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Abstract

We propose a geometrical approach to the mechanics of continuous
media equipped with inner structures and give the basic (mass con-
servation, Navier-Stokes and energy conservation) equations of their
motion.
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1 Introduction

The classical continuum mechanics deals with media in three-dimensional
spaces and describes them by a system of partial differential equations on a
3D manifold M. Usually, M is a domain in R? or R* x S%. In such cases,
elements of the medium are points. The idea that the medium has inner
structure leads to a more interesting picture.

Let us consider, for example, a diatomic gas. A molecule of such gas
is composed of two atoms. We have a homonuclear gas if its molecule is
composed of two atoms of the same element, e.g. oxygen O,, or a heteronu-
clear gas if it is composed of two atoms of different elements, like carbon
monoxide CO. Thus, for description of such gases, we use M = R? x RP?
for the homonuclear gases and M = R3 x S? for heteronuclear ones. In the
case of atmospheric gases, the configuration manifold M is the total space
of the bundle 7 : M — R* x S?, with fibers diffeomorphic to RP? or S?,
depending on the type of the gas. Here the projection 7 indicates the mass
center of molecule. The case of water, HyO, is more interesting, here the
configuration space of inner states is the circle bundle of the tangent space
to a two-dimensional sphere, and this space is diffeomorphic to RP? (see,
for example, [5]). An example of a medium composed with solids, i. e. the
bundle 7 : R? x SO(3) — R3 is trivial, were given by Cosserat brothers [12],
for a modern discussion see [11].

These examples give motivation for the following definition of a medium
with inner structure used in this paper.

Namely, by a configuration space of such medium we mean:

1. A smooth bundle 7 : M — B, where M and B are Riemannian mani-
folds equipped with metrics g;; and gp respectively.

2. In order to compare inner structures (fibers of 7) at different points
of B, we assume that the bundle 7 is equipped with a connection V.
This connection splits tangent spaces T, M into the vertical 7)Y M and
horizontal H,, = =m)B parts, i. e. T, M =T M @ H,,, where T); M
and H,, are gj;-orthogonal, and the restriction of the metric gp; on H,,
coincides with gg. Moreover, we require that the parallel transport of
fibers along the connection V, be an isometry of fibers with respect to
the metric induced by gp;.

3. Flow in the medium is given by a m-projectable vector field X on M,
i. e., X preserves the bundle 7. This field can be split due to the
connection V, into the sum X = Xy + Xy, where Xy is a w-vertical



field and Xy is a horizontal lift of the vector field X’ = 7m,(X) on the
base manifold B.

The paper is organized as follows. First of all, we discuss the thermody-
namics of media based on the measurement [7] of internal energy and defor-
mation tensor. Especially, we discuss Newtonian media that have O(gy) in
a general case and O(gp) x O(gr) symmetries, when media have an inner
structure. Using the Rosenlicht and Procesi theorems (see [9], [6],[10]), we
find the fields of rational invariants, and describe state equations for internal
energy and stress tensor in their terms. We formulate the thermodynamic
state equations in terms of Lagrangian manifolds, additionally equipped with
a Riemannian structure. This approach introduces these manifolds as an in-
trinsic part of the continuum mechanics, as well as it allows us to describe
different critical phenomena in a pure geometrical manner (see, for example,
[3], 14, [2], [8]). The second part of the paper contains basic equations for
media: the mass conservation, Navier-Stokes and energy conservation [I]. We
outline shortly the coordinateless method of getting these equations, which
makes them more transparent (at least from our point of view).

2 Thermodynamics of media with inner struc-
ture

The thermodynamics is based on measurement [7] of two extensive quantities:
the internal energy density € and the rate of deformation A = dy X € End T,
where V is the Levi-Civita connection associated with the metric g;;, and dy
is the covariant differential. The corresponding dual, or intensive, quantities
are the temperature 6 and the stress tensor ¢ € EndT™*. We will use the
duality of End T" and End T* given by the pairing (o, A) = Tr o A*.

Thus, the thermodynamic phase space of the medium is

® =R3 x EndT* x End T,

with elements

(87 07 67 0-7 A)?

where s is the entropy density.

In order to write down the first law of thermodynamics, we adopt the
following construction.

Let (A, ) be an R-algebra. Consider the algebra A @ End T (in this
section ®g = ®) with the multiplication given by (e ® A)(b® B) = (a*b) ®
(AB). On this algebra, we define a mapping called trace Tr4 : a® A — a Tr A.



In the same way we define the algebra A® End T*. Then we define x-pairing
(AQEndT*) X (A® EndT) — A as follows

(a®@A)*(b® B) = (axb)Trqy A*B, where A€ EndT™, B € EndT.

Further, the cases of algebras A of exterior (x = A) and symmetric (x = -)
forms will be used.

The phase space P is a contact manifold equipped with the structure form
[7]

a=ds—0"tde + 0o - dA.

The first law of thermodynamics means that the thermodynamic state is
a maximal integral manifold of this differential form, i. e. a Legendrian
manifold L C (®, «) of dimension dim(End 7T") + 1.

Because the entropy is not involved in the conservation laws that govern
medium motion, we eliminate it from our geometrical description of the ther-
modynamics. To this end, we consider the projection ¢ of the contact mani-
fold @ on the symplectic manifold (®,da), where ® = R? x EndT* x End T’
and ¢(s,0,e,0,A) = (0,¢e,0,A).

Then the restriction of the mapping ¢ on the Legendrian manifold L
is a local diffeomorphism on the image L = ¢(L), and, therefore, L C @
is an immersed Lagrangian manifold in a 2(dim(End7T") + 1)-dimensional
symplectic manifold equipped with the structure form

doa =072 (df A de + Odo N dA + odA A dF) .

Thus, the first law of thermodynamics can be reformulated by saying
that the thermodynamic state is a Lagrangian submanifold of the symplectic
manifold (P, da).

Given a Lagrangian manifold L the corresponding Legendrian manifold
L can be reconstructed up to the translation along s-axis. It fits to our
understanding of entropy as a function defined up to a constant.

In addition, we also require (see [7] for more details) that the quadratic
differential form

Kk =0"2(d0 - de + 0do - A + o - dA - dO)

be negative-definite on the Lagrangian submanifold L. The submanifold
Y. C L, where quadratic form k is degenerated, divides L into domains,
where k is negative definite, and the rest. The domains, where k is negative
definite, correspond to different phases of the medium, all other domains are
domains, where the thermodynamic state is unstable.



The symplectic structure defines the Poisson bracket on functions on d
of the form

Fo =8 (96 06 _OF 0G|, (0GOF 0GOGN | (OF0G  0GOG
1 79\0A 90 T A o 0= 00 oz 00) " \ocoo 9c00))

Hence, the thermodynamic state of the medium can be also defined by
equations

Fr(0,e,0,A) =0, k=1,...,dim(EndT)+1, (1)

where [Fy, Fj] = 0 due to the system (I]).

For example, if we have coordinates (e, A) on E, then the Legendrian
manifold L may be written in the form

s=f(A), 0 =1, o=(f)" fa. (2)

Another presentation that we’ll use in this paper is given by the coordinates
(0,A) on L. Then

s=s(0,A), o=0(0,A), e=¢c(0A)
on L the condition gives us
alz = (59 — 9_159) do + (SA — 0 ten + 9_10) dA =0,

or
8.9:(989, €A:98A+O'.

Let us introduce the density of Helmholtz free energy h = h(6,A) on L,
h =€ — 0s, then we get the following equations for the Lagrangian manifold

L
o=ha, &=(0h),. (3)

The quadratic differential form x is of the form

k==Y fa,andD @ dAy +2fn - de - dA — f..de®

0,4kl

in the first case, and

k=02 <(2h9 + 0h99)d92 + Q(hA + HhM)dedA + 6 Z hAijAkldAij & dA]d)
irjkl

in the second one.



3 Thermodynamic invariants of Newtonian
media

Let us consider a medium that possesses a symmetry given by an algebraic
group G C GL(T). Then this G-action on the tangent space T can be
prolonged to the contact G-action on thermodynamic phase space @, if we
assume that this action is trivial on R® = (s,6,¢) and natural on End T* x
EndT.

Let Ji, ..., Jy be a set of algebraically independent rational G-invariants
on ®, which generate the field of rational G-invariants and, therefore, sepa-
rate regular G-orbits (Rosenlicht theorem [9]).

Then a regular G-invariant thermodynamic state, i. e. a G-invariant
algebraic Legendrian manifold I C ® such that almost all G-orbits in L are
regular, can be written in the form of s = f(Jy,..., Jy) in the case (2), or
h=h(Ji,...,Jn) in the case [3)), where f and h are rational functions.

In this section, we consider Newtonian media, i. e. media with a symmetry

group G = O(g) C GL (T), where T is a Euclidean vector space with a metric
d

g, (z,9) = g(z.y).

To this end we study, O(g)-orbits and O(g)-invariants of the natural O(g)-
action on End T (see [10]).

Let A € EndT be a linear operator and A" € End T its adjoint operator
with respect to the metric g.

Theorem 1 (Procesi [10]). Algebra of polynomial O(g)-invariants on A €
End T are generated by the Artin-Procesi invariants

Pas(A) = Tr (A AP A% APm) N (a4 B) < 2" — 1,

where o = (aq, ..., ), B = (B1,...,0m) are multi-indices.

The next theorem follows from the Procesi theorem, the Rosenlicht the-
orem [9] and the observation that codimension of regular orbits equals
S n(n —1) _ n(n+1).
2 2
Theorem 2. Field of rational invariant of the O(g)-action on End T is gen-
erated by any v algebraically independent Artin-Procesi invariants. This field
separates reqular orbits.

Note that the Helmholtz free energy for Newtonian media is O(g)-invariant
because of the trivial O(g)-action on (s, ¢, ), and therefore, due to the Rosen-
licht theorem, h = h(6, P, 3(A)) if h is rational.
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In this case, due to (3]), we have the following state equation:

b~ Oh OPag
TN T 0P OA

o

If we consider media, which satisfy ‘Hooke’s law’, the Helmholtz free
energy is a quadratic function of A and, therefore, has the form:

h = % (a(0)Po(A) + b(0)Pi1(A) + c(0)P(A)) + d(0)Pr(A),

where a, b, ¢, d are some functions.
In this case the state equations take the form:

o =a(0)A + b(O)A + (c(0) Tr A+ d(6))1.

We call the functions a, b, ¢ viscosities, and —d pressure, though they are
not completely adequate to their names.

Usually, the cases when the operator A is self-adjoint are considered, in
such cases there are only two viscosities.

4 Thermodynamic invariants of Newtonian
media with inner structure

Let a Euclidean vector space (T, g) be the orthogonal direct sum of a vertical
(V,gr) and a horizontal (H, gg) Euclidean spaces, that is

(Tvg):(‘/agF)@(HagB)v (4)

where dimV = m, dim H = n.

In this section we study invariants of linear operators End T equipped
with the natural O(gr) x O(gp)-action.

Let IIy, be orthogonal projector on V.

Theorem 3. Algebra of polynomial O(gr) x O(gg)-invariants on A € End T
is generated by Artin-Procesi invariants

Paep(A) =Tr (AQIH;IAlﬁl .. .ACMI@H;]?A/[;]@)’ Z<ai e+ B) < 2mrm 1,

)

where a = (Qq, ..., ), € = (€1,...,€n), B=(P1,...,0m) are multi-indices.



It follows from the Rosenlicht theorem that we should expect the same
number of generators in the field of rational O(gr) x O(gp)-invariants, then
dimension of a general orbit equals

s nn—1) mm-1) nn+1) m(m+1)

_ _ — 2 .
(n+m) 5 5 5 + 5 + 2mn

Similar to the ordinary Newtonian media, for the Newtonian media with
inner structure, we have the following state equations:

Oh Oh  OPa.p
ON ~ 2= OPary OA

Q,€,

In the case when the media satisfy ‘Hooke’s law’, the Helmholtz free
energy is a quadratic function of A and therefore has the form:

h = % (a1(6) Tr A* 4 a(0) Tr (AA') + az(6) Tr* A + as(0) Tr* (AILy )+
a5(0) Tr (A/AH\/) + a6(0) Tr (AA,H\/)) + bl(ﬁ) Tr A + b2(9) Tr AH\/,

where aq,...,aq, b1, by are some functions.
In this case the state equations take the form:

o =a1(0)A" + az(0)A + (az(0)(Tr A) + b,(6))1+
(CL4<¢9) Tr (AH\/) + b2<¢9))HV + CL5( )AHV + CLG(H)H\/A.

5 Conservation laws and motion of media

5.1 Preliminaries

The general laws of conservation of mass, momentum and energy are used to
describe the motion of media. This can be done on an arbitrary Riemannian
manifold (M, g), the only difference between media with or without inner
structure is in the description of a flow velocity field X and the thermody-
namics of media. Thus, for media without inner structure we have no extra
conditions for vector fields and thermodynamics but in presence of inner
structures we have to specify them.

Thus, in this section we consider a Riemannian manifold (M, ¢g) and write
down the conservation laws for an arbitrary vector field X on M. We'll as-
sume that M is an oriented manifold and €2 = €, is the volume form associ-
ated with the metric g. We denote by V and dy the Levi-Civita connection
and the covariant differential also associated with metric g.
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By

we denote the material derivative.

5.2 Divergence operator

The divergence of a vector field, div X, is defined by the standard way
through Lie derivative:
LxQ = (divX) Q.

On the other hand, the covariant differential dy X € T*®T is a field of linear
operators acting in the tangent spaces and we get

div X = Tr(dv.X). (5)

To see that we get an equivalent construction, let us write down the latter
in local coordinates 1, ..., x,.
) - ® dx;,

We get
dgX =
v Z (a%

where X = > Xia%iv and sz are the Christoffel symbols.

Taking now (x1, ..., z,) to be the normal coordinates we get equality ().

This observation allows us to extend the divergence operator on other
tensors. The more important case for us is the case of linear operators A €
EndT =T ® T*.

In this case, dyA € T* @ EndT = T* ® T ® T* and, by taking (1, 2)-
contraction ¢ 2, we get a differential 1-form that we call divergence of oper-
ator A:

divA = C1,2 (dvA) € ,_Z—w<

In local coordinates we have

A:Zfa
( ) era ® dz;,

dy(d;) = =) Tidry, ® da;

and, therefore,

. 80’? ki
divA = a (&m + Z( a; I — aiﬁk)) dy.



Let A = X ® w, where X is a vector field and w is a differential 1-form.
Then it is easy to check that

div(X @w) = (divX)w+ Vyw. (6)

We consider the stress tensor 0 € End T as the surface force o = g(o(v), )
€ T™ applied to an imaginary surface orthogonal to a normal vector v. In
our case we cannot directly find the ‘integral sum’ of all forces applied to a
volume, since each of the ‘applied forces’ belongs to a different space.

Take a small volume AV with a border S around a center point a € M
and consider parallel transports 7, , : 1T, — T, along the shortest geodesic
line connected points z and a.

Let f(z) = 7, (o) € T; be the images of the surface forces. Then the
force applied to the volume we’ll be understand the integral |, g J ds, where
f considered as a vector valued function f: AV — T

To see that the density of this force equals div o let take normal coordi-
nates (1, ...,2,) centered at the point a. Then g;; = d;j+02(z), T}; € o1(x),
where we denoted by o;(x) functions having zero of order [ at the point a,
and therefore, due to the above formula, divo = Y~ of;(a)dz; at the point a.

On the other hand, f(z) = 3" (0¥(2) 4 01(x)) v; and, therefore,

/ Fds = / S ok @)wds + 01 (AV) = (diva o) AV + o1 (AV),
S S
i. e. the density of internal force is —divo.

5.2.1 Conservation of mass

The idea that the amount of a medium contained in an elementary volume is
conserved along the flow of the medium can be expressed with the equation

(21 e2) oo -0

%erdivX:O. (7)

or equally

5.2.2 Conservation of momentum, or the Navier—Stokes equation
of motion

Considering the metric g as the isomorphism ¢ : T — T, denote by X’ =
g(X) € T* the differential 1-form dual to a vector field X, and by o’ the
vector field dual to a differential 1-form a.
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Then a differential form w = pX” may be considered as the momentum
density of the media.
Newton’s second law states that the force equals to the mass multiplied

d
by the acceleration. In our case, T is the acceleration and, therefore, the

law states that
dX

Pat
The Levi-Civita connection preserves the metric g. Therefore, due to the
above formula, we have

= —div’ 0. (8)

dx’
P = div o,

and due to (@) we get

Qo + div(X ® w) = —divo.
ot
The last relation in the form
15,
a—f+div(X®w+a):o, 9)

is called the equation of the momentum conservation.

5.2.3 Conservation of energy

The law of energy conservation is written as follows

Oe
— = —div 7., 10
5 Te (10)
where 7. is the total energy flux vector.

This vector is the sum of a convective term eX, a mechanical energy flux

o(X) and a heat flow 7, (for details, see [15]):
J.=eX +0(X)J,

Substitution the velocity field X into (§) leads to the kinetic energy bal-
ance equation

d (X, X)

Pt 2
Recall that the total energy enclosed in an elementary volume is the sum
of kinetic, potential and internal energy
p{X, X)

e:T—i-a

= —(divo)(X) + (0, A) (11)
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Using this identity and the equations (7)), (II]) we get

d
prcs ediv X + div(7,) + (o, A) = 0.

Commonly, the heat flow is given by Fourier’s law

J, = —x(grad T,

where xy € End T is the thermal conductivity of the medium.
Summarizing we have the following system of differential equations de-
scribing media with inner structures:

p

% + pdivX =0,
X
pcil—t = —div’ o,
de . .
W + ediv X + div(J,) + (0, A) =0,
where
Oh Oh

g = 8—A, e=h+ 9%,

X is a m-projectable vector field.
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