Development of the NORSAR 1 network over the last 50 Years 2 3 Johannes Schweitzer (ORCID 0000-0002-5986-1492), corresponding author 4 NORSAR, Gunnar Randers Vei 15, P.O. Box 53, N-2027 Kjeller, Norway 5 email: johannes.schweitzer@norsar.no 6 7 also at: CEED, University of Oslo, P.O. Box 1028, Blindern, N-0315 Oslo, Norway 8 Andreas Köhler (ORCID 0000-0002-5986-1492) 9 email: andreas.kohler@norsar.no 10 Jon Magnus Christensen 11 email: jon.christensen@norsar.no 12

13 Abstract

This contribution describes the development of NORSAR, from its origin 50 years ago as a
project for installing a single seismic array in southern Norway, to a seismological research
institute operating a network of six arrays and 14 3C stations located in Norway and
Antarctica. In addition, we document the different instrumentations from narrowband,
mostly short period sensors to today's broadband seismometers installed at almost all sites.

19 Introduction

20 The Norwegian Seismic Array (NORSAR) project was established after a Government-to-21 Government agreement between the United States of America and Norway in 1968. The purpose of the agreement "... is seismological research and experimentation. The system is 22 primarily designed to produce data valuable as a means of detecting and distinguishing 23 24 between signals originating from underground explosions and from other sources, especially earthquakes." To fulfil the objectives of this agreement, the large NORSAR array was built in 25 26 southern Norway and gave its name to a new institute in Kjeller, on the outskirts of Oslo, with Norway being responsible for the operation of the array. From 1970 – 1993, NORSAR 27 was initially a project and later a section of the Royal Norwegian Council for Industrial and 28 Scientific Research, and from 1993 – 1999 a section of the Norwegian Research Council. On 29 1 July 1999, NORSAR became an independent research foundation (Stiftelsen NORSAR). 30 With the ratification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by Norway on 15 31 32 July 1999, NORSAR became the Norwegian National Data Center (NDC) for the CTBT verification. Since the 1980s, NORSAR has been involved in developing new array 33 34 technologies, deploying new arrays and seismic 3C stations in Northern and Central Europe

and Antarctica and is a leading institution for near-real time data exchange and analysis.
This contribution will concentrate on the development of NORSAR's network of seismic
stations and its data center. Most of NORSAR's seismic stations are today also part of the
Norwegian National Seismic Network (NNSN), which is organized by the University of Bergen
(UiB). In September 2004, the NORSAR network became a member of the Federation of
Digital Seismographic Networks (FDSN) with the FDSN network code NO.

41 Today, NORSAR contributes with 3 seismic arrays (ARCES, NOA, SPITS) and one 3C seismic station (JMIC) to the International Monitoring System (IMS) of the CTBT Organization 42 (CTBTO). As part of its CTBT related activities and as a supporter of an open-data policy, 43 NORSAR distributes seismic records from several installations to different national and 44 45 international data centers. Within the EPOS (European Plate Observing System)-Norway 46 project, a joint Norwegian EIDA (European Integrated waveform Data Archive) node has been established at the University of Bergen in cooperation with NORSAR (see Ottemöller et 47 48 al., 2021). As of December 2020, 203 waveform are forwarded to the node by NORSAR in near-real time from 88 sites, comprising: the arrays ARCES, BEAR, NOA, and SPITS and the 49 50 3C component stations AKN, BRBA, BRBB, JETT, JMIC, and TROLL. Fig. 1 shows the location 51 of today's network of NORSAR stations.

52 The NORSAR Array

The original NORSAR array (Bungum et al., 1971) was planned and built as a smaller version of the Large Aperture Seismic Array (LASA), which had been in operation in Montana (USA) since 1965 (Frosch and Green, 1966). The NORSAR array became fully operational in spring 1971. It consisted of 22 subarrays with 6 seismometer sites each (132 sites in total),

distributed over an aperture of approximately 100 km. Each of the132 sites had a short 57 period, vertical, borehole seismometer, with an additional long period 3C station deployed 58 for each the 22 subarrays, 198 sensors in total (Fig. 2). During the first few years of 59 60 operation, it became clear that the large NORSAR array was an ideal but expensive system 61 for monitoring seismic events at teleseismic distances. In 1976, the original array was 62 reduced to an aperture of approximately 60 km with seven subarrays and 42 sensor sites, 63 with the most sensitive subarrays from the original installation retained for monitoring 64 underground nuclear explosions (Fig. 2). From the beginning in 1971, all data were digitally recorded in near-real time at the NORSAR data center in Kjeller and are still available for 65 research. This provides NORSAR with one of the longest archives of seismological, digital 66 67 data. More or less continuous recordings of the seismic wavefield in southern Norway for the last 50 years offer unique opportunities for seismological studies which require long 68 69 time series to investigate source region specific signal characteristics or long trends in 70 seismic activity. As an example, Fig. 3 shows the large signal similarities between the first (18 May 1974) and second (11 May 1998) Indian nuclear tests recorded at identical NORSAR 71 72 sites (Schweitzer et al., 1998). Due to the limited storage capacities in the early days of digital seismology, NORSAR's archive contains only triggered short period data up until 73 74 September 1982. However, all long period data were recorded continuously.

The first refurbishment of the array was done in 1994/1996, when the old short period GeoSpace Hall-Sears HS-10-1 borehole sensors were replaced by new borehole TeledyneGeotech 20171B sensors, and the long period Teledyne-Geotech 7505B and 8700C sensors
were replaced by Teledyne-Geotech KS-54000 broadband borehole sensors. At one site
(NC602), the broadband borehole sensor was replaced by a Güralp CMG-3T surface sensor

in 2000. In summer 2011 began another major refurbishment of NOA. To maintain the well-80 established high short-period sensitivity of the NORSAR array, but to achieve in addition an 81 enhanced broadband response, a new, hybrid version of the CMG-3T sensor was proposed 82 by NORSAR and built in co-operation with the CTBTO and Güralp Systems (Roth et al., 83 84 2011a). A standard broadband sensor that is flat in velocity response over several order of magnitudes of the seismic spectrum would often clip when recording large amplitude 85 surface waves. By lowering the gain to avoid clipping, the array would lose its high 86 87 sensitivity for higher frequency signals. In contrast, the hybrid sensors have two sensitivity levels – one for lower and one for higher frequencies. A 3C hybrid sensor was installed at 88 89 each subarray, while vertical-only hybrid sensors were deployed as borehole instruments at 90 all the other subarray sites. Fig. 4 shows the typical velocity response of these vertical borehole instruments. As a result of this refurbishment, the entire NORSAR array with its 60 91 92 km aperture has been equipped with 42 broadband sensors since summer 2012. NOA is part 93 of the primary seismic network of the IMS as station PS27, constituting its largest array.

94 The Regional Arrays

95 During the operation of NOA it became evident that the geometry of large aperture arrays was not optimal for monitoring seismicity at regional or local distances due to the low 96 97 coherency of their higher frequency signals. Such monitoring is needed, however, for the detection of low yield nuclear explosions. Therefore, the concept of regional, small aperture 98 arrays was developed and tested at NORSAR, in cooperation with US colleagues from 1979 99 100 onwards. After the optimal design was found, the first array of this kind was installed in 101 southern Norway in 1984: the NORESS (Norwegian Experimental Seismic System) array was 102 built with 25 sites distributed on four concentric circles (with an outer circle radius was

103 approximately 1.5 km) around the NOA site NC602 (Mykkeltveit, 1985, Mykkeltveit et al., 104 1990). The array started its operation in October 1984 with 25 vertical GS-13 short period sensors. In addition, 4 sites were equipped with GS-13 horizontal sensors and the center site 105 with an additional KS-35000 borehole instrument. The array, which was later named NORES, 106 107 remained out of operation from 2002 to 2011 after a lightning incident where fire destroyed 108 most of the installed electronic equipment. In January 2011, NORES became operational again, first with 3C short period sensors at the nine innermost elements of its originally 25 109 110 sites (A- and B-ring). These nine sites were upgraded with 3C broadband sensors (Güralp CMG-ESPC 3C) in August 2015, and in 2017 the seven sites of the C-ring were restored. 111 112 Today, NORES operates as a 16-element 3C broadband array. Fig. 5 shows this configuration

and geometry in common scale with other NORSAR arrays.

114 After proving the regional array concept, NORSAR built its second regional array, the ARCESS (Arctic Experimental Seismic System) in northern Norway, as a direct copy of NORESS (Fig. 5, 115 116 Mykkeltveit et al., 1990), the main objective being monitoring the former Soviet nuclear test sites on Novaya Zemlya. The array, which is now named ARCES, has been in operation since 117 118 October 1987. The most significant upgrade took place in September 2014 and involved the 119 replacement of the old GS-13 sensors at all 25 sites with Güralp 3C hybrid broadband 120 sensors, the same type as developed for NOA (Gibbons et al., 2019). ARCES is the second 121 NORSAR array within the primary seismic network of IMS stations (PS28).

In 1990, NORSAR researchers came in contact with seismologists working at the Kola
Regional Seismological Centre (KRSC), at that time belonging to the Kola Branch of the
Russian Academy of Sciences in Apatity. In the framework of a joint project based on a
common interest in seismic monitoring of the European Arctic and the Kola peninsula, the

old analog seismic station in the town of Apatity was upgraded with digital equipment in
summer 1991, and a seismic array (APAES) was installed close to Apatity, in autumn 1992
(Mykkeltveit et al., 1991; 1992). With an aperture of approximately 1 km and 9 seismic
sensor sites, this array is smaller than NORES and ARCES. After its installation by NORSAR,
the array has been operated and maintained by the KRSC.

131 Furthermore, in 1992, NORSAR built another new 9-element array (SPITS) (see Fig. 5) about 132 17 km east-southeast of Longyearbyen, on Janssonhaugen, in Adventdalen, Spitsbergen, the main island of the Svalbard Archipelago, to extend the network of small aperture arrays in 133 Northern Europe and to improve the monitoring capabilities in the Arctic (Mykkeltveit et al., 134 135 1991; 1992). To avoid movements of instruments due to the seasonal thawing and freezing 136 of the ground, all seismic sensors were installed in boreholes below the permafrost active 137 layer (approximately 6 m at the SPITS site). In 1994, the original instrumentation of Geotech S-500 vertical sensors was replaced by Güralp CMG-3ESP vertical, short period, borehole 138 139 sensors, and at one site an additional CMG-3T borehole, 3C, broadband instrument was installed. In August 2004, the SPITS array underwent a general upgrade. All seismometers 140 were replaced with new Güralp CMG-3TB broadband, borehole sensors: six sites with 3C 141 142 sensors and three sites with vertical sensors (Schweitzer & Kværna, 2006). The SPITS array is 143 part of the auxiliary network of the IMS, known as station AS72.

In addition to permanent deployments, temporary seismic arrays have been installed by
NORSAR. During an International Polar Year 2007-2008 project led by NORSAR (Schweitzer
et al., 2008), a small aperture array of 13 elements had been temporarily operated on
Bjørnøya, a small island, half the distance between the northern coast of Fennoscandia and
the Svalbard Archipelago. This 5-month long deployment was jointly undertaken with

149 colleagues from the University of Potsdam, Germany, during the Arctic summer season 2008 150 (Händel et al., 2010). This installation demonstrated the advantages of an array compared to a single 3C station for monitoring the seismicity in the Barents Sea and along the 151 neighboring part of the mid-Atlantic ridge system. Within the framework of EPOS-Norway, it 152 153 became possible to realize a longer duration deployment on Bjørnøya than the 2008 deployment. The original plan was to install a SPITS-like nine-element array in the center of 154 155 the island, to reduce the noise from ocean waves hitting the shorelines. However, due to 156 environmental restrictions for this highly protected area, NORSAR was only permitted to install a six-element array (BEAR) in a limited area close to a meteorological station near the 157 northern shoreline - the only inhabited place on the island. The array element locations 158 were chosen to reduce the Rg-wave noise caused by the ocean waves (Händel et al., 2010), 159 but the resulting geometry (Fig. 5) is not optimal for classical array data analysis techniques, 160 161 such as beamforming or fk- analysis (see e.g., Schweitzer et al., 2012b). All array sites, which 162 are planned to operate at least until 2025, are equipped with Kinemetrics MBB-2 broadband 163 sensors.

In May 2020, a small-aperture, SPITS-like temporary 9-element array was installed on
Holsnøy on the west coast of southern Norway (HNAR) as part of a collaborative project
between Equinor and NORSAR. The purpose of this array is to establish the level of
background seismicity in the Horda platform area, offshore western Norway, which is a
designated area for a future subsurface CO₂ storage site. HNAR has an aperture of 900 m
and consists of 9 sites equipped with Güralp 3T-120 broadband 3C sensors.

170 Single Stations

Since autumn 2003, NORSAR has extended its seismic network through the deployment of
several single, broadband, 3C stations as part of dedicated projects. The first such station,
which is equipped with a broadband STS-2 sensor, was the CTBTO auxiliary station (AS73)
JMIC on the island of Jan Mayen in the middle of the North Atlantic.

175 Within the IPY 2007-2008 project (Schweitzer et al., 2008), the already existing seismic

176 station at Hornsund (HSP), the Polish Polar Research Base in the southern part of

177 Spitsbergen, was upgraded to a broadband station (HSPB) as a joint activity between the

178 Institute of Geophysics of the Polish Academy of Sciences and NORSAR, in September 2007

179 (Wilde-Piórko et al., 2009). This station is also equipped with an STS-2 sensor and belongs

today to the Polish seismological network (FDSN network code PL).

To monitor the unstable rock slopes in Norway NORSAR operates two broadband 3C
stations, at Åknes (AKN) since October 2009 and at Nordnes (JETT) since November 2014.
Furthermore, to measure seismic ground motion alongside infrasound records, the
Norwegian IMS infrasound array IS37 in Bardufoss was augmented at its central array site
with a seismic 3C station (I37HO), in July 2015. All of these stations are equipped with

186 Güralp CMG-ESPC broadband sensors.

For a better understanding of seismotectonic and cryoseismicity in the European Arctic it is necessary to densify the seismic network on Svalbard. Therefore, in September 2010, the seismic station in Barentsburg (BRBA), the Russian settlement on Svalbard, was upgraded with a Güralp ESPC sensor as part of a joint project between NORSAR and the KRSC (Roth et al., 2011b). A year later, BRBA was supplemented with a second, identical seismic station

(BRBB) in the same area. Data from both stations are forwarded to the Norwegian EIDAnode as part of the NORSAR network.

In the framework of a joint project between NORSAR and the Norwegian Polar Institute, NORSAR installed a broadband 3C station (TROLL) with an STS-2.5 sensor at the Norwegian research base Troll in Dronning Maud Land (DML), Antarctica, in February 2012 (Fig. 6).The scientific purpose of the station is monitoring regional and global seismicity, as well as the dynamics of the Antarctic ice sheet (Schweitzer et al., 2012a; 2014).

199 Since summer 2018, NORSAR is reusing the short period Teledyne-Geotech GS-13 sensors 200 from the original NORES and ARCES instrumentations in a local network of seven 3C seismic 201 stations around the Oslofjord in southern Norway (OFSN). The purpose of the network is 202 monitoring local seismicity in this densely populated region and thus being able to better inform the public about events that are usually felt over wide areas. In 1904, the southern 203 204 Oslofjord had been the location of an Ms 5.4 earthquake, which is still the largest 205 instrumentally observed seismic event in mainland Norway (Bungum et al., 2009) and demonstrates the potential for moderate-larger magnitude events in the region. 206 207 Between 2012 and 2014, the Norwegian pool of mobile stations was established as a 208 national research infrastructure project. This broadband pool is managed by a committee 209 consisting of representatives from all institutions in Norway with an interest in seismology and is led and hosted by NORSAR. The pool comprises 30 mobile stations consisting of 30 210 211 EDR-210 dataloggers, 24 STS-2.5, and 6 CMG-3ESPC sensors.

212 Data Archiving

In autumn 2001, NORSAR started to store all new data on disk for direct access. During the 213 last decades, NORSAR has transferred all its archived array data that were previously stored 214 across approximately 35,000 magnetic tapes to a modern disk storage system in order to 215 216 preserve these data for future use. In parallel, all metadata for the data collected in 217 NORSAR's archive were compiled, quality checked and made available in standard metadata 218 formats (Pirli, 2013). A detailed description of installed sensors and digitizers and the corresponding transfer functions at the different NORSAR stations until 2013 can be found 219 in Pirli (2013). NORSAR is contributing its data and analysis results to the Norwegian 220 221 National Seismic Network (NNSN, FDSN network code NS, University of Bergen, 1982) 222 operated by the University of Bergen where there is a bilateral data sharing agreement for 223 all NNSN data. Most of the near-real time data as well as a huge amount of the historical data are made accessible to the seismological community via the Norwegian EIDA node 224 225 (Ottemöller et al., 2021). In addition, NORSAR has a long tradition of exchanging digital data, especially from seismic arrays, with other institutions in Europe and in particular 226 Fennoscandia. These data are also stored in NORSAR's data archive. 227

228 Outlook

Due to the environmental restrictions affecting the deployment of the originally planned 9element small aperture array on Bjørnøya within the afore mentioned EPOS-Norway
project, NORSAR has proposed employing the unused equipment for another small aperture
6-element array at the Polish Research Station Hornsund, close to the southern tip of
Spitsbergen. The idea has been supported by colleagues from the Polish Academy of

Sciences, who operates the research station at Hornsund, with the installation of the array
initially planned for summer 2020. However, because of the travel restrictions due to the
COVID-19 pandemic, the deployment has been postponed to the next available opportunity.
Thereafter, the challenge will be to extend the highly sensitive 3C station TROLL in
Antarctica to an array. NORSAR would operate then the northernmost and southernmost
seismic arrays installed on bedrock, monitoring global and regional seismicity from Pole to
Pole.

241 Data Resources

All data used in this paper came from published sources listed in the references. Figs. 1 and 2 have
been plotted using the Generic Mapping Tools (www.soest.hawaii.edu/gmt; Wessel and Smith,
1998). Coordinates and current seismometer equipment of all stations in NORSAR's network are
listed in Table 1.

246 Acknowledgements

247 All planning, installation, operation and maintenance of NORSAR's arrays and 3C stations during the last 50 years was financed by numerous grants from the US Air Force Technical Applications Center 248 249 (AFTAC), the Advanced Research Project Agency (ARPA), the US Department of Energy, the Ministry 250 of Foreign Affairs of Norway, the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO), the Research Council of Norway (RCN), the Norwegian Water Resources and Energy Directorate (NVE), 251 252 the Norwegian Polar Institute, Equinor and the CLIMIT Fond/GASSNOVA. The authors deeply 253 acknowledge the contributions of NORSAR's staff to planning, installation, operation and 254 maintenance of NORSAR's network during the last 50 years and in particular the contributions of our 255 former colleagues Hilmar Bungum, Jan Fyen, Paul Larsen, Svein Mykkeltveit, Frode Ringdal and 256 Michael Roth and the late Oddmund Hansen and Jørgen Torstveit. We thank Svein Mykkeltveit,

- 257 Myrto Pirli and Ben Dando for thorough comments and corrections to the text. . The manuscript has
- 258 benefited from the work of two anonymous reviewers and guest editor Helle Pedersen.

259 References

- Bungum, H., E. S. Husebye, and F. Ringdal (1971). The NORSAR array and preliminary results
 of data analysis, *Geophys. J. R. astr. Soc.* 25, 115-126.
- Bungum, H., F. Pettenati, J. Schweitzer, L. Sirovich, and J. I. Faleide (2009). The 23 October
- 263 1904 MS 5.4 Oslofjord earthquake: reanalysis based on macroseismic and instrumental
- data, Bull. Seism. Soc. Amer. 99, 2836-2854, doi: 10.1785/0120080357
- Frosch, R. A., and P. E. Green Jr. (1966). The concept of a large aperture seismic array, *Proc. Royal Soc.* A-290, 368-384.
- 267 Gibbons, S. J., J. Schweitzer, T. Kværna, and M. Roth (2019). Enhanced detection and
- estimation of regional S-phases using the 3-component ARCES array, J. Seism. 23, 341-
- 269 356, doi: 10.1007/s10950-018-9809-y
- 270 Händel, H., J. Schweitzer, and F. Krüger (2010). Local seismicity on and near Bear Island
- 271 (Norwegian Arctic) from a temporary small aperture array installation in 2008, NORSAR
- 272 Scientific Report **2–2010**, 55-64.
- 273 International Seismological Centre (2020), International Seismograph Station Registry (IR), <u>doi:</u>
- 274 <u>10.31905/EL3FQQ40</u>
- 275 Mykkeltveit, S. (1985). A new regional array in Norway: design work and results from
- analysis of data from a provisional installation, in *The VELA Program. A twenty-five year*
- 277 *review of basic research*, Kerr, A. U. (ed), DARPA, pp. 546-553.
- 278 Mykkeltveit, S., F. Ringdal, T. Kværna, and R. W. Alewine (1990). Application of regional
- arrays in seismic verification research, *Bull. Seism. Soc. Am.* **80**, 1777-1800.

280	Mykkeltveit, S., A. Dahle, J. Fyen, T. Kværna, P. W. Larsen, R. Paulsen, F. Ringdal, and E. O.
281	Kremenetskaya (1991). Extensions of the Northern Europe Regional Array Network – a
282	new three-component station at Apatity, USSR, and a planned array at Spitsbergen,
283	NORSAR Scientific Report 1-91/92 , 100-111.
284	Mykkeltveit, S., A. Dahle, J. Fyen, T. Kværna, P. W. Larsen, R. Paulsen, F. Ringdal, and I.
285	Kuzmin (1992). Extensions of the Northern Europe Regional Array Network – New
286	small-aperture arrays at Apatity, Russia, and on the Arctic island of Spitsbergen,
287	NORSAR Scientific Report 1-92/93 , 58-71.
288	Ottemöller, L., J. Michalek, JM. Christensen, U. Baadshaug, F. Halpaap, Ø. Natvik, T.
289	Kværna, and V. Oye. (2021). UiB-NORSAR EIDA node: Integration of seismological data
290	in Norway, <i>Seismol. Res. Lett.</i> This issue.
291	Pirli, M. (2013). NORSAR System Responses Manual, NORSAR, Kjeller, 3 rd ed., 304 pp. + V
292	Appendices.
293	Roth, M., J. Fyen, P. W. Larsen, and J. Schweitzer (2011a). Test of new hybrid seismometers
294	at NORSAR, NORSAR Scientific Report 1–2011 , 61-71.
295	Roth, M., M. Pirli, J. Schweitzer, and E. Kremenetskaya (2011b). Installation of the seismic
296	broadband station in Barentsburg, Svalbard, NORSAR Scientific Report 1–2011, 53-60.
297	Schweitzer, J., and The IPY Project Consortium Members (2008). The International Polar
298	Year 2007-2008 Project "The Dynamic Continental Margin between the Mid-Atlantic-
299	Ridge System (Mohn's Ridge, Knipovich Ridge) and the Bear Island Region", NORSAR
300	<i>Scientific Report</i> 1–2008 , 53-63.

301	Schweitzer, J., and T. Kværna (2006). Improvements to SPITS regional S-phase detection;
302	coherent beamforming of rotated horizontal components, NORSAR Scientific Report 2-
303	2006 , 47-58.

- Schweitzer, J., F. Ringdal, and J. Fyen (1998). The Indian nuclear explosions of 11 and 13 May
 1998, NORSAR Scientific Report 2–97/98, 121–130.
- Schweitzer, J., M. Roth, and M. Pirli (2012a). The new three-component very broadband
 seismic station TROLL, Antarctica, *NORSAR Scientific Report* 1–2012, 39-46.
- 308 Schweitzer, J., J. Fyen, S. Mykkeltveit, S. J. Gibbons, M. Pirli, D. Kühn, and T. Kværna (2012b).
- 309 Seismic Arrays, doi: 10.2312/GFZ.NMSOP-2_ch9; 80 pp.; in, *New Manual of*
- 310 *Seismological Observatory Practice (NMSOP-2)*, P. Bormann (ed.), 2nd (revised) edition,
- 311 Potsdam: Deutsches GeoForschungsZentrum GFZ, doi: 10.2312/GFZ.NMSOP-2
- 312 Schweitzer, J., M. Pirli, M. Roth, and T. Kværna (2014). TROLL: a new, very broadband
- seismic station in Antarctica, *Seism. Res. Lett.* **85**, 852-862, doi: 10.1785/0220130223.
- 314 University of Bergen. (1982). University of Bergen Seismic Network [Data set]. International
- 315 Federation of Digital Seismograph Networks. doi: 10.7914/SN/NS
- Wessel, P., and W.H.F. Smith (1998). New, Improved version of the Generic Mapping Tools
 released, *Eos, Trans. Amer. Geophys. U.* **79**, 579.
- 318 Wilde-Piórko, M., M. Grad, P. Wiejacz, and J. Schweitzer (2009). HSPB seismic broadband
- 319 station in Southern Spitsbergen: First results on crustal and mantle structure from
- 320 receiver functions and SKS splitting *Polish Polar Research* **40**, (4), 301-316, doi:
- 321 10.4202/ppres.2009.16

322	Johannes Schweitzer
323	NORSAR, P.O. Box 53, N-2027 Kjeller, Norway
324	email: johannes.schweitzer@norsar.no
325	also at:
326	CEED, University of Oslo, P.O. Box 1028, Blindern, N-0315 Oslo, Norway
327	
328	Andreas Köhler
329	NORSAR, P.O. Box 53, N-2027 Kjeller, Norway
330	email: andreas.kohler@norsar.no
331	also at:
332	The Arctic University of Norway, Tromsø, Norway
333	
334	Jon Magnus Christensen
335	NORSAR, P.O. Box 53, N-2027 Kjeller, Norway

336 email: jon.christensen@norsar.no

Table 1. All station sites of NORSAR's current network and their current instrumentation

338 (September 2020).

IR* Code Seismic Sensor Component(s) [*] [*] [km] NORSAR array NOA (PS27), March 1971 – present Subarray Brunurdal (NA0) CMG-1V-Hybrid BBZ 60.8237 10.8324 0.3790 NA000 CMG-3T-Hybrid VBB-3C 60.8442 10.8865 0.4260 NA001 CMG-3T-Hybrid BBZ 60.8105 10.7625 0.2970 NA003 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NA004 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Varsser (NB2) 11.2148 0.7170 NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.6470 NB204 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB205 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB004 CMG-1V-Hybrid BBZ 61.0307 <t< th=""><th>Station</th><th></th><th></th><th>Latitude</th><th>Longitude</th><th>Elevation</th></t<>	Station			Latitude	Longitude	Elevation	
Subarray Brumundal (NA0) NAO00 CMG-1V-Hybrid BBZ 60.8237 10.8324 0.3790 NAO01 CMG-3T-Hybrid VBB-3C 60.8442 10.8865 0.4260 NAO02 CMG-1V-Hybrid BBZ 60.8057 10.8971 0.3620 NAO03 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO04 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Vangsåsen (NB2) NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB001 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB002 CMG-1V-Hybrid BBZ	IR* Code	Seismic Sensor	Component(s)	[°]	[°]	[km]	
NAO00 CMG-1V-Hybrid BBZ 60.8237 10.8324 0.3790 NAO01 CMG-3T-Hybrid VBB-3C 60.8442 10.8865 0.4260 NAO02 CMG-1V-Hybrid BBZ 60.8057 10.8971 0.3620 NAO03 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Vargsåsen (NB2) 0.6130 11.2148 0.7170 NB201 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB000 CMG-1V-Hybrid BBZ 61.0492 10.8371 0.4290 NB001 CMG-1V-Hybrid BBZ 61.0129 10.7724 0.5290 NB							
NAO01 CMG-3T-Hybrid VBB-3C 60.8442 10.8865 0.4260 NAO02 CMG-1V-Hybrid BBZ 60.8057 10.8971 0.3620 NAO03 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO04 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Varpsizen (MB2) VB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0107 11.1581 0.6700 NB203 CMG-1V-Hybrid BBZ 61.0498 11.1977 0.6370 NB204 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0492 10.8371 0.4290 NB002 CMG-1V-Hybrid BBZ 61.0197 10.7219 0.	Subarray Br	umunddal (NAO)					
NAO02 CMG-1V-Hybrid BBZ 60.8057 10.8971 0.3620 NAO03 CMG-1V-Hybrid BBZ 60.7881 10.8084 0.2230 NAO04 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray V== Subarray V= 10.8193 0.7170 NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB203 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB204 CMG-1V-Hybrid BBZ 61.0171 11.1977 0.5290 NB005 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB004 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB005 CMG-1V-Hybrid	NAO00	CMG-1V-Hybrid	BBZ	60.8237	10.8324	0.3790	
NAO03 CMG-1V-Hybrid BBZ 60.7881 10.8084 0.2230 NAO04 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Varussisen (NB2) NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB203 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB204 CMG-1V-Hybrid BBZ 61.0101 11.1977 0.6370 Subarray MeV VBD0 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB002 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NB003 CMG-1V-Hybrid BBZ 61.0119	NAO01	CMG-3T-Hybrid	VBB-3C	60.8442	10.8865	0.4260	
NAO04 CMG-1V-Hybrid BBZ 60.8105 10.7625 0.2970 NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Vangsåsen (NB2) NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB203 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB204 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB204 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB000 CMG-3T-Hybrid VBB-3C 61.0129 10.8371 0.4290 NB001 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB003 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NB004 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.	NAO02	CMG-1V-Hybrid	BBZ	60.8057	10.8971	0.3620	
NAO05 CMG-1V-Hybrid BBZ 60.8507 10.8193 0.2900 Subarray Vangsåsen (NB2) NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0710 11.1977 0.6370 NB205 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB000 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.01616 10.7834 0.5960 NB002 CMG-1V-Hybrid BBZ 61.0192 10.8371 0.4290 NB003 CMG-1V-Hybrid BBZ 61.0192 10.8371 0.4290 NB04 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.	NAO03	CMG-1V-Hybrid	BBZ	60.7881	10.8084	0.2230	
Subarray Vangsåsen (NB2) NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 NB000 CMG-3T-Hybrid VBB-3C 61.0616 10.7834 0.5960 NB001 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB002 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NB003 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lillehammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ	NAO04	CMG-1V-Hybrid	BBZ	60.8105	10.7625	0.2970	
NB200 CMG-1V-Hybrid BBZ 61.0397 11.2148 0.7170 NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0498 11.1977 0.6370 Subarray Moelv (NBO) NB600 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB002 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB03 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lillemmer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807	NAO05	CMG-1V-Hybrid	BBZ	60.8507	10.8193	0.2900	
NB201 CMG-3T-Hybrid VBB-3C 61.0495 11.2939 0.6130 NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0107 11.1977 0.6370 NB205 CMG-1V-Hybrid BBZ 61.0307 10.7774 0.5290 Subarray Moreter VBB-3C 61.0307 10.7774 0.5290 NB000 CMG-3T-Hybrid VBB-3C 61.0616 10.7834 0.5960 NB001 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB002 CMG-1V-Hybrid BBZ 61.019 10.7524 0.3980 NB003 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NB004 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC200 CMG-1V-Hybrid BBZ 61.2807 10.8318 0.7140 NC201	Subarray Va	ngsåsen (NB2)					
NB202 CMG-1V-Hybrid BBZ 61.0069 11.2778 0.6470 NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0710 11.1977 0.6370 Subarray More VINBO9 Subarray 0.6470 0.5290 NB000 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB002 CMG-1V-Hybrid BBZ 61.019 10.7524 0.3980 NB003 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 NB004 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CM	NB200	CMG-1V-Hybrid	BBZ	61.0397	11.2148	0.7170	
NB203 CMG-1V-Hybrid BBZ 61.0107 11.1677 0.7300 NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0710 11.1977 0.6370 Subarray Moetv (NBO) NB000 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB002 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB03 CMG-1V-Hybrid BBZ 61.0199 10.7524 0.3980 NB04 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NB05 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ 61.2817 10.8131 1.0330	NB201	CMG-3T-Hybrid	VBB-3C	61.0495	11.2939	0.6130	
NB204 CMG-1V-Hybrid BBZ 61.0498 11.1581 0.6700 NB205 CMG-1V-Hybrid BBZ 61.0710 11.1977 0.6370 Subarray Moelv (NBO) NB000 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0616 10.7834 0.5960 NB002 CMG-1V-Hybrid BBZ 61.0129 10.8569 0.5210 NB003 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB004 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 NB005 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC200 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-1V-Hybrid BBZ 61.23231 10.8227 0.9580 </td <td>NB202</td> <td>CMG-1V-Hybrid</td> <td>BBZ</td> <td>61.0069</td> <td>11.2778</td> <td>0.6470</td>	NB202	CMG-1V-Hybrid	BBZ	61.0069	11.2778	0.6470	
NB205 CMG-1V-Hybrid BBZ 61.0710 11.1977 0.6370 Subarray M VBO0 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0616 10.7834 0.5960 NB002 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB003 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB004 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NB005 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NB005 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ 61.2438 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.8138 0.7140 <td>NB203</td> <td>CMG-1V-Hybrid</td> <td>BBZ</td> <td>61.0107</td> <td>11.1677</td> <td>0.7300</td>	NB203	CMG-1V-Hybrid	BBZ	61.0107	11.1677	0.7300	
Subarray Moelv (NBO) VBB-3C 61.0307 10.7774 0.5290 NBO00 CMG-3T-Hybrid BBZ 61.0616 10.7834 0.5960 NBO01 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NBO03 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NBO04 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lillehammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8318 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 <td>NB204</td> <td>CMG-1V-Hybrid</td> <td>BBZ</td> <td>61.0498</td> <td>11.1581</td> <td>0.6700</td>	NB204	CMG-1V-Hybrid	BBZ	61.0498	11.1581	0.6700	
NB000 CMG-3T-Hybrid VBB-3C 61.0307 10.7774 0.5290 NB001 CMG-1V-Hybrid BBZ 61.0616 10.7834 0.5960 NB002 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NB003 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NB004 CMG-1V-Hybrid BBZ 61.019 10.7524 0.3980 NB005 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lillehammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC203 CMG-1V-Hybrid BBZ 61.2817 10.9110 1.0540 NC204 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.85	NB205	CMG-1V-Hybrid	BBZ	61.0710	11.1977	0.6370	
NBO01 CMG-1V-Hybrid BBZ 61.0616 10.7834 0.5960 NBO02 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NBO03 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NBO04 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lill-hammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC203 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 NC204 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2752 11.4055 0.2900	Subarray Mo	oelv (NBO)					
NBO02 CMG-1V-Hybrid BBZ 61.0492 10.8569 0.5210 NBO03 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NBO04 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lill+ammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC202 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC203 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC204 CMG-3T-Hybrid VBB-3C 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.29	NBO00	CMG-3T-Hybrid	VBB-3C	61.0307	10.7774	0.5290	
NBO03 CMG-1V-Hybrid BBZ 61.0129 10.8371 0.4290 NBO04 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lill+ammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC203 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.30	NBO01	CMG-1V-Hybrid	BBZ	61.0616	10.7834	0.5960	
NBO04 CMG-1V-Hybrid BBZ 61.0119 10.7524 0.3980 NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lill=mmer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2545 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC204 CMG-3T-Hybrid BBZ 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.2759 10.7629 0.8510 NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 </td <td>NBO02</td> <td>CMG-1V-Hybrid</td> <td>BBZ</td> <td>61.0492</td> <td>10.8569</td> <td>0.5210</td>	NBO02	CMG-1V-Hybrid	BBZ	61.0492	10.8569	0.5210	
NBO05 CMG-1V-Hybrid BBZ 61.0597 10.7219 0.5530 Subarray Lillehammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2545 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-3T-Hybrid BBZ 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Reverse NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-1V-Hybrid BBZ 61.2784 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.	NBO03	CMG-1V-Hybrid	BBZ	61.0129	10.8371	0.4290	
Subarray Lillehammer (NC2) NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2545 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Remain (NC3) CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC301 CMG-1V-Hybrid BBZ 61.2251 11.3690 0.4010 NC302 CMG-3T-Hybrid VBB-3C 61.2251 11.3200 0.3930 NC303 CMG-3T-Hybrid BBZ 61.2784 11.3320 0.3930 NC304 CMG-1V-Hybrid BBZ 61.2979 11.4035 </td <td>NBO04</td> <td>CMG-1V-Hybrid</td> <td>BBZ</td> <td>61.0119</td> <td>10.7524</td> <td>0.3980</td>	NBO04	CMG-1V-Hybrid	BBZ	61.0119	10.7524	0.3980	
NC200 CMG-1V-Hybrid BBZ 61.2807 10.8354 0.8470 NC201 CMG-1V-Hybrid BBZ 61.2988 10.9138 1.0330 NC202 CMG-1V-Hybrid BBZ 61.2545 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Remational (NC3) CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC301 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.27784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120	NBO05	CMG-1V-Hybrid	BBZ	61.0597	10.7219	0.5530	
NC201CMG-1V-HybridBBZ61.298810.91381.0330NC202CMG-1V-HybridBBZ61.254510.91101.0540NC203CMG-1V-HybridBBZ61.243810.83180.7140NC204CMG-3T-HybridVBB-3C61.275910.76290.8510NC205CMG-1V-HybridBBZ61.323110.82270.9580Subarray Rena(NC3)CMG-1V-HybridBBZ61.261711.41410.3660NC300CMG-1V-HybridBBZ61.275211.49050.2900NC301CMG-1V-HybridBBZ61.232811.47260.3000NC302CMG-1V-HybridBBZ61.225111.36900.4010NC303CMG-1V-HybridBBZ61.278411.33200.3930NC305CMG-1V-HybridBBZ61.297911.40350.3120Subarray Elverum (NC4)VBVBVAVAVA	Subarray Lil	ehammer (NC2)			•		
NC202 CMG-1V-Hybrid BBZ 61.2545 10.9110 1.0540 NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Revalues NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC303 CMG-1V-Hybrid BBZ 61.2784 11.320 0.3930 NC304 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120	NC200	CMG-1V-Hybrid	BBZ	61.2807	10.8354	0.8470	
NC203 CMG-1V-Hybrid BBZ 61.2438 10.8318 0.7140 NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Rematcher NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid BBZ 61.2251 11.3690 0.4010 NC303 CMG-3T-Hybrid VBB-3C 61.2784 11.3320 0.3930 NC304 CMG-1V-Hybrid BBZ 61.2784 11.4035 0.3120 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elv-um (NC4) VB 61.2979 11.4035 0.3120	NC201	CMG-1V-Hybrid	BBZ	61.2988	10.9138	1.0330	
NC204 CMG-3T-Hybrid VBB-3C 61.2759 10.7629 0.8510 NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Rena (NC3) NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid BBZ 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC304 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120	NC202	CMG-1V-Hybrid	BBZ	61.2545	10.9110	1.0540	
NC205 CMG-1V-Hybrid BBZ 61.3231 10.8227 0.9580 Subarray Rena (NC3) NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2751 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elvrum (NC4) VB VB VB VB VB VB	NC203	CMG-1V-Hybrid	BBZ	61.2438	10.8318	0.7140	
Subarray Rena (NC3) CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC300 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elv=rum (NC4) VBB-3C 61.2979 11.4035 0.3120	NC204	CMG-3T-Hybrid	VBB-3C	61.2759	10.7629	0.8510	
NC300 CMG-1V-Hybrid BBZ 61.2617 11.4141 0.3660 NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) Elverum (NC4) Elverum (NC4) Elverum (NC4) Elverum (NC4)	NC205	CMG-1V-Hybrid	BBZ	61.3231	10.8227	0.9580	
NC301 CMG-1V-Hybrid BBZ 61.2762 11.4905 0.2900 NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) VA VA VA VA VA	Subarray Rena (NC3)						
NC302 CMG-1V-Hybrid BBZ 61.2328 11.4726 0.3000 NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) V <	NC300	CMG-1V-Hybrid	BBZ	61.2617	11.4141	0.3660	
NC303 CMG-3T-Hybrid VBB-3C 61.2251 11.3690 0.4010 NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) VC4 VC4 VC4 VC4 VC4	NC301	CMG-1V-Hybrid	BBZ	61.2762	11.4905	0.2900	
NC304 CMG-1V-Hybrid BBZ 61.2784 11.3320 0.3930 NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) V V V V V	NC302	CMG-1V-Hybrid	BBZ	61.2328	11.4726	0.3000	
NC305 CMG-1V-Hybrid BBZ 61.2979 11.4035 0.3120 Subarray Elverum (NC4) <	NC303	CMG-3T-Hybrid	VBB-3C	61.2251	11.3690	0.4010	
Subarray Elverum (NC4)	NC304	CMG-1V-Hybrid	BBZ	61.2784	11.3320	0.3930	
	NC305	CMG-1V-Hybrid	BBZ	61.2979	11.4035	0.3120	
NC400 CMG-1V-Hybrid BBZ 61.0791 11.7189 0.5220	Subarray Elverum (NC4)						
	NC400	CMG-1V-Hybrid	BBZ	61.0791	11.7189	0.5220	

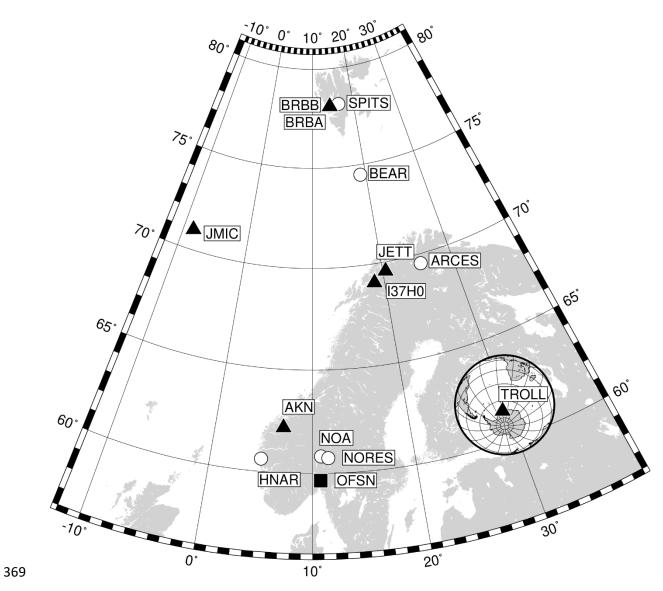
NC401	CMG-1V-Hybrid	BBZ	61.0804	11.7994	0.5830
NC402	CMG-1V-Hybrid	BBZ	61.0446	11.7573	0.4500
NC403	CMG-1V-Hybrid	BBZ	61.0537	11.6683	0.3040
NC404	CMG-1V-Hybrid	BBZ	61.0982	11.6456	0.3320
NC405	CMG-3T-Hybrid	VBB-3C	61.1128	11.7153	0.4960
Subarray Løt	ten (NC6)				
NC600	CMG-1V-Hybrid	BBZ	60.7473	11.4584	0.3210
NC601	CMG-1V-Hybrid	BBZ	60.7746	11.5416	0.2480
NC602	CMG-3T-Hybrid	VBB-3C	60.7353	11.5414	0.3050
NC603	CMG-1V-Hybrid	BBZ	60.7050	11.4807	0.3400
NC604	CMG-1V-Hybrid	BBZ	60.7263	11.3956	0.3780
NC605	CMG-1V-Hybrid	BBZ	60.7770	11.4103	0.2420
NO	RES Array, Octobe	r 1985 – 11/06/2	2002; 29/12/2	2010 – prese	nt
NRA0	CMG-ESPC	BB3C	60.7353	11.5414	0.3020
NRA1	CMG-ESPC	BB3C	60.7366	11.5423	0.2910
NRA2	CMG-ESPC	BB3C	60.7343	11.5433	0.3110
NRA3	CMG-ESPC	BB3C	60.7350	11.5387	0.2960
NRB1	CMG-ESPC	BB3C	60.7381	11.5426	0.2990
NRB2	CMG-ESPC	BB3C	60.7355	11.5475	0.3150
NRB3	CMG-ESPC	BB3C	60.7326	11.5440	0.3140
NRB4	CMG-ESPC	BB3C	60.7333	11.5372	0.2990
NRB5	CMG-ESPC	BB3C	60.7367	11.5363	0.2890
NRC1	CMG-ESPC	BB3C	60.7414	11.5434	0.2990
NRC2	CMG-ESPC	BB3C	60.7383	11.5525	0.3390
NRC3	CMG-ESPC	BB3C	60.7331	11.5533	0.3520
NRC4	CMG-ESPC	BB3C	60.7293	11.5452	0.3110
NRC5	CMG-ESPC	BB3C	60.7301	11.5341	0.2990
NRC6	CMG-ESPC	BB3C	60.7348	11.5287	0.3030
NRC7	CMG-ESPC	BB3C	60.7402	11.5331	0.2750
	ARCES Arra	y (PS28), Octobe	er 1987 – pre	sent	I
ARA0	CMG-3T-Hybrid	VBB-3C	69.5349	25.5058	0.4030
ARA1	CMG-3T-Hybrid	BB-3C	69.5363	25.5071	0.4110
ARA2	CMG-3T-Hybrid	BB-3C	69.5338	25.5078	0.3920
ARA3	CMG-3T-Hybrid	BB-3C	69.5346	25.5019	0.4020
ARB1	CMG-3T-Hybrid	BB-3C	69.5379	25.5079	0.4140
ARB2	CMG-3T-Hybrid	BB-3C	69.5357	25.5134	0.3970
ARB3	CMG-3T-Hybrid	BB-3C	69.5324	25.5106	0.3760
ARB4	CMG-3T-Hybrid	BB-3C	69.5328	25.4998	0.3780
ARB5	CMG-3T-Hybrid	BB-3C	69.5363	25.4985	0.4050
ARC1	CMG-3T-Hybrid	BB-3C	69.5411	25.5079	0.3810
ARC2	CMG-3T-Hybrid	BB-3C	69.5383	25.5229	0.3950
	CNAC OT Use had	BB-3C	69.5329	25.5231	0.3760
ARC3	CMG-3T-Hybrid	DD-3C	05.5525	25.5251	0.3700

ARC5	CMG-3T-Hybrid	BB-3C	69.5300	25.4981	0.3740	
ARC6	CMG-3T-Hybrid	BB-3C	69.5341	25.4882	0.3950	
ARC7	CMG-3T-Hybrid	BB-3C	69.5396	25.4937	0.3620	
ARD1	CMG-3T-Hybrid	BB-3C	69.5483	25.5093	0.3950	
ARD2	CMG-3T-Hybrid	BB-3C	69.5452	25.5308	0.3660	
ARD3	CMG-3T-Hybrid	BB-3C	69.5366	25.5483	0.3310	
ARD4	CMG-3T-Hybrid	BB-3C	69.5271	25.5362	0.3710	
ARD5	CMG-3T-Hybrid	BB-3C	69.5214	25.5118	0.3510	
ARD6	CMG-3T-Hybrid	BB-3C	69.5227	25.4900	0.4130	
ARD7	CMG-3T-Hybrid	BB-3C	69.5294	25.4707	0.4130	
ARD8	CMG-3T-Hybrid	BB-3C	69.5384	25.4686	0.3680	
ARD9	CMG-3T-Hybrid	BB-3C	69.5454	25.4857	0.3590	
	SPITS Array	(AS72), Novemb	er 1992 – pre	esent		
SPA0	CMG-3TB	BB3C	78.1777	16.3700	0.3230	
SPA1	CMG-3TB	BBZ	78.1797	16.3755	0.3200	
SPA2	CMG-3TB	BBZ	78.1759	16.3766	0.2500	
SPA3	CMG-3TB	BBZ	78.1773	16.3588	0.3390	
SPB1	CMG-3TB	BB3C	78.1796	16.3906	0.3010	
SPB2	CMG-3TB	BB3C	78.1742	16.3846	0.2000	
SPB3	CMG-3TB	BB3C	78.1737	16.3584	0.2340	
SPB4	CMG-3TB	BB3C	78.1789	16.3482	0.3400	
SPB5	CMG-3TB	BB3C	78.1823	16.3683	0.2950	
	Bjørnoya Ar	ray (BEAR), Aug	ust 2019 – pro	esent		
BEA1	MBB-2	BB3C	74.499414	19.001426	0.0191	
BEA2	MBB-2	BB3C	74.498847	19.010103	0.0265	
BEA3	MBB-2	BB3C	74.497758	19.008390	0.0273	
BEA4	MBB-2	BB3C	74.496480	19.010766	0.0261	
BEA5	MBB-2	BB3C	74.495755	19.005565	0.0230	
BEA6	MBB-2	BB3C	74.495954	19.001398	0.0230	
	Holsnøy A	rray (HNAR), Ma	y 2020 – pre	sent		
HNA0	3T-120	BB3C	60.6106	4.9571	0.0398	
HNA1	3T-120	BB3C	60.6126	4.9556	0.0184	
HNA2	3T-120	BB3C	60.6112	4.9611	0.0497	
HNA3	3T-120	BB3C	60.6086	4.9581	0.0386	
HNB1	3T-120	BB3C	60.6146	4.9577	0.0186	
HNB2	3T-120	BB3C	60.6128	4.9646	0.0335	
HNB3	3T-120	BB3C	60.6083	4.9640	0.0398	
HNB4	3T-120	BB3C	60.6069	4.9514	0.0461	
HNB5	3T-120	BB3C	60.6116	4.9492	0.0292	
	Jan Mayei	n (AS73), Octobe	r 2003 – pres	ent		
JMIC	STS-2	BB3C	70.9866	-8.5057	0.160	
Åknes, October 2008 – present						
AKN	CMG ESPC	BB3C	62.1783	6.9974	0.508	
	•	•	•	•	•	

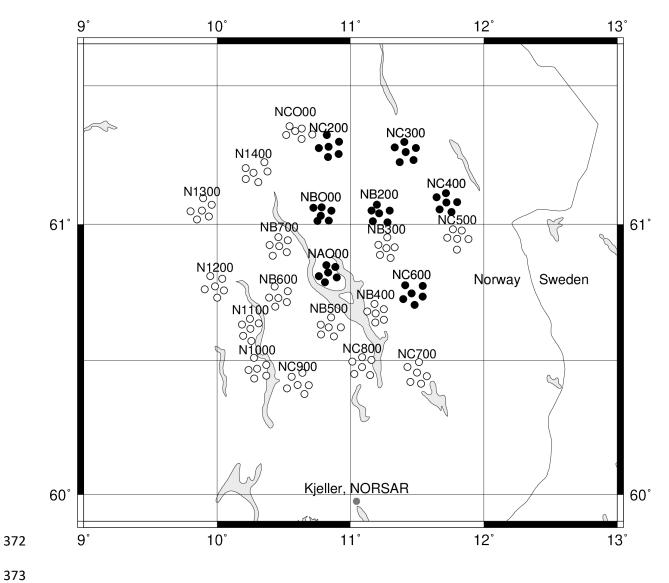
Joint Norwegian-Russian Seismic Stations in Barentsburg, 2010 / 2011 – present						
BRBA	CMG ESPC	BB3C	78.0588	14.2191	0.070	
BRBB	CMG ESPC	BB3C	78.0953	14.2149	0.010	
	Tro	ll, February 2012	– present			
TROLL	STS-2.5	BB3C	-72.0082	2.5300	01.399	
	Jetta	n, November 201	.4 – present			
JETT	CMG ESPC	BB3C	69.55572	20.40950	0.631	
	Infrasou	und array, June 2	015 – presen	t		
I37H0	CMG-ESPC	BB3C	69.07410	18.60770	0.078	
	Oslofjord	network, summe	r 2018 – pres	sent		
OFSN1	GS-13	SP3C	59.9753	11.0443	0.118	
OFSN2	GS-13	SP3C	59.8401	10.9108	0.016	
OFSN3	GS-13	SP3C	59.6666	10.7691	0.083	
OFSN4	GS-13	SP3C	59.4654	10.8138	0.044	
OFSN5	GS-13	SP3C	59.2547	10.8015	0.103	
OFSN6	GS-13	SP3C	59.0939	10.9206	0.110	
OFSN7	GS-13	SP3C	59.2650	10.3400	0.038	
Norwegian pool of mobile broadband instruments						
24 Stations	STS-2.5	VBB3C				
6 Stations	CMG ESPC	BB3C				

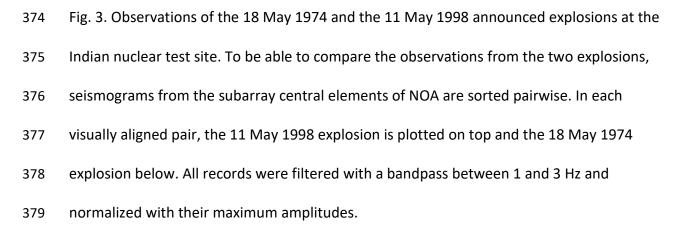
340 * Code with which the station is registered in the in the International Registry of

341 Seismograph Stations (IR) (International Seismological Centre, 2020).

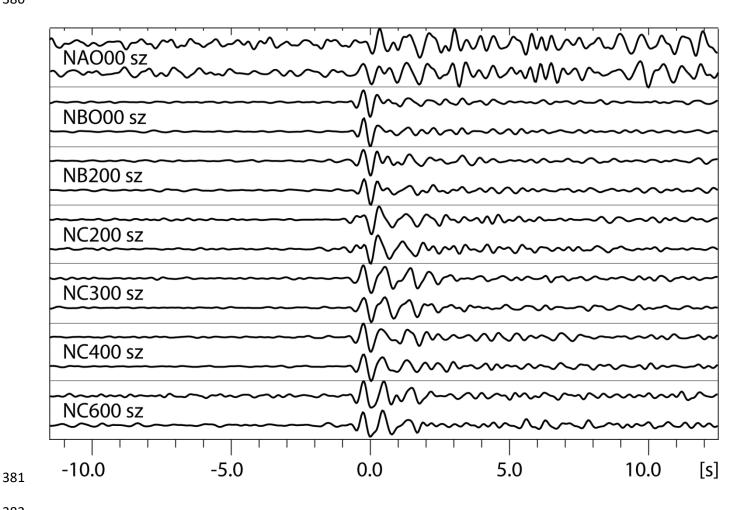

342 Figures

343


344 Fig 1: A map showing the location of all NORSAR arrays (circles) and 3C station (triangles) in 345 Northern Europe and Antarctica. The square shows the area of the Oslofjord network. 346 347 Fig.2: The NORSAR array in 1971 and after its reduction (filled circles) in 1976. 348 349 Fig. 3. Observations of the 18 May 1974 and the 11 May 1998 announced explosions at the Indian nuclear test site. To be able to compare the observations from the two explosions, 350 351 seismograms from the subarray central elements of NOA are sorted pairwise. In each 352 visually aligned pair, the 11 May 1998 explosion is plotted on top and the 18 May 1974 explosion below. All records were filtered with a bandpass between 1 and 3 Hz and 353 normalized with their maximum amplitudes. 354 355 356 Fig. 4. The ground-velocity transfer function of the vertical borehole CMG-3T Hybrid instrument installed at the NOA site NAO03. 357 358 359 Fig. 5. Configuration and geometry of the NORSAR arrays NOA, ARCES, NORES, SPITS and BEAR. The first regional array NORES is located within the NC6 subarray of NOA and 360 361 originally had an identical geometry to that shown for the ARCES array. After reopening, 362 NORES is now operative with 16 of its original 25 sites (the three innermost rings). 363 364 Fig. 6: The very broadband 3C station TROLL in Dronning Maud Land, Antarctica after 365 installation in 2012 (photo: J. Schweitzer).


366 Fig 1: A map showing the location of all NORSAR arrays (circles) and 3C station (triangles) in

367 Northern Europe and Antarctica. The square shows the area of the Oslofjord network.



370 Fig. 2: The NORSAR array in 1971 and after its reduction (filled circles) in 1976.

383 Fig. 4. The ground-velocity transfer function of the vertical borehole CMG-3T Hybrid

instrument installed at the NOA site NAO03.

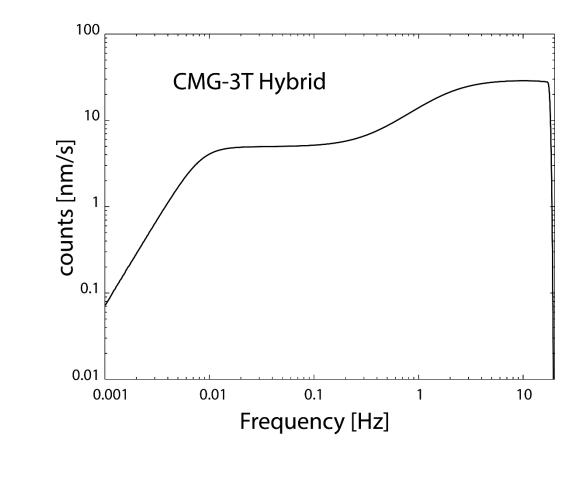
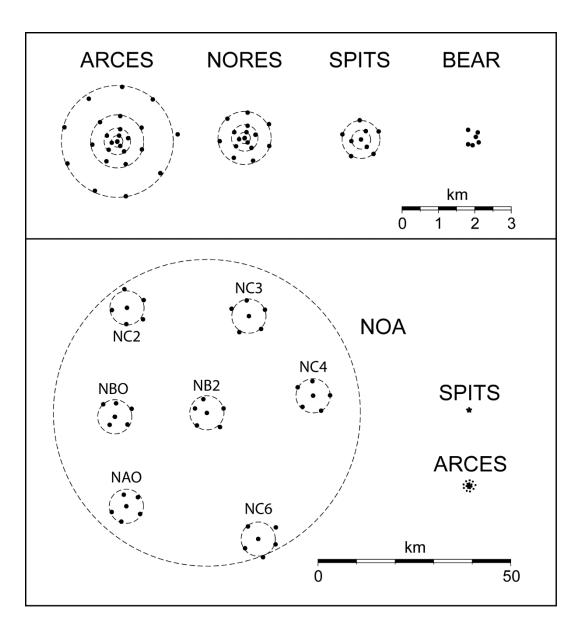



Fig. 5. Configuration and geometry of the NORSAR arrays NOA, ARCES, NORES, SPITS and
BEAR. The first regional array NORES is located within the NC6 subarray of NOA and
originally had an identical geometry to that shown for the ARCES array. After reopening,
NORES is now operative with 16 of its original 25 sites (the three innermost rings).

- 395 Fig. 6: The very broadband 3C station TROLL in Dronning Maud Land, Antarctica after
- 396 installation in 2012 (photo: J. Schweitzer).

