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ABSTRACT
This paper addresses negotiation of bindings in open systems, and in

particular how to characterise the capabilities of heterogeneous platforms,
and  communication  channels.  Based  on  a  middleware  architecture
supporting  policy-governed  binding,  negotiation  is  about  selecting
suitable  policies  for  bindings  at  run-time.  We  propose  a  model  for
declarative  expressions  based  on  a  hybrid  of  declared  and  rule-based
conformance, and composition operators. We also propose a scheme for
how the middleware can support automatic characterisation of resources
or  other  relevant  capabilities  and  composition  of  these,  based  on  the
declarative expression model. 

Categories and Subject Descriptors 

D.2.1  [Software  Engineering]:  Requirements/Specifications  --
languages. D.2.12  [Software  Engineering]:  Interoperability  --
distributed objects. 

General Terms
Experimentation, Languages.

Keywords
Quality of Service, Negotiation, Binding, Trading, Middleware. 

1.INTRODUCTION
In  the  last  decade  much  attention  has  been  turned  towards

middleware which supports dynamic adaptation to non-functional
application requirements  and varying  environmental  conditions.
This  is  motivated  by  requirements  for  e.g.  multimedia
applications,  mobility,  dependability,  etc.  The  capabilities  of
platforms on which to build open and distributed applications are
also increasingly diverse. Platforms may offer different types and
amounts of resources for computing and communication, as well
as  different  mechanisms  to  manage  them.  The  approach  of
middleware  providing  one  single  abstraction,  hiding
implementation  details  and  differences  between  the  various
platforms is recognized to be too limiting. Therefore, research has
been focusing on opening up and componentising the middleware,
to  make  it  more  configurable,  but  still  without  sacrificing
abstraction.
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Reflective  middleware  [1]  explores the  idea  of  using meta-
level architectures for exposing implementation details, and using
meta  object  protocols  for  programmatic  access  to  these.  It  is
however less clear how to support automatic adaptation to various
QoS requirements and environmental properties. Binding between
components would involve a negotiation process, which involves
exchanging  requirements  and  offers,  to  reach  agreement  on  a
contract and to find a solution on how to configure the binding
accordingly.  This  means  that  we  need  not  only  platform
abstraction, but also platform awareness, which is the ability to
characterise and exchange the properties of the platform. Systems
which  have  such  expression  and  negotiation  capabilities  with
respect to non-functional properties are often termed Quality of
Service  Aware  (c.f.  [2]).  However  QoS  research  has  mostly
focused  on  static  specification  or  dynamic  negotiation  tied  to
specific architectures.  

This  paper  addresses  how  to  expose  varying  platform
capabilities  in  a  way  that  facilitates  negotiation  between
heterogeneous  platforms  on  how to  select  suitable  policies  for
bindings. The main contributions are: (1) A proposed model for
declarative  expressions.  (2)  A  proposed  scheme  for  how  the
middleware  can  support  characterisation  of  resources  or  other
relevant capabilities, as well as composition of these.   

In section 2 we give an overview of the main ideas  of our
approach: Policy bindings negotiation and the need for a language
for stating QoS requirements, and properties of the environment,
and which supports conformance checking and composition.  In
section 3 we introduce our profile expression language. In section
4  we  introduce  our  ideas  for  a  negotiation   support  in  our
experimental  middleware  architecture.  This  includes  dynamic
profile expressions and a descriptor object framework.  In section
5  we  relate  to  current  work  in  the  area  and  in  section  6  we
conclude.

2. OVERVIEW
The  main  ideas  of  our  approach,  and  the  basis  of  our

investigations are as follows: 

➢ The concept  of  policy which  define  contract  templates  and
contract enforcement plans. The concept of metapolicy, which
define  the  management  of  bindings  and  associated  policies
[3].

➢ Trading of policy as a principle of negotiation and the use of
declared conformance for matching property descriptions [4].
A  language  for  profile-expressions used  for  exchanging
requirements and environmental properties, and which support
conformance checking and composition. 

➢ Run-time expression support by the middleware. 



2.1 Negotiation
We  are  interested  in  how  to  find  a  contract  and  a

corresponding  configuration  when  establishing  a  binding.  We
refer to such a process as negotiation since an overall goal is to
reach agreement between possibly autonomous parties and since it
may involve exchange of statements (offers and requirements).   

Figure  1 illustrates  which  roles  profile  expressions  play  in
negotiation  based  on  policy  trading.  For  a  given  service,
application  or  application  domain,  there  would  exist  a  set  of
potential  contracts, called policies, each stating an offer and an
expectation. A contract is a promise, that the properties offered
will be provided as long as the expectation is satisfied. The goal
of  negotiation  is  to  find  a  policy  whose  offer  (user  profile)
satisfies  the  user  requirement  while  its  expectation  (service-
profile) is  satisfied by the environment properties (environment
descriptor). 

The relationships between user requirements and offers, and
the relationships between the expectations and the capabilities of
the  environment,  are  satisfaction  relationships.  To  facilitate
conformance  testing,  a  model  should define a  partial  order  on
such expressions with respect to satisfaction.  Then,  any pair of
expressions may be mechanically evaluated for conformance.

2.1.1 Declared conformance
It  looks  appealing  to  adopt  the  technique  typically  used  in

ODP trading [5, 6] where each requirement or offer is a reference
to a type name, and where a type conformance graph is declared a
priori. This way of using declared conformance was first proposed
in [7]. However, this is too limiting in general, since each declared
type will need to capture all aspects relevant for the application.
This  may  easily  lead  to  conformance  graphs  which  are  too
complex and application specific.  Therefore we propose a hybrid
model  where  conformance  rules  may also  be  based  on  simple
numeric parameters.

2.1.2 Dynamic composition of statements
Profile  expressions  and  negotiation  should  support

composition,  since  statements  from  participants  which  do  not
necessarily know each other, would need to be combined into one
describing the composed system. Given a set of expressions about
the  behaviour  of  individual  components  of  a  system,  it  is  not
obvious how to deduce the behaviour of the whole system. Three
different  problems  should  be  addressed  when  it  comes  to
expressing the total behaviour: 

➢ Autonomous  users  may  issue  different  requirements  for  the
same service and all users should be satisfied.  

➢ We  may  need  to  combine  expressions  regarding  the  same
component but in more than one dimension (e.g. performance
and  security).  We  introduce  an  operator  to  construct
expressions  from simpler  sub-expressions,  meaning  that  the
predicates  stated  by  each  part  must  be  true  in  the  same
environment (c.f. logical conjunction).  

➢ Open  systems  are  systems  interacting  with  environments
neither they or their  implementers controls  [8].  Expectations
towards environments may need to characterise a number of
abstract  components,  for  instance,  client,  server  and
communication channel, with a separate expectation for each
of  them.  Our  model  should  therefore  support  dynamic
composition of statements about separate components of the
environment.  We  address  this  problem  by  introducing  an
additional composing operator. 

The  third  problem  is  only  partly  addressed  in  QoS
specification models like [9], by allowing QoS-characteristics to
be defined with composition in mind. Work on formal models has
shown that with certain assumptions on the temporal relationships
[10] it  is  possible  to  make  statements  about  the  behaviour  of
composite  systems  as  conjunctions  of  statements  about  each
component.

2.2 Binding model
The negotiation scheme discussed above need to be supported

by  a  middleware  architecture,  it  will  be  a  part  of  the  binding
establishment process, where an active binding would represent a
contract. The basis of our investigation is the family of binding
models of ANSA [12], FlexiBind [3], OpenORB [13, 14], etc. 

We believe that  [14] is suitable as a generic binding model
which regards  binding-types as  pluggable  first-class  entities.  In
our current experimental work, we assume a client/server (RMI)
special case, and look at how client initiated binding would lead to
a  session  specific  end-to-end  configuration.  We  also  limit  the
scope of negotiation to the non-functional aspects. However we
believe that the ideas explored here are applicable to other binding
types as well.

2.2.1 Binding phases
We  can  decompose  binding  into  four  phases,  where  the

system can perform configuration of a service implementation and
where negotiation would be of interest: 

➢ Service deployment (server side binding). A service is made
available  for  clients  to  bind  to,  by  generating  a  name  and
configuring a minimum of protocol stack such that client can
establish bindings and initiate negotiations. 

➢ Client  binding,  i.e.  a  client  associates  to  the  service.  This
would not necessarily lead to a complete configuration, since
there may still be parts which need to be negotiated. 

➢ Activation,  where  binding  configuration  as  a  result  of
negotiation  is  completed,  and  associated  with  necessary
resources such that invocation may take place.  

➢ Run-time adaptation by re-activation. Existing activations may
be taken into account when re-negotiating the policy. It is also
possible to encapsulate some adaptation within a single policy,
if it does not violate the contract.  

Note that we distinguish between component deployment (c.f.
CCM, or EJB) and service deployment. Component deployment
may involve service deployment.

2.2.2 Policy
A policy represents a potential  contract, i.e. it can be viewed

as a mapping from some constraint on the environment  S, to the
satisfaction of an user requirement U. We refer to  U as the  user
profile and  S  as  the  service  profile.  If  P(x) is  the  predicate
defining a profile x, a policy states the following: P(S) ⇒ P(U)

requirements

environment
descriptors

components of environment

satisfaction 
relationship

offer

expectation

policy

Figure 1. Statements and satisfaction relationships



A policy also constrains how an activation is configured. The
configuration part of a policy will depend on the binding type. For
RMI bindings it will consist of a client and a server part. 

A  metapolicy represent  a  way  to  associate  policies  with  a
given  binding.  A  binding  will  always  be  associated  with  a
metapolicy which constrain how and when it is activated, how the
policy  is  negotiated,  what  scope  a  policy  will  have  (e.g.
invocation,  session,  transaction  etc),  and  how  the  binding  is
adapted by re-activation in response to changing environmental
properties.

Our concept of metapolicy capture how services are set up in
the deployment phase as well  as in the client binding phase. A
metapolicy  may  therefore  involve  implementation  decisions
which constrain the later choice of policy.

3. PROFILE MODEL
In our approach statements about offers, expectations, etc. are

formulated  as  profile  expressions which  can  be  evaluated  for
conformance. In this section we describe the idea of basic profile
models and  how  more  complex  expressions  can  be  composed
from basic profiles by using sum or component-sum operators. 

3.1 Defining basic profile models
A basic profile is an identifier and is associated with zero or

more  numeric  parameters  (parameters  are  enclosed  in  square
brackets).  A  profile  model define  a  set  of  rules  for  how basic
profiles  are  related  by  conformance.  If  a  profile  x (implicitly)
denotes a predicate P(x), a conformance relationship exist: x ≤ y,
if P(x) ⇒ P(y). 

Since  profile  models  only  need  to  state  conformance
relationships,  the  actual  meaning  of  a  basic  profile  may  be
implicit  in  a  profile  model.  Profiles  can  be  abstractions  over
measurable  properties  like  e.g.  timing  constraints,  amounts  of
memory,  but  also  structure  of  implementations  etc.  A  policy
programmer may however need a specification defining the actual
meaning. For instance that ModerateDelay means average delay
less than 500 milliseconds. 

A concrete profile model is specified as a set of  axioms. To
define axioms we propose a simple notation like shown in the
example below. Each axiom declares conformance between pairs
of  basic  profiles  using  the  '≤'  operator.  A predicate  for  when
conformance is true is placed after the 'if' keyword. Variables in
the predicates are bound to the parameters given inside brackets.
Omitting  the  predicate  in  a  rule  means  'true'  (corresponds  to
simple declared conformance). 

NetGuaranteed  NetEstimated  Net;
LowLoad  ModerateLoad  HighLoad;
LowDelay  ModerateDelay  AnyDelay;
Delay[x]  Delay[y], if x <= y;
Delay[x]  LowDelay, if x <= 100; 
XRes[x]  XRes[y], if x <= y; 
Disp[x1,y1]  XRes[x], if x1 >= x; 
Disp[x1,y1]  Disp[x2,y2], if x1>=x2 AND y2>=y2;

From  the  rules  above,  we  can  for  instance  infer  that  the
expression Delay[10] satisfy  ModerateDelay and that Disp
[2000,1000] satisfy XRes[500].

As a proof of concept we have implemented a profile model
compiler which checks the correctness of the definition, computes
a set of additional rules which can be derived from the axioms. It
generates code which facilitates efficient testing of conformance
between any pair of basic profile expressions. 

3.2 Composing expressions

3.2.1 Sum operator
Profile  expressions can be combined  using the  '+'  operator.

The semantics of this operator is logical conjunction. If a profile
expression  x denotes  (implicitly)  a  predicate  P(x),  A  profile
expression x+y denotes a predicate P(x+y) = P(x) ∧ P(y). 

From this definition it is straightforward to infer conformance.
For instance  (x+y) ≤ x. Furthermore,  z ≤ (x+y), if z≤x and z≤y. 

3.2.2 Component sum operator
The '⊕' (component sum) operator is used to state expressions

regarding  separate  environments.  To  satisfy  a  component  sum
x⊕y, both x and y must be satisfied, but x and y cannot be satisfied
by the same profile instance. For a profile z to conform to (x⊕y), z
must itself be a component sum (a⊕b) where a≤x and b≤y. 

A  profile  expression  (x⊕y) denotes  a  predicate  P(x⊕y)  =
P1(x) ∧ P2(y). where P is a composite of P1 and P2. 

3.2.3 Expressions in general
From the  definitions  above  we  have  developed  a  complete

syntax  and  semantics  of  profile  expressions  formed  by  these
operators. Based on this, we have developed conformance rules
which can be used to match any expressions in this language. We
refer to [11] for a more complete set of definitions and proofs.  

A conformance testing algorithm has been implemented as a
proof of concept. Conformance testing software (which will  be
part of policy trading software) will link in code generated by the
profile model compiler. 

3.3 Example
Consider an application for interactive browsing of graphics

representing large and complex models (e.g. GIS). Clients initiate
sessions to a server, and may have requirements for presentation
quality  and  average  response-time.  Network  connectivity  and
client  device  capabilities  may vary,  and the  graphics  rendering
may  put  a  high  load  on  servers.  The  choice  of  policies  for
bindings  will  depend  on  user  requirements  and  capabilities  of
client devices, servers and  network.

A policy,  which  offers  to  satisfy  low  response  time  and  a
certain  image  quality  may  have  the  following  expectation:  A
certain a minimum size of the display on the client side, a network
connection  satisfying  an  estimated  “NormalBW” bandwith  and
latency  better  than  20,  and  a  server  with  a  "fast"  CPU and  a
moderate load. 

Client + ( (Display[800, 400] + Colour)
 ⊕ (NetEstimated + NormalBW + Delay[20] ) 
 ⊕ (Server + FastCPU + ModerateLoad) )

A client environment (e.g. a portable device) may for instance
express  that  it  is  capable  of  two  display  modes:  One  normal
colour mode and one monochrome mode with higher resolution,
by including a component sum of two display instances: 

(Display[200, 100] + Colour)
⊕ (Display[400, 800] + Mono)

4. MIDDLEWARE ARCHITECTURE
In this section we describe some highlights of our experimental
middleware platform and how such a platform can support  the
run-time characterisation in the profile model described in section
3 above. The implementation is based on parts of FlexiBind [3]. 



4.1 Basic binding framework
Binders are pluggable components responsible for establishing

bindings.  Service  deployment  would  mean  associating  objects
with a suitable generator (server side binder), which generate an
interface  reference  which  can  be  resolved by  a  corresponding
client  side  binder.  Binders  creates  bindings which  are  not
necessarily active. Bindings are associated with a metapolicy and
are represented by explicit objects both on client and server side,
or in all address spaces involved in the binding. 

Activators are  pluggable  components  responsible  for
activating  bindings  according  to  some  policy.  Activating  a
binding  involves  loading  and  instantiating  an  activator
component. This may (depending on the policy) allocate resources
needed  by  the  activation,  as  well  as  setting  up  protocols,
transparency objects, or other aspect implementation components.
A  policy  will  actually  contain  a  reference  to  some  activator
implementation (a Java class in our experiment). 

4.1.1  Channels
When  a  server  generates  an  interface  reference for   an

interface, some protocol information must be passed along with it
such  that  clients  know  how  to  negotiate  and  bind  to  it.  This
observation suggest that the activation (protocol stack) should be
divided into two parts:  (1) A protocol dependent  part  which is
identified in interface references, and a (2) protocol independent
part  which  is  negotiable.  On  the  server  side,  the  protocol
dependent part should normally be the minimum needed to listen
for incoming calls and to perform negotiation. On the client side,
this means that we know what the protocol-dependent part of the
activation  should  be  at  binding  time,  but  it  doesn't  necessarily
have to be activated before the rest of the stack is activated. 

It  is  useful  to  encapsulate  common  protocol  dependent
configurations in components called  channels.  An instance of a
middleware platform should offer access to one or more default
channel instances and/or an interface to instantiate channels. 

4.2  Negotiation aware bindings
Negotiation is handled by  negotiator metaobjects which can

be  attached  to  bindings.  They  may  intercept  the  methods  for
activation/deactivation to modify their behaviour. This essentially
mean to add a mechanism for deciding on what activator to select.
On the server side, binder would set up a negotiation metaobject
which also export a special interface to be remotely invoked by
clients  to  perform  the  negotiation.  In  our  experiments  this
interface offer the following operations:   

➢ get_Activation. Start the binding process on the server. It takes
the user-requirement and the client side environment descriptor
as arguments. It creates a prioritised list of candidate policies,
and return the client part of the first policy which successfully
is activated on the server. 

➢ retry_Activation.  Tell  the  server  that  the  client  part  of  the
policy failed and that the server should try another one. 

➢ activation_OK. Tell  the  server  that  the  binding  process  has
succeeded and that the server may now throw away the list of
candidate policies. 

➢ release. Close the binding. 

A policy-trading service is located on the server, and it is used
by  the  negotiation  metaobject  to  compute  a  list  of  candidate
policies.  The  trader  is  loaded  with  policies,  each  containing  a
reference  to  a  client  activator  and  a  server  activator.  A
corresponding  client  side  binder  would  set  up  a  negotiation
metaobject  (negotiator)  which  at  first  invocation  or  when

explicitly requested, computes the two profile expressions to be
sent  with  the  get_Activation message.  Figure  2  illustrates  the
binding  setup  where  the  target represent  the  actual  application
object on the server or a proxy object on the client.

The approach described here is one of several possible ways to
design a negotiation protocol. It assumes a client/server model and
that  the  probability  of  an  activator  failure  is  low.  It  can  be
extended to  involve more components,  for  instance a three  tier
architecture with a backend server. 

4.2.1  Interface references
The name of the protocol is part of interface references and is

used to select a corresponding resolver component. In our initial
scheme,  the  channel  would  identify  the  protocol.  However,  a
server binder could also set up a negotiation scheme. Thererfore a
protocol-id would be composed from two parts: One determined
by the listening channel and one by the binder. Furthermore, the
negotiation  scheme  described  here  will  require  two  target
identifiers,  one  for  the  actual  target  interface  and  one  for  the
negotiation interface.

4.2.2  Dynamic profile expressions
We claim that it is a metapolicy issue how the environment-

descriptors (c.f.  section 2) are produced, since the relevance of
properties would depend on the application, the binding type, the
platform, the channel used, etc. As shown in figure 2, the binder
would  set  up  per  binding  instance,  the  necessary  structures  to
produce such expressions. 

Some parts of the descriptors may be static. This is the case
for platform properties like display resolution or the availability of
certain  channels.  However  some properties  may change  due to
varying load etc. Some may depend on the location of the peer,
like  for  instance  estimated  end-to-end  network  delay.  These
cannot be fully provided before the time of negotiation. Therefore
we propose a dynamic profile expression scheme: A binder will
set up a profile expression tree (corresponds to an abstract parse
tree). Parts of this may be dynamic, i.e. we use a special type of
tree node which must be evaluated at negotiation time to get a
complete expression.  With this scheme we can easily set up the
composition and the static parts as expressions embedded in the
binder code. 

4.2.3 Inspector objects
To support dynamic profiles we introduce  inspector objects.

Their role is to generate profile expression fragments describing
platform specific  facts  or  measurable  properties  of  the  system
when  requested.  Inspectors  offer  an  interface  with  a  method
getProfile() which returns an expression. A dynamic profile node
would refer to an inspector, and inspectors may be shared between
profile-expressions.  Inspectors  may  be  installed  by  platform
configuration to report properties of platform wide resources, they

binder binding

negotiator

dynamic profile

inspector
objects

channel

resolve

target

Figure 2. Negotiation aware binding



may be configured by channels, or they may be configured by
binders to report properties of individual bindings. 

Some of the inspectors would need to be configured with a
target object (a reference to a local implementation or a remote
interface  reference).  Other  inspectors  may  not  need  to  be
associated with a target, but rather with the platform or resources
available. Examples of what inspectors can do include: 

➢ Estimate  end-to-end  invocation  time  by  invoking  probe-
operations on the remote system. An inspector could e.g. return
a profile "RTT[n]" (where n is a number denoting the round-
trip time in milliseconds). More sophisticated implementations
could  use  of  policy  specific  interceptors  or  layers  in  the
invocation chain which monitors the time for real operations,
however requiring an existing activation. 

➢ Determine by probing, if the remote system is reachable by the
UDP  protocol  (not  always  the  case  if  endsystems  are  on
different IP-subnets). This can be useful if policies use UDP
based  invocation  protocols  or  RTP  for  continous  media
streams. 

➢ Estimate  the  load  on  the  CPU,  network  interface  or  other
resources on the platform. Such an inspector may make use of
operating  system specific  services.  For  instance  the  CKRM
module  [15] for  the  Linux  kernel  provides  class  based
reservation  and  monitoring  of  CPU,  storage  or  listening
sockets. A class could for instance guarantee that its members
get  a  certain  share  of  the  resource.  This  can  be  used  to
determine in which class it is possible to place the threads of a
session at a given time instance.

In the case of using class based resource management, actual
reservations would be encapsulated in policies.  The negotiation
scheme cannot guarantee that reservation will succeed, unless the
middleware is given exclusive access to the classes of interest by
the  O.S,  and  unless  the  negotiation  protocol  provides  proper
concurrency control wrt. resources of interest. 

4.2.4 Naming and scoping support
Binder  components  are  meant  to  be  pluggable  into  various

platform configurations.  Hence,  we  want  to  abstract  over  how
inspector objects are implemented and installed. We observe that
(1) the platform might set  up some,  (2)  channels  might  set  up
some,   (3)  binders  set  up  some,  and  (4)  some  are  metapolicy
specific  (set  up  by  binders)  but  shared  between  the  bindings
sharing  a  metapolicy.  Binders  should  be  allowed  to  use  and
compose these objects. 

This suggest  that  the middleware platform should support a
naming  and  scoping  mechanism  for  inspectors.  Scoping  is
organised like in figure 3: The scope of a binding will also include
the scope of the platform. We may want override a name defined
in the  platform scope.  For  instance,  a  metapolicy may wish to
specialise the behaviour of a display inspector to reflect that only
a part of the display could be used. It could then install a special
inspector which delegates to the platform level display inspector
but modifies its output.

4.2.5 Scripting
The use of a run-time naming and scoping mechanism leads

us to the  idea of defining dynamic profiles  as script  fragments
embedded  in  binder  code.  It  is  convenient  for  a  metapolicy
programmer to embed textual representations of expressions and
let the middleware evaluate it. In such expressions one could use
the '$' prefix to refer to parts which are expanded at negotiation
time. They would refer to installed inspectors by name.  

4.2.6  Example
Recall the example in section 3.3. A client binder sets up an

inspector named 'rpc-channel' which returns the properties of an
available RPC channel. An inspector named 'display' is set up by
the platform and returns the properties of the display. The client
binder code would contain the following. 

descriptor = “Client + ($display ⊕ $rpc-channel)"

During  negotiation,  this  expression  is  evaluated,  i.e.  the
dynamic profile parts are replaced by expressions returned by the
inspectors, e.g.  $rpc-channel  estimates bandwidth and delay and
return e.g.  "NetEstimated + HighBW + Delay[10]".
The resulting expression is sent to the server in the get_Activation
operation and the server adds its own expression (evaluated in a
similar way) by using the component sum operator. The resulting
expression is then used when searching for a policy. 

4.3 Implementation
The  ideas  presented  here  has  been  partially  implemented.

This  includes  binders,  activators,  a  negotiator  framework,  an
example negotiator pair, a simple policy-trader, dynamic profile-
expression evaluation, an inspector framework and some example
inspector  and  naming  spaces  which  can  be  linked  to  provide
proper  scoping.  Experiments  using  this  implementation  is
currently being carried out.  

We observe that the idea of naming and scoping have a wider
application than only inspectors. In [3] we propose a extensible
interface  hierarchy  for  the  PPI  (policy  programmer  interface),
which is used by policies to get access to services of the platform
and which facilities the pluggability check of policies by using the
dynamic type checking mechanism of the programming language.
This scheme does not scale well wrt. number of possible platform
configurations with different sets of services. It is not suitable for
handling  a  varying number  of  instances  of  the  same type,  e.g.
channels.  This  also  indicates  that  one  could  benefit  using
declarative  scripting,  not  only  for  composing  dynamic  profile
expressions,  but  also  for  defining  binders  in  general  since
different  binders  often  represent  sligthly  different  ways  to
configure and use a set of standard components.  

5. RELATED WORK
Binding models in reflective middleware [1] is maturing. The

ANSA FlexiNet framework [12] allows dynamic pluggability and
selection  of  binders,  [3]  adds  the  concept  of  pluggable  and
replaceable policies for binding activation. The OpenORB binding
model [14] focuses on extensibility wrt. binding types. Here, the
client/server  model  is  one  of  many  specialisations.  Since  the
concept of binding types includes a negotiation protocol, scope of
binding  etc,  it  overlap  with  our  concept  of  metapolicy.  The
binding type will clearly constrain metapolicy, but it also seems
like metapolicy would need to contain different aspects, some of
them orthogonal to binding-type. 

platform

channel metapolicy

binding

?? Figure 3. Naming contexts



Much  research  has  been  done  in  QoS  but  is  often  tied  to
specific application domains, technologies, components or layered
architectures (c.f. [16]). This includes QoS negotiation which is
typically  based  on  parameters  and  explicit  constraints  on
parameter ranges, which may be computationally complex. 

QuO [17] focuses on adaptation, contractual QoS and aspect
languages. Contracts may be defined in a specific language, based
on regions, constraining values on measured properties. Contracts
are explicitly represented at run-time and closely tied to the server
implementation.  Furthermore  this  model  does  not  address
negotiation among autonomous components. QML [2] is mainly a
language  for  QoS  contract  specification.  A  run-time
representation is possible, however somewhat ad hoc. CQML [9]
extends and generalises over this model and add some support for
composition  in  the  individual  QoS  characteristics.  QML  and
CQML connect contract-templates to the service interfaces by use
of so called profiles. We aim to make contracts more orthogonal
to service types. Also, our approach offer a hybrid of declared and
rule-based  conformance  instead  of  a  strictly  parameter  based
approach. Furthermore it addresses composition which is weakly
supported in other approaches.

QuA  [18]  propose  platform  managed  QoS  as  a  general
solution  to  preserve  the  safe  deployment  property  for
compositions  of  independently  developed  components.  An
important part of QuA is a framework for service planning [19],
i.e.  composing software  components  and  resources  to  realise  a
service according to a set of QoS constraints. This is not far from
the purpose of policy trading. QuA proposes to use a quality-loss
model and utility functions, which has a more limited scope than
our profile model but at the other hand, is suitable for maximising
satisfaction in addition to just finding satisfactory contracts. 

6. CONCLUDING REMARKS
 We propose a model for declarative expressions to be used in

negotiation  of  bindings  in  open  systems.  From  application  or
domain  specific  rule-bases,  we  can  infer  conformance between
pairs of expressions in this model. A compiler can derive a full set
of rules and generate code which facilitates efficient conformance
checking.  Our  model  supports  composition,  i.e.  conjoining  of
expressions describing separate components.  

We also propose a scheme for how middleware can support
automatic  characterisation  of  resources  or  other  relevant
properties as well as composition of these.  Each binding instance
would  be  associated  with  a  dynamic  profile,  i.e.  a  profile
expression  with  placeholders  for  parts  to  be  determined  by
querying at negotiation time. Such querying is done on inspector
objects  which  perform  mapping  from  platform  dependent
characteristics to the more abstract profile model. This means that
QoS mapping is highly configurable and set up or modified by
binder  components.   This  scheme  has  the  advantage  of  being
flexible but requires some conventions for naming of inspectors.
The  profile  model  can  simplify  negotiation,  and  matching  of
policies  can  be  more  efficient  than  with  more  traditional
parameter based negotiation, but requires careful design of profile
models  as  well  as  conventions  for  composing  expressions.  A
negotiation  scheme  strictly  based  on  conformance  does  not
support  finding  an  optimal  solution.  That  is  a  disadvantage  in
some cases.  

Issues  for  future  work  in  this  area  include  validating  this
approach by applying it  to application scenarios and alternative
binding  types.  We  observe  that  the  metapolicy  includes  many
aspects and that binders to a large extent share code. One could
explore  the  use  of  declarative  scripting  languages  for  defining
platform setup, binders, negotiators and activators.  Since various

applications or application domains may define their own profile
models it is interesting to see how we can provide interoperability
among autonomous domains by combining their models. Here, we
may benefit  from work performed in the area of semantic web
with ontologies. 
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