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Abstract  1 

This paper conducts a systemic comparative study on univariate and multivariate wind power 2 

forecasting for five wind farms inside the Arctic area. The development of wind power in the 3 

Arctic can help reduce greenhouse gas emissions in this environmentally fragile region. In 4 

practice, wind power forecasting is essential to maintain the grid balance and optimize 5 

electricity generation. This study firstly applies various learning methods for wind power 6 

forecasting. It comprehensively compares the performance of models categorized by whether 7 

considering weather factors in the Arctic. Nine different representative types of machine 8 

learning algorithms make several univariate time series forecasting, and their performance is 9 

evaluated. It is demonstrated that machine learning approaches have an insignificant advantage 10 

over the persistence method in the univariate situation. With numerical weather prediction wind 11 

data and wind power data as inputs, the multivariate forecasting models are established and 12 

made one hour to six hours in advance predictions. The multivariate models, especially with 13 

the advanced learning algorithms, show their edge over the univariate model based on the same 14 

algorithm. Although weather data are mesoscale, they can contribute to improving the wind 15 

power forecasting accuracy. Moreover, these results are generally valid for the five wind farms, 16 

proving the models' effectiveness and universality in this regional wind power utilization. 17 

Additionally, there is no clear evidence that predictive model performance is related to wind 18 

farms' topographic complexity. 19 

Key words: wind energy, machine learning, power forecasting, numerical weather prediction, 20 

Arctic 21 

1  INTRODUCTION 22 

To prevent global average temperatures from rising 1.5°C above pre-industrial level, the 23 

renewable energy percentage must increase from 20% to 67% of global energy production from 24 

2018 to 2040 1. Wind energy is one of the fastest-growing renewable energy sources. It is 25 

considered an attractive alternative to conventional electricity sources generated from fossil 26 
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fuels. Wind power is extensive, and its capacity has surged from 9,936 MW in 1998 to 564,347 27 

MW in 2018, with an annual growth rate of 22.4% in the last 20 years 2. Along with the 28 

electricity grid adds wind power penetrations, the unstable grid factors are also increased, which 29 

are undesirable to the power system practical and safe operations. So, it is crucial to use proper 30 

methods to understand wind power production and harness proper methods to make forecasts 31 

of the electricity generated by the wind parks. 32 

     Norway has a cold climate and a 25,148km coastline, both of which are generally 33 

characterized by an abundance of wind energy resources, and it is with a complex terrain 34 

consisting of mountains, valleys, and fjords, making the wind change dramatically and 35 

unpredictably. 36 

     Wind power prediction can be divided into ultra-short-term prediction, short-term prediction, 37 

medium-term prediction, and long-term prediction 3. Ultra-short-term forecasts are predictions 38 

made from few minutes to 30 minutes in advance; the short-term are forecasts made from 30 39 

minutes to 48 hours ahead, the medium-term refers to predictions made days, weeks, or months 40 

earlier, and the long-term is made years in advance. 41 

     In wind engineering, hourly wind power forecasting is an essential part of the short-term 42 

prediction, whose main applications are maintaining real-time grid operations and keeping 43 

operational security in the electricity market 4. 44 

     In this study, five wind parks in the Norwegian Arctic regions are taken as the target. Table 45 

1 serves as a summarized comparison in terms of installed capacity, location, and site 46 

ruggedness (RIX) 5 of the five sites. 47 

1.1  Related work 48 

In literature, there is much research on wind power forecasting using multiple analysis methods 49 

from many perspectives. A preliminary study on wind energy forecasting considered the use of 50 

statistical methods. Still, there is a trend of using machine learning algorithms for the forecast. 51 

Machine learning is an emerging artificial intelligence approach that attempts to provide 52 

learning capabilities for computers or other equipment without clear operations 6. It aims to 53 

develop strategies and algorithms that learn patterns from training data and make predictions. 54 

It can be an alternative tool in wind engineering, apart from the statistics and physical methods 55 
7 to forecast wind power with historical wind data. In particular, deep learning, which has 56 

emerged in recent years, offers a promise of automating pattern recognition and solving 57 

problems such as complex wind power predictions. However, there is a well-known rule called 58 

the No Free Lunch (NFL) theorem in the context of supervised machine learning, which states 59 

that averaged over all optimization problems, all non-resampling optimization algorithms 60 

perform equally well 8.  Due to geographical and engineering reasons, the most suitable 61 

machine learning algorithms for wind power prediction for different wind farms vary.  62 

     Ref. 9 did a systematic literature review and found that artificial neural networks are used 63 

more frequently to predict wind energy and provide better results than other methods, as 64 

demonstrated with more than 180 references in the five years. Specifically, Ref. 10 focused on 65 

a wind farm in north Iran at 5-min time interval predictions and found that the adaptive neuro-66 
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fuzzy inference system outperforms the other five data mining algorithms: random forests, 67 

M5Rules, k-nearest neighbor, support vector machine, and multilayer perceptron.  Ref. 11, based 68 

on the Portuguese wind power data throughout 2010–2014, also showed that the adaptive neural 69 

fuzzy inference system was the best performer. The artificial neural networks and the radial 70 

basis function network RBFN-OLS also delivered strong performances.  Ref. 12 demonstrated 71 

that the proposed hybrid artificial neural network is effective and efficient for wind power 72 

forecasting in a Danish dataset.  Ref. 13 used an approach combining the infinite feature 73 

selection with the recurrent neural networks and proved its edge in a dataset from the National 74 

Renewable Energy Laboratory. Ref. 14 investigated five years of wind observation data of 75 

Nigde, Turkey, and found that eXtreme gradient boost, support vector regression, and random 76 

forests algorithms are powerful in forecasting long-term daily total wind power and the absolute 77 

shrinkage selector operator is the worst algorithm due to its linear basis. Ref. 15 mixed basic 78 

Multi-Layer Perceptron to complex deep learning neural networks to conduct the power 79 

prediction of a wind farm located in the Ecuadorian mountains. The hybrid model is shown to 80 

be more advantageous than a single model. 81 

     Notably, this journal emphasizes the basis and the state-of-the-art of wind power forecasting. 82 

Ref. 16 offered a detailed adaptabilities analysis of the support vector machine, genetic 83 

algorithm backpropagation, and radial basis function for wind power forecasting based on three 84 

wind farms in China. Ref. 17 noted the essence of deep learning in predictions; sometimes, the 85 

forecasts did not need models based on truly deep neural networks, but they offer a sound 86 

workflow for correctly developing a proper forecast model. 87 

     Meanwhile, much research concerns a particular class of machine learning algorithms, such 88 

as kernel methods and neural networks-based methods. There are a few studies that make 89 

comparisons between types of algorithms. The reason is applying machine learning always 90 

needs tuning the hyperparameters, which makes the comparison rather sophisticated. However, 91 

choosing an algorithm less sensitive to parameters or using a suitable method of adjusting 92 

parameters, and scale-up and diversification data set can help deal with the problem. Ref. 18 93 

proposed a two-stage wind power forecast method with meteorological factor and fault time 94 

and compared the method performance with support vector machines, artificial neural network, 95 

generalized regression neural network, and radial basis function and found the edge of the first 96 

algorithm. Moreover, there is a lack of complete comparative research on both univariate and 97 

multivariate time series forecasting with data science for wind energy prediction in the Arctic 98 

region characterized by dense air and excellent wind resources. 99 

1.2  Objective and contributions  100 

The objective and main contributions of this study can be summarized as follows:  101 

     1. The paper does a systematic study of the time series forecast for five wind parks 102 

generating power with sufficient wind potentials in the Norwegian Arctic region. We mainly 103 

focus on investigating the multivariate wind power forecasting models by considering 104 

Numerical Weather Prediction (NWP) data. 105 
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     2. For brief experimental univariate power forecasts. The persistence model and nine 106 

machine learning benchmarking algorithms are researched in forecasting models and compared 107 

their performance from an algorithm perspective. We find the persistence model performs 108 

almost equally to machine learning models in our cases. The result also proves conclusions 109 

from Ref.19; those classical methods may dominate univariate time series forecasting. However, 110 

we find that its performance drops more quickly with the forecast time step rises. Considering 111 

the contingency of parameters tuning and computational complexity of the learning algorithm, 112 

it is suggested that statistical modeling methods should be primarily considered in the 113 

forecasting. 114 

     3. The multivariate models with mesoscale NWP wind data, although the data resolution 115 

scale is larger than the wind parks area, as inputs can slightly gain prediction accuracy compared 116 

with the univariate models with the same algorithm. Moreover, the multivariate models reduce 117 

performance slower than the univariate models, which indicates the informative complementary 118 

role that the weather data play in the model 119 

     4. These five wind farms have different complex terrains and climates. The wind park with 120 

complex terrains implies that the NWP wind results are not as accurate as their counterparts of 121 

plain landscapes. However, there is no significant evidence that prediction results are related to 122 

the ruggedness index of wind parks from our results. 123 

2  DATA DESCRIPTION AND PREPARATION  124 

2.1  Wind power locations 125 

Northern Norway has a complex terrain consisting of fjords, mountains, and valleys that goes 126 

from the coast into a moderately high inland along the border to northern Sweden and Finland. 127 

The terrain elevation around each wind park is also shown in Fig.1, and their coordinates and 128 

heights are listed in Table 1. Nygårdsfjellet wind park is located in a valley, far from the open 129 

sea, that reached approximately 450 meters elevation. The mountains south and north of the 130 

valley limit the main wind direction to be west-east, and high wind events are expected during 131 

the winter season 20.  Havøygavlen, Kjøllefjord, and Fakken wind parks are located close to the 132 

open sea and on relative flat hills where large nearby fjords affect both wind direction and speed. 133 

Raggovidda wind park is also located near the open sea but on a flat mountain that does not 134 

have any vegetation. This location is well known for adequate wind resources and produced 135 

power with relatively high capacity factors (the ratio between the real and designed power 136 

production) over several years.  137 

2.2  Norwegian Meteorological Institute (MET Norway) numerical weather 138 

prediction 139 

The Scandinavian weather institutions use a weather model for weather forecasts named MEPS 140 

(Ensemble Prediction System). The weather model makes ensemble forecasts, starting from a 141 

composition of several forecasts and quantifying the outcome space of possible weather 142 

developments, which depends on the weather itself rather than looking at a single estimate 21. 143 
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The NWP model is a complex mathematical model of the atmosphere that divides the earth 144 

surface into grids 22. The spatial resolution of the grid determines how to simulate 145 

meteorological processes with different accuracy levels, limiting the quality of forecasts. 146 

     A study conducted by MET Norway has demonstrated that the regional NWP models with 147 

higher resolution did not result in better wind power forecasts for some Norwegian wind farms 148 
23. Therefore, in this study, we use the NWP data with 2.5km horizontal resolution, which is 149 

regarded as a relatively coarser resolution in wind forecasting. 150 

2.3  Data description and scaling  151 

The hourly power data of five wind farms, measured hourly, used in the research is provided 152 

by the Norwegian Water Resources and Energy Directorate (NVE). We choose the wind power 153 

data from 0:00 1st January 2017 to 23:00 31st December 2017; the measured data are 8,760 for 154 

each wind farm. The total number of wind power data is 43,800. The location, annual mean 155 

powers, the standard deviation, and the capacity factor of the five wind farms in 2017 are also 156 

shown in Table 1. 157 

Table 1. The location and statistics of power data 

      

The NWP wind forecast data are extracted from MET Norway operational weather forecast 158 

model MEPS and considering that forecasts need two hours to be calculated as usual. The 159 

forecasts are all initiated at 00, 06, 12, and 18 UTC. 160 

     Wind power generating is mainly affected by wind speed, wind direction, and air density, 161 

which is impacted by temperature and air pressure 24. In this study, we use the variables acquired 162 

at time t; such as measured generating wind power, NWP wind speed, NWP wind direction 163 

(radian system), NWP surface air pressure, and NWP 2 meters above the ground temperature 164 

to predict the wind power generated at t+n, where n, ranging from 1 to 6, is the time delay in 165 

hours. The NWP wind data are summarized and shown in Table 2. All the items show variables 166 

with the mean value (standard deviation) form, and the relative air pressure means the real local 167 

air pressure minus the standard atmospheric pressure (101,325Pa). 168 

Table 2. The statistics of the original NWP data 

Wind park Speed (m/s) Direction Temperature Relative air pressure (Pa) 

Wind Park Location °N / °E 
Height  

[m] 
RIX 

Designed 

power 

[MW] 

Mean 

power 

[MW] 

Standard 

deviation 

[MW] 

Capacity 

factor 

Nygårdsfjellet 68.504 / 17.879 410 0-5 32.2 11.132 11.833 34.57% 

Fakken 70.098 / 20.081 95 5-10 54.0 15.239 15.858 28.22% 

Raggovidda 70.769 / 29.094 440 0-5 45.0 21.782 16.869 48.40% 

Kjøllefjord 70.922 / 27.268 280 10-20 39.1 12.349 12.786 31.58% 

Havøygavlen 71.012 / 24.589 220 5-10 40.5 10.311 11.037 25.46% 
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(radical 

system) 

(℃) 

Nygardsfjellet 8.096 (5.038) -0.065 (0.431) 0.045 (7.441) -5795.564 (1246.119) 

Fakken 6.948 (3.885) 0.151 (1.032) 4.193 (5.109) -1091.373 (1284.892) 

Raggovidda 9.49 (5.101) 0.011 (0.855) -0.91 (6.256) -5148.793 (1277.989) 

Kjøllefjord 7.9 (4.213) 0.15 (0.962) 1.23 (5.763) -2848.796 (1292.669) 

Havoygavlen 8.335 (4.434) 0.136 (0.872) 2.953 (5.33) -1750.36 (1309.583) 

      Data scaling is a standard approach to normalize data. An important reason for data scaling 169 

is that the algorithm converges faster with feature scaling than without it 25. And it is convenient 170 

to compare the model performance with similar data scales. The wind power data is scaled with 171 

min-max normalization between 0.2 and 0.8. 172 

𝑥′ = 𝑎 +
(𝑥−𝑚𝑖𝑛(𝑥))(𝑏−𝑎)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
         (1) 173 

where a and b are the minimum and maximum values of the normalization scale. 174 

2.4  Stationary test 175 

The power data for five wind farms can be treated as five univariate time series sequences. 176 

Time series can be divided into stationary and non–stationary data sequences. Whether or not 177 

a time series is stationary has long been a question of major interest in the field of time series 178 

analysis 26. Statistical regression processes can analyze stationary time series; meanwhile, the 179 

non–stationary time series change their statistical properties with time 27. So, the forecasting for 180 

non–stationary time series is more problematic than for stationary ones. Augmented Dickey-181 

Fuller test (ADF) is a widely used method for testing the null hypothesis that a unit root is 182 

present in a time series sample. Its principle is to check whether a unit root is present in a 183 

sequence. If no unit root presents, the sequence is stationary; otherwise, it is nonstationary. The 184 

ADF test is a standard method to test the stationarity of economic time series 28The ADF test 185 

utilizes the autoregressive process and optimizes its parameters for various lag values. A null 186 

hypothesis test can conduct the ADF test application in testing the stationary of a time series 187 

sequence. 188 

H0: the time series is nonstationary, which means it shows a time-dependent structure. 189 

Ha: the time series is stationary.  190 

     The ADF test is conducted on the five wind farms power data. The results show that all the 191 

null hypotheses are rejected with critical values that are much lower than 5%, demonstrating 192 

the five-time series power data are stationary. They also show the power data sequences do not 193 

have trends and seasonality, which means there is no need to divide the annual wind power data 194 

into monthly or seasonal sequences in forecasts. 195 

3 FORECASTING ALGORITHMS FOR WIND POWER  196 

For each utilized forecasting model, numerous changes are proposed by researchers 29, and it is 197 

impossible to conduct all of the existing differences in models. Therefore, our strategy is to 198 
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consider each benchmarking model for different algorithms for hourly wind power forecasting. 199 

The ten prediction models, one baseline statistical model, and nine machine learning models 200 

are chosen because they are commonly used models.  201 

1. Persistence Model (PE) 202 

2. Support Vector Regression (SVR) 203 

3. K-Nearest Neighbor regression (KNN) 204 

4. MultiLayer Perceptron (MLP) 205 

5. Radial Basis Functions (RBF) 206 

6. Classification and Regression Trees (CART) 207 

7. Random Forest (RF) 208 

8. Stochastic Gradient Boosting (SGB)  209 

9. SVR optimized with Genetic Algorithm (GA-SVR) 210 

10. Long Short-Term Memory neural networks (LSTM) 211 

     Method 1 is the reference in the performance comparison, whereas approaches 2 to 6 are 212 

representative and widely used machine learning algorithms, and 7 and 8 are two representative 213 

types of ensemble machine learning techniques. There are two main types of ensemble learning 214 

methods: bootstrap aggregating (bagging) and boosting 30. The rest two are emerging trends of 215 

predictive algorithms, representing hybrid methods and deep learning, respectively.  The 216 

following offers a brief description of each algorithm. Due to the page limitation, more detailed 217 

descriptions of these algorithms are available in the references of this article. 218 

     The PE model takes that the power at time t + n equals t the power at t, n is the next n steps 219 

in time series. It assumes that the atmospheric conditions change stationarily.  220 

     SVR is a regression model provided by the support vector machine algorithm, which tries to 221 

identify the hyperplane that maximizes the margin between two classes and minimizes the total 222 

error under tolerance 31. SVR conducts a penalty with C (complexity penalization term) and 223 

achieves the best trade-off between the empirical error and the model complexity. SVR can 224 

perform a nonlinear regression because it provides kernel functions (like linear, polynomial, 225 

and Gaussian) that map data from the input space to a high dimensional feature space in which 226 

regression is conducted. The value of C is taken from a validation test for 𝐶 ∈227 

{0.01,0.1,1,10,100} . C is found with a value of 1 corresponding to the best performance with 228 

the Gaussian kernel function. 229 

     KNN regression focuses on feature similarity determined by distance functions, like 230 

Euclidean, Manhattan, or Minkowski distance, measurements for data samples 32. The K 231 

parameter, which implies the input consists of the k closest training sample subsets, determines 232 

the performance of the algorithm; a large K value can reduce the noise in the regression process, 233 

but it also leads to a risk of overfitting. In the study, we conduct a grid search for K from 1 to 234 

10 in experiments to find an appropriate K value.  235 

     MLP is a network of simple neurons named perceptrons. The perceptron forms a linear 236 

combination based on its input weights and calculates the output through a nonlinear activation 237 

function 33. MLP is a versatile approach for forecasting; it can find nonlinear structures in a 238 

problem and model a linear regression process. MLP is a parameterized model. We can manage 239 

the MLP complexity by choosing the number of hidden nodes and the type of activation 240 
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functions. Specifically, the sigmoid function is usually used as the activation function in MLP 241 

regression problems. In the study, the topology of the MLP consists of three layers; namely, the 242 

number of nodes for the input layer equals input numbers, a hidden layer with ten nodes, and 243 

an output layer with one node. 244 

     RBF networks are feedforward and similar in structure to the MLP. The radial basis 245 

functions are harnessed as their activation functions. Their output is a linear combination of 246 

radial basis functions (radially symmetric around a center) applied to values of inputs neurons. 247 

The RBF also has a fast and efficient training process of both linear and nonlinear mappings. 248 

In the study, the RBF topology is the same as the MLP model. 249 

     CART regression is based on a tree-like recursive partition of inputs 34. The CART is made 250 

of internal decision nodes and end leaves. Given a test data set, the terminal leaves are decided 251 

by different training sample properties. Besides, a series of tests are created and utilized in the 252 

decision nodes, which can define where the inputs should be classified to specific nodes whose 253 

splitting will most significantly reduce the mean square error. Moreover, a final decision tree is 254 

realized when the mean square error is smaller than a threshold. 255 

     Bagging is a unique variant of the model averaging approach to reduce the prediction 256 

variances by repeatedly creating subsets of original data to train the machine learning model. 257 

RF is an efficient bagging ensemble algorithm and delivers sound capability and low 258 

computational cost. RF is based on the establishment of a multitude of sub learners. Each 259 

learner is trained by using a bootstrap sample extracted from the whole training set. The forest 260 

of learners produces ensemble regression values. The final result is determined, e.g., by 261 

averaging over the ensemble 35. RF has only one difference from the general bagging decision 262 

tree: it uses an improved decision tree algorithm, selecting a random subset of features at each 263 

sample selection in the training process.  264 

     Boosting is an iterative technique that uses the last classification to adjust the weights of 265 

nodes constantly in the learning process. SGB is a trendy and widely used boosting learning 266 

algorithm. It constructs regressions by sequentially fitting a base learner to current "pseudo"-267 

residuals by least-squares in each iteration. It can improve the accuracy of gradient boosting 268 

and training speed by incorporating randomization into the learning procedure 36. 269 

Genetic Algorithm (GA) is one of the well-regarded evolutionary algorithms. It mimics the 270 

Darwinian theory of survival of the fittest and arrives at such configuration via cycles consisting 271 

of individual population generation, selection, crossover, and mutation phase 37. During the 272 

process, the population of candidates originates from a combination of the offspring and 273 

survivors of the previous generation or a randomly generated configuration. The population 274 

then faces two selection phases that decide which candidates do not survive into the next 275 

generation and then decide which candidates may produce child candidates. This filtering uses 276 

a fitness function. GA-SVR is using the GA in optimizing complexity penalization term C of 277 

SVR in the training process and has become a so-called hybrid forecasting method. 278 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 279 

architecture that is mainly used in the field of deep learning 38. Unlike standard feedforward 280 

neural networks, LSTM has feedback connections, and unique LSTM units consist of input, 281 

output, and forget gates. It can process not only single data points but also entire sequences of 282 
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data (such as speeches or videos). It can also be used in time series forecasting with proper pre-283 

treatment of data. We utilize the Vanilla LSTM that is with one hidden layer, including LSTM 284 

units and one output to predict. 285 

4  EXPERIMENTAL SETUP  286 

Multi-steps wind predictions are required in short-term wind energy generation. In the study, 287 

we make direct forecasting, which only uses actual measured values as model inputs. It builds 288 

n different prediction models for n steps ahead forecasting. The benefit of direct forecasting is 289 

that it does not use previous prediction values to forecast the values with higher steps, which 290 

means the prediction is not affected by the cumulative error in the forecasting process. 291 

     Wind power prediction from t1 to t3 for the univariate forecasting with one-dimensional input 292 

wind power at time t0. t1 to t6 is for the multivariate forecasting with five-dimensional input 293 

(wind power, NWP wind speed, NWP wind direction, NWP temperature, and NWP air pressure 294 

at time t0) because according to Ref. 7, the weather factors are recommended considered after 3 295 

hours. Namely, we conduct two modeling processes for each wind park. The multivariate model 296 

is displayed in equation 2. 297 

𝑃
∧

𝑡+𝑛 = 𝑓𝑡+𝑛(𝑃𝑡, 𝑊𝑡) + 𝑒𝑛, 𝑛 = 1,2,3,4,5,6    (2) 298 

where 𝑃
∧

𝑡+𝑛  is the n steps wind power forecasting, ft+n is the forecasting model, Pt and Wt 299 

represent the wind power and NWP weather data at time t, en is the model error. 300 

     The source data set is divided into 66% for training the model and 34% for testing the 301 

models' performance and carrying out comparisons. 302 

4.1  Cross-validation and evaluation Metrics 303 

One of the most critical and popular validation methods for machine learning is k-folds cross-304 

validation; it is more suitable for relatively small and limited data set compared with the train 305 

and test split validation approach because it can ensure that there is a chance for every sample 306 

in the original data to appear in the training as well as the validation process. In this research, 307 

we use k = 10 in the implementation of the whole training set. According to a study by Kohavi, 308 

this is usually a pretty good choice 39.  309 

     Two metrics are used in evaluating the performance of the different kinds of algorithms for 310 

wind power forecasting. The first metric is the Mean Absolute Error (MAE); the second metric 311 

is the Root Mean Square Error (RMSE). The definitions for MAE and RMSE are shown in 312 

equations 3 and 4. Both are negatively oriented metrics,  meaning the lower scores are related to 313 

better performance 40. In our cases, if an approach has a low MAE but a high RMSE, it generally 314 

predicts smoothly and efficiently but has a higher population of large significant forecasting 315 

errors that are weighted significantly by RMSE. 316 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖|𝑛

𝑖=1

𝑛
  (3) 317 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖)2𝑛

𝑖=1

𝑛
  (4) 318 

4.2  Forecasting procedure  319 

For the procedure of univariate hourly wind power forecasting, the wind power data are 320 

normalized and tested with ADF stationary tests. Then we use the PE model and nine machine 321 

learning algorithms to do three steps forecasts. 322 

     Moreover, to further improve wind power forecasting accuracy and make full use of the 323 

NWP data, we established a multivariate forecasting model based on SVR, MLP, RF, and 324 

LSTM algorithms, shorten as ‘NWP plus the abbreviation’, based on the univariate forecasting 325 

results and some recommendations for publications 41, 42. The performance is compared with 326 

their counterparts in univariate cases. The procedure of forecasting is illustrated in Fig. 1. 327 

 

 

Fig. 1. Procedure for the multivariate hourly wind power forecasting 

5  RESULTS  328 

We conduct a univariate wind power forecasting with the aforementioned ten algorithms and 329 

adds the NWP wind data as inputs to create new MLP, CART, RF, and LSTM multivariate 330 

forecasting models for five wind parks. 331 

     For the univariate forecasting,  the performance comparison of ten models is briefly 332 

conducted. For multivariate forecasting, the four multivariate models' performance is compared 333 

with their counterparts in univariate forecasting cases. 334 

5.1  Univariate forecasting  335 

Regarding MAE results, the MAEs of all models increase as the forecasting step adds. The 336 

average MAE of three steps predictions is displayed in Fig. 3. The PE models perform similarly 337 

with SVR and GA-SVR models in all wind parks. The KNN, MLP, RBF, CART, and LSTM 338 
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have similar MAEs, which are more unsatisfactory results than PE and SVR and GA-SVR have. 339 

The ensemble learning methods show the highest MAEs.  340 

 

 

Fig. 2. The average MAE of ten forecasting models for five wind farms 

     RMSEs of all models have positive correlations with the forecasting step from 1 to 3. The 341 

main RMSE of three steps forecasts is shown in Fig. 4. The MLP, RBF, and GA-SVR have the 342 

best performance in RMSE, in which MLP has the lowest overall RMSE. The PE, KNN, CART, 343 

SGB, and LSTM have similar RMSEs, and nearly all of them have more inferior results than 344 

MLP, RBF and GA-SVR do. The RF model has the highest RMSE as it does in MAE analysis.  345 

 

 

Fig. 3. The average RMSE of ten forecasting models for five wind farms 

5.2  Multivariate forecasting  346 

The MAE of the multivariate forecast for the five wind parks is displayed in Fig. 5. We predict 347 

one hour to six hours of wind power. As the forecasting step increases, the MAE of all models 348 

increases, and the rising speed gets slower. For each forecasting step, the NWP machine 349 
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learning models have lower MAE than their univariate counterparts, and NWP RF is with the 350 

largest improvement. Generally, the edge of multivariate models is incrementally stronger with 351 

the raising forecast time. RF and LSTM, which perform unfavorably in univariate forecasts, 352 

excel in multivariate predictions. In particular, NWP LSTM dominates all cases, and its 353 

domination is reinforced over time. For four of the wind parks, the NWP models perform better 354 

in the term of MAE. The exception is Raggovidda wind park, for which the PE model has the 355 

lower MAE for all six-time steps than NWP MLP and CART. Meanwhile, the forecasting 356 

models produce the lowest MAE for Havoygavlen wind park. 357 

 

Fig. 4. The MAE comparisons of univariate and multivariate models for five wind farms 

     Numerical comparisons of average MAE for different models are shown in Table 3. The 358 

NWP LSTM model is ranked first for almost all wind parks. Adding the mesoscale NWP wind 359 

data can significantly increase forecasting algorithms' performance based on the same algorithm, 360 

especially for Fakken wind park, which reduces MAE by 16.14% and 16.54% concerning RF 361 

and LSTM, respectively. 362 

Table 3. The comparisons of average MAE for different models 

Wind park 

PE MLP CART RF LSTM NWP CART 

v.s. NWP 

LSTM 

v.s NWP 

MLP 

v.s NWP 

CART 

v.s NWP 

RF 

v.s NWP 

LSTM 

v.s NWP 

LSTM 

Nygårdsfjellet 3.78% 8.41% 8.41% 11.02% 11.33% 3.18% 

Fakken 14.16% 12.04% 11.94% 16.14% 16.54% 5.99% 

Raggovidda 1.53% 2.71% 2.99% 14.89% 9.62% 6.96% 
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Kjøllefjord 1.81% 5.32% 4.82% 12.98% 8.11% 2.82% 

Havøygavlen 5.46% 2.60% 1.92% 10.30% 3.02% 6.32% 

 

     The RMSE of the multivariate forecasts displays in Fig. 5. The trends of RMSE are similar 363 

to MAE's. Besides, growth rates of RMSE of all machine learning models, especially the NWP 364 

MLP, RF, and LSTM models, are lower than the PE model. Concerning each forecasting step, 365 

the multivariate models have lower RMSE than corresponding univariate models. For all the 366 

five wind parks, the multivariate LSTM performs best in terms of RMSE in nearly all the six 367 

predictive steps. Moreover, the Raggovidda wind park still has a higher RMSE compared to 368 

other wind parks. Meanwhile, the models still provide the lowest RMSE for Havøygavlen wind 369 

park. 370 

 

Fig.  5. The RMSE comparisons of univariate and multivariate models for five wind farms 

     Table 4 shows the comparisons of average RMSE and demonstrates the multivariate LSTM 371 

models are the best for all wind parks. It overperforms approximately an average of 14% better 372 

RMSE performance than the baseline PE model. The mesoscale NWP wind data provide 373 

positive information in the forecast algorithm.  374 

Table 4. The comparisons of average RMSE for different models 

Wind park PE  MLP  CART  RF LSTM NWP CART  



14 

 

v.s. NWP 

LSTM 

v.s NWP 

MLP 

v.s NWP 

CART 

v.s NWP 

RF 

v.s NWP 

LSTM 

v.s NWP 

LSTM 

Nygårdsfjellet 16.69% 6.12% 4.27% 7.44% 9.56% 6.09% 

Fakken 17.46% 8.25% 5.61% 14.83% 12.66% 7.21% 

Raggovidda 12.14% 2.25% 1.57% 12.20% 7.53% 6.72% 

Kjøllefjord 12.03% 2.95% 1.65% 10.33% 7.34% 5.33% 

Havøygavlen 16.82% 1.56% -0.36% 16.09% 6.43% 10.68% 

6  CONCLUSION 375 

This paper makes univariate and multivariate short-term wind energy forecasts for five wind 376 

parks inside the Norwegian Arctic region. Consequently, the following conclusions can be 377 

drawn.  378 

     For the univariate time series wind power prediction in these cases, the PE approach and 379 

machine learning methods do not have a considerable difference in performance. The SVR and 380 

MLP function equally well with the PE model. The machine learning algorithms that perform 381 

best in MAE are SVR and GA-SVR, whose average MAE is almost the same (0.18% and 0.10 % 382 

lower) as for the PE model. The machine learning algorithm that performs best in RMSE is 383 

MLP, whose average RMSE is 5.4% lower than the PE model. SVR, RBF, GA-SVR, and 384 

LSTM also have lower RMSE than the PE model has. This generally means the PE model has 385 

more large errors in the prediction procedure. Our result also validates the conclusion from 386 

research 19 in the wind engineering field. The conclusion is learning algorithms do not deliver 387 

on their promise for univariate time series prediction, and the classical statistical methods even 388 

perform better. The phenomena may be explained that for univariate series, the complex 389 

methods often overlearn the training set and create overfitting in the testing. 390 

     For the multivariate wind power forecasting in our cases, the model considers 391 

methodological or topographic factors by taking the mesoscale NWP wind data as inputs. 392 

Compared to the corresponding algorithm in the univariate case, the multivariate model has a 393 

lower MAE and results in a smaller RMSE. When the predictive time increases, the multivariate 394 

models are more stable than the PE model, especially in the metric of RMSE. These prove that 395 

the multivariate model entirely exceeds the PE model and the univariate model. Furthermore, 396 

the sophisticated ensemble and deep learning algorithm demonstrate their superiority in dealing 397 

with complex and multivariate pattern recognitions in complicated wind power forecasting 398 

problems.  399 

The NWP wind data are generated with mesoscale (2.5km×2.5km), which is larger than the 400 

area of our wind parks. However, adding this local weather information can still obviously 401 

optimize the performance of forecasting models. The improvements of the penetration of NWP 402 

data in wind power prediction can be explained from two aspects: firstly, from the Bayesian 403 

theory 43, the introduced NWP wind information can provide a priori probability information to 404 

make more precise wind power (corresponding to posterior probability) predictions; secondly, 405 

NWP wind data can be regarded as the simulating wind conditions of the whole wind park, 406 

which add useful information in the predictive process. 407 
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In summary, based on our case studies, it is recommended to use statistical methods for short-408 

term univariate wind power forecasting since learning algorithms involve parameter tuning and 409 

larger computational volumes without significantly better performance than statistical ones. It 410 

is advisable to include meteorological information, even if the weather data scale is relatively 411 

large, into the multivariate predictive models, where the advanced learning algorithms can be 412 

really effective with such autoregression combined with meteorological inputs.The replicability 413 

of these conclusions is established because the data from the five wind parks are relatively 414 

uncorrelated, and the machine learning regressions are built with sufficient considerations for 415 

the generalization of the models. 416 

     Moreover, we cannot find that each wind park's forecasting results significantly correlate 417 

with the site ruggedness. There are two possible reasons for this. First, the decisive, independent 418 

variable in the data-driven wind power prediction model is the prior value of power. According 419 

to Table 1, the standard deviation of the power time series does not become larger with 420 

increasing RIX. Second, because of the relatively large scale of the NWP model and the fact 421 

that the concerned wind farms are located near the sea, the effect of complex terrain is mitigated 422 

in the NWP grid. Therefore, to further investigate topography influence, the hydrodynamic 423 

modeling between topography and wind turbines in wind farms is needed. More interestingly, 424 

we find that the performances have some correlations with each wind park's capacity factor; the 425 

higher the capacity factor is, the lower the performance. i.e., the most inferior performance 426 

(Raggovidda) with the highest capacity factor of 48.40% and the best performance 427 

(Havøygavlen) with the lowest capacity factor of 25.46%. This implies that turbulence within 428 

the wind farm in complex terrain conditions may be the dominant factor, masking the effects 429 

of external large-scale weather.The phenomenon needs further investigations. 430 
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