
Towards Declarative Characterisation
and Negotiation of Bindings

Øyvind Hanssen
University of Tromsø

Department of Computer Science
9037 Tromsø
+47 95117457

ohanssen@acm.org

ABSTRACT
This paper addresses negotiation of bindings in open systems, and in

particular how to characterise the capabilities of heterogeneous platforms,
and communication channels. Based on a middleware architecture
supporting policy-governed binding, negotiation is about selecting
suitable policies for bindings at run-time. We propose a model for
declarative expressions based on a hybrid of declared and rule-based
conformance, and composition operators. We also propose a scheme for
how the middleware can support automatic characterisation of resources
or other relevant capabilities and composition of these, based on the
declarative expression model.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications --
languages. D.2.12 [Software Engineering]: Interoperability --
distributed objects.

General Terms
Experimentation, Languages.

Keywords
Quality of Service, Negotiation, Binding, Trading, Middleware.

1.INTRODUCTION
In the last decade much attention has been turned towards

middleware which supports dynamic adaptation to non-functional
application requirements and varying environmental conditions.
This is motivated by requirements for e.g. multimedia
applications, mobility, dependability, etc. The capabilities of
platforms on which to build open and distributed applications are
also increasingly diverse. Platforms may offer different types and
amounts of resources for computing and communication, as well
as different mechanisms to manage them. The approach of
middleware providing one single abstraction, hiding
implementation details and differences between the various
platforms is recognized to be too limiting. Therefore, research has
been focusing on opening up and componentising the middleware,
to make it more configurable, but still without sacrificing
abstraction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
RM’05, November 28–December 2, 2005, Grenoble, France.
Copyright 2005 ACM 1-59593-270-4/05/11…$5.00.

Reflective middleware [1] explores the idea of using meta-
level architectures for exposing implementation details, and using
meta object protocols for programmatic access to these. It is
however less clear how to support automatic adaptation to various
QoS requirements and environmental properties. Binding between
components would involve a negotiation process, which involves
exchanging requirements and offers, to reach agreement on a
contract and to find a solution on how to configure the binding
accordingly. This means that we need not only platform
abstraction, but also platform awareness, which is the ability to
characterise and exchange the properties of the platform. Systems
which have such expression and negotiation capabilities with
respect to non-functional properties are often termed Quality of
Service Aware (c.f. [2]). However QoS research has mostly
focused on static specification or dynamic negotiation tied to
specific architectures.

This paper addresses how to expose varying platform
capabilities in a way that facilitates negotiation between
heterogeneous platforms on how to select suitable policies for
bindings. The main contributions are: (1) A proposed model for
declarative expressions. (2) A proposed scheme for how the
middleware can support characterisation of resources or other
relevant capabilities, as well as composition of these.

In section 2 we give an overview of the main ideas of our
approach: Policy bindings negotiation and the need for a language
for stating QoS requirements, and properties of the environment,
and which supports conformance checking and composition. In
section 3 we introduce our profile expression language. In section
4 we introduce our ideas for a negotiation support in our
experimental middleware architecture. This includes dynamic
profile expressions and a descriptor object framework. In section
5 we relate to current work in the area and in section 6 we
conclude.

2. OVERVIEW
The main ideas of our approach, and the basis of our

investigations are as follows:

➢ The concept of policy which define contract templates and
contract enforcement plans. The concept of metapolicy, which
define the management of bindings and associated policies
[3].

➢ Trading of policy as a principle of negotiation and the use of
declared conformance for matching property descriptions [4].
A language for profile-expressions used for exchanging
requirements and environmental properties, and which support
conformance checking and composition.

➢ Run-time expression support by the middleware.

2.1 Negotiation
We are interested in how to find a contract and a

corresponding configuration when establishing a binding. We
refer to such a process as negotiation since an overall goal is to
reach agreement between possibly autonomous parties and since it
may involve exchange of statements (offers and requirements).

Figure 1 illustrates which roles profile expressions play in
negotiation based on policy trading. For a given service,
application or application domain, there would exist a set of
potential contracts, called policies, each stating an offer and an
expectation. A contract is a promise, that the properties offered
will be provided as long as the expectation is satisfied. The goal
of negotiation is to find a policy whose offer (user profile)
satisfies the user requirement while its expectation (service-
profile) is satisfied by the environment properties (environment
descriptor).

The relationships between user requirements and offers, and
the relationships between the expectations and the capabilities of
the environment, are satisfaction relationships. To facilitate
conformance testing, a model should define a partial order on
such expressions with respect to satisfaction. Then, any pair of
expressions may be mechanically evaluated for conformance.

2.1.1 Declared conformance
It looks appealing to adopt the technique typically used in

ODP trading [5, 6] where each requirement or offer is a reference
to a type name, and where a type conformance graph is declared a
priori. This way of using declared conformance was first proposed
in [7]. However, this is too limiting in general, since each declared
type will need to capture all aspects relevant for the application.
This may easily lead to conformance graphs which are too
complex and application specific. Therefore we propose a hybrid
model where conformance rules may also be based on simple
numeric parameters.

2.1.2 Dynamic composition of statements
Profile expressions and negotiation should support

composition, since statements from participants which do not
necessarily know each other, would need to be combined into one
describing the composed system. Given a set of expressions about
the behaviour of individual components of a system, it is not
obvious how to deduce the behaviour of the whole system. Three
different problems should be addressed when it comes to
expressing the total behaviour:

➢ Autonomous users may issue different requirements for the
same service and all users should be satisfied.

➢ We may need to combine expressions regarding the same
component but in more than one dimension (e.g. performance
and security). We introduce an operator to construct
expressions from simpler sub-expressions, meaning that the
predicates stated by each part must be true in the same
environment (c.f. logical conjunction).

➢ Open systems are systems interacting with environments
neither they or their implementers controls [8]. Expectations
towards environments may need to characterise a number of
abstract components, for instance, client, server and
communication channel, with a separate expectation for each
of them. Our model should therefore support dynamic
composition of statements about separate components of the
environment. We address this problem by introducing an
additional composing operator.

The third problem is only partly addressed in QoS
specification models like [9], by allowing QoS-characteristics to
be defined with composition in mind. Work on formal models has
shown that with certain assumptions on the temporal relationships
[10] it is possible to make statements about the behaviour of
composite systems as conjunctions of statements about each
component.

2.2 Binding model
The negotiation scheme discussed above need to be supported

by a middleware architecture, it will be a part of the binding
establishment process, where an active binding would represent a
contract. The basis of our investigation is the family of binding
models of ANSA [12], FlexiBind [3], OpenORB [13, 14], etc.

We believe that [14] is suitable as a generic binding model
which regards binding-types as pluggable first-class entities. In
our current experimental work, we assume a client/server (RMI)
special case, and look at how client initiated binding would lead to
a session specific end-to-end configuration. We also limit the
scope of negotiation to the non-functional aspects. However we
believe that the ideas explored here are applicable to other binding
types as well.

2.2.1 Binding phases
We can decompose binding into four phases, where the

system can perform configuration of a service implementation and
where negotiation would be of interest:

➢ Service deployment (server side binding). A service is made
available for clients to bind to, by generating a name and
configuring a minimum of protocol stack such that client can
establish bindings and initiate negotiations.

➢ Client binding, i.e. a client associates to the service. This
would not necessarily lead to a complete configuration, since
there may still be parts which need to be negotiated.

➢ Activation, where binding configuration as a result of
negotiation is completed, and associated with necessary
resources such that invocation may take place.

➢ Run-time adaptation by re-activation. Existing activations may
be taken into account when re-negotiating the policy. It is also
possible to encapsulate some adaptation within a single policy,
if it does not violate the contract.

Note that we distinguish between component deployment (c.f.
CCM, or EJB) and service deployment. Component deployment
may involve service deployment.

2.2.2 Policy
A policy represents a potential contract, i.e. it can be viewed

as a mapping from some constraint on the environment S, to the
satisfaction of an user requirement U. We refer to U as the user
profile and S as the service profile. If P(x) is the predicate
defining a profile x, a policy states the following: P(S) ⇒ P(U)

requirements

environment
descriptors

components of environment

satisfaction
relationship

offer

expectation

policy

Figure 1. Statements and satisfaction relationships

A policy also constrains how an activation is configured. The
configuration part of a policy will depend on the binding type. For
RMI bindings it will consist of a client and a server part.

A metapolicy represent a way to associate policies with a
given binding. A binding will always be associated with a
metapolicy which constrain how and when it is activated, how the
policy is negotiated, what scope a policy will have (e.g.
invocation, session, transaction etc), and how the binding is
adapted by re-activation in response to changing environmental
properties.

Our concept of metapolicy capture how services are set up in
the deployment phase as well as in the client binding phase. A
metapolicy may therefore involve implementation decisions
which constrain the later choice of policy.

3. PROFILE MODEL
In our approach statements about offers, expectations, etc. are

formulated as profile expressions which can be evaluated for
conformance. In this section we describe the idea of basic profile
models and how more complex expressions can be composed
from basic profiles by using sum or component-sum operators.

3.1 Defining basic profile models
A basic profile is an identifier and is associated with zero or

more numeric parameters (parameters are enclosed in square
brackets). A profile model define a set of rules for how basic
profiles are related by conformance. If a profile x (implicitly)
denotes a predicate P(x), a conformance relationship exist: x ≤ y,
if P(x) ⇒ P(y).

Since profile models only need to state conformance
relationships, the actual meaning of a basic profile may be
implicit in a profile model. Profiles can be abstractions over
measurable properties like e.g. timing constraints, amounts of
memory, but also structure of implementations etc. A policy
programmer may however need a specification defining the actual
meaning. For instance that ModerateDelay means average delay
less than 500 milliseconds.

A concrete profile model is specified as a set of axioms. To
define axioms we propose a simple notation like shown in the
example below. Each axiom declares conformance between pairs
of basic profiles using the '≤' operator. A predicate for when
conformance is true is placed after the 'if' keyword. Variables in
the predicates are bound to the parameters given inside brackets.
Omitting the predicate in a rule means 'true' (corresponds to
simple declared conformance).

NetGuaranteed  NetEstimated  Net;
LowLoad  ModerateLoad  HighLoad;
LowDelay  ModerateDelay  AnyDelay;
Delay[x]  Delay[y], if x <= y;
Delay[x]  LowDelay, if x <= 100;
XRes[x]  XRes[y], if x <= y;
Disp[x1,y1]  XRes[x], if x1 >= x;
Disp[x1,y1]  Disp[x2,y2], if x1>=x2 AND y2>=y2;

From the rules above, we can for instance infer that the
expression Delay[10] satisfy ModerateDelay and that Disp
[2000,1000] satisfy XRes[500].

As a proof of concept we have implemented a profile model
compiler which checks the correctness of the definition, computes
a set of additional rules which can be derived from the axioms. It
generates code which facilitates efficient testing of conformance
between any pair of basic profile expressions.

3.2 Composing expressions

3.2.1 Sum operator
Profile expressions can be combined using the '+' operator.

The semantics of this operator is logical conjunction. If a profile
expression x denotes (implicitly) a predicate P(x), A profile
expression x+y denotes a predicate P(x+y) = P(x) ∧ P(y).

From this definition it is straightforward to infer conformance.
For instance (x+y) ≤ x. Furthermore, z ≤ (x+y), if z≤x and z≤y.

3.2.2 Component sum operator
The '⊕' (component sum) operator is used to state expressions

regarding separate environments. To satisfy a component sum
x⊕y, both x and y must be satisfied, but x and y cannot be satisfied
by the same profile instance. For a profile z to conform to (x⊕y), z
must itself be a component sum (a⊕b) where a≤x and b≤y.

A profile expression (x⊕y) denotes a predicate P(x⊕y) =
P1(x) ∧ P2(y). where P is a composite of P1 and P2.

3.2.3 Expressions in general
From the definitions above we have developed a complete

syntax and semantics of profile expressions formed by these
operators. Based on this, we have developed conformance rules
which can be used to match any expressions in this language. We
refer to [11] for a more complete set of definitions and proofs.

A conformance testing algorithm has been implemented as a
proof of concept. Conformance testing software (which will be
part of policy trading software) will link in code generated by the
profile model compiler.

3.3 Example
Consider an application for interactive browsing of graphics

representing large and complex models (e.g. GIS). Clients initiate
sessions to a server, and may have requirements for presentation
quality and average response-time. Network connectivity and
client device capabilities may vary, and the graphics rendering
may put a high load on servers. The choice of policies for
bindings will depend on user requirements and capabilities of
client devices, servers and network.

A policy, which offers to satisfy low response time and a
certain image quality may have the following expectation: A
certain a minimum size of the display on the client side, a network
connection satisfying an estimated “NormalBW” bandwith and
latency better than 20, and a server with a "fast" CPU and a
moderate load.

Client + ((Display[800, 400] + Colour)
 ⊕ (NetEstimated + NormalBW + Delay[20])
 ⊕ (Server + FastCPU + ModerateLoad))

A client environment (e.g. a portable device) may for instance
express that it is capable of two display modes: One normal
colour mode and one monochrome mode with higher resolution,
by including a component sum of two display instances:

(Display[200, 100] + Colour)
⊕ (Display[400, 800] + Mono)

4. MIDDLEWARE ARCHITECTURE
In this section we describe some highlights of our experimental
middleware platform and how such a platform can support the
run-time characterisation in the profile model described in section
3 above. The implementation is based on parts of FlexiBind [3].

4.1 Basic binding framework
Binders are pluggable components responsible for establishing

bindings. Service deployment would mean associating objects
with a suitable generator (server side binder), which generate an
interface reference which can be resolved by a corresponding
client side binder. Binders creates bindings which are not
necessarily active. Bindings are associated with a metapolicy and
are represented by explicit objects both on client and server side,
or in all address spaces involved in the binding.

Activators are pluggable components responsible for
activating bindings according to some policy. Activating a
binding involves loading and instantiating an activator
component. This may (depending on the policy) allocate resources
needed by the activation, as well as setting up protocols,
transparency objects, or other aspect implementation components.
A policy will actually contain a reference to some activator
implementation (a Java class in our experiment).

4.1.1 Channels
When a server generates an interface reference for an

interface, some protocol information must be passed along with it
such that clients know how to negotiate and bind to it. This
observation suggest that the activation (protocol stack) should be
divided into two parts: (1) A protocol dependent part which is
identified in interface references, and a (2) protocol independent
part which is negotiable. On the server side, the protocol
dependent part should normally be the minimum needed to listen
for incoming calls and to perform negotiation. On the client side,
this means that we know what the protocol-dependent part of the
activation should be at binding time, but it doesn't necessarily
have to be activated before the rest of the stack is activated.

It is useful to encapsulate common protocol dependent
configurations in components called channels. An instance of a
middleware platform should offer access to one or more default
channel instances and/or an interface to instantiate channels.

4.2 Negotiation aware bindings
Negotiation is handled by negotiator metaobjects which can

be attached to bindings. They may intercept the methods for
activation/deactivation to modify their behaviour. This essentially
mean to add a mechanism for deciding on what activator to select.
On the server side, binder would set up a negotiation metaobject
which also export a special interface to be remotely invoked by
clients to perform the negotiation. In our experiments this
interface offer the following operations:

➢ get_Activation. Start the binding process on the server. It takes
the user-requirement and the client side environment descriptor
as arguments. It creates a prioritised list of candidate policies,
and return the client part of the first policy which successfully
is activated on the server.

➢ retry_Activation. Tell the server that the client part of the
policy failed and that the server should try another one.

➢ activation_OK. Tell the server that the binding process has
succeeded and that the server may now throw away the list of
candidate policies.

➢ release. Close the binding.

A policy-trading service is located on the server, and it is used
by the negotiation metaobject to compute a list of candidate
policies. The trader is loaded with policies, each containing a
reference to a client activator and a server activator. A
corresponding client side binder would set up a negotiation
metaobject (negotiator) which at first invocation or when

explicitly requested, computes the two profile expressions to be
sent with the get_Activation message. Figure 2 illustrates the
binding setup where the target represent the actual application
object on the server or a proxy object on the client.

The approach described here is one of several possible ways to
design a negotiation protocol. It assumes a client/server model and
that the probability of an activator failure is low. It can be
extended to involve more components, for instance a three tier
architecture with a backend server.

4.2.1 Interface references
The name of the protocol is part of interface references and is

used to select a corresponding resolver component. In our initial
scheme, the channel would identify the protocol. However, a
server binder could also set up a negotiation scheme. Thererfore a
protocol-id would be composed from two parts: One determined
by the listening channel and one by the binder. Furthermore, the
negotiation scheme described here will require two target
identifiers, one for the actual target interface and one for the
negotiation interface.

4.2.2 Dynamic profile expressions
We claim that it is a metapolicy issue how the environment-

descriptors (c.f. section 2) are produced, since the relevance of
properties would depend on the application, the binding type, the
platform, the channel used, etc. As shown in figure 2, the binder
would set up per binding instance, the necessary structures to
produce such expressions.

Some parts of the descriptors may be static. This is the case
for platform properties like display resolution or the availability of
certain channels. However some properties may change due to
varying load etc. Some may depend on the location of the peer,
like for instance estimated end-to-end network delay. These
cannot be fully provided before the time of negotiation. Therefore
we propose a dynamic profile expression scheme: A binder will
set up a profile expression tree (corresponds to an abstract parse
tree). Parts of this may be dynamic, i.e. we use a special type of
tree node which must be evaluated at negotiation time to get a
complete expression. With this scheme we can easily set up the
composition and the static parts as expressions embedded in the
binder code.

4.2.3 Inspector objects
To support dynamic profiles we introduce inspector objects.

Their role is to generate profile expression fragments describing
platform specific facts or measurable properties of the system
when requested. Inspectors offer an interface with a method
getProfile() which returns an expression. A dynamic profile node
would refer to an inspector, and inspectors may be shared between
profile-expressions. Inspectors may be installed by platform
configuration to report properties of platform wide resources, they

binder binding

negotiator

dynamic profile

inspector
objects

channel

resolve

target

Figure 2. Negotiation aware binding

may be configured by channels, or they may be configured by
binders to report properties of individual bindings.

Some of the inspectors would need to be configured with a
target object (a reference to a local implementation or a remote
interface reference). Other inspectors may not need to be
associated with a target, but rather with the platform or resources
available. Examples of what inspectors can do include:

➢ Estimate end-to-end invocation time by invoking probe-
operations on the remote system. An inspector could e.g. return
a profile "RTT[n]" (where n is a number denoting the round-
trip time in milliseconds). More sophisticated implementations
could use of policy specific interceptors or layers in the
invocation chain which monitors the time for real operations,
however requiring an existing activation.

➢ Determine by probing, if the remote system is reachable by the
UDP protocol (not always the case if endsystems are on
different IP-subnets). This can be useful if policies use UDP
based invocation protocols or RTP for continous media
streams.

➢ Estimate the load on the CPU, network interface or other
resources on the platform. Such an inspector may make use of
operating system specific services. For instance the CKRM
module [15] for the Linux kernel provides class based
reservation and monitoring of CPU, storage or listening
sockets. A class could for instance guarantee that its members
get a certain share of the resource. This can be used to
determine in which class it is possible to place the threads of a
session at a given time instance.

In the case of using class based resource management, actual
reservations would be encapsulated in policies. The negotiation
scheme cannot guarantee that reservation will succeed, unless the
middleware is given exclusive access to the classes of interest by
the O.S, and unless the negotiation protocol provides proper
concurrency control wrt. resources of interest.

4.2.4 Naming and scoping support
Binder components are meant to be pluggable into various

platform configurations. Hence, we want to abstract over how
inspector objects are implemented and installed. We observe that
(1) the platform might set up some, (2) channels might set up
some, (3) binders set up some, and (4) some are metapolicy
specific (set up by binders) but shared between the bindings
sharing a metapolicy. Binders should be allowed to use and
compose these objects.

This suggest that the middleware platform should support a
naming and scoping mechanism for inspectors. Scoping is
organised like in figure 3: The scope of a binding will also include
the scope of the platform. We may want override a name defined
in the platform scope. For instance, a metapolicy may wish to
specialise the behaviour of a display inspector to reflect that only
a part of the display could be used. It could then install a special
inspector which delegates to the platform level display inspector
but modifies its output.

4.2.5 Scripting
The use of a run-time naming and scoping mechanism leads

us to the idea of defining dynamic profiles as script fragments
embedded in binder code. It is convenient for a metapolicy
programmer to embed textual representations of expressions and
let the middleware evaluate it. In such expressions one could use
the '$' prefix to refer to parts which are expanded at negotiation
time. They would refer to installed inspectors by name.

4.2.6 Example
Recall the example in section 3.3. A client binder sets up an

inspector named 'rpc-channel' which returns the properties of an
available RPC channel. An inspector named 'display' is set up by
the platform and returns the properties of the display. The client
binder code would contain the following.

descriptor = “Client + ($display ⊕ $rpc-channel)"

During negotiation, this expression is evaluated, i.e. the
dynamic profile parts are replaced by expressions returned by the
inspectors, e.g. $rpc-channel estimates bandwidth and delay and
return e.g. "NetEstimated + HighBW + Delay[10]".
The resulting expression is sent to the server in the get_Activation
operation and the server adds its own expression (evaluated in a
similar way) by using the component sum operator. The resulting
expression is then used when searching for a policy.

4.3 Implementation
The ideas presented here has been partially implemented.

This includes binders, activators, a negotiator framework, an
example negotiator pair, a simple policy-trader, dynamic profile-
expression evaluation, an inspector framework and some example
inspector and naming spaces which can be linked to provide
proper scoping. Experiments using this implementation is
currently being carried out.

We observe that the idea of naming and scoping have a wider
application than only inspectors. In [3] we propose a extensible
interface hierarchy for the PPI (policy programmer interface),
which is used by policies to get access to services of the platform
and which facilities the pluggability check of policies by using the
dynamic type checking mechanism of the programming language.
This scheme does not scale well wrt. number of possible platform
configurations with different sets of services. It is not suitable for
handling a varying number of instances of the same type, e.g.
channels. This also indicates that one could benefit using
declarative scripting, not only for composing dynamic profile
expressions, but also for defining binders in general since
different binders often represent sligthly different ways to
configure and use a set of standard components.

5. RELATED WORK
Binding models in reflective middleware [1] is maturing. The

ANSA FlexiNet framework [12] allows dynamic pluggability and
selection of binders, [3] adds the concept of pluggable and
replaceable policies for binding activation. The OpenORB binding
model [14] focuses on extensibility wrt. binding types. Here, the
client/server model is one of many specialisations. Since the
concept of binding types includes a negotiation protocol, scope of
binding etc, it overlap with our concept of metapolicy. The
binding type will clearly constrain metapolicy, but it also seems
like metapolicy would need to contain different aspects, some of
them orthogonal to binding-type.

platform

channel metapolicy

binding

?? Figure 3. Naming contexts

Much research has been done in QoS but is often tied to
specific application domains, technologies, components or layered
architectures (c.f. [16]). This includes QoS negotiation which is
typically based on parameters and explicit constraints on
parameter ranges, which may be computationally complex.

QuO [17] focuses on adaptation, contractual QoS and aspect
languages. Contracts may be defined in a specific language, based
on regions, constraining values on measured properties. Contracts
are explicitly represented at run-time and closely tied to the server
implementation. Furthermore this model does not address
negotiation among autonomous components. QML [2] is mainly a
language for QoS contract specification. A run-time
representation is possible, however somewhat ad hoc. CQML [9]
extends and generalises over this model and add some support for
composition in the individual QoS characteristics. QML and
CQML connect contract-templates to the service interfaces by use
of so called profiles. We aim to make contracts more orthogonal
to service types. Also, our approach offer a hybrid of declared and
rule-based conformance instead of a strictly parameter based
approach. Furthermore it addresses composition which is weakly
supported in other approaches.

QuA [18] propose platform managed QoS as a general
solution to preserve the safe deployment property for
compositions of independently developed components. An
important part of QuA is a framework for service planning [19],
i.e. composing software components and resources to realise a
service according to a set of QoS constraints. This is not far from
the purpose of policy trading. QuA proposes to use a quality-loss
model and utility functions, which has a more limited scope than
our profile model but at the other hand, is suitable for maximising
satisfaction in addition to just finding satisfactory contracts.

6. CONCLUDING REMARKS
 We propose a model for declarative expressions to be used in

negotiation of bindings in open systems. From application or
domain specific rule-bases, we can infer conformance between
pairs of expressions in this model. A compiler can derive a full set
of rules and generate code which facilitates efficient conformance
checking. Our model supports composition, i.e. conjoining of
expressions describing separate components.

We also propose a scheme for how middleware can support
automatic characterisation of resources or other relevant
properties as well as composition of these. Each binding instance
would be associated with a dynamic profile, i.e. a profile
expression with placeholders for parts to be determined by
querying at negotiation time. Such querying is done on inspector
objects which perform mapping from platform dependent
characteristics to the more abstract profile model. This means that
QoS mapping is highly configurable and set up or modified by
binder components. This scheme has the advantage of being
flexible but requires some conventions for naming of inspectors.
The profile model can simplify negotiation, and matching of
policies can be more efficient than with more traditional
parameter based negotiation, but requires careful design of profile
models as well as conventions for composing expressions. A
negotiation scheme strictly based on conformance does not
support finding an optimal solution. That is a disadvantage in
some cases.

Issues for future work in this area include validating this
approach by applying it to application scenarios and alternative
binding types. We observe that the metapolicy includes many
aspects and that binders to a large extent share code. One could
explore the use of declarative scripting languages for defining
platform setup, binders, negotiators and activators. Since various

applications or application domains may define their own profile
models it is interesting to see how we can provide interoperability
among autonomous domains by combining their models. Here, we
may benefit from work performed in the area of semantic web
with ontologies.

7. REFERENCES
[1] Kon, F., Costa, F., Blair, G and Campbell, R. H. The Case

for Reflective Middleware. CACM June 2002/Vol. 46, No. 6.

[2] Frølund, S., and Koistinen, J. Quality of Service Aware
Distributed Object Systems, Hewlett Packard Software
Technology lab. report: HPL-98-142. 1998.

[3] Hanssen, Ø. and Eliassen, F., A Framework for Policy
Bindings, In Proceedings of DOA'99, Edinburgh, IEEE press,

[4] Hanssen, Ø. and Eliassen, F., Policy Trading, In Proceedings
of DOA'00, Antwerp, IEEE press, 2000.

[5] Bearman, M. Y., ODP Trader, In Proceedings of ICODP'93,
Berlin, 1993

[6] ODP Trading Function, Report, ITU-T X.950 – ISO/IEC
13235.

[7] Hanssen, Ø. and Eliassen, F., Towards a QoS aware Binding
Model, In Proceedings of SYBEN'98, Zurich, Spie press,
1998.

[8] Abadi, M., and Lamport, L. Open Systems in TLA, In
Proceedings of ACM Symposium on Principles of
Distributed Computing, August 1994.

[9] Aagedal, J. Ø., Quality of Service Support in development of
Distributed Systems, Ph.D. Thesis, University of Oslo, 2001.

[10] Abadi, M., and Lamport, L. Conjoining Specifications,
Digital Systems Research Center, Report 118.

[11] Hanssen, Ø. A Declarative Profile Model for QoS
Negotiation. Technical report 2005-54, University of
Tromsø, Computer Science Department, 2005.

[12] Hayton, R. and Herbert, A., FlexiNet: A Flexible,
Component-Oriented Middleware System, Lecture notes in
Computer Science, 1752, p. 497 ff, Springer Verlag, 2000.

[13] Blair, G.S., et al. The Design and implementation of Open
ORB 2, IEEE Distributed Systems Online, 2, (2001), no. 6.

[14] Parlavantzas, N., Coulson, G. and Blair, G.S., An extensible
Binding Framework for Component-Based Middleware, In
Proceedings of EDOC 2003.

[15] Nagar, S., et al., Improving Linux resource control using
CKRM, In Proceedings of the Linux Symposium, Vol two,
July, 2004.

[16] Ecklund, D., et al., QoS Management Middleware: A
Separable, Reusable Solution, In Proceedings of IDMS 2001,
LNCS 2158, pp. 124-137, Springer Verlag 2001.

[17] Loyall, D.E.,et al. Specifying and Measuring Quality of
Service in Distributed Object Systems, In Proc. ISORC'98,
IEEE press 1998.

[18] Staehli, R. and Eliassen, F., A QoS Aware Component
Architecture, Simula Research Laboratory Research report,
2002 – 12.

[19] Solberg, A., Amundsen, S., Aagedal, J.Ø. and Eliassen, F., A
Framework, for QoS-Aware Service Composition, In
Proceedings of 2nd ACM Intl. Conference on Service
Oriented computing, ICSOC 2004.

