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A B S T R A C T   

As a disruptive technology, additive manufacturing (AM) is revolutionizing manufacturing supply chains. AM 
consists of producing 3-dimensional objects through layer-by-layer addition of compound material based on 
digital models. The scheduling of additive manufacturing operations differs from traditional (i.e., subtractive and 
injection molding) manufacturing with a single production run involving several parts/geometries;::; this makes 
the jobs heterogeneous. Limited studies have investigated the Additive Manufacturing Scheduling Problems 
(AMSP). This study extends the Iterated Greedy algorithm to solve the AMSPs considering a single-machine 
production setting. For this purpose, several computational mechanisms are customized to account for AM- 
specific characteristics of production scheduling. Numerical analysis shows that the vast majority of the best- 
found solutions are yielded by the Adjusted Iterated Greedy (AIG) algorithm considering both solution quality 
and stability; the outperformance becomes more significant with an increase in problem size. Statistical analysis 
confirms that AIG’s performance is notably better than that of the existing solution algorithm in terms of solution 
quality and stability. This study is concluded by providing directions for future development of AM and AMSPs to 
extend the industrial reach of 3D printing technology.   

1. Introduction 

Supply chain and product impacts of additive manufacturing, and 
it’s advantages over the traditional manufacturing techniques have 
made 3D printing a fast-growing new technology (Haghdadi et al., 
2021). Recent advances, notably in the accuracy, time, and cost- 
efficiency of 3D printing, extend its application areas beyond rapid 
prototyping to end-part manufacturing (Salmi et al., 2016), which is 
paving the way for mass customization. In addition to the production 
sector, additive manufacturing has found its way in other industries, like 
construction (Paolini et al., 2019), energy (Sun et al., 2021), aerospace 
(Blakey-Milner et al., 2021), aviation (Gisario et al., 2019), pharma
ceutical (Durga Prasad Reddy & Sharma, 2020), and disaster response 
(Tönissen & Schlicher, 2021). Additive manufacturing has implications 

for industry 4.0 (Sepasgozar et al., 2020), circular economy (Cruz San
chez et al., 2020), and social sustainability (Naghshineh et al., 2021). As 
a disruptive new technology, however, additive manufacturing requires 
substantially more development in the operations management litera
ture for wider industrial reach. 

Regardless of the technology type, additive manufacturing is 
different from subtractive manufacturing, like traditional milling, in 
that the traditional approach carves and cuts the raw material and re
quires additional procedures like forging, grinding, drilling, and as
sembly to complete the production of the final product. In contrast, 3D 
printing uses digital model data to make 3-dimensional objects through 
layer-by-layer addition of compound material (Vernon & Peckham, 
2002). In this definition, several machines are required to complete the 
production process in subtractive manufacturing, depending on the 
design complexity, while 3D printers can handle high complexity 
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products more efficiently, enabling easier assembly and toughness 
(Pérez et al., 2020; Song et al., 2017). 

Given the differences between additive and traditional 
manufacturing, optimization and decision analysis subjects, like pre
ventive maintenance, process design, capacity planning, resource 
planning, inventory management, human factors, facility planning, and 
production scheduling and planning require investigation (Khorram 
Niaki & Nonino, 2017). From the early studies, Ransikarbum et al. 
(Ransikarbum et al., 2017) developed a decision-aid method for multi- 
objective optimization of a batch of parts and multiple printers, and 
(Rudolph & Emmelmann, 2017) introduced a cloud-based platform for 
the order management of additive manufacturing-based production 
systems. There are many other studies on managerial theories and ap
proaches considering the emergence of additive manufacturing (see 
(Khorram Niaki & Nonino, 2017; Sonar et al., 2020)). Low productivity 
and operational uncertainties are the main barriers to extending addi
tive manufacturing applications to final-part manufacturing and mass 
customization (Bikas et al., 2016). Despite the relevance of planning and 
scheduling of additive manufacturing operations in addressing these 
barriers, the research on this topic remains limited. 

From a production scheduling standpoint, the additive and subtrac
tive production scheduling vary in that a particular production run may 
have to deal with several geometries, each of which constitutes generic 
jobs. The study of (Li et al., 2017) was the first to investigate machine 
scheduling problems under this definition. Later, (L. Zhou et al., 2018) 
explored a multi-task scheduling problem for distributed manufacturing 
using 3D printing services. Considering the type of printing operation, 
the existing problems can be categorized into three groups. The first 
group, Nesting for Additive Manufacturing (NfAM), investigates the 
problem of arranging parts into the printer (build) to maximize the 
number of prints and the utilization of chamber volume without 
providing the production schedule (Zhang et al., 2018). The second 
group, i.e., Scheduling for Additive Manufacturing (SfAM), explores the 
positioning of the builds’ print sequence to enhance productivity; the 
recent studies by (Luzon & Khmelnitsky, 2019; Oh et al., 2018) are 
prime examples of this type of approach for scheduling printing opera
tions in additive manufacturing. These studies do not account for the 
nesting process of the builds; nesting is different from grouping in that 
builds can be generated by a bin-packing algorithm to assign parts into 
multiple builds (Nesting) while parts can be clustered into builds 
considering the builds’ physical constraints (Grouping). The third group 
is a combination of NfAM and SfAM, hereafter referred to as Nesting and 
Scheduling for Additive Manufacturing (NSfAM), which simultaneously 
considers the nesting and process scheduling decisions. (Oh et al., 2020) 
suggested to integrate the nesting and scheduling problems because they 
are interrelated. They classified the NSfAM considering the number of 
parts, builds, and machines. In additive manufacturing, parts usually 
cannot be printed entirely using one build, i.e., due to physical 

limitations; hence, multiple builds are required to complete the 3D 
printing procedure. On this basis, the problem of multi-parts, multi- 
builds, and a single 3D printing machine, which is denoted by (M/M/S) 
and is of practical interest, is the focus of the present article. 

To the best of the authors’ knowledge, the literature of Additive 
Manufacturing Scheduling Problem (AMSP) under (M/M/S) setting is 
limited to a few papers. In an early study, (Kucukkoc, 2019) addressed 
the AMSPs on a single machine developing a mixed-integer linear pro
gramming formulation. The basic AMSP formulation was later extended 
by (Arık, 2021) to account for the assembly operation of the parts after 
processing them on a 3D printer. These two studies used exact solution 
methods for solving very small instances. (Fera et al., 2018) developed 
an improved Genetic Algorithm to solve larger instances, showing that 
the algorithm performs well in a single machine production setting. 
Most recently, (Fera et al., 2020) developed an Improved Tabu Search 
(ITS) algorithm to solve the same problem; they showed that their al
gorithm outperforms the earlier metaheuristic in solving small- to large- 
scale instances. Inspired by the limited research on AMSPs, the present 
study develops a competitive benchmark algorithm to improve the Best- 
Found Solutions (BFS) to the existing test instances by (Fera et al., 
2020). For this purpose, the Adjusted Iterated Greedy (AIG) is developed 
that entails customized operators for the effective approximation of the 
AMSPs. The test instances are also extended to form a testbed for a more 
comprehensive benchmark in additive manufacturing. 

The remainder of this manuscript begins with an introduction of 
AMSPs in Section 2. The proposed algorithm is then presented in Section 
3. Experimental results and statistical analysis are provided in Section 4 
to evaluate the performance of the developed algorithm benchmarking 
it against the current-best-performing algorithm in the literature of 
AMSPs. Finally, the concluding remarks and suggestions for future 
research directions are provided in Section 5. 

2. Additive manufacturing scheduling problems 

Additive manufacturing, also known as rapid prototyping, layer 
manufacturing, and freeform fabrication, can be generally classified into 
seven major technologies (Martinez-Garcia et al., 2021); material 
extrusion (Batchelder & Crump, 1999), material jetting (Gothait, 2001), 
binder jetting (Tochimoto & Kubo, 2004), vat photopolymerization 
(Hull, 1984), powder bed fusion (Deckard et al., 1992), direct energy 
deposition, and sheet object lamination (Feygin & Pak, 1999). Material 
extrusion and material jetting use nozzle and jetting head for extruding 
and jetting material, respectively. In the binder jet, the inkjet spreads the 
binder onto a powder to form the final object while vat photo
polymerization applies a light foundation to the photosensitive resin. In 
the powder bed fusion technology, the top layer of powder is fused in the 
powder bed using a laser or electron beam followed by spreading the 
next layer. Finally, objects are made by joining sheets and cutting them 
to the desired form in the sheet object lamination variant of additive 
manufacturing. 

The 3D printing procedure for extrusion-based production consists of 
the following steps. Assuming the ceramic powder fusing as the input 
material, light-curing resin and ball milling of methanol-based solvent 
are used to form a liquid slurry, which dries quickly after applying. 
Given 3D model requirements, i.e., dimensions, the semi-solid slurry 
will be then processed by a photomask projector to stabilize the mate
rial. In this procedure, the unilluminated parts of the object, which are 
semi-solid remains, act as a supporting structure for the final product. As 
a final step, the lamination procedure begins by laying several slurry 
layers on the forming plate to ensure that the finished parts do not stick 
to the molding board while being removed. A cooling system, i.e., the 
fan, is usually used to speed up the volatilization of the solvent in the 
slurry that is breached into the lower layers. The added layer gets 
thinner over time, and the powder becomes denser and more attached to 
the lower layer. Once the slurry is transitioned into a semi-solid state, 
the gas with volatile solvent should be discharged, followed by slow 

Notations 

i Geometry tag,i ∈
{
1, 2, ..., ng

}

j Build tag, j ∈ {1, 2, ..., nb}

ng Total number of orders (geometries) 
nb Number of the builds. 
α,β, γ Earliness, tardiness, and cost constant weights 
Ei Earliness of geometry i 
Ti Tardiness of geometry i 
Vchamber Build chamber volume 
Vi Volume of geometry i 
di Demand of geometry i 
TOCi Total order cost of geometry i. 
ni,j Number of i th geometry in build j.  
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evaporation of the solvent (Tsai et al., 2020). 
Overall, additive manufacturing enhances production speed, quality, 

and flexibility, and reduces variable costs, i.e., logistics expenses (Demir 
et al., 2021; Haghdadi et al., 2021); however, further development is 
required to reduce fixed investment costs and improve know-how, 
which are the major barriers to its adoption (Yi et al., 2019). Given 
manufacturing time and cost as the critical factors, production sched
uling is a much-needed tool to advance additive manufacturing towards 
end-part production. From a production scheduling standpoint, AMSP is 
different from the scheduling of subtractive manufacturing in that a 
single production run may involve several parts/geometries. That is, 
different geometries may constitute a generic job, which makes the jobs 
heterogeneous. In this definition, a build in the additive manufacturing 
procedure can be considered as a set of jobs in the conventional sense, 
which is identified by the geometry type and the number (n) of parts to 
be produced for a particular production run, build. 

AMSPs account for physical constraints (e.g., number and size of the 
3D printers), dominant product features (e.g., main dimension, mate
rial), grouping in clusters and nesting in blocks (e.g., part orientation 
within the building volume), sequencing of customer orders (e.g., based 
on earliness and tardiness penalties), to optimize the overall perfor
mance (e.g., build time and cost) (Chergui et al., 2018; Fera et al., 2018; 
Kucukkoc, 2019). In the nesting procedure, parts should be grouped 
based on geometry, material, and due dates to maximize chamber vol
ume utilization. Besides, arranging parts in the same build has a direct 
impact on the scheduling outcomes (Thompson et al., 2016). The 
existing scheduling literature either consider nesting of the parts (Aloui 
& Hadj-Hamou, 2021) or scheduling them (Kapadia et al., 2021) while 
studies considering simultaneous nesting and scheduling are relatively 
limited (Oh et al., 2020). In the most relevant problem from subtractive 
manufacturing literature, the scheduling of a single batch-processing 
machine with non-identical job sizes has been recently studied by (S. 
Zhou et al., 2021); their model does not account for build size re
strictions and cannot handle the scheduling of parts under each builds. 
Our study addresses this limitation considering process constraints, 
product features, and customers deadlines in a 2D (dominant area), and 
M/M/S setting; Fig. 1 is an exemplary illustration of the addressed 
problem. 

The following assumptions and notations are considered to model 
the M/M/S problem.  

• The parts/geometries are grouped as a job (build).  
• The exact volume of geometries is considered for calculation, which 

contains support structure and part removal space.  

• Jobs are processed without interruptions, i.e., maintenance and 
downtime.  

• Inventory costs for the injection material are assumed to be 
negligible.  

• Considering a priori preference articulation, the objective weights 
are assumed to be known before production scheduling. 

Given these assumptions and notations, the objective is to minimize 
the earliness-tardiness and operational costs, which are represented by 
FS =

∑ng
i=1(αEi + βTi) +

∑ng
i=1γTOCi. Finally, the following additive 

manufacturing-specific constraints were introduced by (Fera et al., 
2018) to extend the production scheduling problems for the new 
application area. 

∑ng

i=1
ni,j ∗ Vi⩽Vchamber,∀j ∈ {1, ..., nb} (1)  

∑nb

i=1
ni,j = di, ∀i ∈

{
1, ..., ng

}
(2)  

α, β, γ, TOCi,ViVchamber ∈ R+ (3)  

Ei, Ti, i, j, ng, nb ∈ Z+ (4) 

Constraint set (1) ensures that the overall volume required by the 
parts/geometries does not exceed the chamber capacity. Eq. (2) indicate 
that the total number of geometries assigned to each build should be 
equal to the total demand for the respective part/geometry. Constraint 
sets (3) and (4) define the domains of variables and parameters. A 
metaheuristic algorithm is developed in the next section to optimize the 
AMSP with the above specifications. 

3. Proposed algorithm 

The basic Iterated Greedy algorithm is prone to early convergence in 
complex search spaces, and it often gets trapped in local optimality 
(Ying et al., 2020). Besides, the computational elements of the existing 
Iterated Greedy algorithms cannot effectively address the operational 
features of the AMSPs, which is different from that of the traditional 
production scheduling. This study develops a new benchmark algo
rithm, the AIG, which is customized for additive manufacturing features. 
For this purpose, the initialization and construction procedures are 
customized, and a local search procedure inspired by the Tabu concept is 
integrated into the search procedure to improve the exploitation power 
of the solution algorithm. The computational procedure of the AIG al
gorithm is presented in Fig. 2, followed by an elaboration on the major 
computational elements. 

3.1. Solution initialization 

A three-step initialization procedure based on the 3D build concept is 
proposed to address the additive manufacturing requirements. For this 
purpose, the type-matrix in Table 1 is used as the input data to the 
initialization and encoding/decoding procedures. In this table, the rows 
and columns represent various print geometries (i) and the number of 
builds required to print every geometry (j), respectively. The geometries 
are different in shape, size, and support structure; hence, the columns 
with the same geometry can be swapped. The printing chamber for 3D 
printing, i.e., the build concept shown in Fig. 3, is the basis of defining 
this matrix. Considering a total of g geometries and b builds in the type- 
matrix, the initial solution is encoded as (n1,1, ...,n1,g| n1,1, ...,n1,g|⋯|nb,1,

...,nb,g). The step-by-step guide to the solution initialization procedure is 
described below. 

Step 1. Determine the number of columns and rows in the matrix. 
The number of columns is defined based on the number of geometries 
that should be printed. The total number of rows, which refers to the Fig. 1. Illustration of the M/M/S problem.  
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required build quantity, can be calculated using Equation (5). Consid
ering that each build is only used by one machine, the same geometry 
volume,Vchamber, is applied. In this formulation, the volume of geome
tries is multiplied by the respective ni,j value from the matrix, which is 
then divided by the chamber volume. 

Nbuild =

∑b
j=1

∑g
i=1ni,j ∗ Vi

Vchamber
(5) 

Step 2. Given the initial matrix, select a random column and several 
random rows from the selected column. Insert a random geometry 
number into the selected build (row) and continue until all geometries 
(column) are inserted. Meanwhile, the procedure checks whether there 
is a violation of the volume constraint Vavailable during the insertion; if the 
constraint is violated, another build is randomly selected, and the 
quantity is inserted into it until the solution abides by the volume 
constraint. 

Step 3. Calculate the fitness value of the complete solution. 

3.2. Destruction mechanism 

Given the initial solution in the first iteration and the current-best 
solution in other iterations, the destruction/construction procedure 
applies to restructure the solution to a better state. A new destruction 
method is developed to ensure the effectiveness of the search procedure. 
In this approach, geometries with a larger volume receive a higher 
priority for destruction because they significantly impact the volume 
constraint in the build procedure. Fig. 4(a) is used as an illustrative 
example to describe the four-step procedure explained below. 

Step 1. Select the geometry with the largest volume, i.e., geometry 1 

Fig. 2. The computational procedure of the Adjusted Iterated 
Greedy algorithm. 

Table 1 
Type matrix for solution initialization.  

nij 

Geometries (i) Vchamber 

1 2 … ng Vused
(
cm3) Vavailable

(
cm3)

Build (j) 

1 n1,1 n1,2 … n1,g V1 Vchamber − V1 

2 n2,1 n2,2 … n2,g V2 Vchamber − V2 

… … … … … … … 
nb nb,1 nij … nb,g Vb Vchamber − Vb  

Fig. 3. Schematic representation of the exemplary (a) build structure, and (2) 
example of chamber constraint and geometry effect in Additive Manufacturing. 
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in column 1 of the illustrative example. 
Step 2. Select d builds, randomly, with d being the destruction count. 

Assuming d = 2 in the illustrative example, build 1 and build 2 are 
extracted in the destruction phase. 

Step 3. Extract ε ∈ [1, ni,j] geometries from the selected builds, i.e., 1 
and 2 in the illustrative example. Assuming n1,1 = 12, ε will be a random 
integer between 1 and 12. In the illustrative example, ε1 = 3 and ε2 =

10. The original number of builds should be deducted from ε to obtain a 
new number after the destruction procedure. ε1 and ε2 values will be 
used as algorithm parameters in the construction phase. 

Step 4. Update Vavailable of the new build for consideration in the 
construction phase. 

3.3. Construction and local search mechanisms 

Given the partial solution resulting from the destruction phase, as 
well as the updated ε and Vavailable parameters, a three-step construction 
procedure is developed to generate new solutions. The procedure is 
explained in the following and illustrated using the example in Fig. 4(b). 

Step 1. Add ε values into the random builds (rows). Given ε1 = 3 and 
ε2 = 10 in the illustrative example and considering 3 and 4 positions of 
build 1 as the random locations, we have n1,3 + ε1,n1,4 + ε2. 

Step 2. Check if the updated values violate the chamber volume 
constraint,Vavailable. In case of experiencing a violation, return to step 2 
and select other random builds. This procedure continues until a feasible 
alternative is identified. The Tabu concept of the Tabu Search algorithm 
is adopted to record the builds that violate the constraint to improve the 

Fig. 4. Illustration of the (a) destruction and (b) construction procedures.  
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procedure’s efficiency. For example, if adding ε1 into build 3 violates the 
chamber volume constraint, it will not be considered a certain number of 
times; the same method applies for ε2. 

Step 3. Calculate the fitness value of the new solution. Proceed with 
the new build if it has resulted in a better fitness value, i.e.,fnew⩽fbest , 
otherwise, proceed to the next step considering the old solution. 

Step 4. Solutions from the construction phase will be considered for 
a local search attempt. The Roulette Wheel Selection method is used to 
select a build; the larger the printing chamber is, the higher the chance 
to select the associated build. Next, ε is deducted from the selected build, 
keeping in mind that the volume constraint is not violated. The alter
native solution will be accepted only if the resulting fitness function 
value is strictly better than that of the original solution. 

3.4. Acceptance and stopping conditions 

A new solution (π′ ) is accepted if it is either associated with a strictly 
better fitness value than the current solution (π) or the acceptance 
mechanism allows for accepting it despite having a less competitive 
fitness value. Discarding the solution with a worse fitness value may 
result in local optimality and early convergence. An acceptance mech
anism inspired by the Simulated Annealing is adopted to alleviate this 
issue; (Hatami et al., 2015)’s mechanism showed to be more effective 
than others when it comes to escaping from local optimality. In this 
approach, the temperature value,T, and Relative Performance Deviation 
(RPD) of the new solution are the basis of regulating the acceptance 
condition; these values are calculated using Equations (6)-(7), where F 
(π) and F(π’) represent the fitness value of the current and new solu
tions, respectively. Considering these formulations, the Acceptance 
Probability amounts to α⩽e (− RPD/Temperature) with alpha being a random 
number between 0 and 1. 

Temperature = T ×

∑m
i = 1

∑n
j = 1Pi j

n × m × 10
(6)  

RPD =
F(π′

) − F(π)
F(π) × 100 (7) 

Finally, the metaheuristics are all compiled and tested considering 
the same stopping criterion to ensure a fair comparison between the 
benchmark algorithms. For this purpose, Maximum CPU time is 
considered as the stopping condition. 

4. Results analysis 

This section elaborates on the numerical experiments conducted to 
evaluate the effectiveness of the AIG algorithm. The ITS algorithm 
developed by (Fera et al., 2020), which is the best available approach for 
solving the AMSPs, is considered as the baseline algorithm. All the 
benchmark algorithms are coded and compiled on a personal computer 
with the following specs: Intel® CoreTM i7-3770 CPU 3.40 GHz pro
cessor, 32 Gb of RAM, and Windows 10 64-bit Operating System. 

Small-, medium-, and large-scale instances are considered to conduct 
the numerical experiments. The problem specifications shown in Table 2 
are considered for the generation of random instances. In this table, PN 
(print number), DD (due date), Q (quantity), V (volume), H (height), 
T prep (preparation time) define the specifications of the print objects. 
Besides, Penalty and Smax represent the lateness price and the maximum 
area of each print object. The small-scale instance set by (Fera et al., 
2020) is extended to make a total of 20 configurations, i.e., S01- S20. 
The medium- (M01-M20) and large-size instances (L01-L20) are gener
ated randomly considering the same object features, each in 20 distinct 
workloads. A build chamber of size 13437.5 cm3 is considered for all the 
test instances. Finally, the earliness, tardiness, and total cost weights in 
this paper are set to α = 0.4, β = 0.4, and γ = 0.2, respectively. 

To begin with the experiments, the extracted geometric number (ε) is 
generated randomly from interval [1, ni,j]. Given the destruction value 
fixed at d = 2, calibration test is conducted to determine the maximum 
CPU time (i.e., the stopping criterion). For this purpose, convergence 
under various problem sizes (i.e., workloads) is considered. We found 

Table 2 
Case data parameters.  

Instance DD 
(day) 

Q 
(parts) 

V 
(cm3) 

H 
(mm) 

T_prep 
(hours) 

Penalty 
(% daily) 

S_max 
(cm3) 

1 120 7 146 50.55 1 1 82.1 
2 60 5 52.87 85 1 2 120 
3 180 10 108.9 62.5 1 2 344.22 
4 120 7 64.17 37.73 1 1.5 21 
5 120 5 200.8 183.4 0.5 3 208.08 
6 90 5 66.94 56.02 1 1.5 178.72 
7 120 5 90.15 95 0.5 2 57.04 
8 120 8 188.2 162.5 1 2 104.56 
9 150 9 33.65 32.29 1 1.5 97.12 
10 180 9 290.2 186.6 1 1.5 112.28 
11 60 5 62 150 0.5 1 176.71 
12 180 10 6 73 1 2 41.85 
13 180 10 9 65 0.4 1 33.18 
14 90 8 56 115 0.6 2 103.869 
15 120 5 17 100 0.4 1 213.82 
16 150 8 44 165 0.4 3 78.54 
17 120 7 4.87 100 0.1 1 3.14 
18 60 5 2.9 22 0.2 1 38.48 
19 180 10 112 70 0.4 1 116.9 
20 90 5 150 122 0.4 2 201.06 
21 150 8 375 160 0.7 1 4.91 
22 60 5 17.5 25 0.1 1 28.27 
23 90 6 36 60 0.2 1 12.57 
24 120 7 13.4 40 0.2 1 10.18 
25 90 5 22.6 36 0.3 2 9.62 
26 120 7 7 35 0.4 2 12.57 
27 60 4 11 40 0.4 1 10.18 
28 90 5 4 45 0.4 2 9.62 
29 120 7 15 50 0.4 2 19.63 
30 180 10 0.569 20 0.4 2 3.14  
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that the benchmark algorithms require 10, 30, and 50 ms of the 
maximum CPU time to find a (near-) optimum solution to the small-, 
medium-, and large-scale instances, respectively. Next, the minimum 
(Min), average (Ave), and standard deviation (StD) are considered to 
analyze the performance of the algorithm for solving the test instances. 
The former measure refers to the best solution obtained by every algo
rithm, and the latter two measures determine the stability of the algo
rithms’ performance. Results for small-, medium-, and large-size 
instances are provided in Tables 3-5, respectively. 

Considering the small-size instances in Table 3, the AIG algorithm 
yields the BFS in 15 out of 20 cases, and the ITS algorithm finds better 
solutions to S02, S04, S06, S11, and S13 instances. Besides, AIG shows to 
be more stable in 18 out of 20 small-size instances. From the medium- 
size instances M01-M20 in Table 4, the AIG performs better than the 
ITS algorithm in 14 cases while the remainder of the BFS, i.e., for M02, 
M05, M07, M09, M19, and M20 instances, are yielded by the ITS. Ac
cording to Table 5, the AIG algorithm outperforms in all large-scale test 
instances considering both solution quality and the stability of the 
metaheuristic, showing that it is a more reliable optimization algorithm 
for industry-scale applications. 

As the next step to analyzing the results, the extent of improvement 
in the solution quality is analyzed with respect to the RPD, calculated 
using Equation (8). A smaller RPD value is desired, and larger RPD 
values specify a larger deviation from the BFS for every instance. Be
sides, Average Relative Performance Deviation (ARPD) is used to show 
the overall extent of difference between the performance of the algo
rithms in terms of solution quality. 

RPD =
Fitness − Fitnessbest

Fitnessbest × 100 (8) 

Table 6 provides the RPD and ARPD values. The first important 
observation is that the average RPD recorded by AIG in small-, medium-, 
and large-size instances are considerably better than those of ITS. In the 
small- and medium-size instances, however, the average value of AIG is 
slightly better than that of ITS. However, and considering the large-size 
instances, the average RPD of the AIG algorithm (which amounts to 
0.0461) is meaningfully smaller than ITS with the RPD value of 0.1716. 
Except for S04 and M20 where the ITS algorithm yielded better solu
tions, the rest of the benchmarks are dominated by the AIG algorithm. 

A statistical test of significance is finally conducted to determine 
whether the resulting improvement in each problem category is signif
icant. For this purpose, the null hypothesis indicates that there is no 
significant difference between the performance of the benchmarked 

algorithms. The t-test results and the respective p-values are provided in 
Table 7, where there is enough evidence to refute the null hypothesis. 
That is, we can claim with 95 percent confidence that the developed AIG 
algorithm in our study is superior to the ITS algorithm. AIG can be now 
considered as a strong benchmark algorithm for future developments of 
the AMSP and its extensions. 

5. Conclusions 

Additive manufacturing consists of depositing raw material, layer by 
layer, to produce parts/products based on digital design documents. In 
contrast with traditional production techniques, which are based on 
material removal and/or injection molding, additive manufacturing can 
more effectively deal with complex geometries and use compound ma
terial in the production process. It also has implications for simplifying 
supply chain operations. Overall, additive manufacturing is expected to 
replace the traditional production processes in certain industries. To 
contribute to the emerging literature of additive manufacturing, this 
study developed an effective solution algorithm for optimizing the 

Table 3 
Experimental results considering small-size instances (best in bold).  

Instances 
ITS AIG 

Min Ave StD Min Ave StD 

S01 824 838 11 810 822 8 
S02 810 830 9 817 828 5 
S03 824 838 7 810 827 8 
S04 810 829 16 825 835 6 
S05 827 836 7 812 822 5 
S06 810 830 12 812 827 7 
S07 824 849 16 813 827 8 
S08 810 826 9 805 820 8 
S09 809 832 12 804 820 10 
S10 811 832 11 809 816 7 
S11 804 840 19 815 834 9 
S12 818 839 23 809 827 10 
S13 807 838 18 808 816 6 
S14 825 870 16 812 830 7 
S15 836 849 6 820 826 5 
S16 818 836 12 813 834 7 
S17 814 834 12 808 820 13 
S18 812 839 14 809 830 8 
S19 811 830 10 805 815 6 
S20 834 850 8 815 826 6  

Table 4 
Experimental results considering medium-size instances (best in bold).  

Instances 
ITS AIG 

Min Ave StD Min Ave StD 

M01 1328 1333 4 1319 1329 5 
M02 1308 1335 12 1326 1331 4 
M03 1289 1314 7 1283 1312 10 
M04 1303 1313 4 1302 1307 3 
M05 1292 1321 14 1311 1319 5 
M06 1307 1316 5 1306 1315 4 
M07 1317 1329 5 1326 1330 3 
M08 1324 1332 4 1322 1325 2 
M09 1284 1303 6 1291 1303 4 
M10 1356 1368 6 1333 1351 11 
M11 1306 1325 12 1302 1325 13 
M12 1332 1341 5 1324 1338 5 
M13 1290 1305 12 1288 1310 8 
M14 1338 1344 4 1329 1341 6 
M15 1317 1323 5 1306 1313 4 
M16 1336 1341 4 1318 1334 8 
M17 1309 1316 4 1308 1314 3 
M18 1295 1307 9 1283 1303 12 
M19 1301 1321 9 1306 1315 7 
M20 1277 1299 9 1294 1308 9  

Table 5 
Experimental results considering large-size instances (best in bold).  

Instances 
ITS AIG 

Min Ave StD Min Ave StD 

L01 1581 1650 38 1369 1429 28 
L02 1463 1564 65 1374 1450 34 
L03 1566 1670 52 1397 1464 40 
L04 1407 1658 73 1373 1445 34 
L05 1575 1667 51 1383 1430 39 
L06 1530 1633 49 1407 1473 48 
L07 1540 1637 60 1417 1454 27 
L08 1521 1618 41 1419 1485 33 
L09 1552 1638 54 1428 1474 32 
L10 1554 1671 58 1375 1427 42 
L11 1472 1543 47 1366 1435 42 
L12 1527 1595 49 1376 1428 33 
L13 1536 1644 44 1380 1441 31 
L14 1540 1617 51 1378 1437 30 
L15 1517 1648 62 1344 1453 56 
L16 1517 1581 35 1367 1436 31 
L17 1521 1628 47 1360 1423 32 
L18 1586 1662 40 1440 1528 44 
L19 1482 1602 65 1396 1470 33 
L20 1461 1544 54 1370 1414 29  
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AMSPs; the objective was to minimize the printing time/cost by 
grouping parts into batches (jobs) and determining the print permuta
tion of the batches considering the utilization of the build chamber of the 
printing machine. New search mechanisms were developed to effec
tively address the additive manufacturing features. An extended testbed 
was used to conduct the numerical experiments. Results confirm the AIG 
algorithm’s superiority in terms of solution quality and stability with an 
average relative performance difference of 0.0259 compared to that of 
the best-existing solution algorithm with 0.0739. 

This study can be considered as a baseline for further developments 
of the scheduling problems and algorithms in additive manufacturing. 
The first suggestion for future research comes from considering case- 
specific technical features of additive manufacturing for developing 
new constraints. For example, the print object shape can be considered 
while accounting for a mixed setting. Besides, classic scheduling features 
like setup times and time constraints should be added to the AMSPs to 
facilitate its real-world applications. As a second direction, one can 
combine the scheduling problems of material extrusion, removal, and 
assembly for situations where the parts built through additive and 
traditional production processes should be assembled to form the final 
product. As a third promising research direction, one can develop 
distributed scheduling problems for simultaneously scheduling sub
tractive or injection molding and additive manufacturing-based opera
tions. Next,our benchmark algorithm can be used as a baseline to 
develop more effective and efficient solution algorithms for solving the 
AMSP and its extensions. For example, discrete Jaya, the multi- 
temperature simulated annealing, chaos-enhanced simulated anneal
ing, and mixed-variable differential evolution algorithm, among other 
state-of-the-art algorithms can be adjusted to work in compliance with 
additive manufacturing scheduling requirements. Finally, our study 
considers a priori performance articulation scheme for the optimization 
of the multi-objective problem. Future works should develop multi- 

objective solution algorithms to provide a set of optimum solutions for 
possible trade-offs to address AMSPs with conflicting objectives and 
interfering jobs. 
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