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Abstract: With growing concerns about the depletion of rare-earth elements, managing End-of-Life
products has become a key sustainability initiative in the supply chains of global corporations.
Recycling, the process of dismantling, separating, and recovery of components and raw materials
from wastes, is technologically challenging and should be planned in such a way as to ensure
operational efficiency as well as safety. This study explores the Disassembly Line Balancing Problem
with Correlated Tasks (DLBP-CT), which is prevalent in the recycling of the Waste of Electrical and
Electronic Equipment (WEEE). For this purpose, an original Integer Nonlinear Programming (INLP)
model is proposed to find the optimal configuration for the disassembly lines. Given the NP-hard
nature of this problem, the Adaptive Genetic Algorithm (AGA) is developed to solve the problem,
minimizing the number of workstations and maximizing the relationship between the disassembly
tasks. A case example from electronic waste is provided to test the practicality of the developed
optimization approach. Sensitivity analysis is conducted to explore the impact of parameter changes
in the optimization outcomes. Results are supportive of the applicability of the developed approach
and show that it can serve as a strong decision aid tool when selecting the best disassembly process,
workstations, and task assignments.

Keywords: waste management; recycling; Disassembly Line Balancing Problem; correlated
tasks; optimization

1. Introduction

The rapid technological and economic development has changed consumer behavior,
which, as a major result, shortened the lifecycle of electrical and electronic products. The
exponential growth in the quantity of End-of-Life electronic items has made the Waste of
Electrical and Electronic Equipment (WEEE) the fastest-growing waste stream [1,2], with
an estimated annual growth of three to five percent [3]. WEEEs are hazardous; nevertheless,
they can generate value with proper treatment through authorized recycling channels [4,5].
With the circular economy encouraging R-imperatives [6], proper disassembly of WEEE is
of paramount importance for reducing the extraction of rare-earth elements [7], alleviating
environmental problems [8,9], reducing health risks caused by the use of certain hazardous
substances [10–13], and bringing about financial benefits [14].

WEEE management is complex and requires various interventions and standardiza-
tion in certain stages. Formal collection networks and informal collectors—i.e., waste
pickers, waste merchants, and the middlemen—should cooperate with remanufacturing
and recycling companies to maximize the reclaimable value of the collected products [5]. Re-
manufacturing and recycling companies extract valuable components and sub-components
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such that they can be reused, recycled, or discarded safely and soundly. The disassem-
bly line is the best operational setting for the disassembly of products with a complex
structure, large products with many components, and the small products received in large
batches [15,16]. The dramatic increase in the volume of WEEE highlights the need for effec-
tive disassembly line balancing and modeling [17]. Since the emergence of the Disassembly
Line Balancing Problem (DLBP; [18]), many extensions have been developed to address
various operational situations through studying different line configurations, product
types, disassembly depths, performance measures, technical requirements, and physical
constraints [19]. The main objective of DLBPs is to satisfy the demand for recovered parts
using the available resources. The vast majority of the line balancing studies are focused
on reducing the operational cost [17,20,21] and increasing revenue [22–24]. Additional
operational/technical considerations and performance measures are required to improve
the effectiveness and efficiency of the disassembly operations.

Given the limited profit margin in the recycling business, minimizing the operational
cost is of critical importance [25]. Improving the utilization of resources to boost the effi-
ciency of the operations is a major consideration with tangible economic implications. The
extant literature well explored the tangible dimensions of this consideration—reconfiguring
the layout to improve material flow [26], reducing the number of disassembly worksta-
tions [27–31], improving workload smoothness by making a balance between workstations’
operating time [32,33], or revisiting the disassembly tasks assignment to minimize the total
idle time [34–36], cycle time [15,37,38], and the number of direction changes [39] that are
the considered utilization-based operational measures. To further improve the efficiency of
disassembly operations, other studies suggested priority-based approaches—for example,
early removal of valuable high-demand parts [27,40,41], easily accessible parts [16,18], and
the parts that require longer disassembly times [42]. Environment-friendly considerations
were more recently incorporated to improve operational sustainability—for example, by
early removal of hazardous components [27,31,40,43] and maximizing CO2 saving [44]. For
a comprehensive review of the DLBPs, we refer readers to the most recent surveys by [19]
and [45].

Mainstream DLBPs are aimed at minimizing the total number of workstations, idle
times, and the early removal of hazardous parts [19]. In disassembly operations with no
restrictive precedence instructions on the sequence of the tasks, the scheduler may have no
basis for deciding which task should be executed first if only tangible operational measures
such as cost and time are considered. Less-tangible aspects such as the interdependencies
between the tasks can make a difference, in particular, when detecting outlier tasks helps
alleviate their negative influence on other tasks’ performance [46]. The extant disassembly
literature does not account for the possible correlations between tasks. Task correlation
refers to the situation when the state of one task imposes an influence on that of the next
task(s). Maximizing the degree of tasks’ positive correlation is, hence, of great relevance
for improving the efficiency of disassembly operations, which, in some cases, may have
implications for the safety of operators; this consideration has been largely neglected in
the literature.

The authors of [21] implicitly addressed the task correlation considering their process-
ing times but did not address the degree of task correlation as an explicit optimization
criterion. Processing time is not the only operational parameter that is influenced by the
degree of task correlations, an indirect approach may not be effective for addressing all of
the impacts of total relatedness of the disassembly operations. Inspired by the mentioned re-
search gap, this study puts forward a two-fold contribution to waste management research.
An extended Integer Nonlinear Programming (INLP) formulation to the Disassembly Line
Balancing Problems with Correlated Tasks (DLBP-CT) is first proposed that addresses the
industrial disassembly cases where correlated tasks are prevalent, e.g., WEEE. The Adap-
tive Genetic Algorithm (AGA) is then developed to efficiently solve this Non-deterministic
Polynomial-time- (NP-) hard problem. An industry case example is provided to evaluate
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the practicality of the developed approach. Finally, sensitivity analysis is conducted to shed
light on the operational aspects of the disassembly procedure.

The remainder of this article begins with presenting the methodological tools devel-
oped in the present study, including the mathematical formulation of the problem and
the solution algorithm in Section 2. Numerical analysis is presented in Section 3, which
is followed by practical implications from the results. Finally, Section 4 concludes this
research and provides insights for possible future works.

2. Proposed Methods
2.1. Problem Description

Proper disassembly of WEEE items consists of extracting the components and sub-
components in a way that they can be reused, recycled, or discarded safely and soundly.
Given the complexities involved in the disassembly processes, the best operational plan
keeps the overall disassembly costs, which comprises the time, labor, and tooling expenses,
at their lowest while ensuring the effectiveness of the operations. Notably, considering
the degree of task correlation imposes a direct influence on the disassembly costs, i.e.,
changing the execution time and intangible operational aspects that may change depending
on the type of correlation. Let G = (V, A) represent a graph with the vertices, V, showing
the state of the elements and the arcs, A, signifying the disassembly tasks. The state
transition from one layer to another happens when a disassembly task takes place. In this
definition, the source vertex of G denotes a complete item, and the last layer vertices specify
the components and subcomponents resulting from the disassembly process. Finally, a
particular task can be one of the alternatives in different stages of the disassembly process,
and the associated cycle time is assumed to be deterministic with negligible variation across
the stages.

The tasks can be either correlated or unrelated [47]. Maximizing the degree of task cor-
relation in the objective function of the optimization problem helps improve the efficiency
of disassembly operations by sequencing similar tasks together. Informed positioning of
the outlier (unrelated) tasks minimizes their impairing effect on the performance of other
tasks. The number of connecting lines between the disassembly tasks in the relationship
diagram is used for defining the degree of relevance, α; the more the connections that exist
between two tasks, the higher will be the overall correlation degree. Overall, the goal is to
find the best set of disassembly tasks (i.e., separating two components or one component
from the frame) and assignments to maximize the degree of task correlation and minimize
the number of workstations.

2.2. Mathematical Formulation

Extending the formulation developed by [48], this study proposes a new INLP formu-
lation to DLBP-CT based on the notations listed in Table 1.

Table 1. Mathematical notations.

Symbol Description

j, h Task index j, h ∈ {1, 2, . . . , n}
i, v Workstation index i, v ∈ {1, 2, . . . , m}
d Dummy task index d ∈ {1, 2, . . . , D}
n Number of disassembly tasks to be processed
m Number of disassembly workstations
tj Processing time of task j
rjh The relation between tasks j and h
Xji Binary variable: =1 if task j is assigned to workstation i; =0, otherwise.
Yi Binary variable: =1 if workstation i is active; =0, otherwise.
Zj Binary variable: =1 if task j is executed; =0, otherwise.
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In addition to the above notations, the artificial set Ad ∈ {1, 2, . . . , D} is defined
to specify a dummy node with P(Ad) and S(Ad) being the predecessor and successor,
respectively. For the sake of simplicity, P(Ad) and S(Ad) for task j are represented by Pjd
and Sjd, respectively. We now elaborate on the formulation.

z =
m

∑
i=1

Yi −
(

n

∑
j=1

n

∑
h=1,j 6=h

m

∑
i=1

rjh × Xji × Xhi

)
(1)

Subject to:
n

∑
j=1

Sj1 × Zj = 1 (2)

n

∑
j=1

Sjd × Zj =
n

∑
j=1

Pjd × Zj; ∀d ∈ {2, 3, . . . , D} (3)

m

∑
i=1

Xji = Zj; ∀j ∈ {1, 2, . . . , n} (4)

n

∑
j=1

m

∑
i=1

Pjd × Xji ≥
n

∑
j=1

Sjd × Xjv; ∀v ∈ {2, 3, . . . , m}, ∀d ∈ {2, 3, . . . , D} (5)

n

∑
j=1

Xji × tj ≤ T ×Yi; ∀i ∈ {1, 2, . . . , m} (6)

Yi+1 ≤ Yi; ∀i ∈ {1, 2, . . . , m} (7)

Xji ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}, ∀i ∈ {1, 2, . . . , m}
Yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , m}
Zj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}

(8)

The objective function in Equation (1) minimizes the difference between the number
of workstations and the overall correlation between tasks; this is regarded as the fitness
value in the solution procedure. Equations (2) and (3) ensure that there is one and only
one disassembly task to every node. Equation (4) ensures that every selected disassembly
task is assigned to exactly one workstation. Constraint (5) establishes the prior relationship
between the disassembly tasks and ensures that the succeeding disassembly task is not
assigned to a workstation with an index smaller than that of the predecessor task. Constraint
(6) limits the cycle time, ensuring that the total disassembly processing time of every
workstation is less than a certain threshold, T. Constraint (7) guarantees the continuity of
the tasks. Finally, Constraints (8) specify that the decision variables are binary.

2.3. Solution Method

DLBP and its derivatives are NP-hard and cannot be solved using exact methods
when dealing with moderately and highly complex products [49]. Metaheuristics are viable
options for finding (near-) optimum solutions to the DLBPs efficiently. Nature-inspired
metaheuristics have been widely applied for solving combinatorial optimization prob-
lems [50]. The proven track record of GAs driven by strong global search capabilities [51]
has encouraged us to adapt it for the disassembly line balancing context. The compu-
tational procedure of the Genetic Algorithm (GA) is inspired by the idea that the fittest
individuals are more likely to make it through the next generations; this procedure is based
on an evolutionary process that seeks to improve the initial solutions through crossover,
mutation operators, and replacing the weak solutions with stronger offspring to form the
new generations.

Despite its merits, the classic GA is susceptible to early convergence and getting
trapped in local optimality. This shortcoming is alleviated in the modified algorithm, AGA,
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by adjusting the crossover and mutation rates within a two-phase procedure. Phase I
comprises the following steps:

(1) Select a feasible initial disassembly path;
(2) Encode its chromosome considering the priority rule method;
(3) Initialize the disassembly groups.

Phase II consists of seven steps to find the (near-) optimum operational setting:

(1) Decoding procedure;
(2) Calculate the fitness value of the resulting solution;
(3) Selecting the fittest portion of the population for mating;
(4) Apply the Roulette Wheel Selection mechanism to select the best parent solutions;
(5) Apply the crossover mechanism for generating offspring;
(6) Apply the mutation mechanism on random offspring;
(7) Check for the stopping condition.

The computational steps under each phase are detailed below.
Phase I. The first phase consists of selecting an initial disassembly path from the set

alternatives that disassemble the product into the core components. The “OR” condition
is used to define the situations where there are alternative tasks to a particular step of the
disassembly procedure. This situation is distinguished with an arc showing that the opera-
tor should select one of the several disassembly directions. Alternatively, arrows without
a connecting arc specify the “AND” condition where the tasks in a certain disassembly
step should be executed simultaneously. The exemplary disassembly diagram shown in
Figure 1 is used to illustrate how the initial path should be chosen. In this diagram, the
artificial node, A1, represents the commence of disassembly operations. An OR condition
follows, showing that the operator should decide to dismantle B1, B2, or B3; artificial
nodes follow the selected node. If B1 is selected, the subsequent artificial nodes A2 and A3
come next because the AND condition urges that both respective tasks should be executed.
Following a similar approach for the rest of the path, there are various alternatives to
make a complete solution, some of which are Π1 = 1, 4, 5, 9, 11, 13, 14, 17, 18, 19, 20, 21, 22,
Π2 = 1, 4, 6, 9, 12, 13, 18, 19, 20, 22, Π3 = 2, 6, 11, 17, 20, and Π4 = 3, 7, 8, 12, 13, 15, 16, 20, 22.

Figure 1. An illustrative example of a disassembly path for Phase I of the line planning framework.

The selected disassembly path should be then allocated to the workstations adher-
ing to the precedence rules and the cycle time constraints. The encoding system of GAs
depends on the type of the decision variables, which are overall categorized into binary,
real-number encoding, integer, or literal permutation and the general data structure encod-
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ing [52]. Given the nature of the problem and considering the precedent relation rules, an
integer permutation structure is used to encode the sequence arrays to show the order of
disassembly tasks and their allocation to the workstations. The sorting procedure consists
of the following steps:

Step 1. Create an empty sequence array.
Step 2. Select a task that has no predecessors or a task that has all its AND predecessors

and at least one of its OR predecessors already in the sequence array. Then, add the selected
task into the array sequence; this is to ensure that the precedence constraint is not violated.

Step 3. Cross the assigned disassembly task out from the disassembly diagram and
return to the second step; continue selecting the uncrossed tasks that follow the current
partial solution until the disassembly path list is complete.

Given the illustrative example in Figure 1, the process of preparing the sequence
arrays is as follows. First, a path list from the disassembly diagram is selected, e.g.,
π = [1,4,5,9,10,13,14,17,21,22]. Next, random numbers are generated for every task; that is,
π = [1:0.35,4:0.97,5:0.95,9:0.49,10:0.80,13:0.25,14:0.76,17:0.91,21:0.42,22:0.15]. In this example,
the disassembly task B1 is the first to assign to the sequence array, SA′ = [B1], because
B1 does not have any precedents and is not constrained by a random value rule for OR
conditions. B1 is now crossed out from the disassembly path list. Given B1 as the precedent
in the sequence array and the resulting AND condition, the next step is to proceed with
B4 and B5 because they are associated with greater random values in ∏rnd compared with
B7 and B6, respectively. B6 and B7 are now crossed out from the disassembly path. This
procedure continues until a complete sequence array has resulted.

Phase II. Given the resulting sequence array from Phase I, the optimization algo-
rithm, AGA searches for the (near-) optimum solution. The computational steps are
described below.

Step 1. Decoding procedure.
Step 1.1. Determine whether the sequence array is empty; an empty array demonstrates

that the disassembly task allocation is completed, and the algorithm can proceed to step 2;
otherwise, proceed to Step 1.2.

Step 1.2. Calculate the overall cycle time of the existing sequence array; if it does not
exceed the cycle time threshold, proceed to Step 1.3; otherwise, assign the new task to the
next workstation. Create a new workstation and update the total number of workstations
if all the existing workstations are fully occupied.

Step 1.3. Assign the disassembly task in the sequence array to the workstations
considering the task sequence and cycle time constraints.

Step 1.4. Update the sequence array by removing the assigned task from the list.
Step 2. Calculate the fitness value of the resulting solution, which is the difference

between the number of workstations and the overall correlation between the tasks. Since
two objectives have different dimensions, the normalized values are used as the fitness
value; the fitness value is then converted to the real values after the end of the last iteration.

Step 3. To improve the solution quality across generations, the fittest parents should
be selected for the mating process. For this purpose, N/2 of all individuals with the
best performance, objective function, values are kept, and the rest will be replaced by
the offspring.

Step 4. Apply the Roulette Wheel Selection mechanism to select parents from the
resulting set of N/2 individuals. Given the individual fitness values, calculate the overall
value using Foverall = ∑

popsize
i=1 F(i). Normalize the individual’s fitness value by dividing

it by Foverall ; sort the population on an ascending basis based on the normalized values,
where the last value in the list is associated with the individual with the best performance.
Generate random numbers using a uniform distribution, r ∼ U(0, 1). Select the ith solution
if qi−1 < r < qi.
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Step 5. Crossover and mutation are GA’s major operators for exploring the solution
space by generating new solutions, offspring. The decision on the crossover type depends
on the nature of the problem and the encoding approach (see [53]). Double-point crossover
is applied to generate feasible sequence arrays from the selected parents in Step 4. After
applying the crossover, the resulting offspring is checked for feasibility. If the new solution
is not feasible, discard it. Return to Step 4, if there are not enough (N/2) offspring to fill the
population. Otherwise, proceed to Step 6.

Step 6. A total of mrate × (N/2) should be randomly selected from the set of offspring
to be mutated. A swap mutation operator is applied to some of the offspring resulting
from Step 5 depending on the mutation rate. Overall, the mutation increases the diversity
of the individuals and reduces the odds of getting trapped in local optimality. Given
that the population differs across generations, AGA adjusts the crossover (c_rate) and
mutation (m_rate) rates to maintain the diversity of the population; the average fitness
value of the current generation individuals determines this change. That is, the crossover
rate increases according to the crossover rate interval (c_interval), and the mutation rate
decreases according to the mutation rate interval (m_interval).

Step 7. Check for the stopping condition; terminate the algorithm if the condition
is met; otherwise, return to Step 2. The number of generations (gen) is decided as the
termination condition [54].

3. Numerical Results

This section investigates the usefulness of the proposed disassembly line balancing
approach. The solution algorithm is coded and compiled using MATLAB on a personal
computer with the following specs: Intel® Core™ i7-6700 CPU 3.4 GHz, 4 GB of RAM, and
Windows 10 operating system. We now elaborate on the pilot test, the data set description,
and the validation procedure before analyzing the results.

3.1. Parameter Calibration

The efficiency and effectiveness of metaheuristics are dependent on the algorithm
parameter. This subsection finds the best algorithm setting before proceeding to the final
experiments. The computational parameters of AGA are population size, crossover rate,
crossover rate interval, mutation rate, and mutation rate interval. The population size
determines the exploration width of the algorithm. The crossover and mutation rates
impact the exploration depth, and the corresponding intervals control the extent of an
increase or decrease in the crossover and mutation rates within the next moves. The
response surface method with the Box–Behnken design framework [55] is employed to
design the calibration experiments. Box–Behnken is a multi-level approach for evaluating
the effects of a set of parameter changes, in this study to analyze the performance of AGA.
The parameter levels provided in Figure 2a are considered to conduct the calibration tests.
The average response values of 10 replications are considered to analyze the response
surfaces. As shown in Figure 2b, the optimal setting obtained through the calibration test is
characterized by population size of 200, crossover rate of 0.4949, crossover rate change of
0.4141, the mutation rate of 0.0657, and mutation rate change of 0.0717.
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Figure 2. Algorithm parameter calibration: (a) factor levels, (b) response analysis.

3.2. Validation

The small-scale test instances presented in Figure 2 are considered for validation.
The exemplary cases are designed to show that an increase in the problem size (i.e., the
number of tasks) results in an exponential growth in problem complexity. At the same time,
manually solving these test instances helps examine the correctness of the mathematical
formulation and the developed algorithm. The exemplary instances include 10, 12, 14,
and 15 disassembly tasks, respectively, with a processing time of 30. The tasks’ correlation
is defined considering a relation index, (i, h) = α, where α = 1, 3, 5 demonstrates slight,
moderate, and high relevance between tasks i and h, respectively. Let consider the instance
with 15 assembly tasks; the disassembly tasks 4, 9, 18, and 25 assigned to workstation 2 have
a correlation degree of (4,9) + (4,18) + (4,25) + (9,18) + (9,25) + (18,25) = 28. These instances
are solved using the Exact optimizer (Gurobi) and the AGA; results are compared in Table 2.
The correlation values for instances Figure 3a–d are 16, 32, 52, and 55, respectively. AGA
yields the same results in a small fraction of the time required by the exact solver. Table 2
shows that the CPU time has increased exponentially with an increase in problem size. In
this situation, the exact solvers in the commercial solvers, such as the Gurobi optimizer,
cannot obtain an exact solution to larger instances within a reasonable computational time.

Table 2. Optimal values for the small-size test instances using an exact method.

Ins. N W
Exact Optimizer AGA

Correlation
Objective Value CPU Time Min Ave Max

I 10 6 −10 1.86 −10 −10 −10 16
II 12 6 −26 34.2 −26 −26 −26 32
III 14 6 −46 819.47 −46 −46 −46 52
IV 15 6 −49 8928.8 −49 −49 −49 55

N: number of tasks; W: number of workstations.
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Figure 3. Cont.
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Figure 3. Disassembly diagram of the small-size test instances. (a) instance 1; (b) instance 2;
(c) instance 3; (d) instance 4.

3.3. Case Study

An industrial disassembly case example from consumer electronics is presented to eval-
uate the applicability of the developed optimization approach. Producing every additional
unit of electrical and electronic equipment has degradation effects for the environment. In
the particular case of producing mobile phones, the use of non-renewable earth elements,
such as cobalt [56,57], has long-term consequences for the sustainability of the consumer
electronics sector. Integrating the concept of task correlation can improve the efficiency of
disassembly operations, which facilitates the extraction of such elements from electronics
waste. Additionally, considering task correlations may help to extract such elements with
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fewer degradation effects. Other precious metals, such as cerium, europium, neodymium,
terbium, and yttrium, used to produce mobile phones can have toxic effects on the disas-
sembly operators if not disassembled properly. On top of that, the culture of the yearly
switch of mobile phones leads to an overflow of this electronic waste, which is, in some
cases, is handled inappropriately. For example, destruction and landfill of such products
may impose negative impacts on the environment and public health by generating haz-
ardous waste and squandering materials in the soil [58]. Informed disassembly of mobile
phones is, therefore, important to help increase the recycling of end-of-life items in a sound
and safe way.

The studied mobile phone comprises five main parts: shell (the platform on which the
parts are attached), battery (power source), circuit board (the part responsible for the elec-
tronics operations), screen (display), and the antenna, which includes 3G, Wi-Fi, and other
wireless modules. The required disassembly operations are detailed in the Appendix A
Table A1, which comprises a total of 52 tasks. Given the design characteristics of the device,
some components are arranged in a stacked manner to fit into the small compartment and
some parts/components must be handled together during the disassembly operations to
avoid problems. That is, the disassembly must be carried out in an informed order, which
is shown in the precedence diagram in Figure 4.

Figure 4. Disassembly chart of the studied mobile phone.

The cycle time is estimated as the summation of the longest disassembly working time
and the average disassembly working time, which is 20 + 10 = 30 s. Given the parameters
determined in Section 3.1, the results obtained by AGA are converged after 100 iterations.
Results are reported in Table 3, where the disassembly operations are balanced in nine
workstations with a total processing time of 238 s, correlation of 102, and a utilization rate
of more than 88 percent.
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Table 3. Numerical results for disassembly of the case example.

Workstation Tasks Processing Time (s) Correlation Utilization (%)

1 1, 2, 3, 6 29 26 96.67
2 4, 5, 14 29 3 96.67
3 8, 16 26 5 86.67
4 9, 13, 17 29 15 96.67
5 20 15 0 50
6 21, 22, 23 30 15 100
7 7, 15 22 5 73.33
8 18, 19, 24 28 15 93.33
9 10, 11, 12, 25 30 18 100

Overall 238 102 88.15

Compared with the situation where correlation is not considered, the related disassem-
bly operations are performed together; that is, tasks with high correlation are configured
on the same workstations as much as possible to reduce the completion time adhering to
the precedence restrictions. It is worthwhile mentioning that ‘zero’ correlation is because
workstation 5 in Table 3 has been assigned only one task, while the correlation can exist in
case of having two or more tasks. This has resulted in a low utilization rate when compared
with other workstations.

Next, sensitivity analysis is conducted to explore the impact of parameter changes
on the planning outcomes and shed light on the practical implications of the optimiza-
tion approach. First, the impact of changes in the relationship between tasks is examined.
Considering high-, moderate-, and low-correlation, alpha values are set to α = 1, 3, 5, respec-
tively. To understand whether the magnitude of relation indices influences the optimization
outcomes, the associated numbers are changed to α = 10, 30, 50 and α = 100, 300, 500 to
explore the possible changes in the number of workstations and the degree of relevance.
The numerical outcomes are summarized in Table 4, followed by the resulting worksta-
tion configurations shown in Tables 5 and 6. Evidently, there is no meaningful difference
between the fitness values and the overall correlation after converting it to the base scale.
Therefore, the changes in the scale of the relation index have no significant impact on the
optimization outcomes.

Table 4. Results analysis over the relation index changes.

Relation Index Number of Workstations Correlation Fitness Value

1, 3, 5 9 102 −93
10, 30, 50 9 1020 −1011

100, 300, 500 9 6400 −6391

Table 5. Sensitivity analysis considering α = 10, 30, 50 and α = 1, 3, 5.

Station
Task Assignment Overall Correlation

α=10,30,50 α=1,3,5 α=10,30,50 Revised α=1,3,5

1 1, 2, 7, 3 1, 2, 3, 6 260 26 26
2 6, 14 4, 5, 14 50 5 3
3 5, 4, 10 8, 16 110 11 5
4 8, 16 9, 13, 17 50 5 15
5 9, 13, 17 20 150 15 0
6 20 21, 22, 23 0 0 15
7 21, 22, 23 7, 15 150 15 5
8 25, 11, 12, 15 18, 19, 24 100 10 15
9 18, 19, 24 10, 11, 12, 25 150 15 18



Electronics 2022, 11, 533 13 of 17

Table 6. Sensitivity analysis considering α = 100, 300, 500 and α = 1, 3, 5.

Station
Task Assignment Overall Correlation

α=100,300,500 α=1,3,5 α=100,300,500 Revised α=1,3,5

1 1, 2, 6, 3 1, 2, 3, 6 1600 26 26
2 4, 5, 14 4, 5, 14 300 3 3
3 9, 13, 17 8, 16 900 15 5
4 8, 16 9, 13, 17 300 5 15
5 21, 22, 23 20 900 15 0
6 25, 10, 11, 12 21, 22, 23 1200 18 15
7 7, 15 7, 15 300 5 5
8 18, 19, 24 18, 19, 24 900 15 15
9 20 10, 11, 12, 25 0 0 18

Finally, the impact of cycle time changes on the disassembly outcomes is analyzed.
For this purpose, four situations with various cycle times are considered to represent more
complex disassembly situations. The results are summarized in Table 7. Expectedly, the
number of workstations and the objective function value show a downward trend with
an increase in the cycle time. It is also observed that the degree of correlation is increased,
which is because more disassembly tasks are assigned to the workstations. When the cycle
time is doubled, the number of workstations is nearly half of the baseline, and the degree
of relevance increased proportionately. Overall, the results confirm that the developed
approach effectively minimizes the number of workstations while maximizing the degree
of relevance between disassembly tasks, which, in turn, improves the overall effectiveness
of disassembly operations and decreases the disassembly time.

Table 7. Sensitivity analysis considering cycle time changes.

Change Cycle Time (s) Workstations Correlation Fitness Value

1 30 9 102 −93
1.2 36 7 142 −135
1.5 45 6 165 −159
1.7 51 5 203 −198
2 60 5 221 −216

3.4. Implications

In addition to improving operational efficiency, this study has implications for ad-
dressing safety hazards in the disassembly of certain electronic wastes; some components
contain hazardous materials, which can be handled in a better way such that the operator
is not exposed to avoidable risks. Moreover, disassembling some parts/components in
a certain order may reduce the chances of injuring the operator. Such risks can be effec-
tively reduced by considering the interdependencies between tasks and/or parts. Taking
mercury-arc rectifiers as an example, they should be handled considering different factors,
one of which being the degree of task correlation. Such parts are often installed upside
down in a narrow space; the weight of the material may make it crash through the glass if
it is not handled cautiously. For example, the quality of the performed tasks (e.g., speed
of moving the parts) and parts (e.g., their weight) may increase the risk caused by high
task correlation. Injuries caused by sharp parts is another example that could be avoided
considering task correlations.

From an operational perspective, one can take advantage of task correlations for more
energy-efficient disassembly operations—for example, through using various directional
forces (e.g., gravity) and considering various frictions when planning the disassembly
sequence. From a technical perspective, considering the degree of task correlation may
help extract parts with minimum damages. In so doing, some of the parts may be reused
(or repurposed) in the production of new items, or they can be sold in the second-hand and
spare parts market. Therefore, task correlations should be considered in the Design-for-
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Disassembly initiatives. Given the plausible increase in the flow of WEEE items in near
future, such initiatives will be of even more significance in optimizing the disassembly
operations; this will, in turn, benefit the broad objective of processing as much electronic
waste as possible and localizing the disassembly operations considering the limitations
in resources and available technologies. Finally, integrating the degree of task correlation
into the disassembly process planning has implications for the repair of electronic items.
Improving the efficiency of the service and repair businesses will encourage more people
in the developed countries to extend the use of old items; this is in line with the principles
of the circular economy (i.e., spending energy on the repair of old items to reduce the use
of raw material), as well as creating local jobs.

4. Concluding Remarks

Disassembly is an important element of electronic waste management because of it
being hazardous yet valuable with proper treatment. This research explored disassembly
line balancing considering correlated tasks, which is particularly useful for the disassembly
of WEEE. A mathematical formulation was put forward to minimize the number of work-
stations and maximize the degree of relevance between disassembly tasks. A metaheuristic
algorithm, AGA, was developed to solve large-scale industrial applications of the DLBP-CT.
The applicability of the proposed approach was evaluated using a real case example. We
showed that AGA yields the optimum solution in a fraction of the time required by the
exact solution approach for small disassembly examples. It is also confirmed that the
relaxation of cycle time has a positive influence on the planning outcomes; it not only
reduces the number of workstations to nearly half but also increases the overall correlation
between tasks. From a solution algorithm perspective, addressing the negative correlation
between tasks helps reduce the search space of the model parameters, hence improving the
efficiency of the planning approach.

This research can be extended in the following directions. The first direction comes
from the uncertainties in the flow of End-of-Life items, more particularly WEEE; developing
integrated collection-disassembly models can improve the overall system performance.
Applications of advanced communication systems can benefit waste collection. Com-
prehensive tracking systems can be deployed to find the End-of-Life products and send
collection offers in times of having a shortage in the quantity of recyclables, which facil-
itates economy of scale. Second, this study is limited to the disassembly of WEEE and
used one case example; future studies can extend the developed line balancing approach
considering other recyclables. Additionally, joint planning of various electronic items can
be modeled in a way that the items with similar (or desired) components are delivered
to designated areas. For this purpose, more organizational and technical complexities
might have to be considered. The third suggestion is about technical features of the metal’s
recovery process; the disassembly sequence should account for the location of the furnace,
considering the thermodynamic equilibrium and stationary state. In this situation, addi-
tional parameters should be included in the optimization model, and measurement devices
might be required for data collection. Moreover, a presentation of the potential hazards
in extracting parts would be of particular interest in the waste management literature;
further investigations are required to account for such features in line balancing. The
fourth suggestion comes from a methodological perspective; future studies may explore the
applications of many-objective metaheuristics, such as the variants of the Non-dominated
Sorting Genetic Algorithm III, for solving the line balancing problems while considering a
more comprehensive set of conflicting performance indicators. In so doing, one can study
the interactions between the degree of task correlation and costs, as well as the safety of
the operations.
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Appendix A

Table A1. Required tasks for the disassembly of the studied device.

Disassembly Task
Number

The Predecessor
Task (s)

Processing Time
of Task (s)

Disassembly Task
Number

The Predecessor
Task (s)

Processing Time
of Task (s)

1 - 7 27 26 13

2 1 3 28 26 11

3 2 4 29 27 5

4 1 10 30 27 9

5 1 10 31 28 7

6 2 15 32 28 18

7 2 15 33 29 2

8 2 9 34 29 3

9 3 7 35 31 5

10 4, 5 9 36 31 6

11 10 10 37 32 6

12 11 10 38 33 6

13 9 9 39 30, 34, 35 7

14 6 7 40 36, 37 15

15 7 11 41 38, 39 19

16 8 10 42 39, 40 20

17 13, 14 10 43 41 3

18 15 10 44 41 7

19 14, 16, 18 15 45 41 16

20 17 15 46 43 9

21 17 20 47 43 9

22 21 5 48 44, 47 18

23 16, 22 5 49 42, 45 14

24 19, 23 3 50 48 5

25 21 4 51 48 7

26 - 8 52 49 10
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