice quakes can be a result of thermal expansion or contraction stresses 

driven by temperature gradients in ice (e.g. Podolskiy et al., 2019), or a result of stresses that develop 

due to the movement of glaciers (e.g. Podolskiy et al., 2021). For completeness, the term “frost creep” 

is used to describe the slow inelastic deformation of ice or frozen ground (Andersen et al., 2015; 

Benedict, 1976). While there is some variation in the use of these terms in the literature, this 

terminology seems to be the most intuitive and consistent with common usage. 

Cryoseismology is an interesting case because both the dynamics of the seismic source and the 

propagation of the seismic waves through near-surface media are in focus. For example, Okkonen et 

al. (2020) focused on thermal stress  as trigger for frost quakes from the perspective that frost quakes 

may damage buildings and other infrastructure. Similarly, Köhler et al. (2015) used a long-term seismic 

record to study the temporal distribution of glacier ice quakes in order to infer glacial dynamics such 

as calving and surging. Podolskiy et al. (2021) used an ocean bottom seismometer deployed proximally 

in front of a tidewater glacier to study both basal sliding and calving dynamics. On the other hand, 

within the environmental seismology paradigm, these quakes can also be considered a useful source 

of environmental noise that can be leveraged in seismic studies of subsurface structure and elastic 

properties. For example, Moreau et al. (2020a) used guided waves from natural ice quakes to study 

sea ice thickness and elastic properties. Albaric et al. (2021) used Rayleigh waves from ice quakes to 

investigate permafrost shear wave velocity structure and found that changes in ice content could 

explain the observed trends over both seasonal and interannual timescales. 
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Seismic methods in general are highly complementary to other geophysical methods and this is also 

true of cryoseismology. This is partly because different geophysical methods are sensitive to different 

physical properties, such that combining information from contrasting methods can give a more 

complete picture. The propagation velocity of seismic surface waves is highly sensitive to, for example, 

variation in ice content of permafrost, which means that seismic methods have good potential to 

detect or monitor these variations (e.g. Dou and Ajo-Franklin, 2014; Stemland et al., 2020). However, 

combining both seismic and electromagnetic methods can give additional constraint on, for example, 

complex topics like the unfrozen water content in saline permafrost that exhibits hysteresis under 

freezing/thawing states (Wu et al., 2017). The high temporal resolution and potentially long record 

length of passive seismic data can also complement the high spatial resolution of methods such as 

airborne electromagnetics (Minsley et al., 2012), lidar scanning (Hubbard et al., 2013; Köhler et al., 

2019), induced polarisation tomography (Banville et al., 2016), ground penetrating radar (Santin et al., 

2019), synthetic aperture radar (Parsekian et al., 2021) and interferometric synthetic aperture radar 

(Rouyet et al., 2019; Rouyet et al., 2021).  
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1.4 Frozen materials as thermo-viscoelastic solids 

 

Frozen materials containing a sufficient volume fraction of ice typically behave elastically on short 

timescales and viscously on long timescales under applied stress (e.g. Mangold et al., 2002; Schulson 

and Duval, 2009; Sinha, 1978; Weeks and Assur, 1967). The work done to deform a perfectly elastic 

material is entirely stored as recoverable elastic energy, while for a purely viscous material (a 

Newtonian fluid) the mechanical work required to deform the material is fully dissipated. Ice and 

frozen soil, like most materials, behave somewhere in between these end-members and can be 

considered viscoelastic materials. The flow of matter in these materials and their subsequent 

deformation falls under the field of rheology. Rheology translates literally from Greek as “the study of 

flow” and highlights the connection between gases, liquids and “soft” solids that may all be considered 

to flow under increasingly long periods of observation.  

Time-dependent behaviour is a defining characteristic of viscoelastic materials (Bonfanti et al., 2020; 

Coleman and Noll, 1961). On the timescale of seismic wave propagation, the behaviour is dominantly 

elastic and cryoseisms are the result of elastic stresses that exceed the material strength (Maloof et 

al., 2002; Mellon, 1997; Podolskiy et al., 2019). As a result, cryoseismology is well suited to studying 

the elastic properties of frozen materials like sea ice and permafrost. Other geophysical techniques 

like InSAR may only resolve the sum of both elastic and inelastic creep deformations (e.g. Rouyet et 

al., 2019), since the satellite repeat cycle limits temporal resolution such that it is not possible to 

distinguish between the two.  

The elastic, or Young’s modulus, 𝐸, relates the amount of elastic deformation, or strain, 𝜀, that a given 

material will experience under the application of a stress, 𝜎, so that 𝜎 = 𝜀𝐸. Young’s modulus may be 

measured dynamically by wave propagation experiments (Christ and Park, 2009; Kaplar, 1969; 

Langleben, 1962; Wang et al., 2006), or static loading experiments (Furnish, 1998; Timco and Weeks, 

2010; Wang et al., 2019; Weeks and Assur, 1967). The results of these measurements are often termed 

the dynamic Young’s modulus and the static or effective Young’s modulus, respectively. The need to 

distinguish between the two stems from the fact that static loading experiments are typically 

conducted over varying timescales, with varying strain rates, where viscous creep plays a varying role 

in the observed deformation (e.g. Timco and Weeks, 2010). Consequently, measurement of the 

dynamic Young’s modulus using seismic or ultrasonic wave methods is typically considered more 

reproducible, since the deformation is dominantly elastic at the timescale of seismic wave propagation 

(DiMarco et al., 1993; Timco and Weeks, 2010; Weeks and Assur, 1967). 
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Viscoelastic materials are typically modelled mathematically based on the identification of constitutive 

relationships that concisely describe the relationship between stress, strain and time (Bonfanti et al., 

2020; Coleman and Noll, 1961). One of the simplest forms is the Maxwell model (Figure iii-a), 

composed of an elastic Hookean spring with spring constant, 𝑘, such that 𝜎(𝑡) = 𝑘𝜀(𝑡), and a viscous 

Newtonian dashpot with viscosity, 𝜂, such that 𝜎(𝑡) = 𝜂
𝑑𝜀

𝑑𝑡
 . In the Maxwell model, these are linked in 

series so that the stress response to a sudden deformation, 𝜀0, is given by, 𝜎(𝑡) = 𝜀0𝑘𝑒
−𝑡

𝑘

𝜂. 

 

Figure iii – Modified from Bonfanti et al. (2020). (a) the single spring and dashpot Maxwell model, (b) the 
generalised Maxwell model containing an arbitrary number of springs and dashpots, (c) stress response to a 
sudden deformation where the grey line is a power law relation, the blue line is the simple maxwell model and the 
green/purple lines contain two and four sets of springs and dashpots, respectively. 

The Maxwell model describes that stress generated when the material is deformed dissipates 

according to a characteristic relaxation time (Figure iii-c), falling to 1/𝑒 of its initial value after time 

𝜏 = 𝜂/𝑘 . More complex materials can be represented by incorporating additional springs and 

dashpots (Figure iii-b) with different relaxation times (Figure iii-c), although this comes at the cost of 

increasing computational expense and decreased model transparency (Bonfanti et al., 2020). Many 

real materials exhibit a broad range of relaxation/viscous creep timescales due to different modes of 

dissipation/deformation acting on different spatial and temporal scales (Bonfanti et al., 2020). 

Alternative constitutive forms that concisely describe this behaviour are therefore preferable in order 

to model the behaviour of these materials. 

Power law relations have emerged as a popular parametrisation representing the viscous behaviour 

of a range of materials with complex microstructures such as ice (Schulson and Duval, 2009), gels (Ng 

and McKinley, 2008), polymers (Xu and Hou, 2011), concrete (Bouras et al., 2018), asphalt (Mino et al., 

2016), biological cells/tissues (Desprat et al., 2005; Nicolle et al., 2010) and even cheese (Faber et al., 

2017). Mathematically, these relations describe a continuous distribution of relaxation timescales 

(Bonfanti et al., 2020). For the case of ice, the experimental study of Glen (1955) has proved influential. 
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He identified the following empirical relation as a good representation of the observed stress-strain 

behaviour of polycrystalline ice; 

 
𝑑𝜀

𝑑𝑡
= 𝑘𝜎𝑛, 

where 𝑘 is a constant that varies with temperature and 𝑛 ≈ 3 is the “creep exponent”.  In order to 

relate the behaviour of ice to the more extensively studied problem of metals at high temperatures, 

Glen (1955) subsequently reformulated the mathematical form of the power law relation as, 

𝑑𝜀

𝑑𝑡
= 𝐵𝜎𝑛 exp(−𝑄/𝑅𝑇) .  

Here, 𝑅 is the universal gas constant, 𝐵 is an empirically determined constant, 𝑄 is another empirical 

constant that is typically interpreted as an activation energy and 𝑇 is the temperature. Essentially, the 

temperature-dependent Arrhenius exponential term models the increasing ductility (the ease with 

which the material can be deformed) as temperature increases. This formulation has since gained 

popularity and a great number of studies have identified different values of the constants, 𝐵, 𝑄 and 𝑛 

corresponding to particular ice types, crystal structures and temperature ranges (e.g. Schulson and 

Duval, 2009; Weertman, 1983). While the power law representation of viscoelastic effects is empirical 

and cannot be interpreted based on a foundational derivation from fundamental physics, it at least 

gives a flexible and relatively concise representation of various forms of ice and other real-world 

materials.  

Thermoviscoelastic models additionally incorporate the effect of temperature changes on the state of 

stress in a material. Here temperature plays a dual role. On one hand, temperature changes cause the 

material to deform via thermal expansion or contraction, a process that can be modelled by (e.g. 

Landau and Lifshitz, 1970), 

𝜀 =  𝛼(𝑇 − 𝑇0), 

where 𝑇0  is a reference temperature for the undeformed state, and 𝛼  is the thermal expansion 

coefficient. Essentially, thermal loading due to temperature changes acts as an external driving agent 

on the system. On the other hand, the elastic and viscous parameters that describe the system may 

also be temperature dependent, such as through the temperature dependent Arrhenius behaviour 

discussed previously. A thermoviscoelastic model may therefore describe a system that is both forced 

by, and responds to changes in temperature (e.g. Mellon, 1997). The temperature dependence of ice 

saturation in a frozen soil is therefore also an important consideration that affects the 

thermoviscoelastic behaviour of the material. Freezing occurs over a relatively wide range of 
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temperatures due to both salinity (e.g. Dou et al., 2017; Wu et al., 2017) and capillary effects (e.g. Ma 

et al., 2015; Peppin and Style, 2013), such that predicting ice saturation as a function of temperature 

is far from trivial. 

Within the scope of this thesis, we may consider thermoviscoelastic materials as examples of driven 

and damped dynamical systems, with temperature acting as the driver and viscosity as a damping 

factor. A driven undamped system is prone to instability, so the inclusion of damping through viscosity 

is important in order to ensure stable solutions of the dynamical models. For example, viscosity 

contributes to the attenuation of propagating waves in both time and space. It also contributes to 

material deformation over long timescales, significantly longer than the timescale over which seismic 

waves propagate. The slow release of accumulated elastic stress due to viscosity may also be envisaged 

as a simplified representation of the physical process of frost creep. The dynamical balance between 

the elastic and viscous components of the system then determines whether creep or fracture will 

dominate. For example, a key requirement for the initiation of a frost quake driven by thermal 

contraction is that stress accumulates elastically faster than it is dissipated until the tensile strength of 

the material has been exceeded. 

 

  



 

12 

1.5 Surface wave dispersion in layered media 

 

Surface waves propagate along the free surface of an elastic solid (Stein and Wysession, 2009). 

Rayleigh waves (Rayleigh, 1885) involving elliptical wave motion in the vertical plane, are a specific 

class of surface waves that typically dominate when the earth-air interface is excited by a vertical 

seismic source. More than two thirds of the seismic energy produced by dynamite or vibroseis sources, 

for example, is propagated in the form of Rayleigh waves (Richart et al., 1970). The ground motion 

associated with Rayleigh waves decays exponentially with depth and becomes negligible within about 

one wavelength from the free surface in homogeneous media (Foti et al., 2018). As a result, lower 

frequency Rayleigh waves probe greater depths from the surface than higher frequencies, so that 

waves of different frequency are affected by the physical properties of the ground at different depths. 

This, in turn, means that Rayleigh waves of different frequency will propagate at different velocities 

for the typical case where the ground physical properties vary with depth, termed geometric 

dispersion (Foti et al., 2018). This property hints towards the general application that surface waves 

can be used to study variations of ground physical properties, particularly where flat, homogeneous, 

layered earth models may be reasonably assumed. 

 

Figure iv – (a) Illustration of the ground deformation of the fundamental mode Rayleigh wave, modified from Shearer 
(2009) and (b) normalized vertical displacement profiles corresponding to the fundamental and first three higher 
order Rayleigh modes at 60 Hz frequency for a normally dispersive layered earth model (S-wave velocity increasing 
monotonically with depth) modified from Lin and Ashlock (2014). 
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An important point to clarify is that much like the harmonics of a plucked string, higher order modes 

of Rayleigh wave propagation are possible (see Figure iv). Whereas the ground displacement of the 

fundamental mode decreases monotonically with depth, the higher order modes are associated with 

more complex displacement profiles involving polarity reversals (Figure iv-b) and greater depth 

penetration (Pan et al., 2018). The amount of energy partitioned across the different modes depends 

on the specific variation of physical properties with depth. For the simple and common case where 

shear velocity and stiffness of the ground increase monotonically with depth (Figure v-a) due to 

compaction, Rayleigh wave phase velocities decrease with increasing frequency and the fundamental 

mode dominates (e.g. Naskar and Kumar, 2017; Thomson, 1950). The wavefield and its dispersion for 

a representative example of this case is illustrated in Figure v-b-c. The relatively straightforward 

relationship between frequency and penetration depth for the fundamental Rayleigh mode in this 

case, termed normal dispersion, has facilitated the successful inversion of ground physical properties 

using a range of techniques (e.g. Beaty et al., 2002; Foti et al., 2018; Naskar and Kumar, 2017; Park et 

al., 1999; Xia et al., 1999). The dispersion of surface waves is more sensitive to S-wave velocity, than 

P-wave velocity and density, so the S-wave velocity depth profile is typically the primary objective of 

inversion (e.g. Pan et al., 2018). 

However, for cases where seismic velocity is not monotonically increasing with depth (Figure v-d), i.e., 

when a stiff layer lies above a soft stratum, the dispersion of surface waves becomes inherently multi-

modal (Forbriger, 2003; Foti et al., 2003; Naskar and Kumar, 2017; Tokimatsu et al., 1992). The 

representative case illustrated in Figure v shows how simply varying the velocity of the surface layer 

has a dramatic effect on both the wavefield (Figure v-e) and on the wave dispersion (Figure v-f). Higher 

order Rayleigh modes (Tokimatsu et al., 1992) may contribute significantly to the ground motion and 

anomalously high velocity layers may act as partial waveguides that allow other types of waves to 

propagate (Ryden and Park, 2004). For example, a high velocity surface layer is associated with a 

multimodal dispersion pattern  that approaches the Lamb waves of a plate in a vacuum (Lamb, 1917) 

if the shear velocity of the upper layer exceeds the compressional velocity of the underlying half-space 

(Ryden and Park, 2004). Inverting the multimodal wave dispersion for ground physical properties for 

inversely or irregularly dispersive media is a complex task that has shown some promising results but 

remains an active area of research (Naskar and Kumar, 2017; O’Neill et al., 2003; Pan et al., 2018; Pan 

et al., 2013; Yuen and Yang, 2020; Zhang and Alkhalifah, 2019). 
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Figure v – Modified from O’Neill et al. (2003). (a) and (d) are 1D shear velocity models where only the velocity of 
the top layer differs (numbers in brackets are Poisson’s ratio for each layer). (b) and (e) are vertical component (P-
SV) synthetic waveforms for a simulated linear array of receivers. (c) and (f) show the synthetic wavefields 
transformed to frequency-velocity space, i.e., the dispersion images of the wavefields (the white curves are the 
picked maxima of the dispersion spectra).  
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1.6 The air-ice-water system 

 

A sheet of ice, floating on water and in contact with the atmosphere above is a system of particular 

relevance to this thesis and deserving of further elaboration following the preceding description of 

frozen materials as thermo-viscoelastic solids. To give an introduction to the air-ice-water system, the 

physical properties in Table i will be assumed and the behaviour of representative systems of sea 

ice/air, sea ice/water and lake ice/water will be discussed. The air layer is an infinite halfspace, the ice 

thickness will be considered in proportion with frequency and the water layer has finite thickness.  

 

Figure vi – illustration of antisymmetric and symmetric Lamb waves for a plate in a vacuum (from Marks et al., 
2016).  

The floating ice sheet acts as a waveguide that behaves analogously to an elastic plate in a vacuum 

(also referred to as a free plate). A classic study by Lamb (1917), demonstrated that a series of 

symmetric and antisymmetric wave modes propagate in this system. The antisymmetric modes consist 

of bending or flexural motion, while the symmetric modes consist of longitudinal compression and 

dilation (see Figure vi). Fundamental modes propagate at all frequencies, while higher-order modes 

are restricted to high frequencies. A solid plate immersed in a light fluid, e.g., air, behaves similarly to 

a plate in a vacuum, though some energy can be lost from the plate to the fluid (Hayashi and Inoue, 

2014; Kiefer et al., 2019). The designation “leaky Lamb waves” is consequently applied to describe the 

plate-fluid interaction and energy radiation into the fluid.  

If the plate is heavily fluid loaded on one side, as for ice floating on water, the boundary condition is 

significantly modified. This results in a modification of the symmetric and antisymmetric Lamb wave 

modes as well as propagation of an additional mode analogous to a Scholte wave, a class of surface 

wave that propagates along the interface between solid and liquid half-spaces (Vinh, 2013; Zhu et al., 

2004). The finite thickness of the ice sheet modifies the propagation of this Scholte wave (compared 

to the case of a solid elastic halfspace) and it is correspondingly referred to as a quasi-Scholte wave 

(Inoue and Hayashi, 2015). It is this quasi Scholte-wave that dominates the vertical component of 

surface displacement for a floating ice sheet excited by an impulsive source (Moreau et al., 2020a). 
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Table i - Physical properties used to calculate dispersion curves shown in Figures vii and viii. Note that the fluid 
depth only affects the thin plate model calculations, the fluid in the Kiefer et al. (2019) model is infinite. 

 Sea ice/Air system Sea ice/water system Lake ice/water system 

Young’s Modulus (GPa) 2.5 2.5 8.5 

Poisson’s ratio (-) 0.33 0.33 0.33 

Ice density (kg.m-3) 931 931 917 

Fluid density (kg.m-3) 1.3 1027 1000 

Fluid bulk velocity (m/s) 320 1500 1500 

Fluid depth (m) 20 20 20 

 

 A common simplifying assumption is that the thickness of the ice sheet is small compared to the 

wavelength, the so-called thin plate approximation (e.g. Squire et al., 1996), such that the motion of 

the thin plate can be described by the partial differential equation  

D∇4𝜁 + 𝜌𝑙ℎ
𝜕2𝜁

𝜕𝑡2 + 𝜌𝑤𝑔𝜁 = −𝜌𝑤
𝜕𝜙

𝜕𝑡
|

𝑧=𝑏
− 𝑓(𝑥, 𝑦, 𝑡).       (I) 

The plate extends infinitely along the horizontal x and y axes and the vertical axis, z, is positive 

downwards with its origin at the upper undisturbed water surface and lower surface of the plate (its 

draught) lies at depth b. Here, 𝜁(𝑥, 𝑦, 𝑡) is the vertical deflection of the plate’s neutral surface and 𝜙 

is the velocity potential in the fluid, D =
𝐸ℎ3

12(1−𝜈2)
  is the plate flexural stiffness, 𝐸 is Young’s modulus, 

ℎ is the plate thickness, 𝜈 is Poisson’s ratio, 𝜌𝑤 is the water density, 𝜌𝑙 is the plate density, 𝑔 is the 

acceleration due to gravity and 𝑓(𝑥, 𝑦, 𝑡) is the applied external spatiotemporal force. In essence, the 

first term on the LHS represents the bending forces in the plate, the second represents the plate 

acceleration and the third is the plate buoyancy. The terms on the RHS are due to the constraint of 

finite water depth and the driving external force. Upon excitation, the vertical deflection of the ice 

surface is dominated by a pure bending mode of plate motion that is commonly referred to as the 

flexural wave (e.g. Johansen et al., 2019; Stein et al., 1998). The validity of the thin plate approximation 

depends on the relationship between plate thickness and wave frequency and for frequency-thickness 

products less than 50 Hz·m where it holds, the flexural wave is approximately equivalent to the quasi-

Scholte wave (Moreau et al., 2020a).  

An important property of the air-ice-water system is wave dispersion, i.e., the variation of propagation 

velocity with frequency. For illustration, we will consider the wave dispersion using both the thin plate 

approximation and an exact guided wave theory using a spectral collocation scheme to solve the full 

leaky Lamb wave spectrum, including exact interaction with the fluid (Kiefer et al., 2019). This spectral 



 

17 

collocation method is chosen because it ensures that all possible wavemodes are found at a given 

frequency, in comparison to the challenging and numerically ill-conditioned characteristic root-finding 

process traditionally employed (Kiefer et al., 2019). 

If we first consider the air-ice system as illustrated in Figure vii, the dispersion curves predicted 

according to Kiefer et al. (2019) are essentially those of the free plate (i.e., ice sheet in a vacuum), with 

the addition of an extra branch corresponding to the compressional bulk velocity in air. Where the 

fundamental antisymmetric mode (denoted A0) of the free-plate crosses the speed of sound in air, the 

dispersion curves split into two modes. The quasi-Scholte branch remains trapped in the plate with a 

phase velocity less than the speed of sound in air, while a leaky mode branch exists at higher 

frequencies and radiates energy into the air proportional to the imaginary part of the wavenumber 

(Figure vii-b). We observe that energy radiation into the air is concentrated over a narrow band of 

frequency-thickness and the spread that is observed is due to radiation at different angles satisfying 

the phase matching condition,  

cos 𝜃 = 𝑐𝑎𝑖𝑟 𝑐𝑖𝑐𝑒⁄ ,           (II) 

where 𝑐𝑎𝑖𝑟 is the phase velocity of inhomogeneous bulk waves radiated into the air, 𝑐𝑖𝑐𝑒 is the phase 

velocity of flexural waves in the ice and 𝜃 is the angle between the horizontally propagating flexural 

waves and the bulk waves radiated into the liquid (Mozhaev and Weihnacht, 2002). Radiation is most 

efficient at the grazing angle, where the leaky mode branch crosses the bulk compressional velocity in 

air. In general, subsonic guided waves are fully trapped in the waveguide and can only excite 

evanescent waves in the fluid (e.g. Brower et al., 1979) although energy leakage into the fluid as low 

as ~98.5% of the bulk fluid velocity can be explained by radiation from inhomogeneous waves that 

travel slower than homogeneous waves (Kiefer et al., 2019; Mozhaev and Weihnacht, 2002). 
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Figure vii - (a) Dispersion curves for the air/sea ice system calculated by the exact spectral collocation method of 
Kiefer et al. (2019) compared to thin plate approximate model Eq. (I) shown with (dashed red line) and without 
(dashed yellow line) the inclusion of plate acceleration. (b) enlargement highlighting the dispersion curve splitting 
and transition to leaky behaviour at the phase velocity corresponding to the bulk compressional wave velocity in 
air. 

 

If we now consider the water-ice system as illustrated in Figure viii, the exact dispersion curves 

calculated according to Kiefer et al. (2019) differ substantially from the free plate (ice sheet in a 

vacuum), due to the heavy fluid loading. Interestingly, for the sea ice/water system the shear wave 

velocity in ice drops below the longitudinal wave velocity in water, leading to a multiplicity of trapped 

modes at high frequencies (Figure viii-a) compared to the lake ice/water system (Figure viii-b). Notably, 

this behaviour occurs in the ultrasonic range, far above the frequency range typically studied in 

environmental seismology. As discussed by Moreau et al. (2020a), the thin plate approximation of a 

floating ice-sheet (Eq. (I)) follows the quasi-Scholte mode branch of the ice-water waveguide and is a 

useful simplification maintaining accurate representation of the system for frequency-thickness 

products below 50 Hz·m.  
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Figure viii - (a) Dispersion curves for the sea ice/water system calculated by the exact spectral collocation method 
of Kiefer et al. (2019) compared to thin plate approximate model Eq. (I) shown with (dashed red line) and without 
(dashed yellow line) the inclusion of plate acceleration. (b) as in (a) but using elastic parameters corresponding to 
fresh water lake ice. 

The complete air-ice-water system can be expected to behave as a hybrid of Figure vii and Figure viii, 

i.e., the dispersion will be virtually identical to the ice-water system (Figure viii) with the addition of 

the mode splitting around the bulk compressional velocity in air as illustrated in Figure vii-b. Here, it is 

worth noting that choosing appropriate wave mode terminology for the air-ice-water system can be 

complicated, as it is a rather special example of a plate that is heavily fluid loaded on one side and 

lightly fluid loaded on the other side. As a result, there are formally two quasi-Scholte modes and two 

sets of leaky Lamb modes corresponding to the ice-air and ice-water interfaces. The air-ice-water 

system also deviates significantly from the free plate for which true Lamb waves are defined, and the 

one side fluid-loaded plate for which the quasi-Scholte mode is best defined. Apart from ultrasonic 

studies, the low frequency, thin plate approximation (Eq. (I)) where flexural waves are physically 

described by a pure bending mode of plate motion, remains an appropriate and attractive 

simplification within cryoseismology. 
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2 Thesis papers 

 

2.1 Preface to paper 1  

 

Romeyn, R., Hanssen, A., Ruud, B. O., Stemland, H. M., and Johansen, T. A. 2021. Passive seismic 

recording of cryoseisms in Adventdalen, Svalbard, The Cryosphere, 15, 283–302, 

https://doi.org/10.5194/tc-15-283-2021 

 

Paper 1 focuses on a series of transient seismic signals that were recorded by a temporary seismic 

array deployed in Adventdalen on Svalbard. The spatial correspondence of the estimated source 

positions of these events with frost polygons/ice wedge areas and temporal correlation with rapidly 

decreasing temperature led to the interpretation that these seismic events were cryoseisms, or more 

specifically frost quakes.  

One of the key results of this article was demonstrating that frost quakes can act as sources of surface 

waves that can be used to produce high-quality dispersion images. To give additional context to this 

result, Figure ix shows a comparison of different multichannel seismic experiments conducted in 

Adventdalen that were designed to record surface waves. Active source experiments were conducted 

using (a) sledgehammer blows on a steel plate and (b) explosive point charges consisting of detonating 

cord wrapped around a detonator. The vertical component of ground motion was recorded by a linear 

array of 60 geophones spaced 1 m apart and deployed in-line with the source. For comparison, Figure 

ix also shows an example of a frost quake recorded passively by the 2D geophone array reported on in 

Paper 1.  

The dispersion images shown in Figure ix were produced according to the standard phase shift method 

of Park et al. (1998). The dispersion image from the sledgehammer experiment is relatively poorly 

resolved due to low signal to noise ratio and only the general trend of the apparent dispersion curve 

is resolvable. The signal to noise ratio is improved for the more powerful explosive point charge and a 

multimodal dispersion pattern begins to be discernible. However, the strong air wave produced by the 

explosive charge appears to interfere with and reduce the coherency of the surface waves at higher 

frequencies. By contrast, the frost quake recorded by the 2D geophone array produces a much-

improved dispersion image where the multimodal dispersion pattern is well resolved. It is therefore 
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clear that frost quakes can be a useful source of surface wave energy. However, some of the 

improvement for the frost quake example compared to the active source experiments (Figure ix) may 

be attributable to the uneven spacing of the geophones along the 1D domain representing radial 

distance from the source (also known as offset). This irregular spacing may improve the sampling of 

surface waves of different wavelengths. Further controlled experiments would be required to 

determine whether the passive recordings of frost quakes gave high quality results because of the of 

the frost quake source characteristics, or because of the geometry of the geophone array. In this 

context, a buried explosive charge would be a useful point of comparison, since this should suppress 

the air wave and improve source-ground coupling, potentially giving a result more like the frost quake 

example. However, on Svalbard, seismic surveying may not leave a lasting environmental footprint and 

is only permitted on top of snow-covered ground. Use of buried explosive charges is therefore not 

permitted. Environmental considerations thereby also strengthen the attractiveness of utilizing 

naturally occurring frost quakes as a seismic source for near-surface seismic surveying.  

 

Figure ix – Illustration of different multichannel seismic experiments conducted in Adventdalen on Svalbard. (a) 
Sledgehammer and (b) explosive point charge sources were located 25 m inline from the nearest geophone. (c) 
The frost quake source location was estimated to be ~190 m at a bearing of ~353° from the centre of the 2D 
geophone array.  
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2.2 Preface to paper 2  

 

Romeyn, R., Hanssen, A., and Köhler, A. Long term analysis of cryoseismic events and associated 

ground thermal stress in Adventdalen, Svalbard, The Cryosphere Discuss. [preprint], 

https://doi.org/10.5194/tc-2021-329, in review, 2021. 

 

Paper 2 developed as a complementary study to Paper 1, with primary focus on the temporal 

distribution of frost quakes and how they are triggered. These topics were difficult to address in Paper 

1 since battery life constraints meant that the temporary seismic array reported on in that study could 

only record relatively short windows of time. By contrast, the SPITS seismic array on Janssonhaugen in 

Adventdalen is part of the permanent seismic monitoring infrastructure  (Gibbons et al., 2011), has 

been in continuous operation since the 1990’s and was very well suited to this task. The source 

positions for a catalogue of automatically detected seismic events were estimated using matched field 

processing and this proved to be an effective means of distinguishing between events that could be 

interpreted as frost quakes from those attributable to underground mining activities at the Gruve 7 

coal mine. We were also able to identify spatial clustering of the frost quakes that was interpretable 

in terms of periglacial landforms visible on orthophotographic imagery.  

The study also focuses on consideration of thermal stress as a trigger for frost quakes, following the 

typical observation that frost quakes are associated with rapidly decreasing air temperatures and the 

absence of an insulating snow layer (Barosh, 2000; Battaglia et al., 2016; Matsuoka et al., 2018; 

Nikonov, 2010). A key novelty of this paper is that we model thermal stress based on measured ground 

temperatures. Several previous studies (e.g. Okkonen et al., 2020; Podolskiy et al., 2019) have 

modelled thermal stress on the basis of ground temperatures that are, in turn, modelled based on 

measured air temperature (plus other environmental parameters that are estimated or known to a 

limited extent). To illustrate the implications of this, we tested the popular ground temperature model 

of Rankinen et al. (2004) that is applicable to snow-covered and seasonally frozen soils. This is also the 

ground temperature model that underpins the thermal stress model used by Okkonen et al. (2020) to 

investigate a frost quake swarm recorded in Finland. The Rankinen et al. (2004) ground temperature 

model is popular because of its simplicity and small set of input parameters and can be expressed as, 
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𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(

𝐾𝑇

𝐶𝐴

𝜕𝑇

𝜕𝑧
) 𝑒−𝑓𝑆𝐷𝑆 . 

Here 𝑇(𝑧, 𝑡)  is the ground temperature at depth 𝑧  and time 𝑡 , 𝐾𝑇(𝑧)  is the ground thermal 

conductivity (Wm-1°C-1), 𝐶𝐴(𝑧) is the apparent volumetric heat capacity (Jm-3°C-1), 𝐷𝑆 is the snow depth 

(m) and 𝑓𝑆 is an empirical damping parameter related to the thermal conductivity of snow (m-1). For a 

uniform layer with thickness of 2𝑧, the temperature in the middle of the layer, i.e., at depth 𝑧, is found 

by applying the explicit finite difference equation, 

𝑇(𝑧, 𝑡 + 1) = 𝑇(𝑧, 𝑡) +
𝐷(𝑧)∆𝑡

(2𝑧)2
(𝑇𝑎𝑖𝑟(𝑡) − 𝑇(𝑧, 𝑡))𝑒−𝑓𝑆𝐷𝑆 , 

where 𝑇(𝑧, 𝑡)  is the ground temperature at depth 𝑧  and the previous time step 𝑡 ,  ∆𝑡  is the time 

increment in seconds, 𝐷(𝑧) = 𝐾𝑇(𝑧) 𝐶𝐴(𝑧)⁄  is the effective ground thermal diffusivity (m2s-1) at depth 

𝑧 and 𝑇𝑎𝑖𝑟(𝑡) is the air temperature at the previous time step. 

 

Figure x – comparison of (a) ground temperature field measured by thermistors installed in the PACE P11 borehole, 
(b) ground temperatures modelled based on Rankinen et al. (2004) assuming the best fit thermal diffusivity profile 

illustrated in Figure xi and empirical damping parameter 𝑓𝑆 = 1.0 𝑚−1. (c) Subtraction of the measured from the 
modelled temperature field. 

We used air temperatures and snow depths measured at the Janssonhaugen meteorological station 

to model ground temperatures and ran a brute force optimization to find the thermal diffusivity depth 
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profile and empirical snow damping parameter which minimized the L2 norm described fit with 

borehole temperatures measured in the PACE P11 borehole at Janssonhaugen. The measured and 

modelled ground temperature fields are shown in Figure x and the best fit effective thermal diffusivity 

depth profile is shown in Figure xi. The empirical damping parameter value that best fit the observed 

data was 𝑓𝑆 = 1.0 𝑚−1. 

We observe that the Rankinen et al. (2004) model gives a reasonable approximation of the measured 

ground temperature field (see Figure x), but that significant deviations are present when the difference 

between measured and modelled temperatures are examined in detail (see Figure x-c). Figure xii 

illustrates the timeseries of temperature at selected depths and further illustrates that while the model 

gives a reasonable approximation of the ground temperature, it remains at best a limited 

representation of the measured temperature field. In particular, high-frequency discrepancies of ± 3°C 

in the shallow subsurface (e.g., z=0.3 m) as illustrated in Figure xii-d are likely to have significant 

implications for thermal stress and modelled frost quake likelihood. 

 

Figure xi – Effective thermal diffusivity depth profile that gave best model fit compared with borehole measured 
temperatures. 

It is not a surprising result that our ability to model ground temperature based on air temperatures 

and additional environmental parameters is inherently limited. Ground temperature is a function of 

the site-specific energy balance and depends on conductive, convective and latent heat transport that 

are in turn governed by processes like moisture transport, soil freezing/melting, snow cover at the 

ground surface and the thermal properties of the ground (Chalhoub et al., 2017; Gisnås et al., 2016; 
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Xing and Spitler, 2017). Modelling ground temperature is always a trade-off between accuracy on the 

one hand and constraint data availability on the other (Droulia et al., 2009). A model which perfectly 

replicates observed ground temperatures would require such detailed knowledge of soil moisture, 

porosity, composition, thermal diffusivity of the components and snow depth that it would not be 

feasible in practice and would ultimately be more involved than measuring the ground temperature 

directly. 

 

Figure xii – (a) Air temperature, measured and modelled temperatures in the shallow subsurface at 0.3 m, (b) 1 m 
and (c) 4 m depths. (d) difference between measured and modelled temperatures at 0.3 m, 1 m and 4 m depths. 
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Paper 2 
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2.3 Preface to paper 3  

 

Romeyn, R., Hanssen, A., Ruud, B. O., and Johansen, T. A. 2021. Sea ice thickness from air-coupled 

flexural waves, The Cryosphere, 15, 2939–2955, https://doi.org/10.5194/tc-15-2939-2021. 

Paper 3 was conceived around the objective of using the flexural wavefield of a floating ice sheet to 

estimate its physical properties. Initially we focused on the distinctive, highly dispersive, ice flexural 

waves whose dispersion is well known to be controlled by the ice physical properties (e.g. Moreau et 

al., 2020a; Stein et al., 1998; Yang and Yates, 1995). However, upon examination of field data collected 

on sea-ice in Van Mijenfjorden, Svalbard, over four different field seasons, we consistently observed a 

prominent high-amplitude wave component with monochromatic frequency arriving in advance of the 

direct air wave. This wave component matched the description of the air-coupled flexural wave given 

by Press et al. (1951), although this topic has received strikingly little research attention since the 

1950’s. We recognized that the air-coupled flexural wave is convenient from a data analysis 

perspective because its phase velocity is constrained by the speed of sound in air. The study involved 

developing a theoretical framework that is more compatible with modern numerical computation 

techniques than the original, heavily analytical theoretical description of Press and Ewing (1951), and 

that aids conceptual understanding.  

We found good agreement between ice thicknesses estimated from air-coupled flexural waves and 

those measured in boreholes drilled through the ice. The study focused on active source seismic 

experiments, using detonating cord to excite seismic waves. However, we were also able to 

demonstrate that air-coupled flexural waves are recordable in other settings, where they were excited 

by ice skates striking or cracking the ice, or natural ice quakes triggered by thermal stresses. The latter 

observation in particular, led us to hypothesize that air-coupled flexural waves could facilitate non-

contact, passive monitoring of ice thickness, although the detailed practicalities of such an application 

remain a topic for further study.  

It is important to highlight that Paper 3 has particular application, beyond the main scope presented 

in the article, to the estimation of ice thickness from a community safety perspective. Accidents where 

ice users fall through ice having insufficient load bearing capacity occur with unfortunate regularity. 

Tragically, some of these accidents also lead to fatalities. Figure xiii provides a summary of incidents in 

Norway reported in the period 2006-2021, where we should also note that persons falling through thin 

ice who were well prepared with the appropriate knowledge and equipment required to enact 

effective self-rescue are not included in these reports. All of these fatalities should be considered 
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avoidable, had timely and accurate information on ice thickness and bearing capacity been available. 

In this context, the fact that air-coupled flexural waves can be recorded with simple and inexpensive 

microphones could provide a possible avenue to develop more convenient and widespread means to 

estimate ice thickness and avoid travel on unsafe ice. 

 

 

Figure xiii – (a) Number of people involved in reported accidents on floating ice in Norway between 2006 and 2021, 
(b) the type of water body involved, (c) summary of accident seasonality and (d) the type of ice involved. Data from 
NVE (2021) based on collated reports published in traditional and social medias and incidents registered in the 
“Varsom Regobs” database (regobs.no). 
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3 Synthesis 

 

3.1 Common themes 

 

This PhD thesis is essentially a study in environmental seismology with a particular focus on 

applications involving floating ice and permafrost and therefore fits neatly under the categorization 

cryoseismology. Through specific case studies the two main subcategories of environmental 

seismology defined by Larose et al. (2015) have been explored, i.e., 1) studies of natural seismic 

vibrations triggered by processes occurring outside of the solid Earth and 2) studies of seismic 

vibrations whose propagation is controlled or perturbed by environmental external parameters. 

Natural seismic vibrations triggered by thermal stresses in ice emerged as a common and important 

theme in this thesis through the studies of frost quakes detailed in Papers 1 and 2. By contrast, from 

the active seismic experiments conducted on floating sea ice, described in Paper 3, a class of air-

coupled flexural waves were isolated whose propagation is largely controlled by environmental 

parameters, predominantly the ice thickness, its rigidity and to a lesser extent the air temperature.  

It is interesting to observe that grouping together a set of contrasting case studies in this thesis 

highlights that the categorical distinction introduced by Larose et al. (2015) is far from absolute. There 

is significant overlap and potential for cross pollination between studies focused on seismic vibrations 

triggered by, e.g., thermal stresses in the cryosphere and those focused on how the environmental 

physical parameters affect the propagation of seismic waves. In Paper 2 the primary focus was on the 

source mechanism for frost quakes, which we found could be linked to accumulated thermal stresses 

in the ground. However, in Paper 1 we also showed that the propagation of the surface waves excited 

by frost quakes is affected by the layered structure of the ground, in particular the thickness and 

rigidity/stiffness of these layers and their seasonal variations. The wave propagation effects were 

illustrated by providing examples of experimental dispersion images and theoretical dispersion spectra 

calculated by the global matrix method describing wave propagation in layered media.  

In the preface to Paper 1, it was also demonstrated that the multimodal surface wave dispersion was 

better resolved by passively recording frost quakes than by active source experiments utilizing 

sledgehammer or explosive sources. This serves as a demonstration that the emerging trend in 

environmental seismology towards continuous, passive recording, which has been driven by 

technological advancement (Larose et al., 2015), can also deliver high-quality transient signals. This 
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means that passive source seismic experiments may increasingly overlap with survey applications that 

were traditionally the domain of active source experiments. An additional benefit of expanding the 

applications of passive surveying techniques is that the environmental disturbance or footprint of 

these surveys may be reduced compared to active, artificial source seismic experiments, which is an 

important ethical consideration within the field of environmental seismology (e.g. Stemland et al., 

2019). 

In Paper 3, the main focus was on an existing catalogue of active source seismic experiments and 

developing an understanding of how the propagation of a specific wave mode, the air-coupled flexural 

wave, is affected by environmental parameters (ice thickness, rigidity, air temperature). Notably, these 

experiments were not designed with this specific wave mode and application in mind, but provided a 

rich dataset that proved highly suitable for studying this phenomenon. However, within the broader 

scope of this thesis and following our work on frost quakes, it was natural to hypothesize that air-

coupled flexural waves might also be recorded passively, with naturally occurring ice quakes acting as 

the seismic source. While this is still a preliminary finding, it was an important result that we were able 

to go into the field and record examples of air-coupled flexural waves associated with ice quakes 

resulting from thermal expansion stresses in fresh-water lake ice. That this was possible to observe 

within a short distance from campus also demonstrates a key benefit of the University of Tromsø as a 

research institution situated above the Arctic Circle. It follows then that air-coupled flexural wave 

studies also fit with the paradigm of environmental seismology in that they are both 1) potentially 

triggered by natural processes outside the solid Earth and 2) their propagation is strongly determined 

by the environmental parameters of ice thickness, rigidity and air temperature. Had the study leading 

to Paper 3 been conducted in isolation, removed from the context of the broader thesis, it is not certain 

that the full picture of the air-coupled flexural wave phenomenon and the potential of ice quakes and 

passive recording with microphones would have been appreciated. 

The effect of temperature changes is of fundamental importance in the cryosphere. In this thesis, 

stress caused by changing temperature, i.e., thermal stress, emerges as a common theme. In Paper 1, 

we identified that frost quakes tended to occur during periods of rapidly decreasing temperature, a 

fact that was already quite well established in the literature (Barosh, 2000; Battaglia et al., 2016; 

Matsuoka et al., 2018; Nikonov, 2010). This association was further elaborated in Paper 2, where it 

was developed into the more rigorous concept of thermal stress. While the importance of thermal 

stress as a trigger for ground fracturing was already known (Mellon, 1997; Okkonen et al., 2020; 

Podolskiy et al., 2019), the combination of a continuous seismic record and the long term, high-

resolution borehole temperature measurements introduced in Paper 2 allowed us to extend the 
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existing concepts and models to a new level of detail. The concept of thermal stress induced cracks is 

also important to the potential to passively record the air-coupled flexural waves of floating ice sheets 

as discussed in Paper 3.  

 

3.1.1 Survey design 

 

Survey design plays an intrinsically important role in all seismological studies and survey design 

considerations also emerge as a common theme of this thesis. An overarching point is that optimal 

survey design is very difficult to achieve in practice and requires detailed foresight of the dynamic 

processes to be recorded or measured. It is important to reflect on the topic of survey design because 

following the work reported on in this thesis, we have improved knowledge of cryoseismological 

phenomena that can be used to optimize or re-evaluate how future surveys may be conducted.  

The studies included in this thesis were, in general, of an exploratory nature, meaning that the survey 

design was not optimal. For example, the 2D receiver arrays used to record frost quakes as reported 

in Paper 1 gave quite good spatial/wavenumber sampling, resulting in detailed dispersion imaging of 

the complex multi-modal pattern of surface wave dispersion. However, constraints of limited battery 

capacity and logistical challenges of battery swapping severely compromised the time windows that 

could be surveyed. Having gained a better understanding of the frequencies, wavelengths and 

propagation velocities of surface waves in the study area, it would be possible to further optimize the 

array design around the limiting factor of battery capacity or better evaluate the cost/benefit of newer 

generation recording nodes that would enable longer recording times (e.g. Beker et al., 2016; Dean 

and Sweeney, 2019). The study reported on in Paper 2 was conceptualized to be complementary to 

Paper 1. Since the SPITS array is a permanent installation, it was much better suited to study the 

temporal distribution of frost quakes, even though the reduced number of sensors and coarser spatial 

and temporal sampling gave poorer resolution of frequencies and wavenumbers of surface waves from 

individual frost quakes.  

Paper 3 developed around the observation of an interesting phenomenon, the air-coupled flexural 

wave, in a number of existing data sets. The results of the study indicated that similarly useful 

measurements of air-coupled flexural waves could probably have been made using a radically 

simplified acquisition setup consisting of microphones and perhaps a thermometer to measure air 

temperature. This simplified acquisition setup could also be designed as a passive source experiment, 

using natural ice quakes as the seismic source. This would, in turn, have implications for survey 
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logistics, cost and the window of time that could be surveyed, in addition to significantly reducing the 

environmental footprint of the survey. This study is an interesting example where observations were 

made on real field data, which subsequently drove us to re-examine and improve our understanding 

of the physical dynamics underpinning the observations. The improved understanding that comes 

from theory and modelling then ultimately allowed us to hypothesize alternate, potentially more 

efficient ways of observing the same phenomenon.  

 

3.1.2 Selection of simple models 

 

Numerical models constitute an important part of the studies included in this thesis. Models are 

important because, generally across geophysics, our capacity to measure is very limited given the 

complexity and scale of the studied phenomena leading to a set of inherently underdetermined 

problems (e.g. Kleinhans et al., 2010). The construction of models therefore becomes essential to the 

problem of understanding and generalising from the observed phenomena. Model development 

proceeds via a two-step process involving 1) conceptualisation of key processes operating in the 

system and the interaction between system components, and 2) formalising or encoding of the 

conceptual model with precise mathematical language. Both the conceptualisation of the problem and 

the choice of mathematical representation then affect the performance of the model (Bokulich and 

Oreskes, 2017). 

An infinite number of models may be conceptualised, but as stated by Box (1979) “all models are 

wrong, but some are useful”, which highlights that model selection should be a considered choice. As 

articulated by Oreskes (2003), “the purpose of modelling in science must be congruent with the 

purpose of science itself: to gain understanding of the natural world”. Simple models can illustrate 

fundamental dynamical concepts, stimulate new hypotheses and facilitate conceptual understanding 

(Bokulich and Oreskes, 2017; Stocker and Knutti, 2003). On the other hand, overly complex models can 

become analytically impenetrable, i.e., the reason for success or failure of the model to explain 

observational data becomes almost impossible to attribute to specific modelling assumptions (Lenhard 

and Winsberg, 2011). In this context, the focus throughout this thesis was to develop a set of the 

simplest possible models that could represent the most essential features or dynamics recorded in the 

experimental seismic data collected in the field. 

In Paper 1, the sub-surface is represented by a highly simplified layer-cake structure, consisting of a 

small number of flat, horizontal and homogeneous individual layers according to the global matrix 
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method of Lowe (1995). It was striking to observe that a complex multimodal dispersion pattern, 

similar to that derived from field recording of frost quakes, could be produced by a simple three-layer 

model with an anomalously stiff, high-velocity upper layer. This observation points towards the 

importance of seismic velocity inversion, where the high-velocity layer may act as a partial or complete 

waveguide. This is an important and fundamental departure from the normal situation where shear-

wave velocity increases monotonically with depth that invalidates the assumption that longer 

wavelengths sample deeper points in the subsurface. This consequently complicates the inversion 

from observed wave dispersion to inferred S-wave velocity depth profile (e.g. Foti et al., 2018; Ryden 

and Lowe, 2004).  

In Paper 3, the air-ice-water system corresponding to a floating ice-sheet was modelled as a thin plate 

of infinite horizontal extent, floating on an incompressible, inviscid fluid of finite depth. This is a highly 

simplified arrangement, but was sufficient to investigate the essential dynamics of the air-coupled 

flexural wave. It is particularly noteworthy that the dynamics of the air-coupled flexural wave were 

modelled without the explicit inclusion of an air layer in the model. In this case, the simplest solution 

was to consider the compressional wave propagating in the air as an external force pushing down on 

the ice surface, expanding radially at the speed of sound in air. This simplification highlights the 

similarity of the air-coupled flexural wave with the engineering problem of a moving vehicle on a 

floating sheet of ice (e.g. Squire et al., 1996). In common with the thermoviscoelastic model introduced 

in Paper 2, the floating ice is essentially a driven and damped dynamical system. The driver is the 

pressure pulse of the air wave and the damping is a simple heuristic representation of the viscosity of 

ice that governs wave attenuation and ensures the system remains numerically stable when driven 

over time.  

By contrast, the thermoviscoelastic dynamical model introduced in Paper 2 is a simple dynamical 

system driven by thermal stresses resulting from temperature changes. Stress accumulates elastically 

in the ground as it is simultaneously dissipated viscously, representing slow movement or frost creep. 

If the stress accumulates faster than it is dissipated, the tensile strength of the ground can be exceeded 

causing a sudden stress release, or frost quake. This highly simplified model focuses specifically on the 

thermal contraction mechanism of ground cracking. While other mechanisms of ground cracking might 

also play a role, such as capillary water migration and ice lens formation at the frozen fringe (e.g. 

Peppin and Style, 2013), the simple model allows us to directly assess to what degree the single 

mechanism of thermal contraction can explain the observed dynamics of ground motion.  



 

102 

3.2 Broader relevance of the research 

 

The cryosphere is strongly in focus throughout this thesis, with a particular focus on permafrost and 

the periglacial environment, as well as floating plates of ice on both salt and fresh bodies of water. The 

case studies included in this thesis give new insights into the dynamics and physics of these aspects of 

the cryosphere and contribute towards the development of a geophysical toolbox that can be used to 

monitor changes occurring in response to a warming climate. There is, however, also significant 

methodological and phenomenological overlap with other research fields, most notably those relating 

to civil engineering. For example, the stiff top layer resulting from freezing winter air temperatures 

and elevated ground-ice content that was identified in Paper 1 is directly analogous to a layer of 

pavement resting on a substrate as exemplified by the study of Ryden and Lowe (2004). Similarly, very 

large floating structures (VLFS) are under development for applications including floating airports, 

bridges, docks, storage facilities, wind and solar power farms etc. and behave analogously to floating 

ice sheets from the perspective of flexural waves (Kakinuma et al., 2012; Ohkusu and Namba, 2004; 

Wang and Tay, 2011). In these analogous cases, there is significant scope for knowledge transfer 

between fields, particularly regarding methodology and mathematical theory.  

In Paper 2, the dynamics of thermoviscoelastic materials was shown to be an important factor 

triggering thermal contraction cracking and the release of accumulated elastic stress as frost quakes. 

This is also an important subject within civil engineering, particularly due to the risk of thermal cracking 

and material damage. Measuring thermal stress and strain in asphalt can allow optimisation of 

aggregate and binder components to produce asphalt mixtures that are resistant to thermal 

contraction cracking under seasonal or diurnal temperature fluctuations (Abu Al-Rub et al., 2011; Alavi 

et al., 2013; Apeagyei et al., 2008; Pszczola et al., 2019). Pavements constructed of concrete slabs can 

also be vulnerable to cracking due to freezing temperatures and thermal stresses exceeding the 

breaking strength (Monismith et al., 1965). The performance of pavement materials can also vary over 

time due to cyclic temperature loading so that an understanding of the geo-climatic factor is important 

in order to estimate the expected lifespan of the construction (Merbouh, 2012). Thermal stresses also 

play an important role in the risk of cracking for newly cast concrete structures, which is of significance 

to the service lifetime and function of these structures (Harrison, 1981; Larson, 2003; Yuan and Wan, 

2002). 

The demonstration, in Paper 3, that air-coupled flexural waves are compatible with the theory of 

moving loads on floating plates highlights the strong physical connection that exists with the important 

field of moving vehicles on ice. For the case of vehicles, estimation of ice thickness and a physical 
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understanding of flexural waves is important to ensure that cars, trucks and planes do not break 

through thin ice or cause it to buckle by exciting large-amplitude flexural waves (Matiushina et al., 

2016; Takizawa, 1988; Van der Sanden and Short, 2017; Yeung and Kim, 2000). Other vehicles like 

icebreaking hovercraft and submarines may seek to do the opposite, i.e., surface through thin ice or 

cause it to fracture and break apart efficiently by maximising the amplitude of flexural waves they 

excite (Hinchey and Colbourne, 1995; Kozin et al., 2017; Kozin and Pogorelova, 2008). Common to 

these applications is that it is critical to understand the physics that govern the air-ice-water dynamical 

system when it is driven by a load moving across its surface. 

The air-coupled flexural waves studied in Paper 3 are also directly analogous to the non-contact, non-

destructive measurement of plate properties in engineering applications using guided waves and 

acoustic emission (Harb and Yuan, 2018). From the cryoseismological standpoint, non-contact 

estimation of ice thickness may be attractive from a field safety perspective when the ice is too thin to 

safely traverse. Correspondingly, from an engineering perspective, non-contact guided-wave 

measurements can have operational benefits that increase testing speed or capacity, by eliminating 

the need for physical coupling between the sensor and surface. Achieving adequate, repeatable 

surface coupling can be time consuming for concrete slabs due to the need to polish rough surfaces or 

problems of limited access (Harb and Yuan, 2018; Zhu, 2008). The concept of coupling between surface 

or guided flexural waves in solid structures with pressure waves in fluids is also of fundamental 

importance in the field of structural acoustics (e.g. Everstine, 1997; Hambric, 2006; Ohayon and Soize, 

1997). The structures that are studied range from relatively simple cases like concrete slabs (Broyles 

et al., 2020; Park et al., 2015; Zhu, 2008) to the intricately complicated structure of a violin (Bissinger, 

2008). Understanding the coupling between waves in the solid and the air may be leveraged towards 

design goals such as reduction or amplification of noise, or minimisation of vibration within the solid 

(Christensen et al., 1998; Hambric, 2006).  

The number of researchers working on engineering applications of guided and surface waves far 

outweighs the number working in the field of environmental seismology, so it is relatively common to 

discover research results that can be adapted from engineering studies and utilised in environmental 

seismology.  However, it is important to highlight that this synergy is bidirectional such that studies in 

cryoseismology, which may seem esoteric to some, also have deep physical resonance with other fields 

and in particular with common engineering applications.  
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4 Conclusion 

 

4.1 Thesis statement and contributions 

 

This thesis is devoted to advancing the research field of cryoseismology through specific case studies 

of frost quakes in periglacial/permafrost systems and flexural waves in sea/lake ice systems. 

Environmental seismology is an emerging paradigm, underpinned by an expanding focus on passive 

surveying and/or long-term recording of seismic waves. To an extent, the development of this 

paradigm is driven by technological improvements in data acquisition and processing, novel aspects of 

which have been a key focus of this thesis. The cryosphere spans a wide range of environments and 

dynamic processes relating to ice or frozen ground are both a source of and affect the propagation of 

seismic waves. Cryoseismology is, correspondingly, an important sub-discipline of environmental 

seismology. The ability to understand the current state of the cryosphere and the changes resulting 

from global warming have important implications, both for those who inhabit or traverse the frozen 

parts of the planet, and globally through climate feedback mechanisms. In line with the goal to better 

understand the dynamics of the cryosphere through cryoseismology, the principal contributions of this 

thesis are: 

 The demonstration that a complex, multimodal surface wave dispersion structure can be 

resolved from frost quake signals recorded by a sufficiently dense array of passively recording 

seismometers.  

 The illustration that this complex dispersion structure can be related to a simple arrangement 

of horizontal layers, with an anomalously high-velocity surface layer is important for the 

interpretation of seismic surface wave studies in periglacial environments. The observed wave 

dispersion was interpretable in terms of elevated ground ice content and its seasonal variation, 

which also hints at the potential for seismic surface wave monitoring of long-term changes 

and trends in these environments. 

 The connection between cryoseisms and thermal stress was explored in greater detail than 

previously attempted using a long-term, continuous seismic record. Thermal contraction 

cracking appears to be an important trigger of frost quakes in the periglacial environment, 

though it is also clear that additional mechanisms may play a role.   

 The usefulness of air-coupled flexural waves for estimating the thickness of a floating ice sheet 

was demonstrated using a multi-year catalogue of field experiments. The work reported in this 
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thesis may hopefully serve to reinvigorate this topic, which has stagnated since the early 

investigation period in the 1950’s. The simple theoretical framework we implemented unites 

a wide range of observations in different physical settings and highlights alternative acquisition 

approaches. Passive recording by relatively low-tech, inexpensive microphones, in particular, 

may be worthy of further research attention. 

In general, this thesis highlights the richness and value of long-term continuous seismic/acoustic 

records for studying the structure and dynamics of the cryosphere. The high temporal resolution of 

these records is a key strength common across environmental seismology and provides a valuable 

complement to other geophysical methods. The richness of seismic observations is borne out by the 

fact that we were able to use the SPITS array (primarily designed to record regional to teleseismic 

earthquakes) to study frost quakes and explosive source seismic experiments on sea ice (primarily 

conceived as reflection seismic profiles) to elucidate the air-coupled flexural wave phenomenon.  

 

4.2 Future research 

 

Cryoseismology remains an emerging field that will likely continue to develop both in terms of 

methodology and scope of application in the future. Additional research and development is, 

correspondingly, crucial to in order to maximize the potential value of cryoseismology. Following the 

specific case studies addressed in this thesis, a series of directly related research subjects arise as topics 

that could be worthy of further attention:   

1. Calibration experiments to better constrain accuracy of estimated frost quake source 

positions. As demonstrated in Paper 2, the SPITS array on Janssonhaugen is a fantastic 

resource, providing a long term, continuous seismic record in an area subject to a range of 

dynamic periglacial processes. A series of controlled source experiments, using sledgehammer 

blows or small explosive charges at precisely measured locations, would allow much improved 

understanding of the accuracy and reliability of estimating the source position using the 

matched field processing technique. The field logistics to conduct these experiments would be 

relatively straightforward and could be used as a means of calibration to add value to the 

existing permanently deployed infrastructure and the historical catalogue of seismic data 

already recorded. Using a highly repeatable source could also allow issues like spatial seismic 

velocity heterogeneity in the vicinity of the array to be investigated. This could in turn be used 
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to address heterogeneities in ground structure, geology or ground ice content. Improved 

knowledge of the seismic velocity structure around the SPITS array could also be used to 

improve array-based signal processing of regional or teleseismic earthquake signals, which is 

the primary application of the permanent recording station (e.g. Michel et al., 2014). 

 

2.  Optimal 2D array design for resolution of multimodal surface wave dispersion. The fine 

spatial sampling of the temporary array reported on in Paper 1 provided much better 

wavenumber resolving power than the relatively sparse, but permanently installed, SPITS 

array reported on in Paper 2. Given the knowledge gained from the high-resolution temporary 

array on the multimodal structure of surface wave dispersion, it should be possible to optimize 

the number and layout of sensors so that future studies focusing on similar frequencies and 

phase velocities could be carried out more efficiently. Alternatively, additional sensors could 

be deployed temporarily around and between the permanent SPITS seismometer stations. The 

temporary deployment could be used to characterize the dispersion of surface waves in detail 

and build a model of the velocity structure of the subsurface accordingly. This could then act 

as a base model, which in combination with a forward wave propagation model, could be used 

to invert for the velocity structure using only the SPITS stations. Moreau et al. (2020b) have 

shown that using a model-based inversion approach can be highly effective even when the 

number of sensors is very small. While the Moreau et al. (2020b) study focused on the problem 

of a floating ice plate, the concept is likely transferrable to the horizontal layers over a solid 

halfspace that is typically used to represent permafrost and the overlying active layer.  

 

3. Theoretical and practical study of the flexural stiffness of finite floating plates near their 

boundary. In Paper 3, we made the tentative observation that the flexural rigidity of a floating 

ice sheet is modified in proximity to the lateral boundary that exists at the shoreline. We gave 

an approximate theoretical justification for this effect based on elementary theory of finite 

plates in a vacuum. Typically, the more complicated case of ice floating on water has been 

treated by invoking the approximation of an infinite plate and the problem of the apparent 

flexural rigidity of a finite floating plate along a pinned or fixed boundary has not been fully 

elaborated. Experimental data would be of great value in guiding theoretical development and 

a shoreline-perpendicular profile measuring air-coupled flexural frequencies and borehole ice 

thicknesses could provide useful insight and constraint. This line of research would also be of 

relevance to non-destructive testing in industrial or engineering applications, where finite 

plates are prevalent. 
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4. Use of microphones for ice thickness estimation as a tool for improved safety on floating ice. 

In Paper 3, we identified the potential to record air-coupled flexural waves using a simple 

microphone held in the air above a floating ice sheet. The frequency of the air-coupled flexural 

waves can be used to estimate the ice thickness, in combination with an estimate of the elastic 

properties and speed of sound in air. We also demonstrated that ice skates striking or cracking 

the ice surface are capable of exciting air-coupled flexural waves. These observations hint at 

the possibility that recreational ice skaters (and perhaps other ice users) could potentially 

utilize the microphones built into their mobile phones to record and estimate the air-coupled 

flexural frequency of the ice, which could then give an estimate its thickness and warn in the 

case of dangerously thin ice. Of course, a practical application would require more detailed 

and rigorous knowledge than is currently available, but this is a potentially interesting avenue 

for further research. 

 

5. Effects of snow covers on floating ice sheets and air-coupled flexural waves. In Paper 3, we 

were not able to fully elaborate the effects of snow cover on the air-coupled flexural wave 

phenomenon for a floating ice sheet. We would expect that increasing snow cover would 

dampen the air-coupled flexural wave by decreasing the efficiency of coupling between ice 

and air. This effect would likely be frequency dependent and it is uncertain how much damping 

would be required to render the air-coupled flexural wave indetectable, since snow 

accumulation on sea-ice in Van Mijenfjorden is generally limited by wind transport. The snow 

may also act as a thermal insulator, thereby modulating the thermal stresses that develop in 

the ice and decreasing the probability of natural ice quakes. This effect would be relevant to 

the potential to passively monitor ice thickness using air-coupled flexural waves and therefore 

important to elaborate through further research. A seasonal study of ice and snow on a 

freshwater lake could be a relatively simple and effective way to gain a better understanding 

of the interaction between snow covers and air-coupled flexural waves.  
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