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Abstract  1 

 2 

Ischemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in 3 

both men and women. Sex however affects several aspects of IHD, including pathophysiology, 4 

incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or 5 

risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting 6 

ischemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, 7 

the prevalence and impact of risk factors and several comorbidities differ between males and 8 

females, and their effects on IHD development and prognosis might differ according to sex. The 9 

cellular and molecular mechanisms underlying these differences are still poorly understood, and 10 

their identification might have important translational implications in the prediction or prevention 11 

of risk of IHD in men and women. Despite this, most experimental studies on IHD are still 12 

undertaken in animal models in the absence of risk factors and comorbidities, and assessment of 13 

potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: 14 

a) the importance of sex as a biological variable in cardiovascular research, b) major biological 15 

mechanisms underlying sex-related differences relevant to IHD  risk factors and comorbidities, c) 16 

prospects and pitfalls of preclinical models to investigate these associations, and finally d) will 17 

provide recommendations to guide future research. Although gender differences also affect IHD 18 

risk in the clinical setting, they will not be discussed in detail here.   19 

 20 

Keywords 21 

Cardioprotection; sex differences; ischemic heart disease; ischemia and reperfusion; translational 22 

research; comorbidities. 23 

24 
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1. Introduction         1 

 2 

Ischemic heart disease (IHD) is the leading cause of death and morbidity in both men and women 3 

in Europe, even if age-standardized incidence and prevalence of IHD are lower in females than 4 

males.2 Several differences in pathophysiology, clinical manifestations, treatment and effect of 5 

cardiovascular drugs due to sex have been reported as recently reviewed.3-9 6 

Apart from genetic predisposition and age, risk factors including abnormal lipid profile, smoking, 7 

hypertension, diabetes, abdominal obesity, psychosocial factors, alcohol intake, and lack of regular 8 

physical activity are associated with occurrence of myocardial infarction (MI) worldwide in both 9 

sexes and at all ages.10 However, several other diseases and lifestyle-related factors are also 10 

frequently associated with IHD, even if mechanistic links to IHD risk have not been proven yet.11-11 

13 The prevalence of some cardiovascular risk factors and comorbidities is different in male or 12 

female IHD patients (Figure 1), and these conditions, as well as their treatments, can also 13 

differently impact IHD risk according to sex.14-16 Thus, sex-specific health promotion efforts may 14 

be needed to improve IHD prognosis in both women and men.16 15 

It is well known that the presence of risk factors, comorbidities or specific health behaviours may 16 

also differently affect myocardial response to ischemia and reperfusion (IR) in males and females. 17 

Indeed, several animal models can be used to investigate either the mechanisms underlying sex 18 

differences, or the effects of risk factors, comorbidities and their medications.17, 18 Consistent with 19 

clinical observations, sex-specific responses to myocardial IR injury have been observed in 20 

preclinical studies.19 Several sex-related changes have been implicated in these differences, 21 

including androgens,20 estrogens, nitric oxide, calcium handling (including mitochondrial 22 

permeability transition),21-23 reactive oxygen species (ROS) formation,24 which leads to changes 23 

in apoptosis and autophagy25 as well as programmed necrosis,26 to name some of them.19 24 

Unfortunately, current pharmacological approaches directed at attenuation of IR injury have failed 25 

to translate into clinical treatments in both males and females.27 Possible explanation for these 26 
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disappointing results is that IHD is a complex disorder depending on a number of etiologic factors, 1 

and is frequently associated with other systemic disease states.18, 28 Furthermore, these conditions 2 

might exert different effects in males and females. Despite this evidence, preclinical studies 3 

usually only include young and healthy male animals and/or derived tissues and cells, thus 4 

neglecting the possible effects of sex-related variables. 5 

This ESC WG Position Paper will a) discuss biological mechanisms underlying the interaction 6 

between sex and most common IHD risk factors or comorbidities; b) discuss the advantages and 7 

challenges of preclinical studies investigating the interplay between sex, IHD, risk factors, 8 

comorbidities and associated co-medications; c) provide recommendations on strategies to 9 

enhance identification, characterization, validation and publication of studies addressing sex-10 

related differences in comorbidities and IHD. 11 

 12 

2. Mechanisms underlying sex-related differences in IHD     13 

        14 

Sex classification of sexually-reproducing organisms is made according to their chromosomal 15 

complements, functional reproductive organs and levels of sex steroids.29 Whether sex differences 16 

in IHD are due to sex, hormones, or sex and hormone interactions at various life stages is still not 17 

well known.4, 29 Additional factors, like prenatal environment may also be crucial. In addition to 18 

sex, defined by biological factors, gender differences related to social, environmental, and 19 

community factors can also affect IHD risk.3, 30 For example, gender can account for differences 20 

in health-seeking behaviours and thus clinical outcomes in women affected by IHD.3 Since gender 21 

recapitulates the social and cultural role of individuals within a given society, it is usually 22 

developed in response to environment and cultural settings (including family interactions, media, 23 

peers, and education), it can change among different societies,31 and it is very complicated to 24 

dissect and study gender differences by using preclinical studies. However, in a Canadian study of 25 

young adults with Acute Coronary Syndromes (ACS) using a newly developed composite measure 26 
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of gender, feminine gender was associated with increased risk of recurrent events independent of 1 

female sex.32 Since it is beyond the scope of this manuscript, mechanisms underlying gender-2 

related differences will not be discussed further in the current article. 3 

 4 

2a. Sex chromosomes   5 

        6 

i) Y chromosome  7 

Compared to the X and autosomal chromosomes, the Y chromosome encodes for very few genes, 8 

divided into male-specific genes and genes with an X chromosome analogue. So far, only 71 9 

protein-coding genes have been described, and the best known is Sry, gene coding for Testis 10 

Determining Factor, a transcription factor needed for testis development and testosterone 11 

production in male foetal life. Knowledge of the function of the additional male specific Y 12 

chromosome derived genes is scarce.33, 34 Sex-related difference in IHD epidemiology make it 13 

reasonable to ask what role the non-gonadal effects of the Y-chromosome play. Importantly, the 14 

upregulation of inflammatory genes and downregulation of autoimmunity promoting 15 

atherosclerosis in men, has been linked to Y chromosome genes.35, 36 In addition, gene and 16 

chromosome manipulation in mice has made it possible to move testis determining gene Sry from 17 

the Y chromosome to an autosome, and thereafter produce offspring with gonadal sex uncoupled 18 

from sex chromosom identity. Cardioprotection studies in these mice have shown that  XY 19 

combination results in smaller MI compared to XX combination independent of gonadal sex and 20 

hormonal status through development.37  21 

 22 

ii) X chromosome  23 

Despite the difference between males and females in total number of genes due to the much larger 24 

X chromosome, dosage compensation is secured by inactivation of one of the X chromosomes in 25 

female cells. Some genes, however, seem to escape inactivation, thereby partially explaining 26 
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phenotypic diversity. Random inactivation of one X chromosome makes the female heart a mosaic 1 

of two different cardiomyocytes (one with the maternal X chromosome and one with the paternal 2 

X chromosome). 38-40 When it comes to the question of whether genes on the X chromosome have 3 

a role in IHD, associations between different forms of ischemic injury, specific X chromosomal 4 

gene variants or dosing remain to be studied.41. In contrast to large studies of sets of single 5 

nucleotide polymorphisms on defined chromosome loci of autosomal chromosomes, studies so far 6 

found no association between IHD and X chromosomal variants.41 However, most studies had 7 

limited power to detect sex differences, since they mainly enrolled males.42  8 

 9 

2b. Gonadal hormones and their receptors 10 

     11 

Systemic or tissue-specific levels of gonadal hormones (estrogens, progestogens, androgens) 12 

change through different stages of life in a sex-specific pattern, and are believed to have significant 13 

impact on IHD. Several experiments involving gonadectomy prior to IR demonstrated that both 14 

female and male hearts benefit from exogenous supplementation of estradiol or testosterone, 15 

respectively.43-46 Estradiol protects the isolated heart against IR injury via non-genomic estrogen 16 

receptors either by stimulating G protein-coupled estrogen receptors, resulting in activation of 17 

phosphoinositol 3 kinase-dependent and mitochondrial adenosine triphosphate (ATP)-sensitive 18 

potassium channels survival pathways,47, 48 or through non-nuclear estrogen receptors leading to 19 

endothelial nitric oxide synthase (e-NOS) activation and cardioprotective S-nitrosylation of key 20 

mitochondrial proteins.49 Preclinical studies indicate that acute administration of progesterone has 21 

a non-genomic cardio-depressive effect involving modulation of calcium handling, including 22 

Sarco-Endoplasmic Reticulum Calcium ATPase expression50 and action potential duration51; anti-23 

apoptotic effects have also been suggested, and might provide cardioprotection.52 The role of 24 

testosterone has been controversial, and synergistic effects or co-dependency of estradiol and 25 

testosterone might also be crucial.53, 54 Non-gonadal expression of aromatase is higher in males 26 
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than females,55, 56 and significant conversion of androgens to estrogens takes place in the heart. 1 

Recent experimental studies indicate a dose-dependent cardioprotective effect of testosterone, but 2 

also additive cardioprotection when combined estrogen and testosterone treatment is used.43 3 

However, results from clinical studies of IHD after testosterone supplementation to elderly men 4 

with low endogenous levels of testosterone are inconclusive.53, 57, 58 5 

 6 

2c. Pre-natal environment and foetal programming   7 

 8 

Preclinical and epidemiological studies suggest that susceptibility to IHD can be the result of foetal 9 

programming via limitation of the final cell number in the heart, reduced vessel density and by 10 

epigenetic modification of gene expression. Sex dimorphisms could be due to foetal hormonal 11 

differences (testosterone in males) and other less well-characterized dissimilarities.59-63 Pre- and 12 

perinatal complications like hypoxia, foetal malnutrition and maternal hypothyroidism have 13 

repeatedly been linked experimentally to increased susceptibility to IR injury of the adult heart.63-14 

66 Later studies confirmed the presence of DNA hypermethylation leading to reduced expression 15 

of cardioprotective protein kinase  Cε, e-NOS, adenosine monophosphate kinase, and heat-shock 16 

protein 70.67, 68 Reduced adult expression of heart mitochondrial respiratory chain proteins has 17 

also been reported after prenatal hypoxia,69 potentially increasing vulnerability to ischemia. A 18 

limited number of studies included both sexes, and some but not all of these reported larger MI in 19 

adult male compared to female hearts after pre- or perinatal stress.63, 66, 70  20 

 21 

3. Sex-specific effects of comorbidities and other confounding factors in IHD 22 

 23 

According to sex distribution, comorbidities can be considered “general” when similarly 24 

distributed among men and women or sex-related when disproportionately represented in or 25 

exclusively limited to one sex. Divergence in prevalence (or lack of this) between males and 26 
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females for major comorbidities and confounding factors are schematically indicated in Figure 1 1 

and discussed below. In the general population, association of IHD to single or frequently multiple 2 

diseases (and relative treatments) can impact on IHD development, IR injury and protection from 3 

it. However, much less information is currently available regarding the role of sex, and in particular 4 

whether the effects of comorbidities in IHD differ between men and women, and if so what are 5 

the underlying mechanisms. Importantly, prevalence of comorbidities and their sex-specific 6 

prognostic effect on IHD might change after stratification for age. For several risk factors or 7 

comorbidities common to males and females, no data are currently available regarding sex-specific 8 

effects of them on IHD risk (Table 1). Moreover, there are significant differences in the clinical 9 

treatment of several comorbidities in men and women that may be further complicated by the 10 

different efficacy profile of some drugs used for treatment of these comorbidities as recently 11 

extensively reviewed,5, 71-73 and by the confounding effect of drugs that are indicated only for 12 

women (e.g. contraceptives, hormone replacement therapy).  13 

Various preclinical models have been used to study most comorbid diseases possibly affecting 14 

IHD risk and prognosis. However, there is a critical information gap between preclinical and 15 

clinical research in this area since the majority of animal experiments are conducted on young and 16 

healthy animals of one sex only, even though the confounding effect of several risk factors and 17 

comorbidities on IHD has been known for decades.13, 28, 74 Even more, in most animal models of 18 

comorbidities, drug treatments as done in human is lacking. The combination of multidisciplinary 19 

approaches in both male and female experimental models has the potential to unravel novel 20 

mechanisms underlying sex-related differences, but it has been rarely attempted. 21 

 22 

3a. Age and lifestyle 23 

 24 

i) Age 25 
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Women are affected by IHD at a later age than men.75 On the other hand, young women have a 1 

particularly high risk of mortality following MI.75 More women than men die each year of IHD, 2 

and the hearts of postmenopausal women are more vulnerable to ischemic insult compared to 3 

premenopausal women,1 suggesting that aging has an effect on sex-specific differences in IHD. 4 

Ovariectomy significantly increases infarct size, but it increases by aging in female rats, 5 

independent of plasma estradiol levels.76 Ischemic preconditioning is well-known to reduce infarct 6 

size in young male rats, but both in aged hearts and female hearts the protective effect is less 7 

evident.28 There are also age-dependent, sex-specific differences in extracellular matrix and 8 

coronary resistance vessels, which may affect adaptation to work load.1, 77-79   9 

 10 

ii) Smoking 11 

Smoking is currently more common in males compared to females, but it has been repeatedly 12 

reported to increase IHD risk more in females than males.80-82 Also, passive smoking exposure 13 

since birth increases risk of higher cholesterol levels in late adolescence especially in females.83 14 

Experimental studies on IHD and smoking including both sexes are few; however, a nicotine-15 

induced reduction in estrogen levels has been proposed as an explanation for the increased 16 

ischemic brain damage in females.84  17 

 18 

iii) Physical inactivity 19 

Although most studies have been undertaken in men, women benefit at least as much as men from 20 

being physically active both prior to cardiac events and as part of rehabilitation.85-89 Unfortunately, 21 

available data are limited due to adjustment for age and sex prior to presentation of clinical trial 22 

results.87 After short-term forced exercise, sex-dependent differences in cardioprotection have 23 

been observed in preclinical models.90 In sedentary female rats, infarct size was smaller than in 24 

age-matched sedentary males, and males benefited more from the preischemic exercise protocol.90  25 

 26 
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iv) Stress 1 

Psychosocial and metabolic chronic stresses modify the atherosclerotic process, the related acute 2 

cardiovascular events91 and other disorders such as Takotsubo cardiomyopathy differently in 3 

males and females.92 The underlying mechanisms involve, among possible other factors, enhanced 4 

haematopoiesis and different responses of immune cells to glucocorticoid release,93 with 5 

consequent changes in leukocyte homing to atherosclerotic plaques in response to enhanced 6 

sympathetic activation.91 In addition, young women post-MI have a 2-fold higher likelihood of 7 

developing mental stress-induced myocardial ischemia, presumably due to increased proclivity to 8 

microcirculatory abnormalities.94 9 

 10 

3b. Endocrine and metabolic diseases 11 

 12 

i) Obesity, metabolic syndrome, diabetes 13 

Although prevalence of obesity varies greatly within and between countries, overall, more women 14 

are obese than men, but an increased body mass index has the same deleterious effects on IHD 15 

risk in women and men across diverse populations.95 In contrast, sex may modify the prevalence 16 

and incidence of IHD in the context of type 1 and 2 diabetes and metabolic syndrome.96-99 Sexual 17 

disparity in the diagnosis of cardiovascular risk factors for IHD as well as the management and 18 

treatment of ACS are involved in the loss of "female advantage" in metabolic disorders97, 99, beside 19 

any significant sex difference in the effects and complications of diabetes itself.100-107  20 

 21 

ii) Hyperlipidaemia 22 

The management of dyslipidaemia is known to be different in men and women.108 Interestingly, 23 

in a community-based study conducted in the United States among subjects with high risk for IHD, 24 

hyperlipidaemia was more aggressively treated in white men compared to white women or black 25 

men and women.109 In the community based Tromsø Study in Norway, higher serum total 26 
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cholesterol implied higher relative risk of MI in men than women.110 Various experimental models 1 

of hyperlipidemia confirm increased myocardial injury due to ischemia, but the cofounding role 2 

of sex differences has not been studied yet.     3 

 4 

iii) Thyroid disease 5 

Although observational and experimental studies suggest that thyroid hormones might have a 6 

possible therapeutic role modifying the course of IHD,111, 112 it remains yet unknown whether such 7 

effect translate into efficacy and safety in the clinical setting and whether they vary by sex.113 8 

Thyroid hormones have inotropic actions mediated through the modulation of calcium re-uptake 9 

and, in particular triiodothyronine (T3), modulates inflammatory response, apoptosis, 10 

mitochondrial function and hence progression to heart failure.114, 115 Under experimental 11 

conditions, thyroid status markedly affects the acute response to myocardial IR.116   12 

 13 

iv) Osteoporosis 14 

IHD and osteoporosis have been seen as two independent conditions, but recent evidences may 15 

change this view.117-119 Proposed shared mechanisms are reduced sex hormone production, 16 

elevated Follicle Stimulating Hormone in women, hyperlipidaemia, inflammation, reduced blood 17 

flow in intraosseous and coronary vascular beds, increased homocysteine level, and reduced 18 

vitamin K or D levels.120-125 The most commonly used animal models of induced osteoporosis are 19 

based on gonadal hormone deficiency in rats or mice, addition of glucocorticoids,126 aged or 20 

female gonadectomized Apo E-/- mice. All these models also increase susceptibility to myocardial 21 

IR.    22 

 23 

3c. Cardiopulmonary and vascular diseases 24 

 25 

i) Hypertension 26 
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a) Arterial hypertension  1 

Hypertension approximately doubles the risk of IHD. Although recent reports have found that 2 

overall hypertension is more prevalent in men, its sex-specific prevalence varies according to age, 3 

and while in subjects <40 years old it is more prevalent in men, in subjects older than 65 years it 4 

is more prevalent in women.127 Specific relations between IHD, hypertension and sex are also 5 

influenced by age. Surprisingly, in perspective of human clinical data, the number of experimental 6 

studies examining IR in hypertensive hearts in both sexes is limited.128, 129   7 

Left ventricular hypertrophy (LVH) is more prevalent in women when the recommended 8 

definitions of LVH are currently used.130, 131 Patients with LVH are more vulnerable to IR,132-134 9 

and some therapeutic strategies reducing LVH, including antihypertensive drugs, may exert 10 

beneficial effects not completely related to their hypertension-lowering effect.132, 135 Male and 11 

female hypertrophic rat cardiac myocytes exhibit different responses to experimental IR, 12 

suggesting that sex-specific strategies should be attempted to optimize post-ischemic treatment of 13 

male and female patients with LVH.136 14 

 15 

b) Pulmonary hypertension  16 

Recent studies highlight the high prevalence of mechanical left coronary artery compression by a 17 

dilated pulmonary artery in patients with pulmonary arterial hypertension, an effect which would 18 

explain, at least in part, the angina and angina-like symptoms observed in a large number of 19 

patients with the disease.137 The difference in prevalence of pulmonary hypertension may be 20 

explained by chromosomal, sexual hormone and/or immune system differences. Preclinical studies 21 

have identified a partly paradoxical role of estrogen and/or testosterone depending on experimental 22 

model and sex.138, 139      23 

 24 

i) Atrial fibrillation 25 
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Atrial fibrillation and IHD are frequently associated in the aging population. Men have a 1.5-2 1 

fold higher lifetime risk of incident atrial fibrillation than women, and major risk factors for atrial 2 

fibrillation are IHD, hypertension and obesity.140, 141 Myocardial ischemia can trigger atrial 3 

fibrillation, and atrial fibrosis can sustain re-entry circuits.142, 143 Moreover,  atrial fibrillation can 4 

induce or aggravate myocardial ischemia through several mechanisms, including microcirculatory 5 

abnormalities.144 Significant sex differences in pulmonary veins and left atrium action potential 6 

characteristics have been reported in rabbits, and they may contribute to sex-related 7 

arrhythmogenesis.145 Available experimental models in this area of research might be used to test 8 

susceptibility to electrical induction of atrial fibrillation in conjunction with acute myocardial 9 

ischemia or post-infarct remodelling, however the role of sex in these models is still unclear.146, 10 

147  11 

  12 

ii) Heart valve disease 13 

Aortic stenosis is frequently associated with IHD and its risk factors.148 Compared to men, women 14 

with severe aortic stenosis have less valve calcification and more valve fibrosis, suggesting that 15 

pathophysiology of aortic stenosis and potential drug targets may differ according to sex.149 In 16 

contrast, men with aortic stenosis develop more fibrosis, maladaptive hypertrophy and ventricular 17 

dilatation than women.150, 151 Several small and large animal models of calcific aortic valve 18 

diseases are currently available that might be useful to improve understanding of the basic biology, 19 

determine the contributions of comorbidities to IHD development and the efficacy of early 20 

interventions.152 21 

 22 

iii) Peripheral arterial disease  23 

As with IHD, the prevalence of peripheral arterial disease (PAD) at younger ages is higher in men 24 

compared to women, but increases after menopause.62 Preclinical studies of PAD as comorbidity 25 

to IHD are limited, as is the inclusion of both sexes in such studies.      26 
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 1 

iv) Chronic obstructive pulmonary disease 2 

Chronic obstructive pulmonary disease (COPD) is frequently associated with IHD153. Their 3 

coexistence is associated with worse outcomes than either condition alone. Pathophysiological 4 

links between COPD and IHD include common risk factors, predominantly smoking, and systemic 5 

inflammation during COPD exacerbations. Sex-specific knowledge about the influence of COPD 6 

and its treatments on IHD and vice-versa remains incomplete.154 Information from preclinical 7 

models is also limited. 8 

 9 

v) Obstructive sleep apnoea 10 

Obstructive sleep apnoea (OSA) increases cardiovascular risk, including IHD.155 Intermittent 11 

hypoxia due to obstructive sleep apnoea may promote atherosclerosis,156-158 and it seems to 12 

increase the risk of IHD in men, with an apparently weaker relationship in women.159, 160 13 

Information from preclinical models is limited.  14 

 15 

3d. Neuro-psychological diseases 16 

 17 

i) Stroke 18 

A relationship between endogenous sex hormones (estrogens and androgens) and ischemic stroke 19 

or IHD has been suspected. Similar to experimental MI, in animal models of stroke premenopausal 20 

female rodents show reduced infarct size compared to male or menopausal female rodents, and 21 

estrogen administration reduces infarct size. Estrogen supplementation immediately after 22 

ovariectomy exerts neuroprotective effects, whereas it shows no beneficial effects when 23 

administered 10 weeks after ovariectomy.161 Protective effects are mediated via estrogen 24 

receptors-α and downstream cellular signaling162 or increase in astrocyte-specific insulin-like 25 
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growth factor-1 expression and improved mitochondrial metabolism.163 Information from 1 

preclinical models combining IHD and stroke is limited.   2 

 3 

ii) Degenerative brain disease 4 

IHD is a risk factor for dementia or cognitive impairment, with an increased risk of dementia in 5 

women with IHD.164, 165 Also, prevalence of dementia subtypes and cognitive impairment differ 6 

between men and women.An overall 3:2 difference for Altzheimers disease dementia with 7 

women more often affectd also before older age was reported.   It has been hypothesized that 8 

anti-platelet/anti-thrombotic therapies could reduce the risk of dementia in IHD patients.166 9 

However, the protective effect of anti-platelet agents was not the same in men and women, 10 

reinforcing the importance of sex-related pathophysiological differences.  11 

 12 

iii) Clock disruption 13 

Circadian rhythms are driven by internal molecular clocks regulating sleep-wake cycles, heart rate, 14 

feeding, body temperature, blood pressure, hormone secretion, metabolism and bone marrow 15 

function167, 168 reflected in diurnal clinical manifestation of diseases like MI with increased 16 

incidence of in the early morning.169, 170 Disturbances of the normal activity and resting phase have 17 

adverse effects on cardiovascular parameters, healing responses and remodeling.171-173 Sex- and 18 

estrogen cycle-dependent variations in circadian rhythmicity of plasma corticosterone levels in 19 

rats have been reported.174 Female clock mutant mice were found to be protected from the 20 

development of metabolic changes and cardiomyopathy that was observed in male mice with the 21 

same mutation.175 This protection could be mediated by ovarian hormones via differentially 22 

regulated metabolic pathways, but its importance in IHD remain to be determined.  23 

 24 

iv) Depression and anxiety   25 
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Depression and anxiety disorders are common in male and female IHD patients, are linked to 1 

higher mortality and morbidity rates176 and increased mortality in coronary artery disease 2 

patients.177 Depression represented a cardiovascular risk factor comparable to obesity and high 3 

cholesterol levels in a study focusing on males only.178 With respect to mechanisms, an 4 

experimental study in rats revealed a sexual dimorphism in the molecular response to stress, 5 

involving sex-specific differences in brain-derived neurotrophic factor (BDNF) and cyclic 6 

adenosine monophosphate response element-binding protein.179 A point mutation of the BDNF 7 

protein caused a defect in the coagulation cascade in mice and was significantly associated to 8 

MI.180 Interestingly, occurrence of a polymorphism in BDNF is associated to either depressive 9 

symptoms or female sex181 therefore suggesting a direct link between change in BDNF activity 10 

and increased susceptibility to IHD in women carrying this specific variant. 11 

 12 

3e. Gastro-intestinal tract diseases 13 

 14 

Inflammatory bowel disease has been consistently associated with an increased risk of IHD.182 In 15 

addition, the correlation between alterations in gut microbiota composition and IHD is gaining 16 

increasing attention.183, 184 Interestingly, comorbidities such as obesity and type 2 diabetes are 17 

associated with alterations in gut microbiota.185 Animal models of intestinal inflammation might 18 

be extremely helpful to dissect the molecular mechanisms underlying these interactions.186 Several 19 

animal and human studies have shown sex-related differences in gut microbiota composition.187-20 

189 However, whether gut symbiosis can attenuate the effects of risk factors or reduce post-21 

ischemic events,190 and whether sex plays a role in these processes is still unclear. 22 

 23 

3f. Kidney and urinary tract diseases  24 

 25 
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Disorders of the kidney and urinary tract are comorbidities with sex-specific effects in 1 

cardiovascular diseases.191, 192 In patients with decreased glomerular filtration rate (GFR), IHD is 2 

the most common cardiovascular cause of death whereby men are more often affected than 3 

women.193 Interestingly, uric acid levels together with GFR levels are strong predictors of IHD, 4 

particularly in women.194-197 However, a Korean study of renal function and clinical outcomes 5 

after ST-segment elevated MI revealed no sex difference in 1-year mortality.198 Although many 6 

animal models have been developed to study the causes and treatments of chronic kidney disease 7 

in humans,199 most models do not develop chronic kidney disease-associated cardiovascular 8 

disease200 except for the adenine diet model that produces rapid-onset kidney disease and 9 

cardiovascular disease.201 Subtotal nephrectomy plus permanent coronary ligation in rats resulted 10 

in more organ damage than each condition separately,202 however, nephrectomy did not affect the 11 

cardioprotective effect of preconditioning.203 The role of sex in these conditions is still unknown.  12 

 13 

3g. Immune system and blood diseases  14 

 15 

i) Infection(s) 16 

Infectious agents, including viruses, bacteria, and parasites, can be associated with atherosclerosis 17 

and IHD. While the association for some, like helicobacter pylori, chlamydia pneumonia, and 18 

cytomegalovirus is strong, others like influenza still need clarification. Nevertheless, large 19 

randomized prospective trials, evaluating the efficacy of antibiotic treatment for the secondary 20 

prevention of IHD have not demonstrated a reduction in the rate of events. Differences between 21 

sex in the association between infections and IHD and in response to treatment remain largely 22 

unknown.204 23 

 24 

ii) Human immunodeficiency virus  25 



CVR-2019-1133R2 
 

 23

Infection by Human immunodeficiency virus (HIV) and the use of some antiretroviral drugs are 1 

associated with an increased risk of cardiovascular disease that goes beyond the risk explained by 2 

traditional cardiovascular risk factors including social status. Although most studies in HIV-3 

positive patients mainly included male subjects, HIV infection has been associated with up to twice 4 

as high risk of IHD in females as in males.205-207 Lower body weight, slower drug metabolism and 5 

hormonal control may explain sex-related differences in antiretroviral associated toxicities and 6 

contribute to differences in outcome of co-existing IHD.208 Furthermore, the use of IHD-related 7 

therapeutic interventions is lower in HIV-positive females than males with similar risk profiles.209  8 

 9 

iii) COVID-19 10 

The COVID-19 pandemic with debut in 2019 is another example. Age, sex and cardiovascular 11 

comorbidity significantly affected outcome (morbidity and mortality) (PMID: 32171076, 12 

PMID: 32320003). For unknown reasons middle-aged males are more vulnerable compared to 13 

middle-aged females, and the mechanism behind this finding and the connection with CVD and 14 

IHD remain to be investigated. Obviously long-term recovery and risk of IHD are unknown and 15 

need to be investigated separately in males and females.          16 

 17 

iv)  Inflammation and rheumatic diseases 18 

Several systemic inflammatory diseases are associated with increased risk of IHD.37, 210-214 Chronic 19 

inflammatory diseases can promote coronary microvascular dysfunction and hereby contribute to 20 

the development of myocardial ischemia and cardiovascular events even in the absence of 21 

obstructive epicardial IHD.37, 215, 216 Autoimmune diseases are on average more frequent in 22 

women,217 and are also characterized by cardiovascular inflammation promoting development of 23 

hypertension, LVH as well as atherosclerosis.218, 219 220-222These cardiovascular changes may 24 

regress in response to immunomodulatory therapy.223 Inducible, spontaneous or engineered mouse 25 

models of chronic inflammatory diseases are available, reflecting the sex bias in susceptibility to 26 
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the specific diseases,224-228 and the higher vulnerability to atherosclerosis.229-231 Among those 1 

mouse models, only one spontaneously develops MI,232 and the incidence of degenerative 2 

coronary vascular disease with MI is more pronounced in male versus female mice.233 To the best 3 

of our knowledge, no studies are available evaluating the outcome of MI or IR in models of chronic 4 

inflammatory diseases, neither including evaluation of sex, even if clinical studies suggest sex-5 

specific impact of rheumatic diseases on cardiovascular risk.234, 235 6 

 7 

v) Anaemia 8 

In a cohort study including over 17000 patients undergoing elective percutaneous coronary 9 

interventions (PCI)38, pre-PCI anaemia was associated with higher prevalence of bleeding and 10 

stroke, while post-PCI anaemia had higher incidence of death, MI, target vessel revascularization, 11 

bleeding, and major adverse cardiovascular events.220 However, no sex-related differences in 12 

outcome were found in anaemic patients compared to non-anaemic patients of either sex.220-222 13 

 14 

3h. Cancer 15 

 16 

Oncological patients are susceptible to experience cardiovascular diseases (CVD),236, 237 due to the 17 

clustering of cardiovascular risk factors in cancer238, 239 or cardiovascular toxicity of anticancer 18 

therapies.240, 241 Proposed mechanisms linking IHD, sex hormones and cancer are obtained from 19 

preclinical and cellular studies, for example by regulation of hypoxia inducible factor 1α.242-245 20 

Experimental models combining cancer with anti-cancer therapies are needed beyond 21 

observational cohort studies. Although experimental cancer models exist, reflecting the sex bias 22 

in prevalence or severity of the specific cancer,246, 247 so far they only focused on tumour effects, 23 

without addressing the occurrence of IHD. Mouse models of anti-cancer therapies associated with 24 

cardiotoxicity, but not specifically with IHD, are available and illustrate sex bias in susceptibility 25 

to cardiac toxicity.248 26 
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 1 

3i. Special conditions exclusive for a specific sex 2 

 3 

i) Pregnancy, lactation and contraceptives  4 

IHD is usually rare in pregnancy, although it is becoming more common for several factors, 5 

including lifestyle changes and increased maternal age, associated to stress, smoking, diabetes and 6 

chronic hypertension.249 MI in pregnancy or the early postpartum period is associated with higher 7 

risk,249, 250 while data on the effects of pregnancy after MI are scarce.251 Consistent with these 8 

clinical observations, hearts of late pregnant rodents are more prone to IR injury compared to non-9 

pregnant rodents.252, 253 Despite this, some cardioprotective mechanisms are activated during 10 

pregnancy. For example, the pregnancy-related hormone relaxin has been shown to exert multiple 11 

beneficial cardiovascular effects during myocardial infarction, including suppression of 12 

arrhythmia and inflammation, and reversal of fibrosis254 and amniotic fluid stem cells play a 13 

cardioprotective role following MI.255 While higher parity is associated with a higher risk of IHD 14 

later in life, breastfeeding duration inversely impacts on IHD risk.256, 257 Oxytocin, a main 15 

breastfeeding hormone, is cardioprotective against ischemia/reperfusion injury, mainly through 16 

the activation of pro-survival pathways.258-260 17 

Oral contraceptive therapies based on estrogens are known to increase thrombotic events, 18 

however, there is scant evidence related to the adverse effects of contraception types among 19 

women with already existing IHD.261, 262 Moreover, little is known on the confounding effects of 20 

contraceptives in women with comorbidities such as e.g. obesity on cardiovascular risk.263  21 

 22 

3j. Comorbid diseases exclusive for a specific sex 23 

 24 

i) Pregnancy-related disorders  25 
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Women with a history of common pregnancy complications or pregnancy-related disorders, 1 

including hypertensive disorders or gestational diabetes, peri-partum cardiomyopathy and 2 

persistence of weight gain after delivery are at increased risk for CVD later in life.264, 265 Since a 3 

large proportion of women worldwide become pregnant once or twice over their lives,265 4 

evaluation of pregnancy outcome and in general reproductive factors may provide an unique and 5 

early opportunity to prevent IHD in women.266 Abnormal placental development and function 6 

underlie most pregnancy disorders, including spontaneous preterm birth, foetal growth restriction 7 

and preeclampsia. Even women between 45 and 55 years of age with former preeclampsia show 8 

severe subclinical atherosclerosis.267 In addition to its crucial role in maternal and foetal circulatory 9 

systems, the placenta is hormonally, metabolically and immunologically active.268 Several animal 10 

models involving rodents, guinea pigs, sheep and non-human primates have been useful to address 11 

the role of placenta in foetal growth disorders, preeclampsia or other maternal diseases during 12 

pregnancy.268-271 Using surgical, genetic, and pharmacological approaches, animal models have 13 

been also developed to recapitulate the maternal symptoms of preeclampsia and other hypertensive 14 

disorders of pregnancy,272 as well as gestational diabetes.273-275 To our knowledge, combination of 15 

these systems with IHD models has never been systematically attempted. 16 

 17 

ii) Endocrine-related conditions and disorders  18 

a) Polycystic ovary syndrome 19 

Women with polycystic ovary syndrome38 are characterized by hyperandrogenism, infertility and 20 

an unfavourable cardiometabolic profile in early life.276 Data on IHD and mortality in peri- and 21 

post-menopausal women with polycystic ovary syndrome appear to be controversial, even if they 22 

seem to be at an elevated risk.277-280 Available animal models of hyperandrogenism and ovarian 23 

morphology changes can be used to investigate polycystic ovary syndrome,281 and might be crucial 24 

to determine the molecular mechanisms underpinning these effects. 25 

 26 
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b) Menopause  1 

Similar to humans, rats and mice cease oestrus cycling with aging, but the age may vary with strain 2 

or other variables. To investigate the mechanisms underlying menopause and pre-menopause, 4-3 

vinylcyclohexene diepoxide (VCD), a chemical toxin that causes ovarian failure by targeting pre-4 

antral follicles can be used.282, 283 VCD treatment blocks the production of female ovarian 5 

hormones, while production of androgens is preserved, representing a better model to analyse 6 

menopause rather than the loss of all ovarian hormones as would result from ovariectomy. VCD 7 

can be also administered to young adult animals to mimic early ovarian failure. Timing of gonads 8 

removal in animal models (indicated as castration if shortly after birth, prior to sexual development 9 

or gonadectomy if performed after puberty) may be critical in the development or progression of 10 

IHD. Menopausal hormone replacement therapies to prevent and treat symptoms of menopause 11 

have a complex risk-benefit pattern as they may also modify the risk for IHD in certain 12 

subpopulations of women.284, 285 Sufficient clinical data for individual risk-benefit considerations 13 

of these treatments are missing.286 14 

 15 

c) Erectile dysfunction 16 

Vascular erectile dysfunction38 is a strong predictor of IHD, and cardiovascular evaluation of a 17 

patient presenting with erectile dysfunction is now recommended.287 Erectile dysfunction shares 18 

common pathways and risk factors with IHD.288 Phosphodiesterase-5 (PDE5) inhibitors, usually 19 

reserved as treatments of erectile dysfunction and pulmonary arterial hypertension, have been 20 

shown to reduce MI size and suppress ischaemia-induced ventricular arrhythmias.289  21 

 22 

d) Androgenetic alopecia 23 

Alopecia has been associated with an increased IHD risk and there appears to be a greater risk 24 

with degree of baldness.290-292 Alopecia is also associated with an increased risk of hypertension, 25 
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hyperinsulinemia, metabolic syndrome and dyslipidemia.290-292 The precise mechanisms 1 

underlying these effects are currently unknown and deserve further investigation. 2 

 3 

4. Preclinical research to assess sex-specific effects of comorbidities in IHD: opportunities 4 

and challenges  5 

 6 

Preclinical models are crucial to test hypotheses on sex differences in cardiovascular research and 7 

to study the importance of and differences among signalling cascades.293, 294 Similar to humans, 8 

animal models display cardiac remodelling and sexually dimorphic characteristics with respect to 9 

IR injury.293 Here, mitochondria – which are mainly derived from the mother only – play an 10 

important role in mediating IR injury and protection from it, but also to explain the biology of sex 11 

differences.295, 296 Experimental animal studies have reported sex differences in various aspects of 12 

mitochondrial function, some of which may explain, in part, the cardioprotection against IHD 13 

observed in pre-menopausal women. Cardiac mitochondria from female animals show decreased 14 

uptake of calcium,297, 298 improved respiratory function,299, 300 less oxidative stress,299, 301, 302 15 

greater resistance to calcium-induced mitochondrial permeability transition pore opening303, 304 16 

and less mitochondrial fragmentation,305 when compared to mitochondria from male animals. 17 

Post-translational modification of mitochondrial proteins (such as aldehyde dehydrogenase and α-18 

ketoglutarate dehydrogenase) modified ROS handling and played an important role in female 19 

cardioprotection.302  20 

While animal studies are therefore of utmost importance for a better understanding of the 21 

underlying causes for sex differences in IHD, current research approaches present major 22 

limitations (summarized in Table 2). To more easily allow translation of animal data, inclusion of 23 

males and females and the use of a wider range of models, incorporating more realistic 24 

environmental and comorbid conditions are required.28, 306 Moreover, unbiased studies can provide 25 

a general overview and avoid reductionist approaches.307, 308 Species-specificity issues and 26 
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technical/methodological caveats should be also considered, to allow a better alignment of animal 1 

studies with IHD patients’ real world, and a focus on human biology and therapeutic goals. 2 

Whenever possible global or tissue-specific knockout mice or overexpression of crucial genes 3 

involved in the modulation of gonadal sex or sex hormones should be considered to study the 4 

mechanisms underlying sex-dimorphic effects of comorbidities on IHD. The following sections 5 

will address opportunities and challenges related to these aims. 6 

 7 

4a. Use of male and female cells, tissues, organs or organisms 8 

 9 

Although the study of both sexes individually is important to validate scientific hypothesis or test 10 

novel therapeutic approaches, direct comparison of results in both sexes might present even greater 11 

advantages. While most signalling pathways might be commonly shared in cells or tissues derived 12 

from male or female animals, specific gene and protein expression or modifications might be 13 

affected by sex.309 Therefore, focusing on only one sex might prevent the identification of 14 

important biological effects or promote their misinterpretation. 15 

 16 

4b.  Comorbidity models  17 

 18 

Several animal models are currently available to reproduce comorbidities as well as sex-related 19 

conditions such as peri-menopause and menopause, to test novel therapeutic interventions and 20 

health-promoting strategies.310-312 Combination of these models might allow the identification of 21 

sex-dimorphic effects of specific comorbid diseases on IR injury and protection from it and their 22 

underlying mechanisms. Unfortunately, not all comorbidities identified in humans can be currently 23 

mimicked in animal models, and in almost all animal studies on the effects of comorbidities in IR 24 

injury and protection from it, adequate treatment of comorbidities by state-of-the-art therapy is 25 

lacking. 28  26 
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 1 

4c. Sex-related candidate mechanisms 2 

 3 

Once sex dimorphisms on the effects of comorbidities on IR injury and protection from it are 4 

identified, the relative contributions of sex hormones and sex chromosomes should be 5 

determined.313, 314 Since peripheral or “activational” effects of gonadal hormones cause the 6 

majority of sex differences, gonadectomy is usually the first experiment performed in this context, 7 

preferably in both sexes. Gonadectomy allows to determine whether the sex difference depends 8 

on the secretion of gonadal hormones in adulthood. Then, further experiments will be needed to 9 

determine relevant hormones and their downstream mechanisms of action. In addition to the 10 

exogenous administration of sex hormones, estrogen and androgen receptor knockout mice are 11 

also available.315-317 For example, estrogen receptor-beta knockout mice have been widely used to 12 

investigate the effects of these hormones on IHD.316, 318-321 13 

In case sex differences persist after gonadectomy, then permanent changes caused by gonadal 14 

hormones eventually acting at early stages of development (long-lasting, differentiating 15 

“organizational” effects) need to be assessed. If these effects also do not explain the sex difference, 16 

then extra-gonadal mechanisms related to sex chromosomes might be considered. This simplified 17 

sequential experimental approach addresses essential questions and provides the first step for 18 

finding the mechanisms explaining sex-biased effects of diseases in preclinical models. To 19 

determine whether a phenotype depends on gonadal hormones or sex chromosomes different 20 

mouse models could also be used, including the Four Core Genotypes and the XY* mouse model 21 

(advantages and limitations have been previously reviewed elsewhere).313, 322 22 

  23 

 24 

4d. Species differences 25 

 26 
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Results obtained from animal species may not translate directly to women for several reasons. 1 

Firstly, the frequency of oestrous cycle in female experimental animals is species dependent. In 2 

particular, rodents present different duration of oestrous cycle and very different estrogen levels, 3 

they are poly-ovulatory while women are mono-ovulatory. Moreover, although the initial stages 4 

of follicular growth seem to be comparable between humans and rodents, differences in the later 5 

stages cannot be excluded.323 Among small mammals, mice are the most commonly used because 6 

of the possibility to perform in vivo genetic modifications.324 As outlined above, mice also allow 7 

the manipulation of the hormonal state and specific sex-chromosome genes and thus to 8 

discriminate between sex chromosomes, gonadal status and hormonal effects.29  9 

Rats have also been used to study sex differences. However, estradiol levels do not fall as low in 10 

female rats after cessation of oestrous cycling as in women following menopause, and this 11 

represents a critical issue when using rats as a model of menopause.325 Also, remarkable 12 

differences have been described after MI between mice and rats, when comparing males and 13 

females.326, 327  14 

In large animals provided by commercial suppliers (in particular pigs), the presence of gonads 15 

should be confirmed, since some male animals may be castrated at birth. In other cases, animals 16 

might be sexually immature at the time of study (for example piglets smaller than 100 kg used in 17 

research), making extrapolation of data to adult animals problematic. Moreover, mostly female 18 

pigs are used for studies of IHD due to easier handling of these animals.328 Finally, while 19 

preclinical models may identify biological sex differences when they exist, the complex social, 20 

psychological, environmental, community factors and constraints leading to gender peculiarities 21 

are impossible to examine in animal models. 22 

 23 

4e. Technical caveats 24 

 25 
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The bias deriving from the preferential use of only animals of one sex is often based on practical 1 

rather than scientific concerns. Since in many fields there is a significantly larger body of literature 2 

and data sets on male mice, this further encourages the use of this sex in preclinical studies. In 3 

addition, male mice are larger and easier to be surgically manipulated, and they lack oestrous 4 

cycles. In contrast, females are smaller (requiring lower weight-adjusted drug dosages), less 5 

aggressive, easier to handle, and they generally are less expensive. However, the use of female 6 

mice with synchronized oestrus cycles strongly complicates research design.  7 

Although most primary or stabilized cell lines are derived from animals of unknown sex, the sex 8 

of the cell/tissue donor can be determined identifying specific fragments of the X and Y 9 

chromosomes. With respect to cardiomyocyte-like cell lines, both H9C2 38 and HL-1 origin from 10 

female mice. In addition, it is important to consider the hormonal environment of cultured cells, 11 

in particular culture media composition, since it might contain sex steroid hormones and in vitro 12 

exposure of cells to hormones may affect cellular pathways/signals of interest over several 13 

passages. Conversely, charcoal treatment could be used to eliminate or reduce hormones levels.  14 

Sex steroid hormones initiate rapid actions that do not require gene transcription (non-genomic 15 

actions) as well as effects on gene transcription (genomic actions). Thus, duration of hormone 16 

exposure is a critical consideration in study design. Moreover, since systemic actions of hormones 17 

might significantly affect hemodynamic state, the use of in vivo animal models followed up by 18 

isolated heart perfusion studies might be helpful to eliminate in vivo confounding factors related 19 

to extracardiac hemodynamic, particularly in the pregnancy state. 20 

Several conditions related to animal feeding, housing or breeding need accurate evaluation. 21 

Retired breeder females may be used for studies of aging, but this approach has some limitations, 22 

since it is currently unknown whether presence and number of previous pregnancies can affect 23 

over time cardiovascular function. Thus, comparisons between multiparous animals and age-24 

matched nulliparous females or males might be inaccurate. 25 
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Housing conditions, including light/dark cycles, temperature, absence of vibrations or external 1 

noise, are crucial to maintain oestrous cycling in female rats and mice. Females housed together 2 

frequently synchronize their cycles. Disruption of sleep/wake cycles, isolation, lack of physical 3 

activity or handling conditions may increase stress imposed on animals, influence sex hormone-4 

related pathways and therefore should be taken into account. Finally, chow composition and the 5 

possible presence of phytoestrogens should be ruled out.  6 

 7 

4f. Documentation, costs and duration of research 8 

 9 

ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for reporting animal 10 

research propose to include sex of the animals among the items to be described as the minimum 11 

information in all scientific publications.329 Similarly, revised recommendations for the conduct, 12 

reporting, editing and publication of scholarly work in medical journals clearly report the 13 

importance of describing variables of the source population including sex.330 However, these 14 

recommendations are not always fulfilled, even if requested by most scientific journals.  15 

While preliminary studies can identify sex-dependent effects of comorbidities on IHD, only 16 

subsequent more complex, long and costly studies may identify the precise mechanisms 17 

underlying observed sexual dimorphisms. Combination of several available animal models will 18 

require time and a learning curve to identify the best conditions and segments of investigation. It 19 

is possible that new animal models will be needed, and these requirements might further increase 20 

costs and prolong duration of research.   21 

Furthermore, experimental preclinical studies involving aging or pregnant animals usually present 22 

several ethical and regulatory difficulties in most countries. Duration of research in these cases is 23 

usually longer, and severe ethical restrictions apply to respect animal welfare. In addition, although 24 

studies in non-human primates represent a pre-requisite of studies in humans, costs and hurdles 25 

related to project managing are even higher and make them prohibitive for most basic science 26 
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investigators and small companies developing novel therapies for IHD. These considerations 1 

should be taken into account by investigators, Scientific Societies and Funding agencies in order 2 

to provide financing through dedicated calls or considering rewards/bonuses/incentives covering 3 

higher costs and longer duration of research. 4 

 5 

5. Conclusions and recommendations 6 

     7 

IHD is an epidemic and global disease affecting men and women, frequently associated with multi-8 

morbidity in the adult and aging population. Within scientific and medical communities there is 9 

now increasing awareness that many IHD mechanisms differ between sexes, and sex differences 10 

in IHD risk factors and types of IHD have been identified. Despite this evidence, studies 11 

specifically investigating sex-specific implications of comorbidities in IHD are largely missing at 12 

all levels of research. Extremely narrowly focused studies may bias research directions and 13 

eventually miss essential aspects of human disease, including sex-related differences and their 14 

relation to comorbid disease. To overcome these hurdles, it would be necessary to account for sex, 15 

comorbidities and their treatments in a virtuous circle tightly linking preclinical, translational and 16 

clinical research (schematically illustrated in Figure 2). According to this hypothetical model, 17 

relevant clinical questions could be addressed through available preclinical models, investigating 18 

the presence of sexual dimorphisms and their underlying mechanisms. Next, the relevance of 19 

obtained results should be tested in larger animals and using in silico modelling or human derived 20 

cells or tissues, in order to finally translate results into large real-world populations of IHD 21 

patients.  22 

Based on these considerations, the ESC WG on Cellular Biology of the Heart and invited experts 23 

provide the following Recommendations (Table 3): 24 

1. Some confusion regarding sex or gender nomenclature still exists in the literature, and the 25 

two terms are sometimes incorrectly considered interchangeable. Proper terminology should be 26 
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always used, particularly in preclinical research involving animals, cells and tissues, that can 1 

explore biological mechanisms related to sex, but are unable to address the complex socio-cultural 2 

phenomena underlying gender differences. 3 

2. To test whether sex is an independent biological variable, experimental protocols should 4 

include both sexes, possibly analysed simultaneously (not separately or under different conditions 5 

or timing).  If not possible, results should be cautiously interpreted, or this should be highlighted 6 

as a study limitation.  7 

3. In order to facilitate comparisons between published data, all relevant experimental details 8 

(including age, strain, sex, anaesthesia, model, timing of intervention) should be clearly provided, 9 

preferentially in parts of the text searchable in databases (e.g. title and abstract). Publishers and 10 

Editors should require a report on sex and age of experimental animals or cell lines included in 11 

full papers of biomedical research.  12 

4. Since several preclinical models are currently available to reproduce most conditions, risk 13 

factors and comorbid diseases that might affect IHD risk and prognosis differently according to 14 

sex, an interdisciplinary approach could be useful, combining IHD and comorbidities preclinical 15 

models in male and female animals. 16 

5. Reviewers of grant applications and manuscripts for studies addressing IHD and the 17 

different comorbidities should consider whether a potential sex-specific effect has been accounted 18 

for. If the Authors propose to generalize results based on investigations in only one sex, this should 19 

be very well motivated and potential limitations should be discussed. 20 

6. Educational programs in cardiology and basic cardiovascular research should include 21 

elements encouraging students and young doctors to be aware of the sex differences in biology 22 

and medicine. 23 

7. Considering the widespread, global presence of IHD and multimorbidity in the adult and 24 

aging population, research should not be limited only to the most common comorbidities in IHD 25 

but address a wider spectrum of diseases present in an adult population of both sexes and their 26 
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relative comedications. Such research adds to the basic understanding of IHD independently from 1 

the role of sex and comorbidities. 2 

8. Research addressing sex-specific effects of comorbidities in IHD is expected to have great 3 

scientific and clinical impact, but presents several technical, methodological, economical and 4 

scientific challenges. These considerations should be taken into account by Investigators, 5 

Scientific Societies and funding agencies in order to provide financing through dedicated calls or 6 

considering rewards/bonuses/incentives covering higher costs and longer duration of research to 7 

reach this goal. 8 

9 
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 1 

Table 1 - Effects of general risk factors or comorbidities on IHD risk in women 

   
Increasing risk Decreasing risk Unknown or unclear  

   
Aging Physical activity Thyroid diseases 

Smoking  Osteoporosis 

Stress  LVH 

Obesity  Pulmonary hypertension 

Hyperlipidaemia  Atrial fibrillation 

Hypertension  Heart valve diseases  

Diabetes  PAD  

Depression  COPD  

HIV  OSA  

Inflammatory diseases  Brain diseases  

  Clock disruption 

  Gastro-intestinal diseases 

  Kidney diseases 

  Anemia 

  Cancer 

Abbreviations used: LVH=left ventricular hypertrophy; OSA=obstructive sleep apnoea; PAD= 

peripheral artery disease; COPD= chronic obstructive pulmonary disease, HIV= human 

immunodeficiency virus. 

 2 
3 
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 1 
Table 2 - Major limitations of current research approaches to investigate the role of 

sex and comorbidities in IHD 

 Mechanistic preclinical studies investigating sex dimorphic aspects highlighted by 

clinical studies are rare. 

 IHD research studies are rarely combined with experimental models reproducing 

major comorbidities, and the role of sex is usually neglected. 

 Methodological information on age/sex/hormonal status of the research material 

(cells/tissue/organs) or animals is often incomplete in full research papers, hampering 

comparisons and reproducibility. 

 Simultaneous comparison of both sexes is rarely performed in preclinical studies. 

 Sexual maturity, parity or reproductive senescence of experimental animals are usually 

under-evaluated in preclinical research. 

 Castration/gonadectomy or exogenous administration of hormones are rarely 

employed to assess the role of sex on specific intracellular signalling pathways. 

 Due to species specificities, results obtained from animal studies may not be translated 

directly to women. 

 Complexity, duration and costs. 

 2 
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 1 
2 Table 3 - Recommendations 

1. Correct nomenclature should be always used when describing sex- or gender-related 

differences in IHD.  

2. Experimental studies investigating IHD should include subjects from both sexes and, if 

not possible, results should be cautiously interpreted.  

3. For any observed sexual dimorphic phenotype in IHD, it should be determined whether 

it is dependent on the hormonal state and if it is specific to or modified by genetic sex. 

4. All relevant experimental details including age, strain and sex should be clearly provided, 

preferably also in the searchable parts of the MS, e.g. abstract and title.  

5. Combination of IHD and comorbidities in preclinical models in male and female animals 

should be encouraged.  

6. Peer-review of studies investigating IHD and comorbidities should always consider 

whether potential sex-specific effects have been accounted for.  

7. Educational programs in Cardiology and basic cardiovascular research should include 

elements addressing sex differences in Biology and Medicine.  

8. Research should include a wide spectrum of diseases present in an adult population of 

both sexes and consider the sex-related effects of comedications. 

9. Scientific Societies and Funding agencies should provide financing through dedicated 

calls or consider rewards/bonuses/incentives covering higher costs and longer duration of 

research in this area. 
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Figure legends 1 

 2 

Figure 1 3 

Distribution of major risk factors, special conditions and comorbidities in patients with IHD 4 

according to divergence (or lack of this) between males and females.  Sex-specific prevalence 5 

represented in this Figure was derived from epidemiological data available in the literature. 6 

Abbreviations used: LVH=left ventricular hypertrophy; OSA=obstructive sleep apnoea; PAD= 7 

peripheral artery disease; COPD= chronic obstructive pulmonary disease. 8 

 9 

Figure 2 10 

Proposed flow-chart to investigate the role of sex and comorbidities in IHD in a virtuous circle 11 

tightly linking preclinical, translational and clinical research. For abbreviations, please see 12 

abbreviations list.  13 

14 
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