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 10 

ABSTRACT 11 

We compared the benefits of using extruded feed (EF), against pelleted feed (PF) to guide cage culture investments 12 

in Great Lakes. Three out of six cages in the same farm had fish that were fed EF and the other half, belonging to a 13 

different farm had fish that were fed PF. The diets were similar in crude protein, lipid and energy content. However, 14 

the fiber content in PF was 4 times higher than that of EF. The fish fed on EF grew better (438.0 ± 7.4 g) than the fish 15 

fed on PF (220.8 ± 2.9 g). The cost of production for EF was about 26% lower than for PF, primarily because of better 16 

feed utilization. The load of P and N for PF diet was 59% and 29% higher, respectively, than when EF was used. 17 

Therefore, EF feed delivered better economic gains with lower environmental impact than PF feed. 18 

KEYWORDS: Cage culture; Nile tilapia (Oreochromis niloticus); cost of production; market channels; pellet stability; 19 

nutrient load. 20 

 21 

Introduction 22 

In recent years, open cage culture has increased in African freshwater lakes and reservoirs (Blow and Leonard 2007; 23 

Gondwe et al. 2011; Musinguzi et al. 2019; Hamilton et al. 2020). In Lake Victoria, the total number of cages, 24 

primarily in the Kenyan portion, increased from 1663 to 4357 between 2018 and 2019 and further growth is expected 25 

(Njiru and Aura 2019; Hamilton et al. 2020). The main species produced is Nile tilapia Oreochromis niloticus (Aura 26 

et al. 2018; Njiru et al. 2018), grown in small (8 m3) cages. The grow-out period takes 6-8 months and most farmers 27 
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have only one production cycle per year, since turnover in the lake, occurring between August and October, may cause 28 

heavy mortalities (KMFRI 2016). The preferred market size of Nile tilapia around the L. Victoria basin is >400 g, 29 

with sales prices per kilogram of fish varying between market sections (KMAP 2016). 30 

As is common practice in Africa, most of the cage fish production is bought by agents who transport the fish, 31 

chilled, to retailers in major cities (KMAP 2016; Awuor et al. 2019). Many farmers prefer this route to market because 32 

the agents pay cash immediately. A second sales channel is through wholesalers who resell the fish to retailers and/or 33 

directly to consumers at the local markets. Here, the wholesaler pays for the fish up to a week later. Finally, a small 34 

fraction of the production is bought directly by consumers at the landing site. The farmgate price for tilapia in sub-35 

Saharan Africa is relatively low, due to the limited purchasing power of the local buyers and because of competition 36 

with cheaper frozen tilapia imported from China (Awuor et al. 2019). Since there is little direct contact between 37 

farmers and consumers the price is determined primarily by the intermediaries. As a result, profit margins of fish farms 38 

are narrow. 39 

Globally, aquaculture practices and studies have shown feed costs to represent half or more of production 40 

costs  and are, therefore, an important factor in determining the economic outcome for fish farms (Watanabe 2002; 41 

El-Sayed 2006; Cheng et al. 2010; Khalil et al. 2019; Allam et al. 2020; Musa, Aura and Okechi 2021). However, 42 

there is limited information available on the production cost of cage aquaculture in the Great Lakes region. Most fish 43 

farmers in the developing countries and in the Great Lake region rely on locally made pelleted feed (PF) rather than 44 

more expensive factory made extruded feed (EF) (Charo-Karisa et al. 2013; Aura et al. 2018). However, low-cost 45 

feeds may not be the most economically viable when growth rate and feed conversion are taken into account. A number 46 

of studies have addressed feed development for tilapia in the developing countries (e.g. Liti et al. 2005; 2006; Munguti 47 

et al. 2006; Munguti et al. 2009; Mugo-Bundi et al. 2015; Kubiriza et al. 2017; Opiyo et al. 2019; Kirimi et al. 2021; 48 

Chepkirui, 2021). However, none of these compared the growth performance of tilapia and the effect on farm 49 

economics when either PF or EF were used in cage culture. In the absence of a scientific study to compare the two 50 

types of commercially produced pellets under cage culture conditions, there is scant information for tilapia producers 51 

within the Great Lakes region on which feedstuff they should use and producers normally buy the affordable pelleted 52 

feed available in the market. Whether pelleted or extruded feed types provide better culture performance and cost 53 

efficiency when O. niloticus is reared in net cages remains to be validated. 54 
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Feed quality can also affect the environmental impact of cage aquaculture (Wu et al. 1999; Musinguzi et al. 55 

2019). Pellets that disintegrate quickly can increase water turbidity, and nitrogen (N) and phosphorus (P) released 56 

from uneaten feed and faeces (Brinker and Rosch 2005) causes eutrophication problems. There is a paucity of 57 

information on the environmental impact of cage aquaculture in eutrophic, freshwater lakes such as Lake Victoria. 58 

Thus, the objective of this study was to compare the revenue, performance, stability and nutrient loads when using PF 59 

and EF in cage aquaculture. 60 

Materials and methods 61 

Study Area 62 

The study was conducted at four commercial fish farms at Anyanga beach, Kadimo Bay in the Nyanza Gulf, northern 63 

Lake Victoria, Kenya (Fig. 1) from December 2018 to July 2019. Kadimo Bay was chosen for the study as it is one 64 

of the main centers of aquaculture in Lake Victoria (Aura et al. 2018; Hamilton et al. 2020). The farms are under 65 

separate ownership but are managed by a single company until harvest, with the same people feeding and looking 66 

after the fish in all farms. Therefore, we assumed that management practices were similar in all farms, except for the 67 

feed used. The farms had fish in 600 cages (2 m × 2 m × 2 m) and each cage was stocked with 2000 tilapia (average 68 

initial body mass 15 g). The juveniles for all of the farms were sourced from the Lakeview fisheries hatchery in Homa-69 

bay county. Out of the 600 cages, 402 cages were fed on EF and 198 cages fed on PF. Throughout the culture period, 70 

all groups were hand-fed to near satiation twice a day.  Due to limitations of financial and capital resources, three 71 

cages feeding on PF and three fed EF were randomly selected for growth, feed use and nutrient loading monitoring. 72 

However, harvest and sales data were collected from all of the cages at the study site. 73 

The PF was obtained from local artisanal feed producers while the EF was produced by a feed mill, with all 74 

of the farms using EF or PF relying on the same source throughout the production cycle. All pellets were 3 mm in 75 

diameter. The crude protein of the two diets was similar even though the ingredients varied (Table 1). Data for 76 

ingredients and formulations used for EF and PF production was obtained by interviewing the investors of the various 77 

companies, while the costs of ingredients was set according to market prices at the time of the survey. 78 

Proximate composition of feeds 79 

The proximate composition of the diets was analyzed using standard methods (AOAC 1995). Crude protein (CP) was 80 

estimated as N × 6.25, after determining nitrogen (N) content of the samples using micro-Kjeldahl analysis (AOAC 81 

1995). Lipids were extracted using a Soxhlet apparatus (Soxtec T 2050 Avanti Extraction Unit). Moisture was 82 
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determined by drying samples in an oven at 105 °C for 24 hours and ashing them by combustion for 8 hours in a 83 

muffle furnace at 550 °C. Crude fiber was quantified by alkaline/acid digestion followed by ashing at 550 °C in a 84 

muffle furnace for 4 hours. Soluble carbohydrates (Nitrogen Free Extract; NFE) of the feed was calculated in grams 85 

as: NFE = DM – (Ether extract (EE)+CP+CF+ash). Gross energy of the diets was determined using an adiabatic bomb 86 

calorimeter (1241, Parr Instrument Company, Moline Illinois-USA) and was calculated in terms of the energy content 87 

of nutrients: EE 39.5; CP 23.6; CF and NFE 17.3 MJ kg-1 respectively (Halver and Barrows 1972).  For amino acid 88 

determination, samples were hydrolyzed with 6 M HCl at 110 °C for 24 hours. Sulphur-containing amino acids 89 

(cysteine and methionine) were oxidized using performic acid before acid hydrolysis. Amino acids were separated 90 

using reverse phase HPLC and quantified following post-column derivatization within ninhydrin. All analyses were 91 

performed in triplicate. 92 

Sampling, growth assessment, survival and feed efficiency 93 

At the beginning of the experiment, fish were randomly sampled with a scoop net, 90 fish per cage. The fish were 94 

individually weighed and measured. Identical measurements were performed on days 90 and 180. Feed use was 95 

weighed and recorded daily and feed intake was calculated as grammes of feed per fish. Mean weight gain (g), specific 96 

growth rate (SGR), survival and apparent food conversion ratio (AFCR) were estimated as follows: 97 

WG = Final mean body mass – initial mean body mass 98 

𝑆𝑆𝑆𝑆𝑆𝑆(% 𝑑𝑑𝑑𝑑𝑑𝑑−1) = 100 ∙
ln𝑊𝑊𝑓𝑓 − ln𝑊𝑊𝑖𝑖

𝑑𝑑
 99 

Where Wi and Wf are the mean initial and final body mass respectively, d is the number of days between measurements 100 

and ln is the natural logarithm. 101 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆 (%) = 100 ∙
𝐹𝐹𝑆𝑆𝐹𝐹𝑑𝑑𝑆𝑆 𝐹𝐹𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆 𝑜𝑜𝑜𝑜 𝑜𝑜𝑆𝑆𝑓𝑓ℎ
𝐼𝐼𝐹𝐹𝑆𝑆𝐼𝐼𝑆𝑆𝑑𝑑𝑆𝑆 𝐹𝐹𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆 𝑜𝑜𝑜𝑜 𝑜𝑜𝑆𝑆𝑓𝑓ℎ

 102 

 103 

𝐴𝐴𝐹𝐹𝐴𝐴𝑆𝑆 =
𝑊𝑊𝑛𝑛𝑆𝑆𝑊𝑊ℎ𝐼𝐼 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛𝑑𝑑 𝑝𝑝𝑆𝑆𝑛𝑛𝑓𝑓𝑛𝑛𝐹𝐹𝐼𝐼𝑛𝑛𝑑𝑑
𝐼𝐼𝐹𝐹𝐼𝐼𝑆𝑆𝑛𝑛𝑑𝑑𝑓𝑓𝑛𝑛 𝑆𝑆𝐹𝐹 𝑛𝑛𝑜𝑜𝑑𝑑𝑑𝑑 𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓

 104 

Protein Efficiency Ratio (PER) was calculated by dividing the fish weight gain by the total amount of protein 105 

ingested during the experiment. Total protein ingested was estimated from the daily feed ration multiplied by the 106 

protein content of the diet 107 

𝑃𝑃𝑃𝑃𝑆𝑆 =
𝑊𝑊𝑛𝑛𝐼𝐼 𝑤𝑤𝑛𝑛𝑆𝑆𝑊𝑊ℎ𝐼𝐼 𝑊𝑊𝑑𝑑𝑆𝑆𝐹𝐹 (𝑊𝑊)

𝑇𝑇𝑜𝑜𝐼𝐼𝑑𝑑𝑆𝑆 𝑝𝑝𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑆𝑆𝐹𝐹 𝑆𝑆𝐹𝐹𝑊𝑊𝑛𝑛𝑓𝑓𝐼𝐼𝑛𝑛𝑑𝑑 (𝑊𝑊)
 108 
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Protein productive value (PPV) was calculated using the following formula: 109 

𝑃𝑃𝑃𝑃𝑃𝑃 (%) = 100𝑥𝑥
𝑝𝑝𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑆𝑆𝐹𝐹 𝑊𝑊𝑑𝑑𝑆𝑆𝐹𝐹 (𝑊𝑊)
𝑝𝑝𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑆𝑆𝐹𝐹 𝑆𝑆𝐹𝐹𝐼𝐼𝑑𝑑𝑖𝑖𝑛𝑛 (𝑊𝑊)

 110 

Gross and net fish yields were calculated using the following formulae: 111 

𝑆𝑆𝑆𝑆𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑑𝑑 = 𝑁𝑁𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆 𝑜𝑜𝑜𝑜 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑓𝑓 𝑥𝑥 𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑑𝑑𝑊𝑊𝑛𝑛 𝑜𝑜𝑆𝑆𝐹𝐹𝑑𝑑𝑆𝑆 𝑤𝑤𝑛𝑛𝑆𝑆𝑊𝑊ℎ𝐼𝐼 𝑜𝑜𝑜𝑜 𝑜𝑜𝑆𝑆𝑓𝑓ℎ 112 

𝑁𝑁𝑛𝑛𝐼𝐼 𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑑𝑑 = 𝑇𝑇𝑜𝑜𝐼𝐼𝑑𝑑𝑆𝑆 𝑛𝑛𝑆𝑆𝑜𝑜𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 𝑑𝑑𝐼𝐼 ℎ𝑑𝑑𝑆𝑆𝑆𝑆𝑛𝑛𝑓𝑓𝐼𝐼 − 𝐼𝐼𝑜𝑜𝐼𝐼𝑑𝑑𝑆𝑆 𝑛𝑛𝑆𝑆𝑜𝑜𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 𝑑𝑑𝐼𝐼 𝑓𝑓𝐼𝐼𝑜𝑜𝐼𝐼𝑖𝑖𝑆𝑆𝐹𝐹𝑊𝑊 113 

Cost of production 114 

The cost of each diet was estimated using ingredient costs and inclusion levels (Table 1). Furthermore, feed cost per 115 

kilogramme of fish produced was computed as follows: 116 

𝐹𝐹𝑛𝑛𝑛𝑛𝑑𝑑 𝐼𝐼𝑜𝑜𝑓𝑓𝐼𝐼 (𝑈𝑈𝑆𝑆𝑈𝑈 ∙ 𝑖𝑖𝑊𝑊−1𝑜𝑜𝑆𝑆𝑓𝑓ℎ) =
𝐴𝐴𝑜𝑜𝑓𝑓𝐼𝐼 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛𝑑𝑑 𝑝𝑝𝑆𝑆𝑛𝑛𝑓𝑓𝑛𝑛𝐹𝐹𝐼𝐼𝑛𝑛𝑑𝑑
𝐼𝐼𝐹𝐹𝐼𝐼𝑆𝑆𝑛𝑛𝑑𝑑𝑓𝑓𝑛𝑛 𝑆𝑆𝐹𝐹 𝑛𝑛𝑆𝑆𝑜𝑜𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓

 117 

The economic analysis of cage culture with the two different feeds followed the methods described in Shang 118 

(1985). The owners answered a structured questionnaire to establish the costs of capital (cage and equipment), material 119 

(seed, feed, etc.) and labour. Based on a survey carried out on all the establishments at Anyanga Beach, the average 120 

cost of a 2 m × 2 m × 2 m cage equipped with nets was estimated at USD 162.5. Given a depreciation period of 10 121 

crops, the amortized cage cost was USD 16.25 per cage/per crop. Cage farms need basic equipment and tools 122 

(weighing balance, feeding accessories, life jacket) worth about USD 50 per cage. Given a depreciation period of 10 123 

crops, the amortized cost of equipment and tools is estimated at USD 5 per cage per crop. The average price of 124 

juveniles was USD 0.05 each but a discount is given on large seed consignments with the price of juveniles being set 125 

at USD 0.03 each. The average market price of feed was USD 0.80 kg-1 and USD 1.1 kg-1 for the PF and EF, 126 

respectively. However, large feed consignments received discounts of up to 30% on feed costs. The discounted cost 127 

of management was USD 3 cage-1 month-1. Due to close proximity of the cages to the shoreline (< 150 m), the owners 128 

paddle their boats to the cages and, hence, they do not incur any fuel cost in most cases, however, fuel cost is part of 129 

management costs. Economic analysis was carried out for one production round per cage for EF and PF. 130 

Feed stability 131 

To measure the stability of feed in water, ten pellets of each feed type were weighed and placed in a 50 mL conical 132 

bottom centrifuge tube containing 40 mL of water. The tubes were placed horizontally in a shaking (about 72 cycles 133 

min-1) water bath (Magni Whirl, Blue M, Blue Island, IL, USA). After 2 hours, the content of each tube was filtered 134 

using a standard 8-mesh sieve and the feed material retained by the sieve was placed in a pre-weighed aluminum dish, 135 
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dried in a forced air oven at 100 °C for 4 h and then weighed. The relative difference in dry mass before and after 2 h 136 

soaking and shaking compared to the original sample dry mass was calculated as percent solid loss as indicated below: 137 

𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆𝑑𝑑 𝑆𝑆𝑜𝑜𝑓𝑓𝑓𝑓 (%) = 100 ∙
𝑑𝑑𝑆𝑆𝑑𝑑 𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛𝑑𝑑 𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑆𝑆𝑛𝑛 𝑓𝑓𝑜𝑜𝑑𝑑𝑖𝑖𝑆𝑆𝐹𝐹𝑊𝑊 − 𝑑𝑑𝑆𝑆𝑑𝑑 𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛𝑑𝑑 𝑑𝑑𝑜𝑜𝐼𝐼𝑛𝑛𝑆𝑆 𝑓𝑓𝑜𝑜𝑑𝑑𝑖𝑖𝑆𝑆𝐹𝐹𝑊𝑊

𝑑𝑑𝑆𝑆𝑑𝑑 𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛𝑑𝑑 𝑑𝑑𝑜𝑜𝐼𝐼𝑛𝑛𝑆𝑆 𝑓𝑓𝑜𝑜𝑑𝑑𝑖𝑖𝑆𝑆𝐹𝐹𝑊𝑊
 138 

Estimation of the nitrogen (N) and phosphorus (P) waste from cage culture of Nile tilapia using EF and PF 139 

The amount of N and P released from fish production was estimated based on the difference between the amount of 140 

N and P in the feed provided and what was retained in the fish. The body composition of the Nile tilapia was 141 

determined from the processing and analysis of five fish per cage from two cages for each feed type with a slaughter 142 

weight similar to the final average weight. The analyses were performed in triplicate. The fish were removed alive 143 

from the growth site, anaesthetized, placed in a container with ice and transported to the laboratory. The whole fish 144 

(including viscera, blood, skin and scales) were homogenized, and the body composition determined by proximate 145 

chemical analyses, according to the Association of Official Analytical Chemists (AOAC 2012).  146 

Estimation of nutrient loads in wastes of cage culture 147 

The P concentrations (as a percentage of wet weight) of feed and fish was determined by the molybdate-ascorbic acid 148 

method after persulfate digestion of ashed samples (Stainton et al. 1977). The nutrient loads in the wastes from 149 

production of Nile tilapia grown in cages was estimated according to the methodology described by Ackefors and 150 

Enell (1994). To quantify the amount of waste generated by cage culture, mass balance was calculated to estimate the 151 

approximate level of P and N added to the environment for every ton of fish produced based on actual FCR and the N 152 

and P contents of the feeds and fish. The total nutrient load was calculated as the difference between the amount N 153 

and P in feeds and the nutrient retention in fish at harvest. The following parameters were analyzed according to the 154 

equations: 155 

N load (kg N) = [(Feed x FeedN) – (Fish x FishN)] 156 

P load (kg P) = [(Feed x FeedP) – (Fish x FishP)] 157 

Where: 158 

Feed = Total feed used during the experiment 159 

Fish = Wet weight of fish produced per harvest 160 

FeedN = N content of the feed 161 

FeedP = P content of the feed expressed as the percentage of dry weight 162 

FishN = N content in fish 163 
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FishP = P content of the fish expressed as the percentage of wet weight. 164 

N and P loading from the production of 1 ton of fish = [(Total feed used during the experiment) x (Feed N or P)] – 165 

[(1ton fish x Fish N or P)] 166 

Statistical analysis 167 

The program STATISTICA version 8.0 was used for statistical analyses. The effect of experimental diets on growth 168 

(using average fish weight for each cage), survival and FCR were compared using analysis of variance (One-way 169 

ANOVA). Values throughout the text are expressed as mean ± standard error. The fiducial limits for accepted 170 

significance were P < 0.05. 171 

Results 172 

Proximate composition of feeds 173 

The quoted crude protein content (CP) of the EF and PF by the producers were similar (32%). However, for both diets, 174 

the analyzed CP was lower than the values quoted, 28.2% for the PF and 30.1% for the EF (Table 2), but the difference 175 

between the two feed types was not significant (P = 0.243) (Table 2). Furthermore, there was no significant difference 176 

in the energy and lipid contents of the two diets (Table 2). For the most part, both diets appear to have met the essential 177 

amino acid requirements (NRC 2011) of tilapia except for methionine which was 19% and 4% below recommended 178 

levels in the PF and EF diets respectively (Table 3). The PF diet was also 5-6% deficient in lysine, phenylalanine and 179 

valine. The crude fiber content of the PF diet was four times higher than that of the EF. 180 

Growth, survival and feed efficiency 181 

At the end of the six-month grow-out period, the mean weight and weight gain of the fish fed EF was more than double 182 

(P < 0.0001) that of the fish fed PF (Table 4, Fig. 2). Similarly, the SGR of the fish fed EF was 1.9 times higher than 183 

for the fish fed PF (P < 0.001). The fish fed EF grew well during the entire period while the growth rate of the fish 184 

fed PF declined during the second half of the experiment (Fig. 2). The average survival rate was 95% for the fish fed 185 

EF and 91% for fish fed PF but the difference between the two groups was not statistically significant (P = 0.134) 186 

(Table 4). The AFCR of fish fed EF was 43% lower (P < 0.001) than that of the fish fed PF. Feed intake was 187 

significantly higher (P < 0.001) for fish fed EF than for fish fed PF (Table 4). Notably, PER, PPV were highest (P < 188 

0.0001) in EF as compared to PF. Gross and Net yield were significantly higher (P < 0.0001) in groups fed EF than 189 

fish fed PF (Fig. 3). 190 

Cost of production 191 
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The price of raw materials for EF (per kg) was 34.3% higher than that for PF and, similarly, the market price of EF 192 

was 37.5% higher than that of the latter (Table 5). However, the AFCR of PF fish was 75% higher than that of EF fish 193 

(Table 4) and, as a result, feed cost (per kg of fish produced) was 18.5% lower than for the PF fish (Table 5). Due to 194 

smaller final size, the seed cost was more than double (per kg) when using PF than with using EF. The feed and 195 

juvenile costs were the largest components of the production costs and, combined, they were 28% higher when using 196 

PF compared to EF (Table 5). The total cost shown in Table 5 is the minimum, since cost items such as the labour 197 

contributed by the owner and financial costs are omitted. The latter may be significant since the interest rates in Kenya 198 

are almost 10%. 199 

The estimated fixed costs of running one 8 m3 cage through one production cycle are USD 46.16 (Table 6). 200 

This includes the cost of feeding and managing the production and harvesting, both of which are charged per cage 201 

and, therefore, counted within the fixed costs. The total production per cage was 401 kg and 861 kg for PF and EF 202 

fish, respectively. Therefore, fixed costs add 0.12 and 0.05 USD per kg to the production costs for PF and EF, 203 

respectively. The total production costs were 34% higher when PF was used compared with EF (Table 5).  204 

Agents were the main buyers of farmed tilapia (82%; n = 600). The average farm gate price paid by the agents 205 

was 1.55 USD kg-1 which is below the production cost when fish are fed PF. However, there may be a narrow profit 206 

margin when EF is used. The second largest group of buyers were wholesalers (12%) which paid 1.57 USD kg-1 at 207 

the farm-gate. This is not enough to cover production costs when PF is used, although farmers using EF may generate 208 

a narrow profit margin. Only 5% of the fish were sold directly to retailers and 1% to consumers who paid 2.57 and 209 

3.07 USD kg-1, respectively, at the farm-gate. Both of these market channels should return a profit, albeit higher for 210 

EF than PF. 211 

Feed stability 212 

The EF pellets floated better and were more stable in water than PF pellets (Fig. 4). The solid loss of PF (82%) was 213 

four times higher than EF (P < 0.001) after 2 hours of soaking and shaking. 214 

Estimation of the N and P waste from cage culture of Nile tilapia  215 

Although the composition of the feeds was similar, more N (126.0±1.0) and P (30.8±1.8) was provided through the 216 

feed (as kg ton-1 fish produced) when the fish were fed PF than EF diets (Table 7). Although the proximate composition 217 

of the fish fed either PF or EF was similar, the protein content of EF fish was higher (17.0%) and the lipid content 218 

lower (4.5%) than that of the PF fish (Table 8). More N (27.2 ± 0.5) and P (8.5 ± 0.6) was retained in EF (as kg ton-1 219 
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fish produced) than in PF fish (Table 7). As a result, about double the amount of N (83.3%) and triple the amount of 220 

P (74.7%) were released into the environment when the fish were fed the PF.  221 

Discussion 222 

Insight into the economics and environmental impacts of the growing cage aquaculture have received unprecedented 223 

views globally.  The evaluation in the use of extruded verses pelleted feeds has drawn a major debate on costs, quality 224 

and performance. For example, extruded floating feeds have been shown to exhibit better growth performance in 225 

several species (Ammar 2008; Chebbaki et al. 2010; Aba et al. 2012; Hematzade et al. 2013; Lee et al. 2016) but have 226 

shown no significant difference in some species (Misra et al. 2002; Limbu 2015; Muyot et al. 2018). Whether extrude 227 

or pelleted feed types provide better culture performance and cost efficiency on O. niloticus reared in net cages remains 228 

to be validated. Therefore, most farmers are hesitating on using extruded feeds due to cost implication. In the absence 229 

of a scientific study to compare the two types of commercially produced pellets for cage culture, tilapia producers in 230 

the Great Lakes region do not know which one to use and are normally inclined to buy the cheaper pelleted feed that 231 

are available in the market. Thus, the results of this study provide evidence-based data on the hidden cost of pelleted 232 

feed to guide the cage farmers and policy intervention in the Great Lakes region.  233 

Growth and feed intake 234 

The final size of the fish fed EF was about twice (453.0 ± 3.6 g) that of fish fed PF and the former maintained good 235 

growth rate during the entire growth cycle whereas the growth rate of the latter slowed down during the second half 236 

of the growth period (Fig. 2). This is interesting because the reported and measured proximate composition of the two 237 

diets were similar (Table 1,2). The dietary protein requirement for Nile tilapia is size dependent and the recommended 238 

CP levels for juveniles larger than 10 g is 25-35% (Balarin and Haller 1982; Tacon 1987; El-Sayed and Teshima 1991; 239 

Khattab et al. 2000). Both diets had CP (PF: 28%, EF: 30%) within this range (Table 2) and, similarly, the lipid content 240 

of both feeds (4.8%) was also in accordance with recommended levels (<10%) (Jauncey 2000). There was no 241 

difference in gross energy content (analyzed) of the two diets. Thus, with respect to energy content, CP and lipids both 242 

diets appeared to be suitable for tilapia. However, the difference in growth rate suggests that the quality of PF was 243 

inferior to that of EF and, indeed, there were differences between the diets. The high fiber content in PF was due to 244 

the greater inclusion of plant ingredients, which is in accordance with previous studies (Neto and Ostrensky 2014, 245 

Hueze et al. 2019). Sunflower seed, maize bran and wheat bran have been reported to have high fiber content (El-246 

Sayed 2013; Oliveira et al. 2017); these ingredients formed the bulk of the plant protein in PF. Fiber content above 8-247 
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12% is undesirable in fish feed because it reduces digestibility (De Silva and Anderson 1995; Leal et al. 2010) and 248 

this may have reduced the digestibility of the PF diet resulting in a lower growth rate. Digestibility of the diets was 249 

not measured directly in this experiment. However, the low NFE in PF indicates that the diet had less soluble 250 

carbohydrates and, therefore, lower accessible energy content than the EF diet. 251 

Methionine is usually the first limiting AA in plant-based fish feeds (Furuya et al. 2004; Goff and Gatlin 252 

2004; Belghit et al. 2014). Inclusion of soybean protein in both diets could have contributed to the methionine 253 

deficiency (Sadiku and Jauncey 1995) although less so in the EF as this was supplemented with methionine. An 254 

imbalanced AA composition in PF could have resulted in reduced protein synthesis, causing reduced growth of fish 255 

(Wilson and Halver 1986; Carter and Hauler 2000; Lupatsch et al. 2001; Silva et al. 2009; Belghit et al. 2014; 256 

Figueiredo-Silva et al. 2015) and higher FCR (Halver and Barrows 1972). Therefore, the decreased growth observed 257 

in fish fed PF could, in part, be due to methionine deficiency (Michelato et al. 2017). 258 

The EF was supplemented with vitamins and minerals and this may have contributed to better growth 259 

performance (Halver and Barrows 1972; Kaushik and Seiliez 2010). Earlier studies suggest that supplementing diets 260 

with vitamins or minerals may not always improve the growth of Nile tilapia (Tacon et al. 1984; Liti et al. 2005). 261 

However, those studies were conducted in semi-intensive pond culture where fish rely partly on natural food rich in 262 

vitamins and minerals, which may compensate for inadequacies of micronutrients in the formulated feeds. Natural 263 

food also contains an abundance of high-quality protein, 55-60% on a dry weight basis (De Silva 1993). In cage 264 

culture, most, if not all, nutritional requirements must be met by the feed as there is little natural food available. 265 

Therefore, supplementing diets with vitamins, minerals and essential amino acids may be more important in cage than 266 

in pond culture. 267 

The fish fed EF appear to use the feed more efficiently than those fed PF. The AFCR of fish fed EF was 43% 268 

lower than that of fish fed PF. The FCR in both groups (1.6 and 2.8) was within the range of those observed in other 269 

studies on Nile tilapia in pond culture (1.4-4.4) (Elsayed 1998; Al-Hafedh 1999; Liti et al. 2005, 2006; Kubiriza et al., 270 

2017) and in tanks (1.2-2.03) (Liti et al. 2006) and (1.19-2.03) (Mugo-Bundi et al. 2015). Several factors could have 271 

contributed to this difference in AFCR including differences in the physical qualities of the feeds. In addition to 272 

deactivating anti-nutritional factors (Allan and Booth 2004; Barrows et al. 2007; Delgado and Reyes-Jaquez 2018), 273 

the extrusion process enhances the water stability and the floatation quality of EF (Fig. 3) and, therefore, this will have 274 

enhanced the accessibility of the pellets for the fish. This may in turn have reduced the AFCR (Barrows et al. 2007) 275 
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of the EF fish and improved their growth (Hilton et al. 1981; Barrows et al. 2007). Another factor contributing to the 276 

difference in growth may have been differences in digestible energy although the crude energy content of the feed was 277 

the same. The high heat used in producing the EF diet, may have made carbohydrates more digestible and increased 278 

bioavailability of nutrients in general (Hilton et al. 1981; Barrows and Hardy 2000, Barrows et al. 2007; Venou et al. 279 

2009). As a result, the digestible energy may have been higher in the EF than the PF diet (Barrows and Hardy 2000). 280 

These results suggest that, although the crude energy and protein content of both feeds were similar, the EF is superior 281 

to the PF and that the better quality of the EF diet results in superior growth. Variability in feed quality is another 282 

factor that was not taken into account in this study. Some of the differences between the quoted and analyzed CP in 283 

both diets could have been a result of variability in the quality or inaccuracy in chemical composition information 284 

provided for the ingredients used. For example, the CP of Rastrineobola argentea, which was used in both diets, may 285 

range between 530 and 700 g kg-1 and appears to vary with time of year and processing methods (Mugo-Bundi et al. 286 

2015; Kubiriza et al. 2017). The local artisanal feed manufactures do not have the facilities to monitor the composition 287 

of the raw materials and do not adjust for variation in quality. Therefore, the composition of EF may be more consistent 288 

while the artisanal feed may vary more. The high feed intake recorded for fish fed EF could, most likely, be because 289 

these fish grew faster and consumed more feed. It could also be due to availability of feed for a longer period of time, 290 

thus increasing intake and reducing wastes (Barrows and Hardy, 2000). The PER of fish fed EF was higher than two, 291 

indicating efficient protein utilization due to increased levels of digestibility as a result of extrusion. A comparatively 292 

higher gross, as well as net, yield of tilapia in groups fed EF might be due to relatively higher consumption of feeds. 293 

This could also have been influenced by their significantly higher individual harvesting weight, individual weight 294 

gain, specific growth rate and survival. Optimum yields of 150 kg m-3 have been achieved in small cages (Schmittou 295 

1991), an indication that all of the cages under investigation were operating below their optimum capacity, more so 296 

for the cages utilizing PF. 297 

Cost of production 298 

Many fish farmers in sub-Saharan Africa justify using artisanal feeds because they are less expensive than extruded 299 

feeds. However, the results of this study show that the production costs are lower when EF is used (Table 4). This is 300 

because feed conversion is better with EF, resulting in feed costs that are 18% lower (per kg fish produced) than when 301 

PF is used. Secondly, the final size of the fish fed PF was only half that of that fed EF. Therefore, juvenile costs are 302 

higher and minimum variable production costs are about 28% higher when PF is used compared to EF. The variable 303 
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costs listed represent minimum costs since they neither include interest rates, which are high in Kenya (9% per year), 304 

nor labour costs. We have included labour costs with fixed costs (Table 5) since they are included in the management 305 

costs and are charged per cage. Due to the smaller final size of the fish fed PF, the fixed costs (Table 5) are assumed 306 

to be about twice as high for farms using PF. This is because twice as many cages are required for the same level of 307 

production because the PF fish are only half as big when harvested even though the cages are stocked with the same 308 

number of juveniles. The estimation of fixed costs is based on assumptions about fish density, and fish density could 309 

be higher in cages where PF is used. However, the fixed costs of cage culture are relatively small, constituting <7% 310 

of the total production cost. Variation in fixed costs will have minimal effect on the total production costs. The total 311 

production cost was 34% higher for farms using PF than those using EF. This is an important finding because the 312 

majority of fish farms use artisanal feed. 313 

As expected, feed costs were the largest production cost factor and constituted 85% and 91% of total costs 314 

for PF and EF, respectively. The proportion of feed costs in the current study was higher than those reported previously 315 

for tilapia where feed costs accounted for 60-70 % of the total production cost (Bolivar et al. 2006; El-Sayed 2006; 316 

Watanabe 2002; Cheng et al. 2010). However, most of these studies were conducted in pond systems where the feed 317 

offered is supplementary and a significant proportion of the nutrition comes from natural food organisms (Schroeder 318 

1978). In the absence of natural food, feed costs in cage culture will be proportionately higher than in pond culture. 319 

This difference may put cage culture at a disadvantage compared to pond culture.  320 

The profit margins in cage aquaculture in the Great Lakes region are low and the economic outcome of the 321 

companies involved is sensitive to the sales prices of fish (Musa, Aura and Okechi 2021). Farm gate prices when 322 

selling to agents is 1.55 USD kg-1, which is not enough to cover the production costs when PF is used. However, with 323 

EF, the profit margin could be up to 15%. Even the farm-gate price to wholesalers (1.57 USD kg-1) is not enough to 324 

cover the production costs of farms using PF, which can only be profitable when farmers sell directly to retailers or 325 

consumers, a niche that is only about 6% of the market. The farm gate price of fish is similar to the market price of 326 

frozen, tilapia imported from China ($1.6-1.7·kg-1), for fish of 200-400g in size (Awuor et al. 2019). With current 327 

production practices, farmed tilapia in the Great Lakes region may never compete in price with those from China. 328 

However, consumers appear to be willing to buy fresh fish produced locally at a higher price rather than frozen 329 

imports. 330 
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As is common in most parts of Africa, the majority of cage farmers in Kenya appear to be losing money, but 331 

still they persevere. There may be several reasons for this. First, it is possible that fish farmers do not fully understand 332 

the benefits of record keeping and, hence, may not even be aware that they are losing money. However, it may be 333 

possible to continue farming because of various forms of subsidies from government and other agencies. To increase 334 

food production and bridge the widening gap between fish demand and supply, fish farmers in most developing 335 

countries have, and continue to receive, support and subsidies from local and federal governments to cover the cost of 336 

inputs and start-up investment (Orina et al. 2018). Although, support for start-up fish farms may promote the growth 337 

of aquaculture, it is of little value if the business is not sustainable and/or conducive to good business practices (Guillen 338 

et al., 2019).  339 

Environmental impact of EF and PF  340 

In addition to being more economical, EF also appears to have less environmental impact. The retention of N and P 341 

by fish fed EF was higher than those fed PF. As a result, the environmental loading of P and N per kg of tilapia 342 

produced was more than twice as high when PF was used compared to EF (Table 7). The high loading of N and P was 343 

due to poorer feed conversion of fish fed PF. The high loads of N and P to the environment from fish fed with PF are 344 

of concern and will further exacerbate the eutrophication of L. Victoria.  345 

One of the most important quality parameters of fish feeds is water stability. With high water stability, less 346 

nutrients will leach from the feed into the water before the fish consume the feed. The water stability of the EF was 347 

much more than that of the PF with 82% of the solids leaching from the latter diet over 2 hours while only 15% were 348 

lost from the EF (Fig. 4). Several factors may have contributed to this difference in stability. The high fibre content 349 

of the PF may have reduced the binding capacity of the pellets (Barrows et al. 2007). Moreover, gelatinization 350 

occurring during the extrusion process of the EF diet increases stability (Barrows and Hardy 2000; Misra et al. 2002; 351 

Brown et al. 2015). Therefore, it is not unexpected that that extruded feed was more stable in water than the pelleted 352 

feed. The poor water stability of PF could have contributed to the high nutrient loading (Table 7). Notably, assimilation 353 

of N and P in PF may not have been efficient due to the high fibre content, so these elements were excreted into the 354 

water (Kong et al., 2020). 355 

Conclusion and recommendations 356 

The use of extruded commercial feed in the cage culture of tilapia is preferential to using artisanal feed as it produced 357 

better growth and FCR with less environmental impact. The EF is more expensive than the PF, however, the EF gives 358 
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much better growth and feed conversion than the PF. Therefore, the cost of production is lower when EF is used. Most 359 

fish farmers in sub-Saharan Africa sell their production to agents who bring the fish to market. The cost of producing 360 

fish with PF is higher than the farm gate price of tilapia paid by the middlemen. In contrast, the use of EF may yield 361 

a modest profit margin regardless of market channel. Finally, the environmental impact (N and P loading) is lower 362 

when EF is used. Therefore, EF should be used for farming tilapia in cages for economic and environmental reasons. 363 

Future studies should monitor antioxidants, and immunity response of fish fed either EF or PF. 364 
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FIGURES 

 

Figure 1. Location of Nyanza Gulf and the study site at Kadimo Bay, Anyanga Beach, Lake 

Victoria, Kenya. 

  



 

 

Figure 2. Mean body mass (± SEM) of Nile tilapia reared on extrude (EF) or Pelleted feed  

(PF) for 180 days in cage culture in Lake Victoria, Kenya. 

  



 

 

Figure 3. Mean values (± SEM) of initial numbers of fish, gross and net yield for Nile tilapia 
fed PF and EF for 180 days in cage culture in Lake Victoria, Kenya.   



 

 

Figure 4. Mean mass loss (± SEM) of PF and EF after 2 hours of soaking and shaking. 

 

 



TABLES 

Table 1. Ingredients, crude protein content and formulations of the pelleted (PF) and extruded 

feeds (EF) used in the study. The inclusion level of each ingredient (g kg-1) in the diets is shown 

in the last two columns (PF and EF). 

Ingredients  CP content (g kg-1) PF EF 

Sardine fishmeal  521 - 98 

Shrimp meal (Caridina 
nilotica)  594 235 108 

Soybean meal  383 235 110 

Wheat pollard  181 129 321 

Wheat bran  162 130 - 

Sunflowerseed meal  195 129 306 

Maize bran  102 133 - 

Toxin binder  - 13 

Vitamin premix*  10 20 

Mineral premix‡  - 20 

Methionine  - 4 
*Vitamins (mg kg-1 of diet): thiamine, 1200; pyridoxine, 1000; retinol, 1000; riboflavin, 2000; 
cyanocobalamine, 200; choline chloride, 1600; ascorbic acid (Stay C), 5000; cholecalciferol, 
2400; nicotinic acid, 1800; a tocopherol, 1000; pantothenic acid, 400; paraminobenzoic acid, 
3200 folic acid, 2500; biotin, 1200; inositol, 3000.  

‡Minerals (mg kg-1 of diet): Iodine, 1600; manganese, 4000; cobalt, 400; copper, 2100; iron, 
2000; zinc, 2000; selenium, 400. 



Table 2. Proximate analyses of chemical composition (g kg-1 ± SEM) of the diets tested.  

Feed component  PF   EF 

Dry matter  947.8 ± 3.4  948.0 ± 1.5 

Crude protein 282.0 ± 2.1   301.0 ± 0.3 

Ash 84.3 ± 0.2 a  72.4 ± 1.1b 

Crude fiber 168.2 ± 0.32 a  42.1 ± 0.4 b 

Crude lipid 47.8 ± 0.1   48.0 ± 0.2  

Calculated Nitrogen 
Free Extract 365.5  487.7 

Gross energy (kJ g-1) 16.8± 0.1   17.2± 3.2 
Different superscripts within a row indicate significant differences among means (P < 0.05). 

 

 

  



Table 3. Analyzed essential amino acid (EAA) composition of the test diets used (g kg-1 of 

diet) and NRC recommended threshold content for Oreochromis niloticus. 

Amino acids *NRC, 2011 PF EF 
Arginine 12 15.2 22.2 
Histidine 10 10.4 11.9 
Isoleucine 10 11.2 13.5 
Leucine 19 21 24.6 
Lysine 16 15 15.2 
Methionine 7 5.7 6.7 
Phenylalanine 11 10.4 13.5 
Threonine 11 11.9 13.2 
Tryptophan 3 3.3 3.8 
Valine 15 14.2 15.5 

*NRC (2011) - recommended amino acid content for Oreochromis spp. 

 

  



Table 4. Growth indices (mean ± SEM) and survival of Nile tilapia reared on pelleted (PF) and 

extruded (EF) feed for 180 days in cages. The means are based on samples of 90 fish from each 

treatment.   

Parameter PF EF 

Initial mean weight (g) 15.3 ± 0.2 15.2 ± 0.2 

Final mean weight (g) 220.8 ± 2.9a 453.0 ± 3.6b 

WG (g)  205.8 ± 4.8a 438.0 ± 7.4b 

SGR (%day-1)  1.3 ± 0.2a  2.5 ± 0.1b 

Survival (%) 90.8 ± 1.0 95.0 ± 2.1 

AFCR 2.8 ± 0.2 a 1.6 ± 0.1 b 

Feed intake (g fish-1) 576.0 ± 23.1a  700.8 ± 40.7b 

Protein efficiency ratio (PER) 1.2 ± 0.1a 2.8 ± 0.2b 

Productive protein values (PPV; %) 14.3 ± 1.2a 28.4 ± 2.2b 
Different superscripts within a row indicate significant differences among means (ANOVA 
test, P < 0.05). 
 

  



Table 5. Feed costs and minimum estimated variable production costs of Nile tilapia in cages 

fed either pelleted (PF) and extruded feeds (EF). USD 1 = Kshs 100. 

Parameter   PF   EF 

Estimated cost of raw materials (US$·kg-1)  0.35  0.47 

Market price of feed (US$·kg-1) 0.56  0.77 

Feed price per kg of fish produced (US$·kg-1) 1.46   1.19  

Cost of juveniles per kg fish produced (US$·kg-1) 0.15  0.07 

Total minimum variable production costs (US$·kg-1) 1.73  1.31 

Fixed production costs 0.12  0.05 

Total minimum production costs 1.84  1.37 

 

 



Table 6. Fixed costs for one cage (2 m x 2 m x 2 m) for one production cycle of Nile tilapia 
in Lake Victoria, Kenya. Cost and price information are in US$*. 

Parameters  
Amortized cage cost 16.25 
Amortized equipment and tools 5.00 
Interests* 1.91 
Management 18.00 
Harvest 5.00 
Total fixed cost 46.16 

*Annual interest rates = 9 %; 1 US$ = 100 Kshs 



Table 7. The nitrogen (N) and phosphorus (P) content (mean ± SEM) of feed and fish and the 

environmental load of producing Nile tilapia using either extruded feed (EF) and or pelleted 

artisanal feed (PF) in cages in Lake Victoria, Kenya.  

 N P 
 PF EF PF EF 
Amount in feed (kg·ton-1) 126.0±1.0a 76.8±1.4b 30.8±1.8a 16.0±0.9b 
Retained in fish (kg·ton-1) 21.0 ± 0.5a 27.2±0.5b 7.8±0.0a 8.5±0.6b 
Released (kg·ton-1) 105.0±1.1a 49.6±1.5b 23.0±1.8a 7.5±1.1b 
Released (%) 83.3±0.6a 64.6±1.1b 74.7±1.2a 46.9±4.5b 

All values are expressed in g·kg-1 of production. Significant differences are indicated with 
superscripts (ANOVA test, P < 0.05). 
  



Table 8. Carcass proximate composition (%) of Nile tilapia (g 100 g-1 wet weight basis) reared 

under pelleted and extruded feed in cage culture in Lake Victoria, Kenya.  

Parameters (%) Initial value PF EF 

Moisture 78.3 ± 3.1 74.2 ± 5.4 74.0 ± 3.4 

Protein 10.1 ± 1.1 13.1 ± 0.2a 17.0 ± 0.3b 

Lipids 4.3 ± 0.3 5.4 ± 0.3a 4.5 + 1.1b 

Ash 3.1 ± 0.1 3.2 ± 0.2 3.3 ± 0.1 

Fiber 4.4 ± 0.2 5.3 ± 0.3a 3.8 ± 0.4b 
Different superscripts within a row indicate significant differences among means (P < 0.05). 
Comparisons were made between dietary treatments and excluded the initial values. n = 5. 
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