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Abstract 

In this article, we first propose the novel semi-analytical technique, modified Adomian decomposition 

method (MADM) for a closed form solution of the nonlinear heat transfer equation of convex profile with 

singularity where all thermal parameters are functions of temperature. The longitudinal convex fin is 

subjected to different boiling regimes, which are defined by particular values of n (power index) of heat 

transfer coefficient. The energy balance equation of the convex fin with several temperatures dependent 

properties are solved separately using the MADM and the spectral quasi-linearization method (SQLM). 

Using the values obtained from the direct heat transfer method, the unknown parameters of the profile, 

such as, thermal conductivity, surface emissivity, heat generation number, conduction-convection 

parameter and radiation conduction parameter are inversely predicted by an inverse heat transfer analysis 

using the simplex search method (SSM). The effect of the measurement error and the number of 

measurement points has been presented. It is found that present measurement points and reconstruction of 

the exact temperature distribution of the convex fin are fairly in a good agreement. 
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rN  Conduction-radiation parameter 

C  Constant which represents the temperature  

k  Temperature dependent thermal conductivity, ( )mKW  

ak
 

Thermal conductivity corresponding to atmospheric condition, ( )mKW  

s  
The surface emissivity corresponding to radiation sinks temperature, sT  

T  Temperature, K  

P  Fin perimeter, m  

bT
 

Fin’s base temperature, K  

aT
 Sink temperature corresponding to ka, K  

sT
 

Sink temperature for radiation, K  

L Length of the fin, m 

x Axial distance of  fin, m 

( )xA
 

Cross-sectional area at the location x, 
2m  

X  Non-dimensional length 

G   heat generation parameter 

A          thermal conductivity parameter 

B          surface emissivity parameter 

G          heat generation number 

Greek symbols 

  Parameter describe the variation of thermal conductivity, 1−K  


 Parameter describe the variation of surface emissivity, 1−K  

  Parameter describe the variation of heat generation, 1−K  

  Non-dimensional temperature distribution of the fin, 

a  Non-dimensional convection sink temperature,  

s  Non-dimensional radiations sink temperature,  

  Stefan-Boltzmann constant 

  Emissivity 

1. Introduction 
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Extended surfaces are commonly used to improve the rate of heat transfer from a solid boundary to the 

surrounding environment by conduction, convection and radiation. Kem and Kraus [1] have given a vast 

review on this topic. Lighter fins are the main choice in aerospace and rocket application. The variety of 

lighter fins include parabolic concave or convex, triangular profile etc. But some of the lighter fins are 

difficult to manufacture and pose safety hazard because of sharp edges. Thus convex fin profiles are the 

better alternative, with additional advantage of being simple and easy to fabricate. 

Numerous research works have been conducted during the last decade for solving non-linear fin 

problems. Temperature dependent phenomena leads to nonlinearity in the energy equation.  Chiu and 

Chen [2] employed classical Adomian decomposition method (ADM) to solve non-linear energy equation 

of rectangular longitudinal fin associated with variable thermal conductivity. The same method is 

extended to solve the non linear energy equation of convective-radiative longitudinal fin with non linear 

boundary condition [3]. The double decomposition method (DDM) [4] is used to obtain the stress field 

[5] of an isotropic convective-radiative circular fin by solving the nonlinear energy equation and the non 

linear boundary condition associated with the variable thermal parameter. The nonlinear energy equation 

of conductive-convective hyperbolic fin profile is solved by DDM with variable thermal conductivity [6]. 

Chang [7] employed again ADM to solve the non-linear energy equation of rectangular fin under different 

regimes of boiling heat transfer. Kundu and Wongwises [8] presented a decomposition solution of 

rectangular fin with variable thermal parameter and heat transfer coefficient with base wall maintained at 

high temperature. Singh [9] et al. presented a closed form solution of stepped fin with non-linear boundary 

condition. Other research works related to solving non linear heat transfer equation fin with classical 

methods are available in [10-16]. 

   The nonlinear linear equation with the extension of singularity behavior gives a more 

mathematical complexity in the energy equation. The nonlinear equation is solved using classical ADM 

by defining a single operator containing single highest order derivative in the problem. But in the modified 

ADM, both the singularity and nonlinearity can be solved by a combined operator in the problem. Roy et 

al. [17] et al. presented decomposition method for solving non-linear heat transfer equation of rectangular, 

convex and triangular fin with temperature dependent properties. Further classical ADM is used for 

solving non-singular energy equation of rectangular fin and modified ADM is used for solving singular 

energy equation of convex and triangular fin problem [18]. 

There may be internal heat generation in the fin that is due to the flow of electric current as in 

electric filament or it can be an example of chemical reaction as in an atomic reactor. The heat transfers 
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associated with boiling regimes are much higher than other forms of heat transfer process because of the 

phase change. For example, the particular power values of convective heat transfer coefficient, n, that 

describe different fluid boiling regimesare −0.25, 0.25, 0.33, 2 and 3. For constant heat transfer coefficient, 

the value of n is 0. Aziz and Fang [19] presented a comparative analytical study of rectangular, trapezoidal 

and concave profile without any variable thermal parameters. Torabi [20] et al employed the differential 

transform method (DTM) to obtain temperature distribution and efficiency of rectangular, trapezoidal and 

concave profile with multiple variable properties. The homotopy analysis method (HAM) used by Aziz 

and Khani [21]. Sun Y. et al [22] applied the spectral collocation method (CSM) of convective-radiative 

longitudinal fin parameters. Turkyilmazoglu M. [23] studied exponential moving fins with internal heat 

generation. S. Mosayebidorcheh et al [24] presented the optimization of longitudinal fins of different 

shapes and materials associated with temperature dependent phenomena. Darvishi M.T. et al [25] 

investigated numerically the hyperbolic annular fin with temperature dependent conductivity. 

Functionally graded longitudinal fin is analysed by Khan and Aziz [26]. However, most works predict the 

thermal performance in the form of either temperature distribution or fin efficiency from a priori 

knowledge of fin thermal parameters. These problems are forward or direct heat transfer problem and they 

are mathematically well-posed [27]. But the analysis becomes different when the parameters are predicted 

from known temperature satisfying the requirement. These problems are known as inverse heat transfer 

problems and they are mathematically ill-posed. The objective of this work is to explore both the accuracy 

and the convergence of the spectral quasilinearization method (SQLM) and modified Adomian 

decomposition method (MADM), for solving systems of nonlinear partial differential equations. The 

accuracy of all the spectral methods used is established through the evaluation of residual and solution 

error analysis. Further validation of present results is established by comparing with existing results from 

literature. In mathematical physics, many methods have been developed to solve differential equations, 

among which ADM is an efficient approximation technique used to solve initial boundary value problems. 

The advantage of the method is that it converges to exact solutions and needs less computation than the 

traditional discretization methods. The method is based on decomposition the solution of a nonlinear 

operator equation as a power series expansion of a function, resulting in a polynomial equation that is 

easier to solve. MADM has compared favorably with other numerical methods. In this study we do not 

implement MADM because MADM presents two main challenges; difficulties in the calculation of the 

Adomian polynomials and the successive application of the integral operator. These problems make it 
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unsuitable for differential equations involving large systems of equations as it requires more computation 

time than spectral methods. 

The aim of the work is to employ modified ADM to obtain the forward problem of convex fin and 

inverse heat transfer by simplex search method (SSM). The work is also aimed to introduce a numerical 

method that uses SQLM.  The results of MADM are compared with SQLM solution and good agreement 

has been observed. The methodology of modified decomposition method was developed and introduced 

by Adomian G. [28].  

2. Problem statement and mathematical formulation 

The longitudinal convex fin is subjected to convection-radiation with an internal heat source. It has length 

L and tb as the constant base thickness as shown in Fig 1. The fin dissipates heat at two different sink 

temperature. The fin width is very large as compared to its thickness so that the cross-sectional area is a 

function of fin thickness only and it changes parabolically according to law, 5.05.0)/()( XtLxtxt bb ==  . 

The one dimensional steady state one dimensional energy balance equation can be expressed as, 
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Thermal conductivity (k), surface emissivity () and heat generation (q) are assumed to be a linear function 

of temperature, while the heat transfer coefficient (h) follows a power law of temperature as, 
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where Nc is the conduction-convection parameter, Nr is the conduction-radiation parameter,  and G is the 

parameter describing the variation of heat generation.
  

Now, Eq. (1) can be rewritten as, 
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 =  are the non-dimensional temperatures and 

x
X

L
=  is the non-

dimensional length of the fin.           

3. Methodology of MADM 

The mathematical model of convex fin with multiple nonlinearities is an equation with singularity. Since 

the non-dimensional length X is measured from the fin tip for X=0, the equation fails to have a unique 

solution at this point and the solution jumps to infinity i.e. singularity [29] occurs at the fin tip. Therefore, 

classical method ADM fails at this point and modification of the method is required is to address the 

singular points. 

Consider singular boundary value equations of the form: 
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Here U is a linear term, N is a nonlinear term of order less than n1, m1 is the remainder term of the linear 

operator U, g(X) is the given analytic function and 0 1 2 1 1 1, , , andna a a a b c−  is constants. The equation 

cannot be solved directly by using the linear term as it is done in classical ADM because of the remainder 

term [30]. Therefore, in this method both linear as well as the remainder terms are taken together to form 

a new  differential operator [31]  and subsequently this new differential operator is proposed for solving 
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that particular singular value equations. The generalized differential operator is a function of derivatives 

of order (n1+1), remainder, and the linear terms of Eq. (7) and can be expressed mathematically as below,  
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Where m1n1 – 1 and n1 1. 

The Eq. (7) can be written as simple form as below. 
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Applying the generalized differential of the Eq. (9) 
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The above methodology can be applied to the governing equation Eq. (5) of the convex fin and can be 

written as follows, 
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The LHS of the Eq. (19) contains only linear term as well as remainder term. The coefficient of the 

remainder term is
2

1
. Therefore, the new forward and inverse operator for the above singular value 

equation are introduced as below, 
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The Eq. (19) of the convex fin in operator form can be expressed as, 
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Applying the inverse differential operators ( )1−
XL  on both sides of the Eq. (23),  
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  of Eq. (24) must be a constant in order to satisfy the boundary 

condition. Higher order terms are obtained recursively for the Eq. (24) for finite series of order, say, m. 
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In the present analysis, we consider the first three significant terms, i.e., for m = 0, 1 and 2, second, third 

and fourth component of temperature fields are expressed as below 
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             (29) 

Thus, the local temperature field for the convex profile is written in terms of the following finite series, 

++++== 3210

0


m

m           (30) 

4. Spectral Quasilinearization Method (SQLM) 

 The governing energy equation of heat transfer, Eq. (5), is solved using spectral quasilinearization method 

(SQLM) [32]. Quasilinearisation [33] is used to linearize nonlinear singular/ordinary differential 

equations. When a spectral method is used to solve the linearised equations, the method is called the 

spectral quasi-linearization method (SQLM). The SQLM assumes that the difference between the 

approximation of the solution at the current iteration level and the previous iteration is small. Also, the 

difference between the derivatives at the subsequent iteration levels is assumed to be small. The energy 

equation   for the convex fin and related boundary conditions can be written as, 

( )  ( ) ( )  ( )

( ) ( ) ( )  011

1
2

1
1

2

1
44

12

1
22

1

2

1

=−++−−+−

−−−+++−+
+−

aGssr

n

acaa

GxBN

NAxAxxA





              (31)

 

The interval,  baX ,  is transformed to the region  1,1  −  using the linear transformation 

( ) ( )
1 1

2 2
b a x b a = − + +

          (32)
 

where a and b represent the space domain interval. The solutions, can be approximated by a bivariate 

Lagrange interpolation polynomial of the form 

( ) ( ) ( )
0

xN

i i

i

   
=

 
                               (33)

 

The bivariate Lagrange interpolation polynomial interpolates ( )  at carefully chosen grid points in   

directions. The selected grids points are defined by 
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 
0

cos

xN

i

x i

i

N




=

   
=   
               (34)

 

The function ( )i   is the characteristic Lagrange cardinal polynomial based on the Chebyshev-Gauss-

Lobatto points. 

( )
0

xN

k
i

i i k
i k

 


 =


−
=

−


           (35)

 

The characteristics Lagrange cardinal polynomial has the following property, 

( )
0

1 .
i k ik

if i k

if i k
 


= = 

             (36)

 

The next crucial procedure is the evaluation of the space derivatives at the grid points 

( )..,,.........1,0 xi Nix =
 
This procedure is termed collocation. The values of the space derivatives are 

computated at the Chebyshev-Gauss-Lobatto points ( )i  for the nth order derivative defined as 

( )

( )
0

, 0,1,2,.............., ,

i

Nn
n n

i in
D D i N



  



 =

 
=  =  =




      (37)

 

Where the vector i  is defined as  

( ) ( ) ( )0 1, ,.......
x

T

i N       =
           (38)

 

The superscript T in the above equation denotes a matrix transpose. Applying the collocation technique 

gives the following system of equations. 

 Raaa rrrrrr =++
+++ 1,21,11,0          (39)

 

RA =
            (40)

 

where the matrices are given by 

,,2

1

,1

2

,0 IaDaDaA rrr ++=
          (41)

 

and the vectors written in a general form are given by 

−++= rrrrrr aaaR  ,2,1,0          (42)
 

and the variable coefficients are given by 



12 

 

( )  ,1 2

1

,0 xAa arr 


−+=



=

         (43)
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      (45) 

Thus applying the spectral method as described above gives the matrix, A of size xx NN  . The 

approximate solutions for   are obtained by solving Eq. (42) after approximate boundary conditions, 

( ) ( ) 100 11 == ++ xrr Nand   

5. Efficiency 

The thermal performance of a fin is measured by its efficiency. It is defined by the ratio of the actual heat 

dissipation to the maximum possible heat dissipation if the entire fin is considered to be at the base 

temperature. Thus, the efficiency for the proposed fin is formulated in the following form [34]:  

    

( ) ( ) ( )

( )
( ) ( ) ( )

4 4

0

1 4 4max

1

1

nL

b
b a s s s

b axf

nb
b a s b s b sn

b a

T T
h T T T T T T dx

T TQ

LhQ
T T L T T T T

T T

 



 

=

+

  −
 − + + − − 

−   = =

− + + − −
−


     (46) 

where Qf  and Qmax are the actual heat transfer and maximum possible heat transfer respectively. The 

above equation is non-dimensionalised as, 

  

( ) ( ) ( )( ) 

( ) ( ) ( )( ) 

1
1 4 4 4 4

0

1 4 4
(47)

1 1 1 1

n

c a r s s s

X

n

c a r s s s

N N B dX

N N B

       


   

+

=

+

 − + − + − −
 

=
− + − + − −


 

To obtain the fin efficiency, the numerator of Eq. (47) is solved numerically using trapezoidal rule. 

 

6. Inverse modeling 

An inverse study has a great significance for estimating the possible combination of key thermal 

parameters that can be used for an efficient fin design. The main purpose of the inverse study is to predict 

the various combinations of the unknown thermal parameters, merely from the known temperature field. 

The predefined temperature field is obtained either directly from experiment or from the theoretical 
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estimation. Thus, the predefined temperature field is the direct solution of the problem and well-posed 

which can be measured directly using the known values of thermal parameters. Let the temperature field 

  be measured from the temperatures i at x = xi locations. Then using the data of the measured 

temperature, one can inversely estimate the associated thermal parameters over the specified temperature 

domain. The thermal parameters so obtained can possess multiple values within the prescribed limits or 

the solutions are non-unique.  Thus, the problem turns ill-posed and the solution is obtained following 

predicted temperature field, j
*, is closely matched with the direct temperature field: 

2

*

1

( ) ( ) ( )i j i

i

x x x


 
=

  = −                 (48) 

Here,  is the number of measurement points where the values of the objective function in each of 

iterations is to be evaluated. A direct search method, Nelder-Mead [35] based on simplex search 

optimization technique has been employed to optimize the inverse parameters. The key advantage of this 

method is that it is a derivative-free downhill optimization process which requires few function evolutions 

in each of iterations. In this method of optimization, only p+1 points are required at the initial simplex for 

p number of variables. It is to be noted that all the points should not lie along the same line. The algorithm 

is associated with the following possible operations: 

 (a) reflection,   (b) expansion,   (c) contraction, and   (d) shrinking 

Now, the initial simplex is constructed and the worst vertex is identified. At every iteration, the order of 

the vertices   1

1

+

=

p

jjx is in accordance to function, 

)(.....)()( 121 + pxgxgxg  

where x1 is referred as the best vertex, and to xp+1as the worst vertex. The worst vertex is replaced by a 

new vertex in every successive iteration. The simplex is updated by steering the search away from the 

worst point. For details pertaining the algorithm of the present simplex model, the readers is referred to 

the article [36]. 

7. Results and discussion 

Results of parabolic convex fin are presented for multiple variable thermal parameters. A closed form 

solution for the nonlinear singular energy balance equation using the novel semi-analytical methods is 

investigated.  The SQLM is a numerical technique that is used for solving both singular and non-singular 

differential equation. Further, the MADM results for finite values of thermo-physical parameters are 

compared with DTM results in Fig. 2. The quantitative values of Torabi and Zhang [37], presented in the 
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figure, were extracted directly from their graphs using plot-digitizer software and higher order terms 

associated with heat generation in the present calculation are neglected. Close agreement is observed and 

the absolute error differences near the tip are found to be 0.0013 (n = 0, G = G = 0.1), 0.0046 (n = 2, G = 

G = 0.1) and 0.0012 (n = 2, G = G = 0). For completeness of the solution, the MADM results are further 

compared with the SQLM based numerical solution considering all the values of the power index. The 

results for the tip temperatures considering the parameters A =B = 0.2, Nr = Nc = s = a = 0.25, G = 0.1 

and G = 0.2 are presented in Table 1. For all the cases, the absolute decomposition errors near the tip are 

estimated to be below 0.8 %. Once the correctness of the present MADM solution is established, a 

parametric study is conducted. Unless mentioned otherwise, the results are presented for A = 0.2, B = 0.2, 

G = 0.1, G = 0.2, n = 2, Nr = 0.25, Nc = 0.25, s = 0.25, a = 0.25. The effect of the variation of thermal 

conductivity parameter, A, on the temperature field for different values of power exponent of convective 

heat transfer coefficient, n, is illustrated in Fig.3.  The temperature field increases with the increase in the 

parameter A for all the cases. The heat transfer is more through the material having higher values of A. 

The tip temperature increases with the increase of the value of n, and the maximum tip temperature is 

obtained at n =3. This result is in good agreement with the result of Sun and Xu [38]. Figure 4 depicts the 

effect of the surface emissivity parameter, B, on the temperature field for different values of n. The 

reduction in the tip temperature is due to continuous heat loss from the fin surface to the surroundings. 

When B =0, the heat transfer is attributed to the constant radiation-conduction parameter. The relative 

reduction in the tip temperature is further accelerated with a decrease in the parameter n. Figures 5 and 6 

show the effects of the convection-conduction (Nc) and conduction-radiation (Nr) parameters on the local 

temperature distribution for different values of the power exponent n. It can be seen that in both the cases 

the higher temperature gradient is associated with the higher values of the parameters, Nc and Nr. As a 

result, the tip temperatures are reduced by the increase in the values of these parameters. This incident is 

due to heat loss from the surface to the surrounding which enhances with the increase of Nc and Nr. This 

can be alternatively explained that as the parameters Nc and Nr increase due to increase of conductive heat 

transfer resistance (Rcond  1/ka), the local temperature distribution reduces. Figure 7 illustrates the effect 

of the heat generation number (G) on the local temperature field for different values of the power exponent, 

n. It is interesting that for each value of the power exponent n, the temperature difference at the tip, tip 

 0.021, was obtained when the value of G changes from 0.1 to 0.2. This result suggests that the variations 

in local temperature distribution are independently affected by the internal heat generation parameter and 

the power index. The heat transfer coefficient has obvious impact on the fin tip temperature, and film 
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boiling is most affected as compared to other regimes of pool boiling curves or constant heat transfer 

coefficient.The performance of the fin is characterized by its efficiency. Figures 8 and 9 depict the 

variation of fin efficiency as a function of convection-conduction parameter (Nc) and conduction-radiation 

parameter (Nr). The physical interpretation of the parameter, Nc, is the ratio of axial conduction resistance 

to the surface convection resistance ( Rcond /Rconv). When the parameter Nc increases, the resistance is 

dominated by the conduction parameter, and hence reduces the fin efficiency as shown in Fig.8. On the 

other hand, the fin efficiency monotonically decreases with increase in Nr due to the radiative heat loss as 

shown in Fig.9. In both the figures, it is observed that the variation of efficiency is not consistent with the 

value of power exponent. Further, it can be seen that the fin efficiency increases with the increase of heat 

generation parameter in both the cases, as extra local temperature is produced in the fin. This result 

(efficiency as a function of heat generation) is consistent with the results of Sobamowo [39]. It is well 

understood that the heat generation leads to reduce the performance of fin. So the name of ‘efficiency’ is 

somehow misleading here – it implies that higher efficiency means better fin. But, this is not only the 

necessary condition. The primary purpose of fin is to remove heat from the surface. As the heat generation 

increases (i.e the local temperature increases) the efficiency also increases ( →  in the limit of G → ) 

which defeats the purpose of fin. A similar argument is also applicable when the length of the fin is too 

small (i.e L → 0). The real application of the fin efficiency is that, primarily it is a function of Nc and Nr. 

The thermal and geometric parameters play an important role in transferring heat, and thus, the overall 

performance of the fin. In this study, the key thermal parameters such as A, B, G, Nc, and Nr are regarded 

as unknown parameters, that are to be estimated inversely from a well-defined temperature field. Multiple 

combinations of those thermal parameters for a given temperature distribution are simultaneously 

optimized using the Neldar-Mead simplex search method (SSM) by minimizing the objective function. A 

fin designer can readily design the fin materials by choosing an appropriate combination of parameters 

from the various possible alternatives of the inverse solution. This may help to reduce manufacturing costs 

and the weight of the fin without compromising the performance. In the SSM inverse process, the initial 

guessed parameters, invariably different from the direct problem, are to be used in every simulation. The 

values of the parameters continuously change with the iteration until the required temperature field is 

obtained by minimizing the objective function. The parameters, A = 0.2, B = 0.2, G = 0.1, G = 0.1, n = 2, 

Nr = 0.5, Nc = 0.5, s = 0.5, a = 0.5, were taken for the forward solution of inverse analysis. Table 2 shows 

the inverse estimation values of three parameters, A, B and G, considering error free measurement. The 

search starts with random initial guessed values for 100 and 50 iterations. Multiple combinations of 
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unknown parameters are obtained, and the values of the parameters depend upon the initial values, as well 

as the iteration numbers. The convergence studies in each run are illustrated in Fig. 10. It is evident that 

the function values converge very fast (<50 iterations) and are continuously refined with an increase in 

the number of iterations (Fig. 10a). The fitness value as a function of function evaluation number is 

presented in Fig. 10b. Next, the challenge in this inverse study is to incorporate the additional two 

parameters, Nc and Nr, as unknown parameters. The iterative variations and the convergence histories of 

simultaneous estimation of these five parameters are reported in Table 3. The pictorial representations of 

the convergence histories of the evolution numbers is depicted in Fig. 11. Similar to three unknown 

parameters estimation, the result reveals that the fitness values gradually decrease with an increase in 

function evaluation numbers as shown in Fig. 11(a). The insect in Fig. 11(a) represents the convergence 

history of function value as a function of iteration number. On the other hand, the values of the inverse 

parameters are randomly adjusted with the function evaluation number, and finally become stable after 

reaching a particular function evaluation numbers as shown in Fig. 11(b) – (f). Slower convergence in 

function values is observed in five parameters estimation when compared with three parameters 

estimation. A comparison between the reconstructed temperature fields and the exact analytical solution 

[40] is represented in Fig. 12. As expected, the result demonstrates that the reconstructed temperature 

fields are in good agreement with the forward temperature field.  

8. Conclusions 

The results of MADM are verified with the results of SQLM and DTM. The results were found to be in 

good agreement for different thermal parameters of heat transfer processes. Results reveal that heat is 

transferred from the base to the tip of the fin and the local temperature gradually decreased towards the 

tip. For all the thermal parameters, the tip temperature monotonically increases with the increase of power 

index, n. The conductivity parameters, A, increase the relative heat transfer rate in the fin material. On the 

other hand, the increase in the parameters, B, Nc and Nr, reduces the local temperature due to heat loss 

from the surface to the surroundings. The fin efficiency was estimated for different values of G, Nc, Nr, 

and n. The fin efficiency reduces with an increase in parameters Nc and Nr. In addition, an inverse analysis 

for simultaneous estimation of the unknown thermal parameters has been performed using simplex search 

method. The reconstructed temperature field obtained from the inverse parameters agrees with the forward 

temperature field. The results and the technical approach of this study will serve as the development of 

mathematical modeling for improving the fin design in heat transfer equipment. 
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