
Faculty of Science and Technology
Department of Computer Science

Áika: A Distributed Edge System For Machine Learning Inference
Detecting and defending against abnormal behavior in untrusted edge environments

Joakim Aalstad Alslie
INF-3981: Master’s Thesis in Computer Science, December 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Livet er ikke bare fylt med motbakker. Det er også nedturer.”
–Alexander Torkelsen

Abstract
The edge computing paradigm has recently started to gain a lot of momentum.
The field of Artificial Intelligence (AI) has also grown in recent years, and
there is currently ongoing research that investigates how AI can be applied
to numerous of different fields. This includes the edge computing domain. In
Norway, there is currently ongoing research being conducted that investigates
how the confluence between AI and edge computing can be used to hinder
fish crime, by stationing surveillance equipment aboard fishing vessels, and
perform all the monitoring directly on the vessel with support of AI.

This is challenging for several reasons. First and foremost, the equipment needs
to be stationed on the vessel,where actors may impose a threat to it and attempt
to damage it, or interfere with the analytical process. The second challenge
is to enable multiple machine learning pipelines to be executed effectively on
the equipment. This requires a versatile computation model, where data is
handled in a privacy preserving manner.

This thesis presents Áika, a distributed edge computing system that supports
machine learning inference in such untrusted edge environments. Áika is
designed as a hierarchical fault tolerant system that supports a directed acyclic
graph (DAG) computation model for executing machine inference on the edge,
where a monitor residing in a trusted location can ensure that the system is
running as expected.

The experiment results demonstrate that Áika can tolerate failures while re-
maining operable with a stable throughput, although this will depend on the
specific configuration and what computations that are implemented. The re-
sults also demonstrate that Áika can be used for both simple tasks, like counting
words in a textual document, and for more complex tasks, like performing fea-
ture extraction using pre-trained deep learning models that are distributed
across different workers. With Áika, application developers can develop fault
tolerant and different distributed DAGs composed of multiple pipelines.

Acknowledgements
First and foremost I want to thank my supervisor Dag Johansen and co-
supervisor Michael Riegler for their guidance, and for being available whenever
I needed help during this project. Their passion for the field has truly been a
great and invaluable source of inspiration.

I want to thank the other members of the Cyber Security Group for their
help, discussions and insight during the last few months. I want to commend
the employees at the Department of Computer Science for their openness
throughout the 4,5 years I have been here. The open-door policy that many of
you have has truly been appreciated. Among the employees, I want to direct a
special thanks to our student advisor Jan Fuglesteg for being available at almost
any time. You are truly invaluable for all students at the CS department.

To all my friends, family and fellow students that have been a part of this
journey, you all have my sincerest gratitude.

I want to direct a special thanks to Randi for convincing me to move to Tromsø
and start studying, to Stina for helping me name the system, to Alexander
for always being there motivating me, to Eirik for sticking with me since the
beginning and to Isak for helping me get through the first semester.

And finally, I want to thank Ida for her love and support during this final year,
and for reminding me to take breaks when I pushed myself too hard. Without
you, this final semester would not have been the same.

The last few years has truly been the best years of my life. I am eternally
grateful for each and every one who has been a part of this journey.

Thank you.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

List of Acronyms xvii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Methodology . 3
1.3 Scope, Limitation and Assumptions 4
1.4 Context . 6
1.5 Contributions . 7
1.6 Outline . 8

2 Background and Related Work 9
2.1 Artificial Intelligence . 9

2.1.1 History . 10
2.1.2 AI Areas . 11
2.1.3 Machine Learning 13
2.1.4 Deep Learning . 16

2.2 Edge Computing . 19
2.3 Distributed Software Architectures 20

2.3.1 Controller/Agent . 21
2.3.2 Pipeline . 22

2.4 Directed Acyclic Graph . 23
2.5 Fault Tolerance . 24

2.5.1 Dependability . 25
2.5.2 Failure Models . 26

vii

viii contents

2.5.3 Redundancy and Resilience 26
2.5.4 The CAP Theorem 28
2.5.5 Detecting Failures in Distributed Systems 29

2.6 Persistent Event Queue . 29
2.7 Related Work . 30

2.7.1 FRAME and CESSNA 30
2.7.2 NAP and Falcon Spy Network 31
2.7.3 Dryad and Cogset 31
2.7.4 SEDA and Vortex . 32

2.8 Summary . 33

3 Requirement Analysis 35
3.1 Low-Bandwidth Edge Environments 36
3.2 Fault Tolerance and Security 37
3.3 Privacy-Preserving Data . 38
3.4 Laws, Regulations and GDPR 39
3.5 Incentive for Fisheries . 42
3.6 Requirement Specification of Áika 43

3.6.1 Functional Requirements 43
3.6.2 Non-Functional Requirements 44

3.7 Summary . 45

4 Design 47
4.1 System Overview . 47
4.2 System Components Structure 50
4.3 Controllers . 50

4.3.1 Local Controller . 51
4.3.2 Cluster Controller 51

4.4 Agents . 52
4.5 Monitor . 56
4.6 Summary . 57

5 Implementation 59
5.1 Implementation Specific Details 59
5.2 Testing . 60
5.3 Cluster Controller . 61
5.4 Local Controller . 61
5.5 Agents . 62
5.6 Monitor . 63
5.7 Logging . 64
5.8 Killer . 65
5.9 Summary . 66

6 Evaluation 67

contents ix

6.1 Overall Experimental Setup 67
6.2 Micro-Benchmarks . 68
6.3 End-to-End Evaluation . 69
6.4 Distributed Word Counter 74
6.5 Distributed Deep Feature Extraction 76
6.6 Review of Non-Functional Requirements 79
6.7 Discussion . 80
6.8 Summary . 80

7 Conclusion and Future Work 81
7.1 Conclusion . 81
7.2 Future Work . 82

A Configuration Format 85

B Local Run-time Example 87

C Distributed Word Counter 91

D Distributed Deep Feature Extractor 93

List of Figures
2.1 Areas in Artificial Intelligence 12
2.2 The Perceptron Algorithm 14
2.3 Deep Neural Network . 17
2.4 The Edge Layer . 19
2.5 Controller/Agent Architecture. 22
2.6 Pipeline Architecture . 23
2.7 Directed Acyclic Graph . 24
2.8 Triple Modular Redundancy. 28
2.9 Event Queue . 29

4.1 System Overview . 49
4.2 General Process Structure 50
4.3 Cluster Controller Replication 52
4.4 General Agent Structure . 52
4.5 Left Worker Agent . 53
4.6 Right Worker Agent . 54
4.7 Double Worker Agent . 54
4.8 Initial Worker Agents . 55
4.9 Final Worker Agents . 55
4.10 Queue Agent and Server-less Worker Agent 56

5.1 Process Killer . 66

6.1 End-to-End Performance With Persistent Queues 70
6.2 End-To-End Performance With In-Memory Queues. 71
6.3 End-To-End Performance With Workload 72
6.4 End-To-End Performance With And Without Killer 73
6.5 Distributed Word Counter Experiment Result 76
6.6 Distributed Feature Extraction Experiment Results 78

B.1 Directed Acyclic Graph example 87

C.1 Distributed Word Counter 91

xi

xii l ist of figures

D.1 Distributed Deep Feature Extractor 94

List of Tables
5.1 Monitor Request Table . 63
5.2 Failure Log Record Table 64

6.1 Micro-Benchmark Results 68
6.2 Continuous Performance Summary 73

xiii

List of Listings
5.1 Worker Agent Implementation Example. 62

A.1 JSON Configuration Format 85

B.1 Directed Acyclic Graph Configuration Example 87

xv

List of Acronyms
AI Artificial Intelligence

AR Augmented Reality

CCTV Closed-circuit Television

CNN Convolutional Neural Network

DAG Directed Acyclic Graph

DNN Deep Neural Network

DPIA Data Protection Impact Assessment

DSS Decision Support System

FIFO First In First Out

FUSE Filesystem in Userspace

GDPR General Data Protection Regulation

IoT Internet of Things

JSON JavaScript Object Notation

LED Law Enforcement Directive

MLP Multilayer Perceptron

NFS Network File System

NLP Natural Language Processing

xvii

xviii l ist of acronyms

OS Operating System

PCA Principal Component Analysis

POA Proof of Applicability

POC Proof of Concept

POP Proof of Performance

RDBMS Relational Database Management System

REST Representational State Transfer

SGD Stochastic Gradient Descent

SGX Software Guard Extension

SSH Secure Shell

SSL Semi-Supervised Learning

SVM Support Vector Machine

TCP Transmission Control Protocol

TEE Trusted Execution Environment

UDP User Datagram Protocol

VR Virtual Reality

1
Introduction
Edge computing, a distributed computation paradigm that moves computations
and data storage closer to physical locations in an attempt to improve response
times and save bandwidth, has gained considerable momentum recently [1].
Numerous application fields are adopting this distributed computing architec-
ture that moves computations closer to the sources generating voluminous
data [2]. Furthermore, the LF State of the Edge report of 2021 predicts cumula-
tive capital expenditures of up to $800 billion USD will be spent on new and
replacement IT server equipment and edge computing facilities between 2019
and 2028 [3].

Recent breakthroughs in the field of Artificial Intelligence (AI) have lead to
a spark of new technological advancements. Currently, there is an incredible
amount of ongoing research in areas that investigate how AI may be used
to drive the field forward. This includes fields such as healthcare [4, 5, 6,
7], autonomous vehicles [8, 9] and business automation [10]. In attempt to
decrease latency, and increase security and reliability, some of the new AI
solutions are on the rise of being deployed and executed on the edge. Ion
Stoica et al. [11] and Fabrizio Carcillo et al. [12], for instance discuss challenges
related to the field of AI. Both edge computing and security are listed as
important topics of research. The term "Edge Intelligence" is often used to
describe the confluence of the edge computing and AI fields [13].

Moving AI solutions to the edge may not only be beneficial, it can also be
required in environments where bandwidth is too low for effective data trans-

1

2 chapter 1 introduction

portation. This is relevant for systems that operate in environments where
the access to high-speed internet connection is either limited, or non-existing.
The systems may, for instance rely on a limited satellite connection to com-
municate with sources outside their environment. Some connections may be
unable to transport data with an acceptable throughput without compressing
it. Locations where this is a plausible assumption includes international waters,
Antarctica and other remote locations and islands, such as Tristan da Cunha
Island. The development of 5G networks may change this in the future, but it
is highly implausible to assume that it will cover the entire globe, due to its
short range [14].

The process also comes with certain challenges. This is especially the case for
systems that deal with private data in untrusted environments,where untrusted
sources may constantly aim to compromise the different layers of the system.
It is important to build robust systems that can protect private data, tolerate
failures and ensure both physical security and connectivity [2]. Even more so,
an AI system that deals with private data of users also needs to satisfy the
requirements of privacy-governing laws1.

This thesis presents Áika, a fault tolerant system for executing distributed AI
applications on the edge. The word "Áika" means "oak" in northern sami and
was chosen as a name due to the systems hierarchical design. Áika is developed
and evaluated in a scientific context as a concrete edge computing technology
infrastructure with focus on AI and system problems. Of particular interest
is how to provide fault tolerance while the system remains active and doing
continuous analysis of data. We will thus investigate if and eventually how to
provide efficient data analytics in an untrusted edge environment.

The application domain will be related to surveillance and monitoring of
active fishing vessels off-shore Norway. These activities are fundamental for a
sustainable management and harvesting of fish resources in the Arctic.

1.1 Problem Definition

In untrusted edge environments it is necessary to assume that the system oper-
ating in it is under constant threat due to potential actors in the environment
that may try to compromise the physical hardware and/or the software of the
system. It is important to have a robust and secure system that not only is able
to tolerate faults, but also detect and report them. We will, in this thesis put
an emphasis on fault tolerance and detection of abnormal behavior. The thesis

1. For instance, see the Norwegian constitution: § 102, first paragraph

1.2 methodology 3

statement is defined as:

Artificial Intelligence solutions can be executed in untrusted edge environments
through a Directed Acyclic Graph computation model in a fault tolerant system

that can detect, recover from and report abnormal behavior.

The statement above is investigated through the following steps:

1. Outline a set of requirements specifications based on the problem defini-
tion, related work and the problem domain.

2. Develop a proof of concept (POC) system based on the stated require-
ments.

3. Evaluate the resulting system through experiments and conclude to what
extent the system satisfies the requirements.

1.2 Methodology

The Task Force on the Core of Computer Science presents in their final report
an approach to divide the discipline of Computer Science into three distinct
paradigms: Theory, Abstraction, Design [15].

Theory is rooted in mathematics and consist of four steps, followed in the
development of a coherent and valid theory:

1. Definition: Characterize objects of study.

2. Theorem: Hypothesize possible relationships among them.

3. Proof: Determine whether the relationships are true.

4. Interpret the results.

Mathematicians are expected to re-iterate these steps, for example when errors
or inconsistencies are discovered.

Abstraction is rooted in the experimental scientific method and consists of
four steps that are followed in the investigation of a phenomenon:

1. Form a hypothesis.

4 chapter 1 introduction

2. Construct a model, then make a prediction.

3. Design and experiment, collect data.

4. Analyze the results.

A scientist is expected to re-iterate these steps, for example when a models
prediction disagrees with experimental evidence.

Design is rooted in engineering and consists of four steps followed in the
construction of a system to solve a given problem:

1. State requirements.

2. State specifications.

3. Design and implement the system.

4. Test the system.

An engineer is expected to re-iterate these steps, for example when tests
reveal that the latest version of the system does not meet the requirements
stated.

This thesis roots in both the abstraction paradigm and the design paradigm.
Initially, the requirements and specifications are derived with roots in the
problem definition and the application domain. A prototype of the system is
designed and implemented based on the requirement specifications. Finally,
the system is evaluated through experiments and an evaluation of the stated
requirements.

In summary, a set of requirements is outlined from the problem definition
and the application domain. The system is constructed as a POC based on the
requirements, and evaluated through Proof of Performance (POP).

1.3 Scope, Limitation and Assumptions

It is necessary to make some assumptions with regards to the problem domain
in order to limit the scope of the problem definition. The assumptions are
documented here.

• To simplify the process of data storage and data retrieval, we assume

1.3 scope, l imitation and assumptions 5

that the system is mounted to a distributed file system (DFS). We fur-
ther assume that this is a transparent file system that abstracts away
communication, storage, etc. such that any files stored in the system is
retrievable by any node.

• With regards to the AI field, we narrow the scope to focus on machine
learning tasks, as it seems to have the most potential for analyzing sensor
data.

• Due to the low level of trust in untrusted edge environments, we avoid
focusing on the training process with regards to machine learning, espe-
cially on labeled data, as model training in untrusted environments are
risky. The scope is thus limited to focus on inference, where the system
may retrieve pre-trained models from some available source.

• We assume that the system operates with a secure file system that ensures
that disk data is stored securely and in a privacy-preserving manner.
We also assume that the system fetches data that is stored on one or
several secure storage units. To limit the scope of the thesis, we therefore
abstract these away from the thesis implementation. Since the system
may deal with private data, issues related to privacy-governing laws will
be addressed. Execution on data in a privacy-preserving manner will
also be addressed.

• Since we limit the thesis work to the development of a POC, we do not
focus on optimizing the system with regards to power consumption. We
therefore assume that the system may operate in an environment with a
sufficient power source.

• With regards to the security principles, we limit the scope to focus on
fault tolerance for the system.

Abnormal Behavior

As both the subtitle and the problem definition states, one of the aims of the
system is to be able to detect and defend against abnormal behavior. The
term "abnormal behavior" has its roots in psychology. According to the APA
dictionary of psychology2, the term is defined as:

"Behavior that is atypical or statistically uncommon within a particular culture
or that is maladaptive or detrimental to an individual or to those around that

2. https://dictionary.apa.org/

https://dictionary.apa.org/

6 chapter 1 introduction

individual. Such behavior is often regarded as evidence of a mental or emotional
disturbance, ranging from minor adjustment problems to severe mental disor-
der."

For this thesis, we expand this definition to the computing systems domain,
and use it to describe any form of unexpected behavior that may inflict damage
of some form to, or disturb the system at run-time.

1.4 Context

This thesis is written in the context of the Corpore Sano Centre3, which is
affiliated with the Cyber Security Research Group at UiT The Arctic University
of Norway. The Corpore Sano Centre undertake high-impact inter-disciplinary,
inter-faculty research and innovation at the intersection of computer science,
health informatics, statistics, medicine, sport sciences, and law. The long-term
objective is to provide new knowledge, research tools, and innovative disruptive
technologies in this convergence space. We address non-trivial challenges
from the real world that integrate academic fundamentals with real-world
engagement and innovations.

The Corpore Sano Centre has a deep history that dates back to 1988 with
Stormcast, an expert-based distributed artificial intelligence application used
for severe storm forecasting [16].

A collaboration between the Departments of Computer Science at University
of Tromsø, Cornell University and University of California (San Diego) further
resulted in the TACOMA (Tromsø and Cornell Moving Agents) project [17]. The
focus of he project was on operating system (OS) support for mobile agents.
An agent is, in this context, a piece of code that is executed on a remote
computer. A moving agent is an agent that may move to other hosts within the
assigned network during execution. The project proved useful in applicability,
and complemented other structuring techniques that are common in distributed
systems, and also lead to a re-implementation of Stormcast [18].

MapReduce is a parallel and distributed algorithm that is used in e.g. Apache
Hadoop [19]. In 2012, the center further explored upon concepts of MapReduce
with Cogset, where new routing and data placement mechanisms was investi-
gated [20]. The use of a pre-determined routing scheme for data, meant that
there was no need for temporary copies of data, resulting in improved data
locality, and thus, performance improvements.

3. https://corporesano.no

https://corporesano.no

1.5 contributions 7

The issue of intrusion tolerance in federated cloud overlay networks with a high
number of nodes was addressed with Fireflies [21, 22], a secure and scalable
membership and gossip service protocol which makes federated cloud overlay
networks fault tolerant through intrusion tolerant-distributed hash tables or
overlay network routines. Further research into cloud has been done with
Balava [23], a system that enables management of computations on confidential
data that span multiple clouds. Vortex [24] is an even-driven multiprocessor
OS that explores how performance isolation can be used to divide resources
between web servers effectively.

The Corpore Sano Centre has also conducted research on trusted execution
environments (TEE), like Intel Software Extension Guard (SGX) [25] and Arm
TrustZone [26]. The research conducted on SGX, in particular lead to Diggi
[27], a framework that enables development of trusted cloud services with the
use of TEEs.

In recent years, The Corpore Sano Centre has had a focus towards both sport,
and health sciences. In sport sciences, the research has focused primarily on
soccer, for instance real-time events detection [28]. Among the research done
within health sciences, we can find ResUNet++ [29] NanoNet [30], which
enables polyp segmentation in real-time with Video Capsule Endoscopy and
Colonoscopy.

The center recently published Dutkat [31], a multimedia system used for catch-
ing illegal catchers. The paper introduces the concept and a design of a surveil-
lance system thatmaintains privacy of legal actors while continuously capturing
evidence-based data of illegal activities through video footage, sensory data
and forensic proof. As a contribution to the Dutkat-project, the center recently
published Dorvu [32], which aim to enable confidential and secure storage of
data in low-bandwidth edge environments.

1.5 Contributions

This thesis is a contribution to the Dutkat-project with the design and imple-
mentation of a POC that can execute multiple machine learning pipelines with
a distributed DAG computation model format in untrusted edge environments,
while remaining tolerant to faults.

The resulting system prototype of Áika demonstrates that it is possible to
achieve fault tolerance while executing tasks with a distributed DAG format,
and thus forms a basis for future work within the group with multiple potential
directions.

8 chapter 1 introduction

Some potential future work involves further developing Áika as a Proof of Appli-
cability (POA) and directly tie the system to the Dutkat-project by investigating
the systems ability to run on fishing vessels in the Arctic. This also includes
integrating the system with other components of Dutkat, like the Dorvu file
system.

The source code is appended to the thesis, and is provided as a part of the
source files. The source code is also available on Github, but is currently placed
within a private repository⁴.

1.6 Outline

Chapter 2 covers relevant background information and related work within
the domain of edge computing, AI and distributed systems.

Chapter 3 outlines functional and non-functional requirements of Áika.

Chapter 4 presents the design and the overall architecture of Áika.

Chapter 5 covers implementation details.

Chapter 6 provides the experimental setup, results of the experiments, an
evaluation and a discussion of the results. The non-functional requirements
are also reviewed based on the results.

Chapter 7 summarizes and concludes the thesis and provides some potential
future work.

4. https://github.com/Joaalslie

https://github.com/Joaalslie

2
Background and Related
Work

This chapter outlines relevant fundamental concepts grounded in the thesis
and some related work. Section 2.1 gives an introduction to AI, the differ-
ent areas in the field and an in-depth introduction to machine learning and
deep learning. Section 2.2 explains relevant background information in edge
computing. Section 2.3 explains distributed software architectures that are
relevant. Section 2.4 explains directed acyclic graph (DAG) as a computation
model. Section 2.5 gives an overview of fault tolerance. Section 2.6 explains
persistent event queues. Section 2.7 summarizes some related work relevant
for the thesis.

2.1 Artificial Intelligence

The field of AI is broad. It is composed of multiple sub-fields that have been
popular at different times in the history of AI. Even more so, the fields history
has been rocky, with unrealistic expectations, hopes and promises. This section
presents an introduction to AI fundamentals and the history of the field.

9

10 chapter 2 background and related work

2.1.1 History

The concept of thinking machines was introduced in 1950 by Alan Turing,
through the paper "Computing Machinery and Intelligence", which was pub-
lished in MIND [33]. In the paper, Turing reflects on the possibility of thinking
machines and how thinking machines could be distinguished from humans
through a test of which he named "The Imitation Game". The paper is important
for the later breakthrough of AI due to the visions and thoughts that Turing
introduce regarding thinking machines. Considering the later outcome of how
AI models turned out, it is also safe to say that Turing was a man ahead of his
time.

Unfortunately, Turing was unable to realize his work, as computers was ex-
tremely expensive in the early 1950s, where leasing a computer could cost up
to $200,000 (inflation adjusted per 2010) per month [34]. The early computers
also imposed severe limitations with regards to memory, as they could only
execute commands, not store them.

The term "Artificial Intelligence" was later coined in 1956 by John McCarthy.
He defines artificial intelligence as:

The science and engineering of making intelligent machines, especially intelligent
computer programs [35].

As computers became faster and able to store more and more information, the
field of AI started to grow. The Perceptron algorithm was invented already in
1958 by Frank Rosenblatt [36]. It is a fundamental building block in neural
networks today and Rosenblatt has in the aftermath been labeled as the father
of deep learning, due to his invention. The research in the 1960s focused on
solving geometrical theorems and mathematical problems. In the later part of
the decade, researchers started working on machine vision, in robotics.

Despite the increase in computational power and memory, early AI still had
difficulties processing large amounts of data. The field of AI eventually started
to halt due to this limitation and combined with false hope resulted in the first
AI winter in 1974. An AI winter is a period of time during the history of AI with
cut funding and loss of interest [37, p. 21].

The salvation for the AI winter turned out to be an increased growth of interest
in expert systems. Expert systems are computing systems that aim to emulate
decisionmaking of a domain expert [37, p. 80-81]. Expert systems are composed
of two main components:

1. An inference engine which execute rules on known facts to reach a

2.1 artif ic ial intell igence 11

conclusion. This may also include explanation of the conclusion and/or
abilities for debugging.

2. A knowledge base composed of the rules and the facts.

Expert systems was originally invented in the 70s by Edward Feigenbaum
(now known as "the father of expert systems") through the DENDRAL project,
which started in 1965 [38]. DENDRALs main objective was to hypothesize the
substance’s molecular structure and the system even managed to rival chemists
that where labeled expert on this specific task.

The popularity and funding within AI started to grow in the 1980s and more
expert systems started to form, such as MYCIN [39] and the already mentioned
Stormcast (see Chapter 1, section 4). The increase in hype was, however partly
due to exponents of the field creating false promises and unrealistic claims.
An example of this is how the press marketed MYCIN as a general purpose
diagnosis tool, when it in fact, was limited to diagnosis of blood infections and
was never used on real patients [37, p. 21]. Such unrealistic claims and false
promises lead to a second AI winter, which struck the field in the late 1980s
and lasted until the late 1990s.

Since then, AI has again started to prosper, with an increased interest growth
in sub-fields like machine learning. Computers recently started to gain even
more increased computational power, which lead to the rise of artificial neural
networks in around 2010-2012.

2.1.2 AI Areas

AI is in general a vague term, since the word "intelligence" can be interpreted in
different ways. Throughout the history of AI, numerous of sub-fields, or areas
have sprung out from the general field. An illustration that shows the different
areas can be found in Figure 2.1. As seen in the figure, AI is often separated
into eight different areas [37, p. 22-26]:

• Natural Language Processing (NLP): This area involves parsing and/or
generation of text or audio in the form of speech [40].

• Decision support systems (DSS), knowledge based systems and ex-
pert systems: These type of systems aim to assist in decision making by
providing conclusions or advice by reasoning [41, 42].

• Agent-based systems and multi-agent systems: These type of systems
are composed of one or more components that are able to do tasks

12 chapter 2 background and related work

Artificial
Intelligence

Natural language
processing

Decision support systems
Knowledge based systems

Expert systems

Agent-based systems
Multi-agent systems

Robotics
Mobile and autonomous agents

Bio-inspired AI

Cognitive science
Cognitive computing

Cognitive computation

Perception and computer vision
Virtual reality

Augmented reality

Machine learning
Neural networks
Deep learning

Figure 2.1: Illustrates the different areas in AI [37, p. 22]

individually, or as a group [43, 44]. A great example is the Boids simula-
tion, where multiple components act together with a few simple rules to
simulate flock behavior [45].

• Robotics and mobile and autonomous agents: This interdisciplinary
area roots in electrical and mechanical engineering, as well as computer
science. The area resolves around the dual development of physical
devices and complementary software that carry out certain tasks [46,
47].

• Bio-inspired AI: This area revolves around using mechanisms from
natural systems and/or evolution as a source of inspiration for developing
AI models [48].

• Perception and computer vision: This area involves capturing and
interpreting digital images and videos. Augmented reality (AR) and
virtual reality (VR) are different ways of altering reality [49].

• Cognitive science, computing and computation: This area is slightly
related to Bio-inspired AI, but instead uses human cognition within
cognitive science as inspiration to simulate thought processes [50].

• Machine learning, neural networks and deep learning: This area of
AI involves training of models to find patterns in data, with algorithms

2.1 artif ic ial intell igence 13

that often have roots in statistics and mathematics [51, 52, 53]. This area
will be discussed further in Subsection 2.1.3.

Note that the areas introduced here are by no means definite and some of
them are closely related. Some AI techniques fall under multiple of these
areas.

2.1.3 Machine Learning

As briefly explained in Section 2.1, machine learning revolves around train-
ing models on datasets with different types of algorithms. One fundamental
thought regarding intelligent systems is that they should have the ability to
adapt and learn when the environment it operates in changes. Machine learn-
ing, on a fundamental level, is to program computers using example data or
actual data from past experiences in order to optimize a performance criterion.
The resulting computer program may be either:

• Predictive: It aims to make a prediction based on example data or
previous experience. An example of this is, for instance classification.

• Descriptive: It aims to gain and extract knowledge from data. An exam-
ple of this is, for instance feature extraction or dimensionality reduction.

A machine learning model can also be both of these two [54, p. 1-4].

Machine learning is traditionally divided into three main categorizes: Super-
vised learning, unsupervised learning and reinforcement learning. Reinforce-
ment learning is concernedwith training software agents to act in environments
in order to maximize some kind of reward without specifying how the task
is going to be achieved [55]. This area will not be explained further due
to relevance and we put a focus on the differences between supervised and
unsupervised learning instead.

Supervised Learning

Supervised learning is a category of machine learning concerned with opti-
mization of a model through labeled input data. Labels refers to the expected
outputs obtained from feeding input data to the supervised machine learning
model. The aim of a supervised learning algorithm is to use training samples
of input feature vectors with corresponding labels to obtain relationship infor-
mation between the inputs and labels. The resulting mapping created from
training can then be used to predict the output of new feature vectors [56].

14 chapter 2 background and related work

Supervised learning serves many purposes, but the most known is perhaps
for classification tasks, which can be done with linear classifiers like the Per-
ceptron algorithm [36] or the Support Vector Machine (SVMs) [57], which
works well with linearly separable data sets. For more complex data sets that
cannot be separated by a single line, there also exist non-linear classifiers, like
decision trees [58] and kernel-based methods, for instance a kernalized SVM
[59].

b

w1

w2

wn

w2

x1

x2

x3

xn

Outputz

Figure 2.2: The Perceptron algorithm.

The Perceptron algorithm is particularly important due to its further develop-
ment to the Multilayer Perceptron (MLP), leading to the further development
of artificial neural networks. Figure 2.2 shows an illustration of the Perceptron
algorithm. The input feature vector 𝑥 is initially multiplied element-wise by
an equally large vector 𝑤 . The resulting vector is summed together, before a
bias value 𝑏 is added to the final sum. Mathematically, this procedure can be
written as:

𝑧 = 𝑏 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

Which can be further generalized to:

𝑧 =𝑊𝑇𝑥 + 𝑏 (2.1)

Where𝑊 is a matrix of weights, 𝑥 is vector of the input data to the perceptron,
and 𝑏 is the bias.

The result may be propagated through an activation function in order to
introduce some form of non-linearity. The activation function can be a simple,
linear function where the input is equal to the output, or for instance the
Sigmoid function, which can be seen in Equation 2.2:

𝜎 (𝑧) = 1
1 + 𝑒−𝑎𝑧

(2.2)

2.1 artif ic ial intell igence 15

Where 𝑧 is equal to the output from Equation 2.1 and𝑎 determines the steepness
of the curve. With the following structure, the Perceptron can be trained by
randomly initializing the weights 𝑤 and the bias 𝑏, then pass data through
the Perceptron and compute the error with regards to the labels in the data.
The loss function can then be optimized to be as low as possible through an
optimization algorithm, like Stochastic Gradient Descent (SGD).

Unsupervised Learning

While supervised learning often provides satisfactory results, it also requires
resources in order to label the data properly. Other challenges includes hinder-
ing the model from becoming biased and dealing with lack of training data.
Unsupervised learning is a category of machine learning that counters this
issue by aiming to detect patterns in unlabeled input data. It therefore does
not rely on using error signals to evaluate solutions [60]. Classification tasks
can still be done through clustering algorithms, a type of machine learning
algorithm that puts the feature vectors from the input data into groups based
on some pre-determined criterion.

The most used clustering algorithm is K-means clustering [61], which assigns
feature vectors to a given number (k) of clusters. This is done by randomly
initializing k feature vectors, known as centroids. Each feature vector is assigned
to the closest centroid, before the centroid is moved to the average location of
its members. This process is repeated for a specific number of times, or until
the centroids movement converges towards 0. The disadvantage of k-means
is that it is limited to be used for spherically shaped data. There is also a risk
that one or more centroids become stuck between clusters during the training
process.

Unsupervised learning can also be used to extract features from the input data
through dimensionality reduction. An example of an unsupervised dimension-
ality reduction algorithm is Principal Component Analysis (PCA) [62, 63, 64].
PCA selects the optimal features by performing a linear transformation to a
new feature space, where the principal components (the selected features)
are linear functions of the original ones. They are also uncorrelated and PCA
selects features with the highest variance as principal components. This is done
by computing the covariance matrix of the full data set, before the eigenvector
and eigenvalues are computed and sorted based on in decreasing order with
regards to the eigenvalues.

16 chapter 2 background and related work

Semi-Supervised Learning

machine learning relies on high-quality data to obtain high-quality machine
learning models. As previously mentioned, a problem with supervised learning
is to obtain correct labeling for large data sets. Semi-supervised learning (SSL)
is a combination of supervised and unsupervised learning, where the machine
learning algorithm is provided with some information for supervision, but not
for all data points. In standard SSL, the data set used during training can be
divided into two distinct parts: one where labels are provided and one where
they are not [65, p. 2-3].

The idea of using unlabeled data for classification training has existed since
the 1960s with self-learning [66]. In the initial stages of the training process,
the model is trained on labels only and unlabeled data will gradually be
labeled based on the decision function in the current step. The model is then
retrained based on the previously used data and the newly labeled data. In the
1970s, semi-supervised learning started to gain increased momentum through
estimation of the Fisher linear discriminant rule using unlabeled data. The term
"semi-supervised learning" was, however not used before 1992, when the term
was introduced by Merz et. al [67] The interest in SSL increased further in the
1990s due to its potential application in text classification and NLP problems
[65, p. 3-4].

The SSL paradigm is becoming even more important today as we are gradually
generatingmore andmore data in large volumes. Labeling such large quantities
require time and resources and we therefore rely on SSL techniques to use
the data in machine learning tasks. In the recent years, SSL has for instance
been utilized in neural networks, in clustering methods and virtual adversarial
training [68].

2.1.4 Deep Learning

Deep learning is a sub-field of machine learning concerned with recognizing
patterns in or extracting information from data through deep artificial neural
networks. As mentioned previously, the Perceptron is a fundamental building
block in neural networks. After the Perceptron algorithm was introduced,
researchers found that multiple Perceptrons could be stacked together in layers
to approximate non-linear functions. In addition to this, several layers could
also be put together to allow more complex analysis of the data. For Deep
Learning, the network is typically built up of at least 2 hidden layers. This
structure is today called Multilayer Perceptron (MLP) and it is also one of the
most frequently used today [69].

2.1 artif ic ial intell igence 17

Figure 2.3: The typical structure of neural networks. This network is composed of five
layers in total, where each circle represent a neuron (or a perceptron). For
this network, three of the layers are hidden layers. During inference, data
is propagated into the input layer (to the left) and through the network
until the output result is received at the output layer (to the right).

Figure 2.3 illustrates how the general structure of neural networks. The network
receives input data, which is fed into each neuron (perceptron). The output
from the neurons in the first layer is then propagated forward as input to the
next layer. This is done layer by layer, until the output of the final layer has
been computed. A loss function can be used to compute the error between
the provided output and the given label. Since the network is composed of
many layers, with weights in each layer, the optimization routine is a bit
more complex compared to using a single perceptron. Optimization is done
by propagating backward in the network, layer by layer and computing the
gradients with respect to theweights and the biases in each neuron. Theweights
and biases are adjusted slightly depending on the optimization algorithm used.
This procedure of forward-propagating data and back-propagating is done
iteratively with the training data. Data can be propagated through the network
as single data points, in batches, or by sending the entire data set through each
time. The procedure may be repeated for a specific number of times (epochs)
as well.

Neural networks are not limited to MLPs. An example of a different type of
neural network is Convolutional Neural Networks (CNNs). This type of network
maintains the same structure as the MLP (seen in Figure 2.3), but utilizes
discrete convolution, often in combination with max-pooling. The convolution
operation functions by using a moving kernel of values to compute a weighted
sum between the overlapping structured data and the kernels values. The
kernels values constitute the weights that are trained in the convolutional layers.
The operation is often used in computer vision tasks on image data.

18 chapter 2 background and related work

The convolution operation is described in Equation 2.3:

𝑧 =𝑊 ∗ 𝑥 =

𝐶∑︁
𝑐=1

⌊𝐹𝐻 /2⌋∑︁
𝑘=−⌊𝐹𝐻 /2⌋

⌊𝐹𝑊 /2⌋∑︁
𝑚=−⌊𝐹𝑊 /2⌋

𝑊𝑐,𝑘,𝑚𝑥𝑐,𝑖+𝑘,𝑗+𝑚 (2.3)

Where 𝐶 denotes the number of channels in the image, 𝐹𝐻 denotes the height
of the kernel, 𝐹𝑊 denotes the width of the kernel,𝑊 denotes the kernel, and
𝑥 denotes the image.

Specific kernels can be used to blur images, detect edges or corners, etc. With
CNNs, we seek to train the networks to learn the kernels themselves. Convo-
lution layers are often used as initial layers in neural networks that extract
features from the input data.

Max pooling is often applied along with convolution in order to reduce the
dimensionality of the data and extract the most relevant features. The max
pooling operation performs feature reduction by selecting the highest valued
feature from each cell in a grid that overlaps with the input data. The cell sizes
in the grid are pre-determined.

Convolution is usually used for extracting features from the data and an MLP
is therefore often used afterwards to classify the data based on the features
extracted by the convolution layers [70]. Some advantages of using the CNN
is that they utilizes few weights compared to a single, large MLP and the
convolution operation does not require the data to be of a fixed size [71, p.
326-366].

When a networkmodel is done training, it is also possible to detach the classifier
and use the remaining part of the network as a feature extractor on other data
sets. This procedure is known as transfer learning [72].

In general, neural networks can be shaped in many ways, from relatively simple
architectures like the convolutional neural network LeNet5 [73] to complex
networks like the semantic segmentation network U-NET [74]. Despite this,
they often tend to maintain a similar structure, where a network is organized
into multiple layers composed of neurons. Note that there also exist many other
types of neural networks than the ones mentioned here, for instance LSTMs
[75] that is used for NLP tasks, or Autoencoders [76] that can be used for noise
removal and/or compression of data. We will not go into these types here, as
they are not particularly relevant for the thesis.

2.2 edge computing 19

2.2 Edge Computing

Edge computing is a distributed programming paradigm where computational
processes are moved closer to the data source at the edge of a network. The
aim is to reduce the response time and to save bandwidth, but can also be used
for privacy. Figure 2.4 illustrates how the Edge Layer connects the IoT layer,
where sensor data is collected, in relation to the cloud layer [77].

There are several additional motivations behind edge computing, such as en-
abling a more sustainable energy consumption by offloading cloud centers.
Another important motivation is that edge computing can be used to deal
with data explosion due to the increase in IoT devices and thereby decrease
the network traffic. Edge computing does also, however has many challenges.
Enabling general-purpose computing on edge nodes is considered a severe
challenge due to the variety of edge nodes that exists. A second challenge
involves how to partition and offload tasks efficiently and automatically to
improve performance. Enabling the use of edge nodes in a secure and privacy
preserving manner is also an important challenge, particularly for alternative
devices, like switches, routers and base stations [77].

Cloud
Layer

Edge
Layer

IoT
Layer

Figure 2.4: The Edge Layer. The figure illustrates how the edge layers can be used
as a connection between the IoT Layer and the Cloud Layer. Sensor data
is collected in the IoT layer, while computation is carried out in the Edge
Layer. Data collection, results and additional computing that does not
require a quick response time can be moved to the Cloud Layer.

20 chapter 2 background and related work

Centralized and Decentralized Edge Computing

While the Edge layer is placed between the IoT Layer and the Cloud Layer, the
physical edge nodes may still be placed at different locations. A centralized
edge will have the edge nodes placed close, typically in the same local network.
A decentralized edge will, however have nodes scattered across several loca-
tions. It is also possible to mix these two into a partly centralized and partly
decentralized edge, where some nodes are connected in the same local network
and some nodes are scattered across multiple locations. Decentralized edges
has for instance been used to create decentralized storage systems [78].

Untrusted Edge Environment

Edge devices may sometimes operate in environments where people, processes
or physical equipment are at risk of harming the devices. For example in
surveillance systems where people are being monitored, there is a risk that
malicious actors will try to damage the system hardware, or interact with the
processes. We refer to an environment like this as an untrusted edge environment.
When operating in these types of environments, it is important that processes
within the system and the equipment itself is protected in such a way that
the system is able to withstand a certain amount of damage and to be able to
detect various types of failures.

Edge Intelligence

A rapid development in communication technology has lead to a surge in mobile
device usage. This has further lead to the rise of edge computing, which is
gaining a constant increase in popularity today. At the same time, the increased
computing power has lead AI to thrive more than ever before. Current ongoing
research aims to investigate how some AI solutions can be moved to an edge
environment to reduce the response time and save bandwidth. The term "Edge
Intelligence" is often used to describe the confluence between edge computing
and artificial intelligence [13].

2.3 Distributed Software Architectures

Distributed systems are characterized by dispersing components across mul-
tiple machines, which may lead to a high amount of complexity within each
individual system. When working with such complex system, it is crucial to
organize the system in a proper manner. The aim of distributed software archi-

2.3 distributed software architectures 21

tectures is to describe how the components in a distributed system is organized
and how they interact [79, p. 55]. Distributed software architectures can be
categorized into four main styles: Layered, event-driven, object-oriented and
resource-centered architectures.

Layered architectures organize components into layers, where components at
a layer above can make down-calls to layers below and layers below can make
up-calls to above layers. This type of architecture can typically be found in
layered communication protocols, like Transmission Control Protocol (TCP),
or in application layering [79, p. 57-62].

In object-oriented architectures, objects correspond to defined distributed sys-
tem components and each object is connected through a procedural mechanism
[79, p. 62-64].

Resource-based architectures see a distributed system as a collection of re-
sources, where each resource is managed by one of the systems components.
An example of a resource-based architecture can be found in the web and is
today known as Representational State Transfer (REST) [79, p. 64-66].

Event-driven architectures is based on detection, consumption, production and
reaction to events, where events often are considered as significant changes
in a state. This architectural style is for instance used in publish-subscribe
architectures [79, p. 66-71].

2.3.1 Controller/Agent

Often known as master/slave architecture, the term has recently caused some
controversy due to its improper naming scheme [80, 81, 82]. The problem
was also addressed already in 1997 by Johansen et al. [83], where they used
controller and worker as terms. It is possible that the rise of the Black Lives
Matter-movement has shed light on this in more recent times. For this thesis,
we have decided to use an alternative to the previous and will therefore refer
to this architecture as Controller/Agent architecture, which is now used by e.g.
Jenkins1.

In distributed systems, the controller/agent architecture is a model for com-
munication where a single process or device (controller) controls one or more
other processes or devices (agents) [84]. This is illustrated in Figure 2.5, where
a single controller assigns tasks to four agents. Once a task has been completed,

1. https://cd.foundation/blog/2020/08/25/jenkins-terminology-
changes/

 https://cd.foundation/blog/2020/08/25/jenkins-terminology-changes/
 https://cd.foundation/blog/2020/08/25/jenkins-terminology-changes/

22 chapter 2 background and related work

Controller

Agent 1

Agent 2 Agent 3

Agent 4

Figure 2.5: Controller/agent architecture. Illustrates how a single controller orches-
trates several agents.

the agent may refer back to the controller to receive another task. The con-
troller may also collect the result from the agent, if necessary. The architecture
is common due to its simplicity and has been used in several systems, such as
the Google File System [85].

There are several reasons for using the controller/agent architecture. It is prac-
tical to avoid deadlocks as the controller is the only process that synchronizes
with the agents. The system can thus avoid typical synchronization pitfalls.
The architecture also scales well horizontally, as more agents can be added to
carry out work. This will be the case as long as the controllers workload does
not increase by too much, as such would lead to it becoming a bottleneck in
the system. The disadvantage of this model is that the controller is at risk of
becoming a single point of failure, meaning that if the controller shuts down,
the entire system will shut down.

2.3.2 Pipeline

In the 1960s the need for most cost-effective and high-performing systems be-
came critical. This lead to the development of the pipeline architecture. Pipelin-
ing is a form of embedding parallelism or concurrency where a computation
process is segmented into stages. These stages are executed by autonomous
units in an overlapped mode, almost like an industrial assembly line [86]. A
loose definition of pipelining, according to C. V. Ramamoorthy and H. F. Li
is:

The technique of decomposing a repeated sequential process into sub-processes,

2.4 directed acyclic graph 23

each of which can be executed efficiently on a special dedicated autonomous
module that operates concurrently with the others [86].

An illustration of the pipeline architecture can be found in Figure 2.6, where a
sequential process is split into N stages. The pipeline is constructed as a chain
of stages. The initial stage fetches or receives input from some kind of source
and performs a task with respect to the input. The result is then passed on to
the next stage before a new input element is retrieved.

Input OutputSTAGE 1 STAGE 2 STAGE 3 STAGE N

Figure 2.6: Pipeline Architecture. Illustrates a pipeline consisting of N stages.

The pipeline architecture has gained considerable attention since its initial
usage in the 1960s and it has been used in a wide number of areas, in hard-
ware architectures like MIPS [87], in operating systems like Vortex [24], in
distributed deep learning inference [88], or even relatively simple tasks like
the Farmer Task [79, p. 202-203].

The downsides of the pipeline architecture is that it requires a very strict,
sequential processing format to be able to work. Another challenge is how a
process can be divided into stages with an even work load in each stage. If the
stages does not have an even work load, the system is at risk of being stalled
by one of the stages, which can lead to a producer/consumer problem [89] if
not handled correctly.

2.4 Directed Acyclic Graph

In the field of graph theorywithinmathematics and computer science,a directed
acyclic graph (DAG) is a graph where the edges point in only one direction.
This is typically illustrated with arrows that point in the direction that the
information is flowing.

The term "acyclic" means that there is no way for a vertex to cycle back to
itself (there are no cycles in the graph). This means that once a node has been
visited, it cannot be revisited. DAGs are great to use for modeling dependency
tasks, where one task needs to be carried out before another [90]. Figure 2.7

24 chapter 2 background and related work

Figure 2.7: An example DAG consisting of 7 vertices and 8 edges.

illustrates an example DAG. The graph is composed of 6 vertexes and a total
of 8 edges.

In distributed systems, DAGs can be used to illustrate the connection between
multiple processes within a system. Each vertex typically represents a process
(or execution), while the edges represents communication between them. The
implementation of the communication between the vertices may vary from
system to system. In for example Dryad (see Subsection 2.7.3), the communi-
cation can come in the form of either file, TCP pipes, or shared memory FIFO
queues [91].

The DAG is often considered as a general computation model. In AI, DAGs
are particularly used to model neural networks, due to their practical, layered
structure. This can for example be seen in deep learning frameworks like
DistBelief [92], Caffe [93] and Tensorflow [94], where the computation is
performed at the vertices of the graph. The values that flow along edges are
referred to as tensors. Tensors are multi-dimensional arrays that contains data.
The DAG computation model is not limited to deep learning and is also used
in other types of computational frameworks, like Cogset [20] and MapReduce
[19].

2.5 Fault Tolerance

The notion of partial failure occurring is an important characteristic in dis-
tributed systems. Partial failure refers to the event where a component of the
system has failed, while the other components remain operable. Whenever
such a failure occurs, the system should continue to operate while the fail-
ing component of the system is being repaired. The ability to recover from

2.5 fault tolerance 25

such failures while the system operates is referred to as fault tolerance [79, p.
423].

2.5.1 Dependability

Fault Tolerance is strongly related to dependability. We often refer to systems
that can satisfy the dependability characteristic as dependable systems. These
type of systems typically cover four requirements associated with dependabil-
ity[95]:

• Availability: The system is ready for use immediately. It refers to the
probability that the system is operating correctly at any given moment.
Availability is defined in terms of an instant in time.

• Reliability: The system can continuously run without failure. It is differ-
ent from availability by being defined in terms of a time interval.

• Safety: No catastrophic action will occur, despite temporary failures.
This is a very important requirement in safety-critical systems, where
failure can lead to loss of lives or generally extreme damages.

• Maintainability: A failed system can easily be repaired. It relates to
availability, as a maintainable system tends to show a high degree of
availability.

There is, however not a complete agreement on this. Some researchers choose
to include three additional requirements [96]:

• Confidentiality: data and other information should not be made avail-
able without intent and authorization

• Survivability: The systems services are robust enough to withstand
attacks.

• Integrity: Ensures that data is not modified or deleted without intent
and authorization.

It is important to note that these requirements are generally strongly related
to each other. This can be seen in particular for the four base requirements. A
system that can be repaired easily (and ideally automatically) will make the
system available for use quicker. A reliable system ensures that the system runs
for longer periods of time without failing, which compliments safety, which
reduces the probability that something catastrophic happens when a failure

26 chapter 2 background and related work

finally occurs.

2.5.2 Failure Models

A failing system indicates inability in providing its services. If a failure occurs,
it is important to know what type of failure it is and the implications of the
failure. The seriousness of failures can be classified based on a classification
scheme [79, p. 428]:

• Crash Failure: Permanent halt, but working correctly until halt.

• Omission Failure: Failure of responding to incoming requests. Could
either fail to receive message (receive-omission failure) or fail to send
message (send-omission failure).

• Timing Failure: The response lies outside a specific time interval.

• Response Failure: The response is incorrect. The value can be wrong
(value failure) or the response may deviate from the correct control flow
(state-transition failure).

• Byzantine Failure: Arbitrary responses may be produced at arbitrary
times and may remain undetected. In addition, output may be outside
expected value limits.

Byzantine failures are often considered the most serious, as the failure are at
risk of not being detected at all. They tend to occur if a component fails to
perform an action which it should have, or if it perform an action which it
should not have.

There are a wide range of potential consequences due to failures within a
system. They may for instance affect consensus in asynchronous systems. The
FLP impossibility result shows that it is impossible to achieve deterministic
consensus in asynchronous distributed systems where one or more processes
are unreliable [97]. Despite this, the case can be by-passed through randomized
consensus algorithms [98], where liveness and safety, even under worst-case
scenarios is achieved with high probability.

2.5.3 Redundancy and Resilience

Both Redundancy and Resilience play important roles when attempting to
achieve fault tolerance in a system.

2.5 fault tolerance 27

Redundancy

The term "redundancy" tends to have a negative meaning, but in the case
of distributed systems, we use redundancy as a means for masking failures
[79, p. 431]. Failure masking by redundancy is typically divided into three
categories:

• Information Redundancy: Extra bits are added to allow recovery from
garbled bits.

• Time Redundancy: An action is performed again if it timed out or failed.

• Physical Redundancy: Extra equipment or processes are added to make
it possible for the system to tolerate loss/malfunctioning of some compo-
nents.

Resilience

Resilience is defined as the capacity to recover quickly from failures. In the
context of distributed systems, it is a set of strategies used to achieve high avail-
ability. The resilience property is often added to distributed systems through
process groups. When transmitting a message, it can then be sent to the en-
tire group of identical processes instead of a single one. That way, the system
may handle the message, as long as the entire group has not failed [79, p.
432-433].

Triple Modular Redundancy

Triplemodular redundancy (TMR) is a technique used to achieve fault tolerance.
In TMR, a task is performed by three modules (or processes) and the result
is processed by a majority-vote system that produces a single output [79, p.
431-432].

Figure 2.8 illustrates how this can be carried out in practice, where three
modules receive input from one source, while a voter collects the result from
the modules and produces a single output. The voter provides healing, such
that an error in stage n will be masked away for all of the pipelines. This
technique illustrates how redundancy is used to group identical processes to
achieve resilience in a system. Triple Modular Redundancy can be generalized
to N-Modular Redundancy case, where the input is sent to a pre-determined
number of modules.

28 chapter 2 background and related work

Module 1

Input Module 2

Module 3

Voter

Figure 2.8: Triple Modular Redundancy. The figure illustrates how the same input
source can be forwarded to multiple modules. A voter receives the result
from each module and decide which of the results to forward.

2.5.4 The CAP Theorem

The CAP theorem was first proposed in 1999 [99], but it had not yet been
proven and was therefore referred to as the "CAP Principle". The principle was
proven in 2002 [100] and has afterwards been referred to as the CAP Theorem.
A more formal definition of the CAP Theorem is as follows [79, p. 461]:

CAP Theorem: Any networked system providing shared data can provide only
two of the following properties:

• C: Consistency, by which a shared and replicated data item appears as a
single up-to-date copy.

• A: Availability, by which updates will always be eventually executed.

• P: Tolerant to the partitioning of process group (e.g. because of a failing
network).

In other words, in a network subject to communication failures, it is impossible to
realize an atomic read/write shared memory that guarantees a response to every
request [101].

The theorem illustrates the trade-offs between safety and liveness in distributed
systems and it shows that achieving both at the same time is impossible.

2.6 persistent event queue 29

2.5.5 Detecting Failures in Distributed Systems

Failure detection is an important part of implementing a fault tolerant system,
as faults in a system also must be detected in order to be handled. This can
be difficult, there is only two ways of checking if a process has failed: Either
send a ping message and wait for a response, or wait passively for a message.
The problem with the assumption that a process has failed after a timeout is
that it may simply be slow at responding. The base solutions can be expanded
such that processes perform information exchange through gossiping when
communicating. That way they can always know when a process was last heard
from by other nodes [79, p. 462-464].

2.6 Persistent Event Queue

A computer is a complex machine that runs many processes and threads simul-
taneously. Sometimes these processes and threads need to communicate with
each other through inter-process or inter-thread communication. Distributed
systems are composed of multiple computers that communicate with each
other and also rely on communication protocols over a network in order to
pass messages between them.

Event
Sender

Event
Sender

Event
Sender

Event
Receiver

Event
Receiver

Event
Receiver

Figure 2.9: Illustration of an event queue. Senders passes events into the queue and
receivers dequeues individual events which are then handled.

An event queue is a storage unit where events from a process are held prior
to being processed by a receiving process. They are stored in first in first out
(FIFO) order [102]. The processes that utilize the queue are typically split into
two groups:

• Senders: Are responsible for enqueuing events.

30 chapter 2 background and related work

• Receivers: Are responsible for dequeuing events and consume them.

Figure 2.9 illustrates how senders and receivers interact with a event queue.
The communication may vary, depending on if the sender/receiver is local or
remote in relation to the queue.

Persistent queues provides a certain guarantee for data integrity of the items
they hold, as long as the data they hold is persisted to non-volatile memory. In
the event of software failure the queue will be completely recoverable, as long
as the files and the file system is not damaged or corrupted.

2.7 Related Work

A tremendous amount of research has been done in the recent years that can
be related to Áika. In this section we present some of this related research. We
present FRAME and CESSNA in Subsection 2.7.1, NAP and Falcon Spy Network
in Subsection 2.7.2, Dryad and Cogset in Subsection 2.7.3 and SEDA and Vortex
in Subsection 2.7.4.

2.7.1 FRAME and CESSNA

FRAME is a fault tolerant and real-time messaging architecture for edge com-
puting [103]. It is developed through a publish-subscribe architecture where
the broker is duplicated to avoid single point of failure. It leverages timing
bounds to schedule message delivery and replication actions to meet needed
levels of assurance. The timing bounds are thus able to capture relation be-
tween traffic/service parameters and loss-tolerance/latency requirements. The
architecture is implemented on top of the TAO real-time event service [104].
FRAME is implemented with a publish-subscribe messaging model, consisting
of three components: publishers, subscribers and brokers. They enforce fault
tolerance by using a backup broker to avoid single point of failure. Toleration of
broker failure is heavily weighted in the system, as the broker is responsible for
accommodating all message streams. It can therefore also become a bottleneck
in the system.

CESSNA (Client-Edge-Server for Stateful Network Applications) is an initial
proposed protocol developed to achieve resilient networking on a stateful edge
computing system [105]. The protocol provides consistency guarantees for
stateful network edge applications and allows offloading computation from
clients and servers. This leads to a reduction in response latency, backbone
bandwidth and computational requirements for the client. CESSNA has a design

2.7 related work 31

built of two layers. These layers represent different types of edge recovery:
local and remote recovery. They are executed based on the distance the failed
edge has to the recovered edge.

2.7.2 NAP and Falcon Spy Network

NAP (Norwegian Army Protocol) is a scheme for fault tolerance and recovery
of itinerant computations [106]. The runtime architecture resolves around
having a landing pad thread and a failure detection thread within each process.
The landing pad is responsible for maintaining a NAP state object that stores
information about mobile agents hosting execution or serving a rear guard. The
landing pad thread is responsible for informing the failure detection thread
which landing pad that needs to be monitored. NAP uses a linear broadcast
strategy that refines the strategy implemented by Schneider, Gries & Schlichting
[107]. NAP also expands upon the existing TACOMA [108] and is able to provide
low-cost fault tolerance to its users.

Leners et. al has implemented a system for failure detection and recovery in
distributed systems through a network of spies [109]. Falcon Spy employs a
network of spies in the application, operating system, virtual machine and
network switch layers on the system being monitored. Spies are deployed at
the different layers to hinder disruption. The motivation behind Falcon Spy is
to enable effective failure detection and improve the previous method (end to
end timeouts).

2.7.3 Dryad and Cogset

Dryad is a general-purpose distributed execution engine developed byMicrosoft,
used to execute coarse-grained data-parallel applications [91]. One of Dryads
key features is to allow the user to construct an execution DAG through a
custom graph description language. The Dryad run-time maps the graph onto
physical resources. The graph vertices allow an arbitrary number of inputs
and outputs, unlike MapReduce [19], which only supports single inputs and
outputs. A job manager contains the application-specific code used to construct
the communication graph. It also schedules work across available physical
resources, which are maintained by a name server. Dryad supports three
different channel protocols:

1. File: This is the default protocol. A producer writes information to disk
in a temporary file and a consumer reads from this file.

2. TCP Pipe: Information is continually passed via Transmission Control

32 chapter 2 background and related work

Protocol (TCP). It requires no disk access, but limits the vertices to
schedule at the same time.

3. Shared-Memory FIFO: Information is passed through First In First Out
(FIFO) queues within shared memory. This makes the communication
overhead extremely low, but it requires end-point vertices to run within
the same process.

The fault tolerance policy of Dryad assumes that the computation performed is
deterministic. The job manager is informed through a daemon that monitors
the vertex whenever an execution fails. If failure occurs due to a read error
on an input channel, the default policy marks the execution record as failed,
which terminates the process if it is running.

Cogset has a different design compared to Dryad. It is a high-performance
engine that builds on the principles of MapReduce [19], but uses static routing
(contrary to MapReduce, which uses dynamic routing) while preserving non-
function properties [20]. These characteristics are associated with traditional
engines. Cogset provides a few fundamental mechanisms for reliable and
distributed storage of data and parallel processing of statically partitioned
data at its core. The use of static routing ends up reducing the need to store
temporary copies of the intermediate data. On the other hand, it also requires
tighter coupling between components for processing and storage within the
system. Note that Cogset outperforms Hadoop, even when having an extra
Hadoop layer for compatibility.

2.7.4 SEDA and Vortex

SEDA (staged event-driven architecture) is a highly concurrent Internet ser-
vice that simplifies the construction of well-conditioned services [110]. SEDA
applications are constructed as a network of stages. A stage is defined as an
application component that consists of three sub-components:

1. An event queue that handles incoming events.

2. An event handler.

3. A thread pool.

SEDA applications are composed of a network of such event-driven stages. They
are connected with queues. This architecture is best suited for well-conditioned
events, meaning that they behave like simple pipelines. Stages are scheduled
by a set of dynamic controllers. They also manage resource usage. Isolating

2.8 summary 33

threads to single stages makes thread synchronization and race conditions
easier to handle.

Vortex is a fully event-driven multiprocessor operating system that supports
performance isolation [24]. The kernel and applications in Vortex are structured
as stages, like the previously discussed SEDA [110] and they communicate
through event passing. Each available CPUmanages a separate event scheduling
tree. They are tree structures that consist of event queues. The nodes in the
tree run separate event schedulers that moves events towards the root. Events
are enqueued at the leaf nodes. The Vortex EST mechanism also has the ability
to install different schedulers in the trees nodes.

2.8 Summary

The chapter presents relevant background and related work for the thesis.
The history and areas of AI, starting from the Turing paper in 1950, to expert
systems in 1980, an the recent rise in neural networks and deep learning is
explored. The chapter also covers fundamentals of edge computing and how
AI and edge computing can be merged together. We have explored different
distributed software architectures that are relevant for out system, in particular
the controller/agent architecture, but also the pipeline architecture. We have
looked into the different failure models that can appear in distributed systems
and how different types of fault tolerance can be achieved. Related work shows
that there is a high amount of research that has been done within these areas.
This applies both for achieving fault tolerance and for supporting a distributed
DAG computation model.

The next chapter provides an analyze what requirements are necessary to build
our system with regards to the problem definition and the application domain,
using our acquired knowledge from this chapter as well.

3
Requirement Analysis
This chapter discusses the Dutkat-project and use it to outline the requirement
specification for Áika. The requirement specification is divided into Functional
Requirements and Non-Functional Requirements.

Fish is today considered as one of the most important food sources in the
world. It is estimated that fish takes up around 17% of the current production
of edible protein on a global scale, but this number is expected to increase
with population growth [111]. At the same time, the fishing industry has fallen
victim to crime in the form of illegal fishing and over-exploitation. The United
Nations war on crime has estimated that billions of US dollars are lost each
year due to fish crime [112]. These problems affect the sustainability of fish
stocks and it is important to combat these forms of criminal activities in order
to enable a sustainable fishing as the demand for fish increases.

It has been argued that installing equipment for 24/7 monitoring and surveil-
lance on fishing vessels can aid in the combat against fish crime. This is
currently being done in Denmark and the Norwegian government is currently
investigating similar solutions [113]. The deployment of such systems does,
however come with some serious disadvantages as well. Without proper au-
tomation, monitoring of the data would have to be done manually, which will
require a tremendous amount of resources when the system is deployed aboard
many vessels. Automatic analysis of sensor and surveillance data combined is
in itself a challenge that must be thoroughly researched. Another problem is
privacy, as surveillance in such a high degree may be considered personally

35

36 chapter 3 requirement analysis

invasive.

Dutkat [31] is a multimedia system proposed for catching illegal catchers and
being privacy-preserving at the same time. This is enforced by storing data
within a secure storage, which may only be accessed if a true positive flag of
illegal activities has been raised. We aim to use Dutkat as a motivation for the
work on Áika. The system is implemented with Dutkat in mind, specifically.
Despite this, one aim is to make Áika generalizable for other cases as well.

3.1 Low-Bandwidth Edge Environments

Fishing vessels operating in the Arctic sea may have trouble connecting to high-
bandwidth networks. This makes it necessary for Dutkat to rely on satellite
broadband. This introduces four new challenges for the system:

• Cost: Communicating over satellite broadband requires additional phys-
ical equipment to function properly, but also a subscription to a satellite
broadband. Depending on the use case, both of these can be very expen-
sive.

• Connectivity: Digital communication between the fishing vessels and the
mainland operational centers is often limited,because the communication
is primarily facilitated by satellites.

• Bandwidth: The bandwidth of satellite broadband is very limited, which
raises issues when there is a need for transporting voluminous amounts
of data that is generated continuously on the fishing vessel. A 2017 report
published by the Arctic Council Secretariat [114] states that maritime
users at 72 degrees north suffer from lack of bandwidth and unstable
communications at sea. This is the case, even for narrow-band com-
munications. They also state that an increased reporting of catch from
fisheries will require more capacity for sustainable management. Further-
more, research shows that generated data cannot be transported across
satellite broadband without compression [32], which can lead to data
being corrupted by noise and thus affect the machine learning inference
accuracy.

• Partitioning: The issue with low bandwidth can further lead to problems
with partitioning. If data is generated in large volumes, it becomes
infeasible to partition the data over several locations, which makes it
necessary to store most of the data on the vessel.

3.2 fault tolerance and security 37

These challenges reveal that data transportation across a satellite broadband
can cause a severe bottleneck in the system. This can be solved by moving
parts or the entire computational process to each individual fishing vessel. By
stationing a cluster of computers aboard the fishing vessel, the data can be
processed directly from the source. This was, for instance done with StormCast.
The result and the data itself can then be stored securely on board the vessel.
The system can thus be programmed to raise a flag in the occurrence of abnor-
mal events and only then make contact with authorities on mainland. Placing
a central station on the mainland that collect such anomalies, can be used as a
tool for inspection authorities for performing inspection of vessels.

Stationing all hardware aboard the fishing vessels may not be ideal due to the
equipment being vulnerable, which can make it necessary to utilize a hybrid
solution, where additional hardware is stationed on the mainland in addition
to the stationed hardware on each fishing vessel. That way, lightweight data
streams can be transported to the mainland via satellite broadband to be
processed there. Larger volumes of data may be processed on the fishing vessel.
Raw data can also be stored on-board as well.

3.2 Fault Tolerance and Security

As the title of the Dutkat paper states, the aim of the system is to catch illegal
catchers. The disadvantage ofmoving computation to the edge is that it requires
physical equipment to be stationed directly on the fishing vessel. In the case
where a crew aboard a fishing vessel has illegal intends, the equipment is at
risk of being damaged physically or compromised in some form.

Because of the underlying threats that physical equipment stationed on fishing
vessels is exposed to, it is necessary to develop a system that is able to withstand
failures.

On the other hand, there is nothing that can stop the crew from tampering with
the equipment directly, or in-directly. TThe crew can simply unplug the power-
source of the entire system, or throw all of the equipment overboard. Because
of this, it is necessary to not only have a system that can withstand failures,
but also is able to detect them and report them to authorities. This can be done
by stationing a monitoring node on the mainland that communicate with the
system over the satellite broadband. By continually messaging the system with
regular time intervals, it can know if the system is currently functioning or not.
If the node is unable to make contact with the system, the node can notify
authorities that it has discovered an anomaly and recommend inspection. In
the event of partial failure within the system, the system itself would have to

38 chapter 3 requirement analysis

detect these failures, log them and inform the node.

The system is not only vulnerable to physical damage. The potential for digital
system invasion also needs to be considered. This can be done by using strict
authorization and encryption when passing messages between nodes. It is
important to ensure that not only the data, but also weights from machine
learning models. Machine learning models are vulnerable against adversarial
attacks and it has been proven that only a slightly amount of added noise can
completely change the classification of a feature vector [115].

3.3 Privacy-Preserving Data

One advantage of moving parts of the computation process to the fishing vessel
is that data can be filtered at the vessel directly before sending it (or parts
of it) to the mainland, which can increase privacy. Moving the computational
process closer to voluminous data was one of the main motivations behind
TACOMA in 1993 [108]. By storing private data within secure storage units
directly on the fishing vessel, we can ensure that the sensitive data remains
private.

There is currently ongoing research investigating file system support in Dutkat
that can enable privacy-preserving analysis [32]. Dorvu is a novel DFS imple-
mented as a Filesystem in Userspace (FUSE) application. Storage is imple-
mented by mirroring the contents of a directory on a local file system. When
Dorvu is mounted to a local folder, the mirrored folder will be populated with
internal files and encrypted data files. These files can only be read through
Dorvu, or by performing encryption manually.

Dorvu handles three file types internally. The file content is stored in data files.
When a new file is created, a configuration file is automatically created with
it. Each data file must have a configuration file in order to be visible in the
directory listing. They are used for reference in configuration files and contain
a JSON listing of group definitions, composed of a name and a list of public
key SHA-256 signatures.

The experiments in Dorvu show that a FUSE based implementation does not
significantly affect the performance for the use-case of optimizing in low-
bandwidth transfer. The biggest performance bottlenecks in the file system
is file versioning and metadata operations. The experiments also show that
reading large files of 64-128 MB makes encryption the largest overhead.

By mounting the Dorvu file system to Áika, we can ensure that sensitive data is

3.4 laws, regulations and gdpr 39

stored in a privacy-preserving manner. By keeping the sizes of the checkpoints
small, we can ensure that encryption overhead does not become a big problem.
Since Dorvu is a DFS, it also comes with the advantage that checkpoints still
can be retrieved, despite device failure. This makes it simpler to resume the
computation process on a replica device.

The Dorvu file system is currently under development at The Corpore Sano
Centre and it is currently not a finished system. The file systems requirements
have been collected through dialogue with the developers. Dorvu should satisfy
the following requirements:

• Encryption: Transparent encryption upon read/writes.

• Access Control: Users can provide public keys to determine accessible
files. Access Control is enforced through encryption and inaccessible files
are hidden from the directory listings.

• Policies (Meta Code): Policies can be pre-applied to files to guarantee
policy compliance while readable. They can consist of arbitrary code that
modify data before writing, or create new files.

• Versioned File View: Files can be created in multiple versions to comply
with different policies and be accessible for different users. This should
be transparent for the user.

• POSIX compliance: Dorvu should support automatic data production
from arbitrary sources. This compliance involves supporting a regular
file system interface and let users utilize Dorvus functionality purely
through creation and modification of files and directories.

• Data Distribution: All files will be distributed among several nodes.
Materialization at each node may be restricted by bandwidth. Dorvu
therefore needs to be able to identify files of the highest semantic sig-
nificance to expend bandwith efficiently. This should be applied to data
distribution as well. Users should be able to express data distribution and
bandwidth prioritization manually for their own files.

3.4 Laws, Regulations and GDPR

Dutkat is a surveillance system that analyzes data from multiple sensors. This
may also include video surveillance data from cameras aboard fishing vessels
and data generated by these cameras will be considered sensitive as long as

40 chapter 3 requirement analysis

people are identifiable on the recording. Because of this, it is important to
consider the legal aspect and take laws and regulations on surveillance and
privacy into account when constructing the system.

Privacy

The right to privacy is considered a qualified, fundamental human right that can
be found in many national legislations. Over 130 countries have constitutional
statements regarding the protection of privacy. These countries are scattered
across every region in the world. The Norwegian constitution states that:

Everyone has the right to the respect of their privacy and family life, their home
and their communication.1

The statement has been a part of the Norwegian Constitution since it initially
was formed in 1814. Furthermore, the United Nations Universal Declaration of
Human Rights states that:

No one shall be subjected to arbitrary interference with his privacy, family, home
or correspondence, nor to attacks upon his honour and reputation. Everyone has

the right to the protection of the law against such interference or attacks.2

The right to privacy is further enforced by EU through General Data Protection
Regulation (GDPR). If it where to become mandatory to deploy Dutkat on
fishing vessels in Norway, the system must ensure that the privacy of actors
aboard each fishing vessel is rightfully protected.

GDPR is considered the most strict data privacy and security law in the world.
It is governed by the European Union (EU). The Law enforcement directive
(LED) is a special directive that is directed towards law enforcement. GDPR
states, under article 35 that A Data Protection Impact Assessment (DPIA) has
to be made as a part of protection by design principle [116]. A DPIA is a
process for building and demonstrating compliance. The regulation of DPIA is
necessary to consider in the Dutkat-project, as the system will likely process
sensitive/personal data and non-compliance of DPIA can lead to fines from
supervisory authorities.

In addition to GDPR, the European Commission presented the AI Act on 21
April 2021 as a novel regulatory framework for AI [117]. The act is currently a
draft that seeks to codify a standard for AI in EU, requiring it to be legal and

1. Norwegian Constitution, §102, first sentence. Translated by Stortinget, 2018.
2. United Nations Universal Declaration of Human Rights, §12.

3.4 laws, regulations and gdpr 41

ethically and technically robust. Due to AI being used in Dutkat for analyzing
surveillance data, the act needs to be taken into consideration, given that it
may become a standard for EU countries in the future.

Pseudonymization vs. Anonymization

An important distinction to make when handling sensitive data is the differ-
ence between pseudonymization and anonymization. According to the Oxford
Learners Dictionary, the term "anonymization" has the following meaning, with
regards to computing:

the process of removing from internet data any information that identifies which
particular computer the data originally came from [118].

The term "Pseudonymization", according to the Cambridge Dictionary, is de-
fined as:

The process in which information that relates to a particular person, for example,
a name or email address, is changed to a number or name that has no meaning

so that it is impossible to see who the information relates to [119].

In GDPR, data that is pseudonymized will still be classified as sensitive and
therefore also falls under GDPR laws. The issue lies in how the data is handled.
If blurring faces in the images makes it impossible to identify a person today, but
we do, however not know if technology in the future will be able to reverse this
process. Anonymized data does, however not fall under GDPR, as anonymized
data ensures that privacy is protected. One way to avoid GDPR is therefore to
anonymize the the sensitive data. The challenge lies in determining if data is
pseudonymized or anonymized.

Responsibility and Accountability

Another thing to consider is the responsibility and accountability in terms of
the data and who owns it. Laws define that the people owning the equipment
generating the data is responsible for it. Determining the owner of the data is
an important decision that needs to be made when utilizing Dutkat in practice.
If the equipment is ruled as government owned, the government is accountable
for it.

If the system is enforced by the government, it needs to be ensured that vessels
are treated equally, such that enforcement of using the system does not lead
to discrimination.

42 chapter 3 requirement analysis

There is currently a similar project regarding surveillance of fishing vessels is
currently ongoing in Denmark, where fishing vessels have surveillance equip-
ment of CCTV installed on-board fishing vessels in exchange for a larger fishing
quota. This is, however a pure surveillance system and does therefore not per-
form any form of AI to analyze the data. Instead, the surveillance footage is
analyzed by human personnel. For this case, the owners of the fishing vessels
have been made the owners of the data. The project has, however been criti-
cized for creating unnecessary suspicion of fishing and for violating the rights
of fishermen by the Danish Fisheries Association [120].

There is also current ongoing research within the Corpore Sano Center on how
laws of privacy should be dealt with in the Dutkat-project.

3.5 Incentive for Fisheries

Another important challenge to consider for surveillance systems like Dutkat,
is that they will be met with resistance unless an incentive for using the
system is provided to the users. It is also important that this incentive is
sufficiently beneficial for the users. As discussed in the previous section, the
Danish Fiseries Association has critiqued the surveillance system in Denmark,
despite the project (at least for now) is voluntary and provides the vessels with
larger quotas.

During the Fall of 2021, researchers from the Corpore Sano Center visited
Hermes3, a Norwegian fishing trawler. We found that employees of Hermes
seemed positive to the project, although they highlighted the importance of
not labeling anyone as criminals and they should therefore not be treated
otherwise. They did, however consider the system as a potential for gaining
increased revenue, as Dutkat could potentially be used for labeling fish as
sustainable for better sales. Hermes already has camera equipment installed on-
board and has used it for streaming to showcase their work⁴. Some employees,
however, expressed concern regarding the cameras and that they would become
uncomfortable if they knew that they where being monitored.

3. https://www.hermesas.no/
4. https://www.youtube.com/watch?v=e_2_f8vHaB0

https://www.hermesas.no/
https://www.youtube.com/watch?v=e_2_f8vHaB0

3.6 requirement specif ication of áika 43

3.6 Requirement Specification of Áika

Requirements engineering is a process in which required services for a system
and the constraints which the system operates under are specified [121, p.
54-55]. Requirements are descriptions that state the system service and/or
constraints generated during the requirement engineering process [121, p. 102-
105]. After conducting an analysis of the Dutkat-project as a use case for Áika,
we will now use it and the problem definition to state requirements for the
system. The requirements are divided into two main categories: Functional
and non-functional requirements.

3.6.1 Functional Requirements

Functional requirements are defined as statements of services that the system
should provide, how the system should react to particular inputs, how the
system should behave in particular situations or what the system should not
do [121, p. 105-107]. In this section, we outline the functional requirements for
the system.

• DAG computation model: The system must support general distributed
DAG computation model composed of up to multiple pipelines that run
coherently. The system must use some form of configuration format,
such that the users of the system can specify the graph themselves. The
distributed DAG model must support machine learning inference tasks
to run within the DAG through pre-trained machine learning models.
The system must also support that machine learning inference may be
executed over multiple nodes.

• Load Balancing: The system must be able to support load balancing
scheme as a part of the DAG model. The system must support load
balancing specification from the configuration of any sub-graph within
the main DAG.

• Logging: Any form of failure that is detected within the system must be
logged, if possible. Ideally, the failures detected should also be classified
at different levels such that authorities can easily make conclusions on
whether a vessel should be investigated further or not.

• Communication from external sources: The system must support com-
munication from external resources, such that the system can acknowl-
edge that it is still up and running. In addition, the system must be able
to provide its current state to an external source. The system should also
be able to provide a history of registered failures as well.

44 chapter 3 requirement analysis

• Failure Detection: The system must have a way of detecting failures
that occur internally, in case an adversary agent tries to temper with the
system software, or the hardware which the system runs on.

• Failure Recovery: The system must have a recovery scheme that enables
it to recover from failures to the best extent possible. This includes
software failures that can happen internally in the system and hardware
failures (for example if a computer is unplugged from the rack).

3.6.2 Non-Functional Requirements

Non-functional requirements are constraints on the services or functions offered
by the system. They include timing constraints, constraints on the development
process and constraints imposed by standards. They are often applied to the
system as a whole rather than individual system features and services [121,
p. 107-111]. In this section, we will outline the non-functional requirements
related to the system.

Fault Tolerance

The system will operate in an untrusted edge environment, where it is difficult
to reach the system if it fails partly, or as a whole. It is therefore important that
the system operates with a fault tolerance factor that is as high as reasonably
possible. In the case of failure, the system needs to recover as quickly as
possible to the previous stored state in order to resume the computation
process. The fault tolerance requirement is further specialized into reliability
and availability:

• Reliability: Since monitoring of fishing vessels is used as a case for this
project, the system may operate in an environment with low bandwidth,
making it difficult to maintain reliable communication with external
sources. The system should still be able to provide a response as quick as
possible, given that either an external source tries to reach the system,
or an internal system component attempts to reach another component
within the system.

• Availability: It is crucial for the system to be available, as itmay be used to
both process voluminous amounts of data at the edge and communicate
with authorities at the same time. Because of this, the system availability
must be maximized to be as high as possible, in case an external source
attempts to reach the system and to enable the system to process all the
data. If the DAG computation fails to deliver analytical results due to

3.7 summary 45

failure, some part of the system should remain intact and responsive to
external sources.

Resilience

Loading machine learning models into memory can be time consuming, which
might affect the recovery time negatively as well. The system should therefore
support resilient schemes by redundancy where replicated components process
the same data, simultaneously. If one component fails, the other component is
still processing the data and thus ensures that the throughput, at least to some
extent remains stable, despite failure. The system should support configuration
of resilient algorithms like triple-modular redundancy, given that a user wants
to add them to the system.

Confidentially

In the context of Dutkat, the system will operate as a distributed system that
enables data to be processed directly aboard the fishing vessel itself. Since video
surveillance data is a potential source for the system to process, the system
must keep this data confidential by making sure that it remains on the vessel.
In the case where an external source queries the system for data, it should only
return meta-data, such as failure logs, the systems state, or anonymous data in
order to maintain confidentiality of the actors aboard the fishing vessel. This
is also the case if any of the machine learning algorithms detect suspicious
behavior aboard the vessel as well.

Integrity

With regards to Dutkat, one of the main goals of the system is to process large
amounts of data to detect suspicious behavior. It is vital that the data that flows
through the system remains consistent and that failures do not affect this. The
system should therefore be equipped with data integrity constraints, such that
the data can remain consistent throughout its life cycle.

3.7 Summary

All aspects presented in this chapter are all important when considering the
design and implementation of our system. When considering the case of the
Dutkat-project, where fishing vessels are being monitored directly, it is impor-

46 chapter 3 requirement analysis

tant to consider the actors right to confidentiality and therefore provide a
system that does not leak sensitive data. In addition, the system cannot trust
the actors either and therefore relies on fault tolerant schemes, such that the
system can run continuously while the vessel is operating off-shore at sea. We
suggest using a DAG computation model, so the system may support multiple
types of computation graphs.

The next chapter outlines the design of Áika as a whole and of each component
within the system.

4
Design
This chapter provides the design and the overall architecture Áika. Section 4.1
provides an overview of the system as a whole, section 4.3 describes the design
of the controllers, section 4.4 outlines the design of the different agents, while
section 4.5 provides a description of an optional remote monitor, that can be
used to monitor Áika from a trusted location.

4.1 System Overview

The system is designed to execute multiple distributed machine learning
pipelines in a DAG computation format on edge clusters. It is particularly
intended to be utilized in untrusted edge environments, where actors in the
environment cannot be trusted and access to high-speed Internet may be lim-
ited. Limited Internet connections can lead to data being generated at a higher
rate than the connection can transport. The solution is to move the analytical
process to the edge, which is where the data is generated by sensors.

The systems requirements can be compressed into two main objectives. The
system must:

1. Be fault tolerant in case of failure.

47

48 chapter 4 design

2. Support a DAG computation model.

The purpose of the DAG computation model is to enable complex distributed
analytics to be done on the edge, while fault tolerance is necessary to ensure
that the system does not fail at run-time.

To support the fault tolerance requirement, we design Áika as a hierarchical
system, where a controllers is responsible for monitoring the remaining part
of the system and execute recovery if a component fails.

As Figure 4.1 shows, the overall system is composed of multiple processes that
communicate in a cluster. Each process has a specific role and it is not changed
during run-time. The processes are as following:

• Agent: The agent is responsible for processing data. The agent can either
fetch this data from disk itself, or receive data from other agents.

• Local Controller: The local controller is responsible for monitoring the
agents that reside on the same physical node as the local controller itself.
Each physical device has at least one local controller running. A local
controller without any agent to monitor is referred to as a replica. This
type of local controllers can be used for recovery if an entire physical
node fails.

• Cluster Controller: The cluster controller is responsible for managing
the entire cluster. It communicates with the local controllers to ensure
that each physical node is running. If a physical node shuts down, the
cluster controller is responsible for initiating recovery, either directly on
the node where the failure occurred, or on a replica.

• Monitor: This is an additional process that is meant to be physically
located on a trusted location, unlike the system itself. The monitor is
responsible for communicating with the system to ensure that it is up
and running. In the case of failure, the monitor may notify personnel, or
authorities about this.

The different roles will be covered more in depth in Section 4.3, Section 4.4
and Section 4.5.

4.1 system overview 49

Cluster
Controller
(Replica)

Cluster
Controller
(Replica)

Cluster
Controller
(Leader)

Local Controller Local Controller Replica

Agent Agent Agent Agent

D
istributed File System

Monitor

Figure 4.1: Áikas architecture. Arrows represents client/server communication. Red
arrows represents communication that only may occur during recovery.
The figure does not include communication between agents. A cluster con-
troller communicates with local controllers residing within each physical
cluster node. The local controller ensures that each agent runs. It may
also report abnormal behavior. A monitor may also be mounted to the
system from a trusted location, which the cluster controller may report
any suspect behavior to. In addition to this, all nodes in the cluster are
connected to a DFS that enables file sharing across the nodes. This is
practical for recovery.

50 chapter 4 design

4.2 System Components Structure

The system itself is designed with a hierarchical structure. This also applies to
each individual component in Áika as well. In Áika, each individual component
is designed as a multi-threaded process. A main thread is responsible for
initializing and monitoring child threads, where the child threads execute
some type of behavior in the system. This can for example be to initialize a
multi-threaded server, or communicate with another component in the system
through a client, or execute some form of custom work. This varies from
component to component. If any of the child threads fails, they will be restarted
by the main thread.

Main thread

Server thread Client thread Work thread

Request
handler 1

Request
handler 2

Request
handler 3

Figure 4.2: The general process structure of Áikas components. Each process is orga-
nized in a hierarchy of threads, where a main/parent thread starts the
child threads. The child threads are restarted by the parent thread if they
fail. Servers spawn multiple request handler threads to enable requests
from multiple sources to be handled concurrently.

Each child thread is also a daemon, meaning that if the main thread shuts
down, the entire process will fail. We chose to use daemons to ensure that
servers are shut down if the main thread fails. It enables the recovery to be
executed cleaner, as servers occupying ports no longer pose a risk during the
recovery procedure. Figure 4.2 illustrates how processes can be organized into
a hierarchy of threads.

4.3 Controllers

The system is implemented with a hierarchical multi-layered Controller/Agent
design,where agents aremanagedby local controllers, residing on each physical

4.3 controllers 51

device. The local controllers are further managed by a cluster controller, which
is responsible for managing the remaining components in the system.

4.3.1 Local Controller

The local controller is responsible for monitoring the agents residing on the
same physical nodes. It ensures that each agent is running and in the case of
crash failure, restarts the agent that crashed. It also logs the crash and the time
of detection. In the event of a physical device crashing, a replica local controller
will be responsible for restarting and recovering the local agents that crashed.
This type of recovery process is initiated by a cluster controller.

4.3.2 Cluster Controller

The cluster controller is responsible for monitoring the entire cluster of com-
puters that runs the system. The cluster controller has a controller/agent-
relationship with the local controller, where the local controller functions as
the agent. Whenever a remote monitor attempts to connect to the cluster con-
troller, it must provide a response to it to ensure the monitor that the system
is running.

If a local controller fails, the cluster controller will attempt to recover it. The
cluster controller initiates node failure recovery if it fails to recover the failed
local controller. This means that the configuration of the failed local controller
is forwarded to a replica local controller.

The cluster controller is duplicated to avoid complete system failure in the
case where it crashes. The cluster controllers are organized into a chain (see
Figure 4.3) where each cluster controller responds to ping requests from their
predecessor while pinging their successor. Each cluster controller has the full
system configuration and therefore knows about all components. If the cluster
controller in the chain fails completely and cannot be recovered, the predecessor
will remove the cluster controller from its configuration and move to the next
cluster controller in the chain.

If the main cluster controller fails, the duplicated controller that monitors the
leader will attempt to recover it. If it fails the attempted recovery, it will instead
become the new leader.

52 chapter 4 design

Cluster Controller 1
(Leader) Cluster Controller 2

Cluster Controller 4 Cluster Controller 3

Cluster Controller 1
(Leader)

Cluster Controller 4

Cluster Controller 1

Figure 4.3: The cluster controller is replicated and connected in a chain.

4.4 Agents

The agents are responsible for working with and processing the data and they
make up the core building blocks of the DAG computation model. The general
task of each agent is thus to receive or fetch work (either from another agent
or from file), then process data based on the work received before passing the
results further ahead in the graph. Work items are transferred over client/server
connections.

Figure 4.4 shows the general structure of the agents. A client or server thread
is used to request or receive data from the previous agent. The thread con-
tinuously puts work items received on an input queue, which a work thread
retrieves items from, before doing some type of work on the item. The result is
put on an output queue. Another client or server thread is then used to forward
the result to the next agent in the graph.

Client/
Server Input queue Work Output queue Client/

Server

Figure 4.4: Shows the general structure of the agents.

Preserving data integrity despite failure is done through the use of persistent
queues, as they continuously write items to file as they are being inserted into
the queue. In the case of failure, an agent will always be able to resume from
the previous checkpoint upon recovery, as long as it is connected to the DFS. By
writing the persistent queues to file in the DFS, a replica local controller will
also be able to resume the work if the physical node shuts down, since it also
will be connected to the same file system. A mechanism in the queue enables

4.4 agents 53

items to only be removed from file after work on the item has been completed
and the result has been forwarded to the next queue. This mechanism is used
both during work and during communication between agents to ensure that
items are not lost.

The agents constitute the building blocks for a DAG, which is configured by
the user. The DAG can be configured to be complex and, for instance consist
of nodes that receive data from multiple sources, or passes data forward to
multiple sources. A set of base agents has therefore been created, which uses
different combinations of client and server threads at each end. Each agent
has particular use cases where they are useful. Note that the figures of each
individual agent has abstracted the persistent queues between client and work
away for simplicity.

Left Worker Agent

The left worker agent is composed of a server thread on the left side, where
items are received and a client on the right side, where items are forwarded.
This is illustrated in Figure 4.5, where other agents can put items on the left
agents input queue by making a request the left agents server. The left agent
is responsible for forwarding the item to another agent itself by performing its
own remote enqueue call to the agent.

Work

Persistent Queue
Remote

Enqueue
(Server)

Dequeue
Remote

Enqueue
(Client)

Left Worker Agent

Figure 4.5: Left worker agent. A worker agent that dequeues messages from a local
queue before the analysis process, but enqueues the result remotely.

This type of agent is useful in cases where data is received from multiple
sources. The client on the right side enables the agent to forward the same
item to multiple sources. An example use case for the left agent could be to
use it as a voter agent for implementing N-modular redundancy.

54 chapter 4 design

Work

Persistent Queue

Enqueue
Remote

Dequeue
(Server)

Remote
Dequeue
(Client)

Right Worker Agent

Figure 4.6: Right worker agent. A worker agent agent that dequeues messages from
a remote queue before the analysis process, but enqueues the result on a
local queue.

Right Worker Agent

The right worker agent is composed of a client on the left side and server on
the right side (see Figure 4.6), This means that the agent fetches items itself
from a single agent through a remote dequeue call, while items are forwarded
when other agents requests them.

The server on the right side enables the agent to scatter items to different
agents. This is useful in situations where load balancing due to upcoming
computation heavy work. The consequence of using the right worker agent is
that the client enables it to fetch data from a single source only.

Double Worker Agent

This type of agent contains servers both before and after the processing the
item (see Figure 4.7). This makes the agent completely passive, as messages
are only received and forwarded through requests from other agents.

Work

Persistent Queue

Enqueue Dequeue
Remote

Enqueue
(Server)

Double Worker Agent

Persistent Queue
Remote

Dequeue
(Server)

Figure 4.7: Double worker agent. A worker agent containing servers both before and
after processing the item.

This type of agent can be useful in cases where it receives messages from and
scatters messages to multiple sources.

4.4 agents 55

Initial Worker Agents

The purpose of the initial agent is to fetch data from some location in a custom
manner (implemented by the application developer), before forwarding it to
the next pipeline stage. The data flow is illustrated in Figure 4.8. It is meant
to be used as the first stage in the pipeline. Initial agents can either use a
client or a server to forward items further into a pipeline. In Section 6.4 we
demonstrate how the initial server agent can be used for load balancing for
counting words in a textual document. The experiment is further detailed in
Appendix C.

Retrieve
Data

Persistent Queue

Enqueue
Remote

Dequeue
(Server)

Retrieve
Data

Remote
Enqueue
(Client)

Initial Server-less Agent Initial Agent

Figure 4.8: Initial worker agents. This type of agent is used to initiate one or several
pipelines. This is done by having the agent continuously retrieve data
from a source and then forward it to either a local (see left figure), or a
remote (see right figure) queue.

Final Worker Agents

The purpose of the final worker agent is to do the final work on an item at
the end of a pipeline within the DAG. Because of this, it does not have any
output queue, or client/server thread after work. The final agent can utilize
a client for fetching items, or a server for receiving them. These two types of
final worker agents are illustrated in Figure 4.9.

Store
Results

Persistent Queue

Remote
Enqueue
(Server)

Dequeue

Queue Checkpoints

Store
Results

Remote
Enqueue

Final Server-less Agent Final Agent

Figure 4.9: Final worker agents. This type of agent is used to finalize one or several
pipelines. The agent retrieves the end results from either a local or a
remote queue, then handles the result in some custom manner.

56 chapter 4 design

Queue Agent and Server-less Agent

The queue agent is only composed of one scheduling queue, which leaves the
responsibility of enqueueing and dequeueing messages entirely up to other
agents. It is passive, like the double queue agent and it is also useful in similar
cases where work is not required to be done on the item in between. It can
be used as a collection point for data from multiple sources that is afterwards
scattered.

Persistent Queue

Remote
Enqueue
(Server)

Remote
Dequeue
(Server)

Queue Agent

Remote
Dequeue
(Client)

Remote
Enqueue
(Client)

Server-less Worker Agent

Work

Figure 4.10: Queue agent and server-less worker agent. The agent to the left contains
a single queue without any analysis. The agent to the right does not have
any servers and receives items by making requests through clients on
both sides.

The server-less agent contains only clients and is therefore responsible for
both fetching items from another agent and forwarding items after processing
(see Figure 4.10). In Section 6.5, we demonstrate how a server-less agent can
be used to retrieve items from a load balancing queue on another agent and
forward the item to feature extraction models on multiple agents to increase
performance. The DAG design is also elaborated in Appendix D.

4.5 Monitor

The remote monitor resides at a physically remote location compared to the
system and is responsible for communicating with the system, potentially over
low bandwidth. The reason for using a remote monitor is that it is not possible
to fully control the physical equipment completely in an untrusted edge. We
cannot assume that the equipment is held entirely safe, as people may want
to harm the physical equipment, or interfere with the signals. The system may
also be difficult to reach, physically.

The remote monitor is used as a safety device that resides within a safe location
that can monitor that the system is running. By continuously communicating
with a cluster controller in the system, the monitor can receive information
about the system, that is: which physical devices that are running, if any known

4.6 summary 57

crashes has occurred, or additional information regarding the system. If the
remote monitor fails to reach the system, it may classify this as an abnormal
event and report it to authorities. The authorities can then themselves consider
if they want to investigate the issue further and potentially inspect the location
where the system resides.

4.6 Summary

This chapter has presented the design of Áika. The system is designed with a
hierarchical infrastructure of controller/agent relationships, where a cluster
controller monitors and manages the system as a whole and local controllers
monitor and restart agents running on the same physical node. Each component
is multi-threaded with a hierarchical structure as well. The cluster controller is
replicated in a chain to avoid single point of failure. The agents are designed
to use different combinations of clients and servers to receive and send items.
A monitor that is physically located on a safe place is used to verify that the
system remains operable and running.

The next chapter builds on this chapter and outlines the implementation of
Áika.

5
Implementation
This chapter presents implementation details of Áika. Section 5.1 presents
specific details for the system as a whole, such as programming language,
libraries, etc. Section 5.2 outlines testing of Áika. Section 5.3 covers the im-
plementation of the cluster controller. Section 5.4 covers the implementation
local controller. Section 5.5 covers the implementation of the base agents. Sec-
tion 5.6 provides the implementation of the monitor. Section 5.7 describes the
implementation of crash reporting, before covering the implementation of the
killer in Section 5.8.

5.1 Implementation Specific Details

Áika and all its components is written in Python 3. Python is a high-level script-
ing language, which makes it excellent for building prototypes. In addition,
it has an active and open community that provides Python developers with
specialized libraries (like the persistent queue library that we use). As of De-
cember 2021, Python remains at the very top of the list of popular programming
languages, with a share of 30.21%, according to PYPL [122]. Python is particu-
larly relevant for Áika, due to the language support for scientific programming
[123] and powerful deep learning libraries.

All internal and external client/server communication is carried out via TCP

59

60 chapter 5 implementation

Socket Servers. This includes communication between agents, cluster con-
trollers, local controllers and the monitor. TCP is used as a protocol due to its
reliable transmission, which makes it a better option for transporting important
data compared to User Datagram Protocol (UDP). The state of the service is
check pointed regularly through the use of persistent queues.

The following Python libraries have been used to implement the core of our
system:

• abc: For implementing abstract base classes.

• json: For parsing JSON configuration files.

• pickle: For serialization of data.

• socket: For creating TCP clients.

• paramiko: For setting up SSH clients to connect to cluster nodes.

• unittest: For testing the functionality of units.

• threading: For enabling multi-threading.

• socketserver: For implementation of TCP servers.

• persistqueue: For persistent queues between agents.

• setproctitle: For setting and getting the process title of each agent
manually.

5.2 Testing

Verifying that the underlying functionality of the agents works, is done with
unit testing as a method for validation. The unit tests are implemented through
Pythons unittest library. Each agent is implemented as a package and each
package contains a test file, which contains relevant tests for the specific
agent. This also includes mock servers and clients for scheduling data items for
processing. An overlying script is used to execute these tests through Pytest.
Since the implemented agents themselves and the tests utilize multi-threading,
each test is executed in complete isolation from the others to avoid unexpected
behavior.

5.3 cluster controller 61

5.3 Cluster Controller

The cluster controller is implemented as a class composed of multiple threads.
Startup and recovery of both local controllers and cluster controllers is imple-
mented similarly. The cluster controller distinguishes between three types of
recovery:

• Recovery by SSH: If the local controller or cluster controller is located
in a remote cluster node, the cluster controller will establish connection
to the node through an SSH client. The controller is then started by
executing the startup script on the node.

• Direct recovery: This routine is performed if the local controller or
cluster controller resides on the same physical node. In this case, the
startup script is executed directly.

• Recovery by replica: If the cluster controller discovers that a physical
cluster node has failed, it will execute recovery by replica, given that a
replica is available. It does this by forwarding the configuration of the
failed local controller to the first replica in the list of available replicas
through a TCP request. The replica will then start the agents that failed.
Since the persistent queues are stored in the DFS, the agents can resume
from the previous checkpoint. The cluster controller will also notify
agents with agent that communicated with the failed agents about their
new location, so they can re-establish communication. If there is no
replicas available the system goes into system failure mode.

Recovery is carried out if the controller fails to respond to the cluster controller
for a configured amount of attempts.

5.4 Local Controller

The local controller is also implemented as a class composed ofmultiple threads.
It contains a server that is used to respond to requests from the cluster controller.
Upon startup the local controller will always check if the agents are running
before starting them. The reason for this is that, in the case of recovery, the local
controller may have crashed without the agents crashing. Attempt to recover
the agents would in this case lead to agents being duplicated.

Recovery of agents is executed as direct recovery in the cluster controller. The
local controller does this because it only monitors agents that reside on the
same node as itself. The local controller monitors the agents by assigning each

62 chapter 5 implementation

agent a unique ID (process name) upon startup. This ID can be specified in the
configuration. By checking if the unique ID is running, the local controller can
know if the agent is running. This approach ensures that failure is detected
quicker, because there is no direct communication between the local controller
itself and the agent. One disadvantage with the solution is security risks, as
someone with access to the physical node could start a process with the same
name as one of the agents before killing it. This could trick the local controller
to believe that the agent is still running.

5.5 Agents

Each base agent is implemented with an object-oriented approach. The applica-
tion developer creates an agent by creating a new class that inherits one of the
base agents described in Chapter 4 (see Section 4.4). When an agent receives
an item from another agent in the DAG, it passes through the process_message
method, which has not been implemented by the base agents. It is up to the
application developer to specify what this method does. An example can be
seen in Listing 5.1, where the process_message method increments the item
before passing it on.

Listing 5.1: A simple, customized agent implementation. The agent receives a config-
uration string in JSON format when it is initialized. For this example, the
item argument from the process_message method comes in the form of an
integer, and the method simply increments it before returning the result.

1 class CustomAgent(LeftAgent):
2 def __init__(self, configuration):
3 super().__init__(configuration)
4
5 def process_message(self, item):
6 result = item + 1
7 return result

The advantage of this is that the entire communication between the agents are
completely abstracted away from the application developer. Another advan-
tage is that the application developer may use any supported Python library
to process or analyze the item, for instance Tensorflow [94], Pytorch [124],
OpenCV [125], Pandas[126], or SciKit-Learn[127]. This enables the application
developer to mix libraries if the circumstances requires it.

Each item that is passed forward in an agents pipeline contains a list of pipeline
IDs. The reason for this is that each item can belong to multiple pipelines that
initially start out with a common path before branching out. The agent uses

5.6 monitor 63

a simple algorithm that detects whether the pipeline IDs are heading in the
same direction through the agents own lookup table. It enables the application
developer to specify branches in the DAG through the configuration file.

If the algorithm detects a branch, the same item is forwarded to more than
one different agent, with modified pipeline IDs. The aim of the algorithm is to
avoid item duplication in early stages of the pipeline where the computation
result will be the same for all pipelines that contain the item.

Áika uses a static configuration format in order to construct the agents forming
one or multiple DAGs, as well as replication nodes and cluster controllers with
replication. The configuration format is explained in more detail in Appendix A.
An example of how a complex DAG can be constructed with the configuration
format can be found in Appendix B.

5.6 Monitor

The monitor is implemented as a simple programwith a single TCP client that is
used to connect to the system. This program sends a single request to a cluster
controller, given that the host and port provided are correct. The monitor can
send four different types of requests, which are shown in Table 5.1.

Request Type (ID) Description
1 Simple ping request to acknowledge that the

system is running.
2 Get the current state of the system. Retrieve

the current configuration.
3 Get recent log records. Use record type values

and timestamp to filter out records.
4 Shut down the system with immediate effect.

The leader cluster controller forwards the
signal to the other nodes.

Table 5.1: Monitor Request Table.

When the monitor queries the system for any information, only the request ID
is sent along with meta data that further specifies the request. Since the system
may operate in an environment with low bandwidth, it is necessary to keep
messages as small as possible when sending information to external sources,
like the monitor.

64 chapter 5 implementation

5.7 Logging

The systems ability to operate in an environment that cannot be trusted makes
it necessary to log any suspicious behavior in order to verify that the system
remains operable and trustworthy. It is also necessary to maintain a history of
failures or other types of abnormal behavior within the system for investigation
purposes. If the monitor queries any of the leaders for the log data, they
can retrieve them. It is then up to the monitor to decide if the behavior
occurring can be characterized as suspicious enough so that authorities should
be contacted.

Log Record Type (ID) Description
1 A thread crashed unexpectedly and had to be

restarted.
2 A server failed to respond to a request from a

client.
3 An agent unexpectedly shut down and had to

be restarted.
4 A local controller failed and had to be

restarted.
5 A cluster controller failed and had to be

restarted.
6 An entire physical node has failed. Recover to

another node.
7 A suspicious request was received from some

source.
8 System Failure. The system either shut down

unexpectedly, or failed to respond to the
monitor.

Table 5.2: Failure Log Record Table.

To distinguish between different types of abnormal events within the system,
we split log records into different types, where each type has a unique identifier.
A description of each identifier can be found in Table 5.2. As the table shows,
Áika generally distinguishes between eight categories of log records.

Since more or less every component in Áika is multi-threaded, there is a
consistent risk that one of the threads might fail without shutting down the
process itself. If one of the child threads fails, the main thread will restart it
and log the behavior. If the main thread fails, the entire process will shut down,
since all child threads are daemons of the main thread.

5.8 killer 65

If an agent process fails, it is the responsibility of the physical nodes local
controller to restart the agent. The local controller also logs the failure, if
the agent had to be restarted. If a local controller, or an entire physical node
fails, the cluster controller is responsible for recovering the local controller and
writing the log to file.

The system will also log any communication failure that is detected and any
suspicious requests (for instance requests in unexpected formats) received. The
entire system may also shut down, due to physical nodes failing, leading to
the system running out of replica components to use. This behavior will also
be logged, given that any of the cluster controllers detects it before being shut
down. The monitor may also consider the system as failed if it fails to get a
response from the system within a given time frame.

The log records are stored within a single table in an SQLite3 [128] database
that resides in the DFS. SQLite3 is a relational database management system
(RDBMS) with a dynamic and weakly typed syntax. This combined with its
lightweight features makes SQLite3 a good choice for prototype systems like
Áika.

5.8 Killer

The purpose of the killer is to kill cluster controllers, local controllers and/or
agents, such that Áikas ability to recover processes can be investigated. The
killer is a process that forcefully kills selected processes in the system during a
run-time at a pre-configured rate. It does this by selecting a random component
from a pre-determined list of components at every cycle. If the component is
located on the same host as the killer, the killer simply invokes a pkill command
based on the unique process name of the component. If the component is
located on a different host than the killer, the killer instantiates an SSH-client
that is used to reach the host. The pkill command is then invoked through the
SSH client.

Figure 5.1 illustrates the killer as a separate process that has knowledge about all
the components in the system. The killer gains knowledge about the system by
parsing the configuration file of the system upon initialization. Because of this,
the user that invokes the killer can select custom components from the system
that the killer knows about. This is done by removing specific components from
the configuration before invoking the killer with said configuration. The killer
can also be configured to only kill specific types of components, like agents,
local controllers, or cluster controllers.

66 chapter 5 implementation

Cluster
Controller
(Replica)

Cluster
Controller
(Replica)

Cluster
Controller
(Leader)

Local Controller Local Controller Replica

Agent Agent Agent Agent

Killer

Figure 5.1: Illustration of the Process Killer. This continuous running process reads the
system configuration and then kills a randomly selected system component
every N seconds, where N is a configurable number. The killer can also be
configured to kill only a certain type of system component.

5.9 Summary

This chapter outlines implementation details of Áika. The system is written
in Python 3, due to the language high-level syntax combined with its support
for executing machine learning tasks through powerful libraries. Áika is im-
plemented as a distributed system composed of multi-threaded components.
The components uses TCP to communicate with each other. Áikas agents are
implemented with an object-oriented approach that enables the user to use
inheritance to implement custom agents that perform customized work. These
components have been tested with unit tests to ensure that their program flow
works as expected. The system has support for responding to external sources,
like a monitor and provides meta-data to it regarding system state and the
history of detected failures. The system has implemented logging with a simple
scheme to SQLite databases, where logs are inserted with an ID that describes
the type of failure that has been detected.

The next chapter evaluates Áika, and reviews the non-functional requirements
of the system based on the experimental results.

6
Evaluation
This chapter outlines an evaluation of Áika. An overall experimental setup
is presented in Section 6.1. Section 6.2 outlines measurements on minor, but
important components of Áika. Section 6.3 evaluates the system through end-
to-end measurements. Section 6.4 evaluates the systems performance through
a MapReduce inspired distributed word counter. Section 6.5 evaluates the
systems performance through a distributed deep feature extractor. The non-
functional requirements are then reviewed based on the experiment results
and the discussion made from them in Section 6.6.

6.1 Overall Experimental Setup

The experiments are carried out at the UV-cluster, a computer cluster owned by
the Department of Computer Science at UiT The Arctic University of Norway.
The UV-cluster uses the Rock (version 7.0) operating system, which is based on
CentOS 7. Each computer node runs the Ext4 file system locally and the home
catalog is shared from the UV cluster server through the Network File System
(NFS). The expected ping is estimated to be at approximately 1 millisecond
and the transfer rate is approximately 100 MByte/s, which is normally what
the Gigabit cards are able to handle.

The experiments are performed on the compute-6 nodes, exclusively. The

67

68 chapter 6 evaluation

compute-6 nodes are a set of homogeneous nodes on the cluster. The compute-
6 nodes consist of 55 Lenovo P310 computers with one Intel Core(TM) i7-
6700 @ 3.40GHz with 4 cores, 32GB (4 x 8GB) RAM and a Nvidia GM107GL
[Quadro K620] GPU, each. The Intel Core(TM) i7-6700 CPUs has a base clock
frequency of 3.40GHz, but also supports turbo boost functionality, where the
clock frequency can be as high as 4 GHz. Due to the potential dynamic change
in frequency, we carry out the experiments multiple times and compute the
average result along with the standard deviation of the results.

6.2 Micro-Benchmarks

Gaining insight into the smaller components of the system is important. We
have therefore made a few micro-benchmarks within Áika to get some insight
on how the time spent doing different tasks affects the performance.

Micro-benchmark Time (seconds)
Local Controller Initial

Startup
0.3 seconds (first local controller)

Local Controller Further
Startup

0.15 seconds (per local controller after the
first)

Agent Startup 0.02 - 0.04 seconds
Pass integer item from
agent to agent

0.007 - 0.009 seconds

Table 6.1: Results from micro-benchmarks.

Table 6.1 contains a few micro benchmarks within Áika. We experienced that
it takes the cluster controller approximately 0.3 seconds to start a single local
controller on a separate node with an SSH client. After setting up one local
controller, the time increases with approximately 0.15 seconds per additional
local controller. The local controller, however spends approximately between
0.02 and 0.04 seconds to start an agent. This demonstrates that the local
controller not only can be used to off-load the work load of the cluster controller,
but also can manage to recover agents in a shorter amount of time, leading
to more efficient recovery procedure. This is especially the case if agents shut
down often.

Passing integer items from one agent to the next agent in a pipeline, takes
approximately 0.008 seconds from the previous agent to the next. During this
time, the item moves through two persistent queues and one TCP stream. One
interesting finding is that the time spent passing an item from agent to agent

6.3 end-to-end evaluation 69

seemed to increase as the item moved further into the pipeline, but this could
also be purely coincidental.

6.3 End-to-End Evaluation

Insight into how information flows through the system is necessary in order
to understand the systems drawbacks and how failure affects the system. This
can be done by measuring the throughput of the system within regular time
frames at the end of a pipeline.

Setup

Since the system uses persistent queues to store information between compu-
tation steps, it is necessary to measure how the persistent queues affect the
throughput of the system. It could also be interesting to observe how crashes in
the system affects the performance. Both of these aspects can be demonstrated
by constructing a system run-time composed of agents that are lined up in a
pipeline.

The agents in the system can be split into three types:

• Initial Agent:Responsible for initializing data. This is done by forwarding
integers into the pipeline.

• Worker Agent: Responsible for retrieving integers, increment them and
forward them further into the pipeline. The worker agent may also sleep
after the integer has been incremented to simulate work time.

• Final Agent: This is the final destination of the data in the pipeline. The
agent is responsible for receiving the data and increment a counter of the
number of requests received. A separate thread measures the number of
requests received every fifth second and write the number to file.

The system is configured as a single pipeline, composed of one initial agent,
one final agent and five worker agents.

The results are obtained by running the system run-time with the pipeline
configuration over the course of 1,200 seconds (20 minutes). The number of
requests received is counted at the end of the pipeline. The counter is reset
every 5 seconds. The time frame of 5 seconds is used to hinder the thread
that writes the result to disk from affecting the performance of the system. In

70 chapter 6 evaluation

addition to this, the moving average of series with highly varying values is also
computed. For all cases where this is done, we use a sliding window with a
size n=5.

0 200 400 600 800 1000 1200
Time (in seconds)

0

20

40

60

80

100

120

Nu
m

be
r o

f r
eq

ue
st

s r
ec

ei
ve

d
ev

er
y

5
se

co
nd

s

Performance stress-test with Persistent Queues
Performance Measurements
moving average (n=5)

Figure 6.1: The obtained results from stress-testing the system with persistent queues
over the course of 1,200 seconds. Number of requests are measured and
reset every 5 seconds. The moving average is computed with a window
size n=5.

Results

Figure 6.1 illustrates the number of requests received at the end of the pipeline
every 5 seconds over the course of 1,200 seconds (20 minutes). The plot
demonstrates the systems maximal performance with the use of persistent
queues, where each worker in the pipeline receives an integer that is simply
incremented before it is passed on without sleeping. From the plot, we can
also observe that the system has a high throughput in the initial stages of the
process, before it becomes relatively stable at around 250 seconds, where the
number of requests processed ranges between 20 and 40. This demonstrates
the systems maximum throughput without considering the workload.

Figure 6.2 illustrates the same measurements as Figure 6.1 with the same setup,
but utilizes in-memory queues in the agents instead of persistent queues. The
in-memory queue is configured to hold maximum 100 items. Despite having
an identical configuration as the system from Figure 6.1 (aside from the use of

6.3 end-to-end evaluation 71

0 200 400 600 800 1000 1200
Time (in seconds)

2500

2750

3000

3250

3500

3750

4000

4250

4500

Nu
m

be
r o

f r
eq

ue
st

s r
ec

ei
ve

d
ev

er
y

5
se

co
nd

s

Performance stress-test with In-memory Queues
Performance Measurements
moving average (n=5)

Figure 6.2: The obtained results from stress-testing the systemwith in-memory queues
over the course of 1,200 seconds. Number of requests are measured and
reset every 5 seconds. The moving average is computed with a window
size n=5.

in-memory queues), the system clearly has a higher performance when using
in-memory queues. This is not unexpected, as any form of computation on a
data item should be performed faster when the item is fetched volatile memory,
instead of disk. The plot does however illustrate that the performance with
in-memory queues can be up to 100 times better compared to the system with
persistent queues.

Figure 6.3 illustrates the results obtained when using a system configuration
similar to the previous ones, but eachworker agent now sleeps for 0.9-1.1 second
in addition to incrementing the integers before propagating them forward in
the pipeline. The purpose of sleeping for 0.9-1.1 seconds is to simulate work. The
plot contains results from both using persistent queues (top) and in-memory
queues(bottom). Contrary to previous measurements, the persistent queue
configuration performs better when more time consuming jobs are performed,
compared to the configuration with in memory queues. The performance also
seems to be more stable, ranging mostly between 3 and 5 requests per 5 seconds
for persistent queues, but between 2 and 5 requests per 5 seconds for in-memory
queues.

The results illustrate that the overhead created when writing the queues to

72 chapter 6 evaluation

0

2

4

6

Persistent Queues

0 200 400 600 800 1000 1200
0

2

4

6

In-Memory Queues

Time (in seconds)

Re
qu

es
ts

 p
ro

ce
ss

ed
 e

ve
ry

 5
 se

co
nd

s

Figure 6.3: Results obtained when measuring the number of requests received where
worker agents in the pipeline sleep for one second after processing an
item. Measurements are done with persistent queues (top) and in-memory
queues(bottom). The number of requests received are measured and reset
every 5 seconds.

file continuously becomes negligible with regards to the overall performance.
Despite this, the queues for these measurements only contain integers. With
such small values the time spent writing to file will be a lot less compared to
e.g. images. It is therefore important to consider the size of the data when
working out a system configuration with optimal performance for carrying out
the desired task.

Figure 6.4 illustrates the different performance results obtained when stress-
testing the system with and without the killer deployed. The killer is configured
to kill a random worker agent or initial agent every 15 seconds during the entire
run-time in the run where it is deployed. Both measurements are similar both
in terms of the series shape and the performance. When the killer is deployed,
the measurements does, however become slightly worse. Despite the agents
being killed every 15 seconds, the performance still remains relatively similar
in terms of stability. Agents being killed every 15 seconds and the number of
requests received are measured every 5 seconds means that the performance
should decrease in every 3rd measurement. This could explain the lack of
visible dips in performance throughout the run-time, overall.

6.3 end-to-end evaluation 73

0
20
40
60
80

100
120

Persistent Queues without Killer

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Persistent Queues with Killer

Time (in seconds)

Re
qu

es
ts

 p
ro

ce
ss

ed
 e

ve
ry

 5
 se

co
nd

s

Figure 6.4: The results obtained when measuring the number of requests received
during stress-testing over the course 1,200 seconds without (top) and with
(bottom) the killer deployed. The number of requests received is measured
and reset every 5 seconds.

Queue type used Min
Value

Mean
value

Standard
devia-
tion

Median
Value

Max
Value

Persistent Queue (No
sleep)

12 29.09 11.47 27 114

In-memory Queue
(No sleep)

2757 3184.43 343.37 3061.5 4393

Persistent Queue
(Kill every 15 sec.)

9 25.42 12.9 23 89

Persistent Queue
(Sleep 0.9-1.1 sec.)

0 4.38 0.88 5 6

In-memory Queue
(Sleep 0.9-1.1 sec.)

0 4.01 1.11 4 6

Table 6.2: A summary derived from the continuous performance experiments ex-
plained previously. The table contains the minimum, maximum, mean,
median and standard deviation values for each measurement performed
throughout their entire run-time of 1,200 seconds.

74 chapter 6 evaluation

Table 6.2 contains a summary of values related to the experiments on continu-
ous performance results. The measurements in the table confirms the overhead
created when using persistent queues becomes negligible when the workload is
increased. Not only are the results more stable for persistent queues (standard
deviation 0.88 vs 1.11), it also performs better overall with an average of 4.38
requests processed per 5 seconds compared to 4.01 seconds for the in-memory
queue. The performance does increase slightly, from 29.09 during the stress-
test, to 25.42 during the same test with the Killer component deployed. The
stability of the system also seem to decrease slightly, as the standard deviation
goes from 11.47 to 12.9 when the killer component is deployed.

Discussion

It is important to note that despite the performance gain from using in-memory
queues, the potential consequence of this is that the system remains unable
to recover properly from faults if any component were to shut down during
the run-time. A local controller may resume an agent that crashes, enabling
it to continue working. When using in-memory queues the data stored will,
however be lost if the agent itself were to crash. This would require a complex
recovery routine, where the agent initializing the pipeline would have to re-
retrieve the specific items that has been lost during the crash and propagate
them through the entire pipeline, all over again. In the case where the system
operates in a trusted environment where the run-time does not last long or is
communication-intensive, it could benefit the user to use in-memory queues in
favor of persistent queues.

The results from Figure 6.4 illustrate how the system manages to remain stable
in terms of performance, despite worker agents being regularly killed. The local
controllers are constantly monitoring the agents and could therefore explain
why the system manages to remain stable. Despite this, the performance of the
system is still affected by this and that having processes killed between small
intervals could be fatal for the systems performance. This is one of the reasons
for monitoring and reporting every crash that is detected in the system.

6.4 Distributed Word Counter

To evaluate if Áika can handle simple analytical tasks, that does not necessarily
involve highly complex computations, we deploy a distributed application for
counting words from a text file.

6.4 distributed word counter 75

Setup

The distributedword counting application follows aMapReduce inspired design.
It counts the words provided in a single, given text file. The data set used is
a generated data set based on the 1,000 most common words, according to
Education First [129]. The data set is generated by loading the 1,000 most
common used English words into a list and randomly select words from the
list until the size of the data set is large enough.

The agents in the system can be split into three types:

• Split worker: Is responsible for dividing the data set into parts that each
individual mapper can work on.

• Map worker: Tokenize the text it has been given, iterate over and count
every word. The counted values are stored in a simple Python dictionary.

• Reduce worker: Combine all dictionaries given from the mappers into
one, total dictionary.

The system is configured to use a single splitter to initialize the word counting,
between 1 and 16 number of mappers and a single reducer that combines the
results from each mapper. The system is configured with static load balanc-
ing, where each map worker fetches one job from the split workers queue,
respectively. This also means that each worker perform their work in one single
iteration. The experiment is repeated 15 times so that the stability of the system
can be measured as well. See Appendix C for a more in-depth explanation of
the word counter setup.

Results

The results obtained from running word counting on a 100 MB and a 300
MB data set can be found in Figure 6.5. The figure indicates that the system
is able to scale well in terms of handling embarrassingly parallel algorithms,
due to the slope having an expected concave shape. Despite this, the slope
starts to flatten at around 8-9 seconds. One reason for this is that creating
more map workers is more time consuming for the system, as the workers
are instantiated local controllers, which are further instantiated from a single
cluster controller. In addition to this, the use of a single reducer could lead to
a minor bottleneck, since it would become responsible for combining all word
counting maps, alone.

76 chapter 6 evaluation

2 4 6 8 10 12 14 16
Number of map workers

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ti
m

e
to

 c
om

pl
et

e
(in

 se
co

nd
s)

0.78

0.73
0.69 0.91 0.20 0.16 0.68 0.23 0.80 0.75 0.73 0.78 0.78 0.15 0.92 0.73

1.99

0.43

0.91

1.06
0.18

0.09 0.68 0.10 0.77 1.12 1.02 0.93 1.00 0.15 0.92 1.07

Word count on a 100MB and 300MB datasets
100MB
300MB

Figure 6.5: The obtained results from counting the words in a 100 MB data set. The
error bars displays the standard deviation and the value is displayed above
each data point.

Discussion

As the micro-benchmarks shows, the cluster controller spends approximately
0.30 seconds starting up a single local controller. Afterwards, it spends ap-
proximately 0.15 seconds extra for each additional local controller. The local
controller, on the other hand, spends approximately between 0.02 and 0.04
seconds to start a single agent. This in total makes up over 1 second of over-
head when the number of map workers i 6 or more, which partly explains
the overhead seen in the graph. Furthermore, it is necessary to take communi-
cation overhead, file reading and writing (due to the persistent queues) and
the startup wait time that each agent has into consideration. A part of the
overhead could also be explained by the fact that each mapper loads their
entire partition into memory before mapping. When the size of the data set
increases the overhead may therefore also increase.

6.5 Distributed Deep Feature Extraction

The purpose of the Distributed Deep Feature Extraction experiment is to evalu-
ate if Áika is able to perform machine learning tasks with different approaches.

6.5 distributed deep feature extraction 77

Another purpose for the experiment is to investigate the systems ability to scale
with these different approaches.

Setup

We use the STL-10 image data set to perform the feature extractions [130]. The
STL-10 data set is inspired by the CIFAR-10 data set [131], although there are
some differences between them, such as the images having a higher resolution
(96x96 instead of 28x28). The feature extractions are performed on the entire
data set of 113,000 images in batches, with 500 images per batch. The use
of batches could give an indication on how the system performs with larger
scaled images.

The system extracts features from the data with the use of three pre-trained
Keras [132] models. The system is configured and tested with two different
approaches:

1. All three models are loaded into N workers, which perform feature
extraction on all three models, sequentially.

2. The three models are distributed among 3 workers, such that the feature
extraction process can be done in parallel.

The setup is described in more detail in Appendix D1.

Results

It takes approximately 3,336 seconds (almost 56 minutes) to perform feature
extractions on all 113,000 images when the feature extractions on a single
machine. The measurement on a single machine has been repeated three
times.

The results obtained when performing feature extraction on 113,000 96x96x3
images in batches of 500 images per batch, using the 2 approaches described
previously can be found in Figure 6.6. Both approaches seem to scale at a
similar rate in terms of number of sub-graphs. The distributed feature extraction
approach is clearly more efficient, but also requires more workers.

One interesting finding is that the sequential feature extraction approach

1. Due to issues with compatibility between software versioning on the cluster, we had to
perform the experiments using the CPUs of the computers instead of the GPUs.

78 chapter 6 evaluation

1 2 3 4 5
Number of sub-graphs

0

500

1000

1500

2000

2500

3000

3500

4000
Ti

m
e

to
 c

om
pl

et
e

(in
 se

co
nd

s)

7.93

6.24

4.82
2.34 1.17

1.91

3.86

0.97
0.47

0.40

Single machine result: 3336.25 seconds

Feature Extraction on 113 000 96x96x3 Images
Single machine
Distributed Feature Extraction
Sequential Feature Extraction

Figure 6.6: The obtained results from doing feature extraction with pre-trained VGG-
16, DenseNet-121 and ResNet-50 models, where the models are either
distributed among three workers (Distributed Feature Extraction), or put
in a sequence on a single worker (Sequential Feature Extraction). The
images have been processed with a batch size of 500.

performs better compared to the single machine benchmark, even when using
a single worker. This is surprising, because of the additional overhead that
the sequential feature extraction approach receives due to latency and such.
The reason could also, however be purely coincidental and due to varying
processing frequency or memory management in Python. Despite this, it is still
an interesting result.

Discussion

The results demonstrates that distributing the feature extraction models across
several workers is beneficial for the systems performance. It is, however impor-
tant to note that the distribution sub-graph requires three workers instead of a
single one. The results from running the experiment with three single workers
instead of a sub-graph of three workers proves to be more beneficial in terms
of pure performance. The reason for this is that the VGG-16 model spends
more time extracting features compared to the other two models, which makes
the system scale less evenly. However, if the system were to further utilize a
classifier that blocks until all features extracted for the batch of data has been

6.6 review of non-functional requirements 79

received, the distributed approach may prove to be more beneficial for rapidly
classifying features.

6.6 Review of Non-Functional Requirements

This section presents a review of the non-functional requirements outlined in
Chapter 3, based on the resulting system and the results from the experiments
discussed earlier in this chapter.

Fault Tolerance

The hierarchical design of Áika provides Áika with fault tolerance. The use
of local controllers on each physical node ensures that failing agents can be
restarted in an effective manner. Using a cluster controller to recover from
physical node failure also ensures that the system can remain operable.

• Reliability: The system implements reliability through the hierarchical
threading structure. Because of this, processes can restart failing threads
to make sure without needing to restart the entire process. Consider that
the work thread of an agent fails due to a corrupt item. Instead of having
to restart the entire process (thereby closing servers that are important
for other processes), the main thread can instead simply restart the work
thread as soon as it notices that it is no longer running.

• Availability: The systems fault tolerance policy enforces that the system
remains available for as long as possible. The use of local controllers to
recover failing agents ensures that recovery time is short, compared to
using the cluster controller for recovery, which aids in making the system
as available as possible.

Confidentially and Integrity

Confidentiality of sensitive data can be achieved by utilizing the Dorvu file
system, which ensures that data is stored confidentially through encryption.
Since the file system is distributed and we assume that all nodes have access
to this system, which makes it possible to store confidential data in the file
system instead of passing it directly over TCP.

Data integrity is provided through the utilization of persistent queues that are

80 chapter 6 evaluation

used between computation steps. The persistent queues does not remove any
items from file before work on the item is done and the result has been put on
the next queue. Because of this, no items should be lost in the event of failure.
Despite this, the system may still be vulnerable

Resilience

Resilience by redundancy is not implemented in Áika by default, but the use
of the DAG computation model enables application developers to construct
N-model redundancy as a part of the configuration.

6.7 Discussion

There is no doubt that the use of persistent queues can lead to a bottleneck
within the system, given that the data is large enough. Moreover, utilizing
persistent queues on every agent before the analytical procedure can lead to
an unnecessary overhead in the systems performance, as data would need to
be sent to every worker, then written to file.

6.8 Summary

This chapter provides an evaluation of Áika based on different experimental
results, organized into micro-benchmarks, end-to-end benchmarks and bench-
mark of specific cases. The results demonstrate that the use of persistent
queues can become a bottleneck in the system compared to in-memory queues,
but does not affect the performance when the time spent working on each
item is larger than the time spent moving the items themselves between two
agents. Based on the case experiments with the distributed word counter and
the distributed feature extractor, we can conclude that the system scales well
and provide stable results, but that a slight overhead makes the performance
increase stagnate earlier than expected.

The next chapter makes concluding remarks and provides some future work.

7
Conclusion and Future
Work

This chapter outlines concluding remarks with regards to the thesis based on
our findings. Some potential future work is also provided.

7.1 Conclusion

This thesis has presented Áika, a prototype (POC) for a system created for
executing distributed ai applications in untrusted edge environments. As a
part of the thesis, we have designed, implemented and evaluated Áika. We
wanted to investigate how a system supporting machine learning inference
in untrusted edge environments could be built to support a wide range of
computational graphs through a DAG computation model, while making the
system tolerant to failures.

Through a hierarchical design, we utilize local controllers monitoring agents
on physical nodes to perform quick recovery when failure occurs. A cluster
controller is used to further invoke node recovery, where agents from a failed
physical node is moved to a replica. The cluster controller is replicated in a
chain to avoid single point of failure. We enable application developers utilizing

81

82 chapter 7 conclusion and future work

the system to construct complex distributed DAGs composed of agents through
a relatively simple JSON configuration format.

Based on the results, the system manages to have a stable throughput despite
agents crashing every 15 seconds. When measuring with data-intensive tasks,
we discovered that the use of persistent queues can be even more beneficial and
stable compared to in-memory queues. This applies in cases where theworkload
on an item exceeds the time spent transporting the item. In Section 6.4 and
Section 6.5 we illustrate how Áika can be used to create DAGs of varying
complexity that use load balancing and divide work among agents to optimize
performance. The results from these experiments demonstrate that Áika is a
scalable and supports different DAG designs, which further allows construction
of distributed machine learning inference pipelines.

7.2 Future Work

Áika is currently a simplified prototype and there are many potential directions
of future work.

Proof of Applicability (POA)

The system has not been tested in a proper untrusted edge environment and
should therefore be further developed as a POA, for instance with regards to
the Dutkat-project. For this case, Áika should be tested on a computer cluster
that is small enough to be deployed on fishing vessels. In the Dutkat-paper, the
authors discuss the potential of using Nvidia Jetson NX computers [31].

The system should also be implemented in a more secure and stable program-
ming language, that is better suited for large applications. We recommend to
implement a complete version of the system in Rust [133], due to its static type
system providing strong guarantees for isolation, concurrency and memory
safety. Rust also enables fine-grained control over memory representations.
Alternatively, the system could be implemented in the Go Programming Lan-
guage[134], due to its focus on performance through Go-routines, static typing
and implementation of memory safety.

7.2 future work 83

Dynamic Load Balancing

In the current implementation of Áika, load balancing has to be specified
through the configuration format before starting the system. Implementing a
dynamic load balancing scheme that can be utilized automatically at run-time
in areas of the DAG with low throughput could both simplify the application
developers job and lead to better performance results.

Add/Remove Resources

The system configuration is currently pre-determined before the run-time is
initialized. It is therefore not possible to add or remove resources at run-time
without interrupting the run-time itself. The system has to be re-initialized if
new resources are to be added. Implementing support for adding and removing
resources is another potential feature for future work.

Security

The communication in the system is currently done over pure TCP sockets
and are not secured in any way due to the scope of this thesis. If the system
is going to be deployed in a real setting, it is necessary to implement overall
security policies throughout the system, to ensure that sensitive data does not
leak out to unauthorized and malicious actors. Implementing the system with
end-to-end encryption when communicating could hinder man-in-the-middle
attacks and a proper authorization scheme could hinder outside sources that
should not have access from interfering with the systems servers. This is a
crucial requirement for the system to run in a realistic setting.

Trusted Execution Environments

Another potential direction for the system is to look into how Trusted Execu-
tion Environments, like Intel SGX or Arm TrustZone can be used to protect
the systems integrity during run-time. The utilization of trusted execution
environments can for example be used to hinder data poisoning and similar
attacks. This has been done on a smaller scale with implementation of neural
networks that act in trusted execution environments, like DarkneTZ [135] and
HybridTEE [136].

84 chapter 7 conclusion and future work

Improved Configuration

The configuration format is currently relatively simple, but constructing large
and complex graphs can be difficult, as it gets harder to keep track of the
different ports and hosts that are used by each agent. Although the startup script
simplifies the process by automatically adding some configuration parameters,
the configuration can still be altered to a simpler format.

Identify Stragglers

Since the system is designed to continuously run over a longer period of time,
stragglers that slows down processes may become a problem. A potential
way to do this is to expand upon the killer component that we have used for
benchmarks, such that it can detect straggling processes and then kill them.
The local controller will then restart them. Another potential solution is to let
the local controller itself identify if the working agent is a straggler.

Debugger

The lack of a debugger currently makes it difficult for application developers
to implement distributed machine learning solutions with the system. If the
system is going to be applied in real cases, it is necessary to have a proper
debugger that can detect and forward errors to the developer during the
development stage of an application.

Data Splitting

The system does not currently support data being split and distributed to
multiple agents from anything else than initial agents. It could be useful to
implement steps similar to the Reduce step in MapReduce and would add
another way of implementing a distributed DAG.

A
Configuration Format
The system uses a static configuration format written in JSON. The configura-
tion format determines how data flows between each node within the DAG,
and the number of replicas that will be utilized during the run-time.

To make the process of writing configurations simpler, we have implemented
a startup script that can be used to both verify and make corrections to the
configuration format before starting a new run-time. The startup script is
responsible for parsing the configuration file and find any missing keys and
add an appropriate values for them. In the case where finding a value for the
missing key is not intuitive, the script raises an exception instead, so that the
application developer is informed about the mistake.

Listing A.1 illustrates the general configuration format for the system. The
system has a single log file,which each componentmay insert records into when
abnormal events have been detected. The configuration is mostly composed
of ports for serving other system components, unique identifiers, checkpoint
files and the host which each component runs on. The list of replica nodes
contains replicated local controllers. The list of crashed nodes contains all local
controllers that have crashed. We have excluded agent specific configuration
values from this configuration, as they are covered more in-depth in other parts
of the thesis, for example in Appendix B. Agent specific configurations may
also vary highly, as the application developer may be inclined to implement
custom agents with custom configuration values.

85

86 appendix a configuration format

Listing A.1: The general configuration format for the system. The values shown are
mandatory for each component type, and needs to be added manually, or
automatically through the startup script (startup.py). The agents contain
additional configuration values (such as input port, lookup tables, etc.)
that depend on the type of agent used.

1 {
2 "log_file" : "<string>",
3 "cluster_controllers" : [
4 {
5 "ID" : "<string>",
6 "host" : "<string>",
7 "monitor_port" : <int>,
8 "controller_port" : <int>,
9 "recovery_port" : <int>,
10 "execution_file" : "<string>.py",
11 "log_file" : "<string>.db"
12 } ...
13],
14 "local_controllers" : [
15 {
16 "ID" : "<string>",
17 "host" : "<string>",
18 "ping_port" : <int>,
19 "recovery_port" : <int>,
20 "execution_file" : "<string>.py",
21 "log_file" : "<string>.db",
22 "agents" : [
23 {
24 "ID" : "<string>",
25 "host" : "<string>",
26 "execution_file" : "<string>.py",
27 "queue_log1" : "<string>",
28 "queue_log2" : "<string>",
29 "cluster_controller_port": <int>,
30 "log_file" : "<string>.db"
31 "<agent specific configurations ..>"
32 } ...
33]
34 }
35],
36 "replica_nodes" : [],
37 "crashed_nodes" : [],
38 }

B
Local Run-time Example
This appendix demonstrates the correspondence between the configuration
format and the DAG data flow format.

Initial
Agent 1

Worker
Agent 1

Initial
Agent 2

Worker
Agent 3

Worker
Agent 4

Worker
Agent 6

Worker
Agent 7

Worker
Agent 8

Worker
Agent 5

Worker
Agent 2

Final
Agent

1, 2, 3 1, 2, 3

4

3,
4

1, 2 1

2

1

2

3, 4 3, 4

1,
2

Figure B.1: An example DAG constructed from the configuration shown in Listing B.1.

Figure B.1 illustrates the DAG that is given from the agent configuration given
in Listing B.1.

Listing B.1: DAG configuration. The listing illustrates a complete configuration of
agents that is used to create the DAG. For this example, The DAG is
composed of left worker agents, as they enable data to be passed to
multiple other agents.

87

88 appendix b local run-time example

1 "agents" : [
2 {
3 "host" : "localhost",
4 "lookup_table" : {
5 "1" : { "host" : "localhost", "port" : 7001 },
6 "2" : { "host" : "localhost", "port" : 7001 },
7 "3" : { "host" : "localhost", "port" : 7001 }
8 }
9 },
10 {
11 "host" : "localhost",
12 "input_port" : 7001,
13 "lookup_table" : {
14 "1" : { "host" : "localhost", "port" : 7002 },
15 "2" : { "host" : "localhost", "port" : 7002 },
16 "3" : { "host" : "localhost", "port" : 7002 }
17 }
18 },
19 {
20 "host" : "localhost",
21 "lookup_table" : {
22 "4" : { "host" : "localhost", "port" : 7002 }
23 }
24 },
25 {
26 "host" : "localhost",
27 "input_port" : 7002,
28 "lookup_table" : {
29 "1" : { "host" : "localhost", "port" : 7004 },
30 "2" : { "host" : "localhost", "port" : 7004 },
31 "3" : { "host" : "localhost", "port" : 7003 },
32 "4" : { "host" : "localhost", "port" : 7003 }
33 }
34 },
35 {
36 "host" : "localhost",
37 "input_port" : 7003,
38 "lookup_table" : {
39 "3" : { "host" : "localhost","port" : 7005 },
40 "4" : { "host" : "localhost","port" : 7005 }
41 }
42 },
43 {

89

44 "host" : "localhost",
45 "input_port" : 7004,
46 "lookup_table" : {
47 "1" : { "host" : "localhost", "port" : 7006 },
48 "2" : { "host" : "localhost", "port" : 7007 }
49 }
50 },
51 {
52 "host" : "localhost",
53 "input_port" : 7005,
54 "lookup_table" : {
55 "3" : { "host" : "localhost", "port" : 7011 },
56 "4" : { "host" : "localhost", "port" : 7011 }
57 }
58 },
59 {
60 "host" : "localhost",
61 "input_port" : 7006,
62 "lookup_table" : {
63 "1" : { "host" : "localhost", "port" : 7008 }
64 }
65 },
66 {
67 "host" : "localhost",
68 "input_port" : 7007,
69 "lookup_table" : {
70 "2" : { "host" : "localhost", "port" : 7008 }
71 }
72 },
73 {
74 "host" : "localhost",
75 "input_port" : 7008,
76 "lookup_table" : {
77 "1" : { "host" : "localhost", "port" : 7011 },
78 "2" : { "host" : "localhost", "port" : 7011 }
79 }
80 },
81 {
82 "host" : "localhost",
83 "input_port" : 7011,
84 }
85]

C
Distributed Word Counter
This appendix explains the Distributed Word Counter used for the text process-
ing experiment covered in Chapter 6 (Section 6.4).

Split

Map 1

OutputMap 2

Map N

Combine

Figure C.1: Illustration of DAG for distributed word counter.

The distributed word counter program uses a similar approach as MapReduce.
The process is initialized by an initial agent that splits the workload into chunks
that are equally shared among the working agents. The working agents fetch
one workload each from the initial agent, loads the data set partition assigned
into memory and counts word by word through iteration of the text. The results

91

92 appendix c distributed word counter

are stored in a map that contains words as keys and number of occurrences
as values. Each map agent forwards the resulting map to one reducer agent
which combines the maps together to gain the total results from the entire
text.

Figure C.1 illustrates the DAG for the distributed word counter program. The
program can be scaled by adding additional map agents to the configuration.
Unfortunately, Áika does currently not support splitting data and sending the
splits to different sources, like in MapReduce, and the design therefore relies
on using a single reducer agent to gather the results. The consequence of this
is that the reduce/combine agent may become a bottleneck if the document
contains a high number of unique words. It may also receive requests from
many mappers at the same time.

The data set used is generated with a script that builds a textfile by randomly
selecting words from a list of words. This process is done iteratively until the
the document has reached the pre-determined size. Since the byte size of a
word depends on the string, the pre-determines size is only an approximation,
and may therefore be off by a few bytes. For the experiment, text files of 100MB
and 300MB is used.

D
Distributed Deep Feature
Extractor

This appendix explains the Distributed Deep Feature Extractor used for the
image experiments covered in Chapter 6 (Section 6.5).

The distributed deep feature extractor program uses a similar design as the
word counter program from Appendix C, but is slightly more complex. The
aim of the program is to evaluate the performance of the system when feature
extraction is performed on multiple machine learning models that are either
distributed across several nodes, or performed in sequence on a single node. We
use three different deep learning models as example models in order to perform
feature extraction on images: VGG-16, DenseNet-121 and ResNet-50.

These models are either distributed across three nodes, such that the feature
extraction can be done simultaneously, or put on a single node, such that the
feature extractions will be performed in sequential order on the three models.
The features are only extracted from the images before the program moves on,
and they are thus not written to disk or stored anywhere.

The system is configured with a similar design as the word counter program.
An initial agent initializes the pipeline by splitting the workload and inserting
it on a local queue, which worker agents can fetch from. It is also responsible
for starting the timer for performance measurement. A final agent is placed

93

94 appendix d distributed deep feature extractor

Initial
Agent

Sub-graph
1

Sub-graph
2

Sub-graph
N

Final
Agent

Splitter

VGG-16

DenseNet-121

ResNet-50

Final
Agent

Total Graph

Sub-graph

Figure D.1: The DAG for the distributed deep feature extractor with distributed ma-
chine learning models.

95

at the end of the pipeline. It is responsible to count the number of features
extracted, and then stop a timer when the correct number of features has been
extracted.

The worker agents can be composed of a single agent that fetches workloads
from the initial agents queue and perform feature extraction with all three
models sequentially. They can, alternatively be built as sub-graphs, where a
splitter agent fetches workload items from the initial agent, then forwards the
workload to three workers. Each worker contains a single model that is used to
perform feature extractions, and they can therefore perform feature extractions
simultaneously. This solution is illustrated in Figure D.1. This design enables
the system to be configured with a combination of load balancing, and divided
work. That is, the design supports multiple sub-graphs to be used for load
balancing (seen at the top figure), while at the same time distributing the
machine learning models (seen in the bottom figure).

Bibliography
[1] Mahadev Satyanarayanan. “The Emergence of Edge Computing.” In:

Computer 50.1 (2017), pp. 30–39. doi: 10.1109/MC.2017.9.

[2] Wazir Zada Khan et al. “Edge computing: A survey.” In: Future Gen-
eration Computer Systems 97 (2019), pp. 219–235. issn: 0167-739X.
doi: https://doi.org/10.1016/j.future.2019.02.050. url: https:
//www.sciencedirect.com/science/article/pii/S0167739X18319903.

[3] Phil Marshall et al. State of the Edge: A market and Ecosystem Report for
Edge Computing. Tech. rep. The Linux Foundation, 2021. url: https://
project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_
2021.pdf.

[4] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. “Artificial intelli-
gence in healthcare.” eng. In: Nature biomedical engineering 2.10 (2018),
pp. 719–731. issn: 2157-846X.

[5] Inga Strumke et al. “Artificial Intelligence in Gastroenterology.” In:
(2022).

[6] MA Riegler et al. “Artificial intelligence in the fertility clinic: status,
pitfalls and possibilities.” In: Human Reproduction 36.9 (2021), pp. 2429–
2442.

[7] Andrea M Storås et al. “Artificial intelligence in dry eye disease.” In:
The Ocular Surface (2021).

[8] Lex Fridman et al. “MIT Advanced Vehicle Technology Study: Large-
Scale Naturalistic Driving Study of Driver Behavior and Interaction
With Automation.” In: IEEE Access 7 (2019), 102021–102038. issn: 2169-
3536. doi: 10.1109/access.2019.2926040. url: http://dx.doi.org/
10.1109/ACCESS.2019.2926040.

[9] Hsu-kuang Chiu et al. “Probabilistic 3D multi-modal, multi-object track-
ing for autonomous driving.” In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2021, pp. 14227–14233.

97

https://doi.org/10.1109/MC.2017.9
https://doi.org/https://doi.org/10.1016/j.future.2019.02.050
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_2021.pdf
https://project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_2021.pdf
https://project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_2021.pdf
https://doi.org/10.1109/access.2019.2926040
http://dx.doi.org/10.1109/ACCESS.2019.2926040
http://dx.doi.org/10.1109/ACCESS.2019.2926040

98 BIBLIOGRAPHY

[10] Scott A. Wright and Ainslie E. Schultz. “The rising tide of artificial intel-
ligence and business automation: Developing an ethical framework.” In:
Business Horizons 61.6 (2018). ETHICS, CULTURE, AND PEDAGOGICAL
PRACTICES IN THE GLOBAL CONTEXT, pp. 823–832. issn: 0007-6813.
doi: https://doi.org/10.1016/j.bushor.2018.07.001. url: https:
//www.sciencedirect.com/science/article/pii/S0007681318301046.

[11] Ion Stoica et al. A Berkeley View of Systems Challenges for AI. Tech. rep.
UCB/EECS-2017-159. EECS Department, University of California, Berke-
ley, 2017. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2017/EECS-2017-159.html.

[12] Fabrizio Carcillo et al. “Combining unsupervised and supervised learn-
ing in credit card fraud detection.” In: Information sciences 557 (2021),
pp. 317–331.

[13] Shuiguang Deng et al. “Edge Intelligence: the Confluence of Edge Com-
puting and Artificial Intelligence.” In: CoRR abs/1909.00560 (2019).
arXiv: 1909.00560. url: http://arxiv.org/abs/1909.00560.

[14] Junyu Liu et al. “Network Densification in 5G: From the Short-Range
Communications Perspective.” In: IEEE Communications Magazine 55
(Dec. 2017), pp. 96–102. doi: 10.1109/MCOM.2017.1700487.

[15] D. E. Comer et al. “Computing as a Discipline.” In: Commun. ACM 32.1
(Jan. 1989), 9–23. issn: 0001-0782. doi: 10.1145/63238.63239. url:
https://doi.org/10.1145/63238.63239.

[16] G Hartvigsen and D Johansen. “Stormcast — A Distributed Artificial
Intelligence Application for Severe Storm Forecasting.” eng. In: IFAC
Proceedings Volumes 21.12 (1988), pp. 99–102. issn: 1474-6670.

[17] D. Johansen, R. van Renesse, and F.B. Schneider. “Operating system
support for mobile agents.” In: Proceedings 5th Workshop on Hot Topics
in Operating Systems (HotOS-V). 1995, pp. 42–45. doi: 10.1109/HOTOS.
1995.513452.

[18] Dag Johansen. “Mobile agent applicability.” eng. In: Personal and
ubiquitous computing 2.2 (1998), pp. 57–67. issn: 0949-2054.

[19] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Pro-
cessing on Large Clusters.” In: OSDI’04: Sixth Symposium on Operating
System Design and Implementation. San Francisco, CA, 2004, pp. 137–
150.

[20] Steffen Viken Valvåg. “Cogset : A High-Performance MapReduce En-
gine.” In: (Jan. 2012).

https://doi.org/https://doi.org/10.1016/j.bushor.2018.07.001
https://www.sciencedirect.com/science/article/pii/S0007681318301046
https://www.sciencedirect.com/science/article/pii/S0007681318301046
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html
https://arxiv.org/abs/1909.00560
http://arxiv.org/abs/1909.00560
https://doi.org/10.1109/MCOM.2017.1700487
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
https://doi.org/10.1109/HOTOS.1995.513452
https://doi.org/10.1109/HOTOS.1995.513452

BIBLIOGRAPHY 99

[21] Håvard Johansen, André Allavena, and Robbert van Renesse. “Fire-
flies: scalable support for intrusion-tolerant network overlays.” eng.
In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on computer systems 2006. EuroSys ’06. ACM, 2006, pp. 3–13. isbn:
9781595933225.

[22] Håvard D. Johansen et al. “Fireflies: A Secure and Scalable Membership
and Gossip Service.” In: ACM Trans. Comput. Syst. 33.2 (2015). issn:
0734-2071. doi: 10.1145/2701418. url: https://doi.org/10.1145/
2701418.

[23] Audun Nordal et al. “Balava: Federating Private and Public Clouds.”
In: 2011 IEEE World Congress on Services. 2011, pp. 569–577. doi:
10.1109/SERVICES.2011.21.

[24] Robbert van Renesse et al. Vortex. An event-driven multiprocessor op-
erating system supporting performance isolation. eng. Universitetet i
Tromsø, 2003.

[25] Anders T Gjerdrum et al. “Performance Principles for Trusted Comput-
ing with Intel SGX.” eng. In: Cloud Computing and Service Science. Com-
munications in Computer and Information Science. Cham: Springer
International Publishing, 2018, pp. 1–18. isbn: 9783319949581.

[26] Robert Pettersen, Håvard Johansen, and Dag Johansen. “Secure Edge
Computing with ARM TrustZone.” In: Jan. 2017, pp. 102–109. doi:
10.5220/0006308601020109.

[27] Anders Tungeland Gjerdrum. Diggi : a distributed serverless runtime for
developing trusted cloud services. eng. Tromsø, 2020.

[28] Olav A. Norgård Rongved et al. “Real-Time Detection of Events in
Soccer Videos using 3D Convolutional Neural Networks.” In: 2020 IEEE
International Symposium on Multimedia (ISM). 2020, pp. 135–144. doi:
10.1109/ISM.2020.00030.

[29] Debesh Jha et al. “ResUNet++: An Advanced Architecture for Medical
Image Segmentation.” In: 2019 IEEE International Symposium on Multi-
media (ISM). 2019, pp. 225–2255. doi: 10.1109/ISM46123.2019.00049.

[30] Debesh Jha et al. NanoNet: Real-Time Polyp Segmentation in Video Cap-
sule Endoscopy and Colonoscopy. 2021. arXiv: 2104.11138 [eess.IV].

[31] Tor-Arne S. Nordmo et al. “Dutkat: A Multimedia System for Catching
Illegal Catchers in a Privacy-Preserving Manner.” In: Proceedings of the
2021 Workshop on Intelligent Cross-Data Analysis and Retrieval. ICDAR
’21. Taipei, Taiwan: Association for Computing Machinery, 2021, 57–61.

https://doi.org/10.1145/2701418
https://doi.org/10.1145/2701418
https://doi.org/10.1145/2701418
https://doi.org/10.1109/SERVICES.2011.21
https://doi.org/10.5220/0006308601020109
https://doi.org/10.1109/ISM.2020.00030
https://doi.org/10.1109/ISM46123.2019.00049
https://arxiv.org/abs/2104.11138

100 BIBLIOGRAPHY

isbn: 9781450385299. doi: 10.1145/3463944.3469102. url: https:
//doi.org/10.1145/3463944.3469102.

[32] Aril Bernhard Ovesen et al. “File System Support for Privacy-Preserving
Analysis and Forensics in Low-Bandwidth Edge Environments.” In: In-
formation 12.10 (2021). issn: 2078-2489. doi: 10.3390/info12100430.
url: https://www.mdpi.com/2078-2489/12/10/430.

[33] A. M. TURING. “I.—COMPUTING MACHINERY AND INTELLIGENCE.”
In: Mind LIX.236 (Oct. 1950), pp. 433–460. issn: 0026-4423. doi:
10.1093/mind/LIX.236.433. eprint: https://academic.oup.com/
mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf. url:
https://doi.org/10.1093/mind/LIX.236.433.

[34] Robert Garner. Early Popular Computers, 1950 - 1970. http://ethw.
org/Early_Popular_Computers,_1950_-_1970. [Online; accessed 29-
November-2021]. 2015.

[35] John McCarthy. “What is artificial intelligence?” In: (2007).

[36] Frank Rosenblatt. “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” In: Psychological review
65.6 (1958), p. 386.

[37] Anne Håkansson and Ronald Lee Hartung. Artificial Intelligence : con-
cepts, areas, techniques and applications. eng. Lund, 2020.

[38] Bruce G Buchanan and Edward A Feigenbaum. “Dendral and meta-
dendral: Their applications dimension.” eng. In: Artificial intelligence
11.1 (1978), pp. 5–24. issn: 0004-3702.

[39] Edward Shortliffe. “Mycin: A Knowledge-Based Computer Program
Applied to Infectious Diseases*.” In: Proceedings / the ... Annual Sym-
posium on Computer Application [sic] in Medical Care. Symposium on
Computer Applications in Medical Care (Oct. 1977).

[40] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of
the Usages of Deep Learning for Natural Language Processing.” In:
IEEE Transactions on Neural Networks and Learning Systems 32.2 (2021),
pp. 604–624. doi: 10.1109/TNNLS.2020.2979670.

[41] Sean Eom and E Kim. “A survey of decision support system applica-
tions (1995–2001).” In: Journal of the Operational Research Society 57.11
(2006), pp. 1264–1278.

https://doi.org/10.1145/3463944.3469102
https://doi.org/10.1145/3463944.3469102
https://doi.org/10.1145/3463944.3469102
https://doi.org/10.3390/info12100430
https://www.mdpi.com/2078-2489/12/10/430
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
http://ethw.org/Early_Popular_Computers,_1950_-_1970
http://ethw.org/Early_Popular_Computers,_1950_-_1970
https://doi.org/10.1109/TNNLS.2020.2979670

BIBLIOGRAPHY 101

[42] Sean Eom and E Kim. “A survey of decision support system applica-
tions (1995–2001).” In: Journal of the Operational Research Society 57.11
(2006), pp. 1264–1278.

[43] Weiming Shen and Douglas H Norrie. “Agent-based systems for in-
telligent manufacturing: a state-of-the-art survey.” In: Knowledge and
information systems 1.2 (1999), pp. 129–156.

[44] Peter Stone and Manuela Veloso. “Multiagent systems: A survey from
a machine learning perspective.” In: Autonomous Robots 8.3 (2000),
pp. 345–383.

[45] Craig W. Reynolds. “Flocks, Herds and Schools: A Distributed Behav-
ioral Model.” In: SIGGRAPH Comput. Graph. 21.4 (1987), 25–34. issn:
0097-8930. doi: 10.1145/37402.37406. url: https://doi.org/10.
1145/37402.37406.

[46] Lars Kunze et al. “Artificial Intelligence for Long-Term Robot Autonomy:
A Survey.” In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 4023–
4030. doi: 10.1109/LRA.2018.2860628.

[47] Kwang-Kyo Oh and Hyo-Sung Ahn. “A survey of formation of mobile
agents.” In: 2010 IEEE International Symposium on Intelligent Control.
2010, pp. 1470–1475. doi: 10.1109/ISIC.2010.5612920.

[48] S Binitha, S Siva Sathya, et al. “A survey of bio inspired optimization
algorithms.” In: International journal of soft computing and engineering
2.2 (2012), pp. 137–151.

[49] Xin Feng et al. “Computer vision algorithms and hardware imple-
mentations: A survey.” In: Integration 69 (2019), pp. 309–320. issn:
0167-9260. doi: https://doi.org/10.1016/j.vlsi.2019.07.005.
url: https : / / www . sciencedirect . com / science / article / pii /
S0167926019301762.

[50] Peijun Ye, Tao Wang, and Fei-Yue Wang. “A Survey of Cognitive Archi-
tectures in the Past 20 Years.” In: IEEE Transactions on Cybernetics 48.12
(2018), pp. 3280–3290. doi: 10.1109/TCYB.2018.2857704.

[51] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. “Mul-
timodal Machine Learning: A Survey and Taxonomy.” In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 41.2 (2019), pp. 423–
443. doi: 10.1109/TPAMI.2018.2798607.

[52] Samira Pouyanfar et al. “A Survey on Deep Learning: Algorithms,
Techniques, and Applications.” In: ACM Comput. Surv. 51.5 (2018).

https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1109/LRA.2018.2860628
https://doi.org/10.1109/ISIC.2010.5612920
https://doi.org/https://doi.org/10.1016/j.vlsi.2019.07.005
https://www.sciencedirect.com/science/article/pii/S0167926019301762
https://www.sciencedirect.com/science/article/pii/S0167926019301762
https://doi.org/10.1109/TCYB.2018.2857704
https://doi.org/10.1109/TPAMI.2018.2798607

102 BIBLIOGRAPHY

issn: 0360-0300. doi: 10.1145/3234150. url: https://doi.org/10.
1145/3234150.

[53] Geert Litjens et al. “A survey on deep learning in medical image analy-
sis.” In: Medical image analysis 42 (2017), pp. 60–88.

[54] Ethem Alpaydin. Introduction to Machine Learning (3rd Edition). eng.
Cambridge, MA, USA, 2014.

[55] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Re-
inforcement Learning: A Survey.” In: CoRR cs.AI/9605103 (1996). url:
https://arxiv.org/abs/cs/9605103.

[56] Qiong Liu and Ying Wu. “Supervised Learning.” In: (Jan. 2012). doi:
10.1007/978-1-4419-1428-6_451.

[57] Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000. doi: 10.1017/CBO9780511801389.

[58] William A Belson. “Matching and prediction on the principle of biolog-
ical classification.” In: Journal of the Royal Statistical Society: Series C
(Applied Statistics) 8.2 (1959), pp. 65–75.

[59] Arti Patle and Deepak Singh Chouhan. “SVM kernel functions for clas-
sification.” In: 2013 International Conference on Advances in Technology
and Engineering (ICATE). 2013, pp. 1–9. doi: 10.1109/ICAdTE.2013.
6524743.

[60] R. Sathya and Annamma Abraham. “Comparison of Supervised and
Unsupervised Learning Algorithms for Pattern Classification.” In: Inter-
national Journal of Advanced Research in Artificial Intelligence 2.2 (2013).
doi: 10.14569/IJARAI.2013.020206. url: http://dx.doi.org/10.
14569/IJARAI.2013.020206.

[61] J. Macqueen. “Some methods for classification and analysis of multi-
variate observations.” In: In 5-th Berkeley Symposium on Mathematical
Statistics and Probability. 1967, pp. 281–297.

[62] Harold Hotelling. “Analysis of a complex of statistical variables into
principal components.” In: Journal of educational psychology 24.6 (1933),
p. 417.

[63] Karl Pearson. “LIII. On lines and planes of closest fit to systems of
points in space.” In: The London, Edinburgh, and Dublin philosophical
magazine and journal of science 2.11 (1901), pp. 559–572.

[64] Ian T Jolliffe. Principal component analysis. eng. New York, 2002.

https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://arxiv.org/abs/cs/9605103
https://doi.org/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1109/ICAdTE.2013.6524743
https://doi.org/10.1109/ICAdTE.2013.6524743
https://doi.org/10.14569/IJARAI.2013.020206
http://dx.doi.org/10.14569/IJARAI.2013.020206
http://dx.doi.org/10.14569/IJARAI.2013.020206

BIBLIOGRAPHY 103

[65] Semi-supervised learning. eng. Cambridge, Massachusetts, 2010.

[66] H. Scudder. “Probability of error of some adaptive pattern-recognition
machines.” In: IEEE Transactions on Information Theory 11.3 (1965),
pp. 363–371. doi: 10.1109/TIT.1965.1053799.

[67] C.J Merz, D.C St. Clair, and W.E Bond. “SeMi-supervised adaptive
resonance theory (SMART2).” eng. In: [Proceedings 1992] IJCNN In-
ternational Joint Conference on Neural Networks. Vol. 3. IEEE, 1992,
851–856 vol.3. isbn: 0780305590.

[68] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-supervised
learning.” In: Machine Learning 109.2 (2020), pp. 373–440.

[69] Popescu Marius et al. “Multilayer perceptron and neural networks.” In:
WSEAS Transactions on Circuits and Systems 8 (July 2009).

[70] Manjunath Jogin et al. “Feature Extraction using Convolution Neural
Networks (CNN) and Deep Learning.” In: 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information Communication
Technology (RTEICT). 2018, pp. 2319–2323. doi: 10.1109/RTEICT42901.
2018.9012507.

[71] Ian Goodfellow. Deep learning. eng. Cambridge, Massachusetts, 2016.

[72] Fuzhen Zhuang et al. A Comprehensive Survey on Transfer Learning.
2020. arXiv: 1911.02685 [cs.LG].

[73] Y. Lecun et al. “Gradient-based learning applied to document recog-
nition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791.

[74] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.
04597 [cs.CV].

[75] SeppHochreiter and Jürgen Schmidhuber. “Long Short-TermMemory.”
In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-
7667. doi: 10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.
edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.
url: https://doi.org/10.1162/neco.1997.9.8.1735.

[76] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders.” In:
CoRR abs/2003.05991 (2020). arXiv: 2003.05991. url: https://arxiv.
org/abs/2003.05991.

[77] Blesson Varghese et al. “Challenges and Opportunities in Edge Com-
puting.” In: Nov. 2016. doi: 10.1109/SmartCloud.2016.18.

https://doi.org/10.1109/TIT.1965.1053799
https://doi.org/10.1109/RTEICT42901.2018.9012507
https://doi.org/10.1109/RTEICT42901.2018.9012507
https://arxiv.org/abs/1911.02685
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://doi.org/10.1109/SmartCloud.2016.18

104 BIBLIOGRAPHY

[78] Alin-Gabriel Gheorghe et al. “Decentralized Storage System for Edge
Computing.” In: 2019 18th International Symposium on Parallel and
Distributed Computing (ISPDC). 2019, pp. 41–49. doi: 10.1109/ISPDC.
2019.00009.

[79] M. van Steen andA.S. Tanenbaum. Distributed systems,3rd ed., distributed-
systems.net. eng. The Netherlands? 2017.

[80] Tech Confronts Its Use of the Labels ‘Master’ and ‘Slave’. https://www.
wired.com/story/tech-confronts-use-labels-master-slave/. [On-
line; accessed 16-September-2021]. 2020.

[81] There’s an industry that talks daily about ‘masters’ and ‘slaves.’ It needs to
stop. https://www.washingtonpost.com/opinions/2020/06/12/tech-
industry-has-an-ugly-master-slave-problem/. [Online; accessed
16-September-2021]. 2020.

[82] Master,’ ‘Slave’ and the Fight Over Offensive Terms in Computing. https:
/ / www . nytimes . com / 2021 / 04 / 13 / technology / racist - computer -
engineering-terms-ietf.html. [Online; accessed 16-September-2021].
2021.

[83] Dag Johansen et al. “USING SOFTWARE DESIGN PATTERNS TO BUILD
DISTRIBUTED ENVIRONMENTAL MONITORING APPLICATIONS.” In:
(1997).

[84] Nikolay Baychenko. “Implementing a master/slave architecture for a
data synchronization service.” In: 2018.

[85] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
File System.” In: SIGOPS Oper. Syst. Rev. 37.5 (Oct. 2003), 29–43. issn:
0163-5980. doi: 10.1145/1165389.945450. url: https://doi.org/
10.1145/1165389.945450.

[86] C. V. Ramamoorthy and H. F. Li. “Pipeline Architecture.” In: ACM
Comput. Surv. 9.1 (Mar. 1977), 61–102. issn: 0360-0300. doi: 10.1145/
356683.356687. url: https://doi.org/10.1145/356683.356687.

[87] John Hennessy et al. “MIPS: A microprocessor architecture.” In: ACM
SIGMICRO Newsletter 13 (Dec. 1982), pp. 17–22. doi: 10.1145/1014194.
800930.

[88] Maria Aspri, Grigorios Tsagkatakis, and Panagiotis Tsakalides. “Dis-
tributed Training and Inference of Deep Learning Models for Multi-
Modal Land Cover Classification.” In: Remote Sensing 12.17 (2020).
issn: 2072-4292. doi: 10.3390/rs12172670. url: https://www.mdpi.
com/2072-4292/12/17/2670.

https://doi.org/10.1109/ISPDC.2019.00009
https://doi.org/10.1109/ISPDC.2019.00009
https://www.wired.com/story/tech-confronts-use-labels-master-slave/
https://www.wired.com/story/tech-confronts-use-labels-master-slave/
https://www.washingtonpost.com/opinions/2020/06/12/tech-industry-has-an-ugly-master-slave-problem/
https://www.washingtonpost.com/opinions/2020/06/12/tech-industry-has-an-ugly-master-slave-problem/
https://www.nytimes.com/2021/04/13/technology/racist-computer-engineering-terms-ietf.html
https://www.nytimes.com/2021/04/13/technology/racist-computer-engineering-terms-ietf.html
https://www.nytimes.com/2021/04/13/technology/racist-computer-engineering-terms-ietf.html
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/1014194.800930
https://doi.org/10.1145/1014194.800930
https://doi.org/10.3390/rs12172670
https://www.mdpi.com/2072-4292/12/17/2670
https://www.mdpi.com/2072-4292/12/17/2670

BIBLIOGRAPHY 105

[89] C. A. R. Hoare. “Communicating Sequential Processes.” In: Commun.
ACM 21.8 (1978), 666–677. issn: 0001-0782. doi: 10.1145/359576.
359585. url: https://doi.org/10.1145/359576.359585.

[90] Thomas H. Cormen. “Directed Acyclic Graphs.” In: Algorithms Unlocked.
2013, pp. 71–89.

[91] Michael Isard et al. “Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks.” In: SIGOPS Oper. Syst. Rev. 41.3 (Mar.
2007), 59–72. issn: 0163-5980. doi: 10.1145/1272998.1273005. url:
https://doi.org/10.1145/1272998.1273005.

[92] Jeffrey Dean et al. “Large Scale Distributed Deep Networks.” In: Ad-
vances in Neural Information Processing Systems. Ed. by F. Pereira et
al. Vol. 25. Curran Associates, Inc., 2012. url: https://proceedings.
neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-
Paper.pdf.

[93] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature
Embedding.” In: CoRR abs/1408.5093 (2014). arXiv: 1408.5093. url:
http://arxiv.org/abs/1408.5093.

[94] Martín Abadi et al. “Tensorflow: A system for large-scale machine
learning.” In: 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). 2016, pp. 265–283.

[95] Hermann Kopetz and Paulo Veríssimo. “Real Time and Dependability
Concepts.” In: Distributed Systems (2nd Ed.) USA: ACM Press/Addison-
Wesley Publishing Co., 1993, 411–446. isbn: 0201624273.

[96] M. Farrukh Khan and Raymond A. Paul. “Chapter 4 - Pragmatic Direc-
tions in Engineering Secure Dependable Systems.” In: Dependable and
Secure Systems Engineering. Ed. by Ali Hurson and Sahra Sedigh. Vol. 84.
Advances in Computers. Elsevier, 2012, pp. 141–167. doi: https://doi.
org/10.1016/B978- 0- 12- 396525- 7.00005- 8. url: https://www.
sciencedirect.com/science/article/pii/B9780123965257000058.

[97] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impos-
sibility of Distributed Consensus with One Faulty Process.” In: J. ACM
32.2 (1985), 374–382. issn: 0004-5411. doi: 10.1145/3149.214121.
url: https://doi.org/10.1145/3149.214121.

[98] J. Aspnes. “Time- and Space-Efficient Randomized Consensus.” In:
Journal of Algorithms 14.3 (1993), pp. 414–431. issn: 0196-6774. doi:
https://doi.org/10.1006/jagm.1993.1022. url: https://www.
sciencedirect.com/science/article/pii/S0196677483710229.

https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1145/1272998.1273005
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
https://doi.org/https://doi.org/10.1016/B978-0-12-396525-7.00005-8
https://doi.org/https://doi.org/10.1016/B978-0-12-396525-7.00005-8
https://www.sciencedirect.com/science/article/pii/B9780123965257000058
https://www.sciencedirect.com/science/article/pii/B9780123965257000058
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/https://doi.org/10.1006/jagm.1993.1022
https://www.sciencedirect.com/science/article/pii/S0196677483710229
https://www.sciencedirect.com/science/article/pii/S0196677483710229

106 BIBLIOGRAPHY

[99] A. Fox and E.A. Brewer. “Harvest, yield, and scalable tolerant systems.”
In: Proceedings of the Seventh Workshop on Hot Topics in Operating
Systems. 1999, pp. 174–178. doi: 10.1109/HOTOS.1999.798396.

[100] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-TolerantWeb Services.” In: 33.2 (June
2002), 51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url:
https://doi.org/10.1145/564585.564601.

[101] Seth Gilbert and Nancy Lynch. “Perspectives on the CAP Theorem.” In:
Computer 45.2 (2012), pp. 30–36. doi: 10.1109/MC.2011.389.

[102] Jan Himmelspach and Adelinde M. Uhrmacher. “The Event Queue
Problem and PDevs.” In: Proceedings of the 2007 Spring Simulation
Multiconference - Volume 2. SpringSim ’07. Norfolk, Virginia: Society for
Computer Simulation International, 2007, 257–264. isbn: 1565553136.

[103] Chao Wang, Christopher Gill, and Chenyang Lu. “FRAME: Fault Toler-
ant and Real-Time Messaging for Edge Computing.” In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
2019, pp. 976–985. doi: 10.1109/ICDCS.2019.00101.

[104] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. “The
Design and Performance of a Real-Time CORBA Event Service.” In: SIG-
PLAN Not. 32.10 (Oct. 1997), 184–200. issn: 0362-1340. doi: 10.1145/
263700.263734. url: https://doi.org/10.1145/263700.263734.

[105] YotamHarchol et al. “CESSNA: Resilient Edge-Computing.” In: Proceed-
ings of the 2018Workshop onMobile Edge Communications. MECOMM’18.
Budapest, Hungary: Association for Computing Machinery, 2018, 1–6.
isbn: 9781450359061. doi: 10.1145/3229556.3229558. url: https:
//doi.org/10.1145/3229556.3229558.

[106] D. Johansen et al. “NAP: practical fault-tolerance for itinerant com-
putations.” In: Proceedings. 19th IEEE International Conference on Dis-
tributed Computing Systems (Cat. No.99CB37003). 1999, pp. 180–189.
doi: 10.1109/ICDCS.1999.776519.

[107] Fred B Schneider, David Gries, and Richard D Schlichting. “Fault-
tolerant broadcasts.” eng. In: Science of computer programming 4.1
(1984), pp. 1–15. issn: 0167-6423.

[108] R. V. Renesse, D. Johansen, and F. Schneider. “An introduction to the
TACOMA distributed system. Version 1.0.” In: 1995.

[109] Joshua Leners et al. “Detecting failures in distributed systems with
the Falcon spy network.” eng. In: Proceedings of the Twenty-Third ACM

https://doi.org/10.1109/HOTOS.1999.798396
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/MC.2011.389
https://doi.org/10.1109/ICDCS.2019.00101
https://doi.org/10.1145/263700.263734
https://doi.org/10.1145/263700.263734
https://doi.org/10.1145/263700.263734
https://doi.org/10.1145/3229556.3229558
https://doi.org/10.1145/3229556.3229558
https://doi.org/10.1145/3229556.3229558
https://doi.org/10.1109/ICDCS.1999.776519

BIBLIOGRAPHY 107

Symposium on operating systems principles. SOSP ’11. ACM, 2011, pp. 279–
294. isbn: 9781450309776.

[110] Matt Welsh, David Culler, and Eric Brewer. “SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services.” In: SIGOPS Oper. Syst.
Rev. 35.5 (Oct. 2001), 230–243. issn: 0163-5980. doi: 10.1145/502059.
502057. url: https://doi.org/10.1145/502059.502057.

[111] Christopher Costello et al. “The future of food from the sea.” eng. In:
Nature (London) 588.7836 (2020), p. 95. issn: 0028-0836.

[112] United Nations Office on Drugs and Crime. Fisheries Crime. 2016.

[113] Industry Ministry of Trade and Fisheries. “Framtidens Fiskerikontroll.”
In: NOU 21:19 (2019).

[114] Arctic Council Task Force on Telecommunications Infrastructure in the
Arctic. Telecommunications infrastructure in the Arctic: a circumpolar
assessment. Arctic Council Task Force on Telecommunications Infras-
tructure in the Arctic (TFTIA). 90 pp. 2017.

[115] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial
examples in the physical world.” In: CoRR abs/1607.02533 (2016). arXiv:
1607.02533. url: http://arxiv.org/abs/1607.02533.

[116] Guidelines on Data Protection Impact Assessment (DPIA) and determining
whether processing is “likely to result in a high risk” for the purposes of
Regulation 2016/679. https://ec.europa.eu/newsroom/just/document.
cfm?doc_id=47711. [Online; accessed 2-December-2021]. 2017.

[117] Mauritz Kop. “EU Artificial Intelligence Act: The European Approach
to AI.” In: Transatlantic Antitrust and IPR Developments (2021). [Online;
accessed 2-December-2021].

[118] Anonymization (computing). Oxford learner’s dictionaries. eng. Oxford.

[119] pseudonymization. Cambridge Dictionary. eng. Cambridge.

[120] CCTV cameras onboard fishing vessels is going beyond all limits. https:
/ / thefishingdaily . com / denmark - fishing - industry - blog / cctv -
cameras - onboard - fishing - vessels - is - is - going - beyond - all -
limits/. [Online; accessed 2-December-2021]. 2021.

[121] Ian Sommerville. Software engineering. eng. Boston Mass., 2016.

[122] Pierre Carbonnelle. PYPL PopularitY of Programming Language. https:
//pypl.github.io/PYPL.html. [Online; accessed 09-December-2021].
2021.

https://doi.org/10.1145/502059.502057
https://doi.org/10.1145/502059.502057
https://doi.org/10.1145/502059.502057
https://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
https://ec.europa.eu/newsroom/just/document.cfm?doc_id=47711
https://ec.europa.eu/newsroom/just/document.cfm?doc_id=47711
https://thefishingdaily.com/denmark-fishing-industry-blog/cctv-cameras-onboard-fishing-vessels-is-is-going-beyond-all-limits/
https://thefishingdaily.com/denmark-fishing-industry-blog/cctv-cameras-onboard-fishing-vessels-is-is-going-beyond-all-limits/
https://thefishingdaily.com/denmark-fishing-industry-blog/cctv-cameras-onboard-fishing-vessels-is-is-going-beyond-all-limits/
https://thefishingdaily.com/denmark-fishing-industry-blog/cctv-cameras-onboard-fishing-vessels-is-is-going-beyond-all-limits/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

108 BIBLIOGRAPHY

[123] Joakim Sundnes. Introduction to Scientific Programming with Python.
eng. Simula SpringerBriefs on Computing. Cham: Springer Interna-
tional Publishing AG, 2020. isbn: 9783030503550.

[124] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http:
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

[125] G. Bradski. “The OpenCV Library.” In: Dr. Dobb’s Journal of Software
Tools (2000).

[126] Wes McKinney et al. “Data structures for statistical computing in
python.” In: Proceedings of the 9th Python in Science Conference. Vol. 445.
Austin, TX. 2010, pp. 51–56.

[127] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python.” In:
Journal of machine learning research 12.Oct (2011), pp. 2825–2830.

[128] Richard D Hipp. SQLite. Version 3.31.1. 2020. url: https : / / www .
sqlite.org/index.html.

[129] 1000 most common words in English. https : / / www . ef . com / wwen /
english-resources/english-vocabulary/top-1000-words/. [Online;
accessed 11-November-2021]. 2021.

[130] Adam Coates, Andrew Ng, and Honglak Lee. “An analysis of single-
layer networks in unsupervised feature learning.” In: Proceedings of the
fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 215–223.

[131] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of
features from tiny images.” In: (2009).

[132] Francois Chollet et al. Keras. 2015. url: https : / / github . com /
fchollet/keras.

[133] Nicholas D. Matsakis and Felix S. Klock. “The Rust Language.” In:
Ada Lett. 34.3 (Oct. 2014), 103–104. issn: 1094-3641. doi: 10.1145/
2692956.2663188. url: https://doi.org/10.1145/2692956.2663188.

[134] Robert Griesemer et al. “Hey! Ho! Let’s Go!” In: Google Open Source,
2009.

[135] Fan Mo et al. “DarkneTZ: Towards Model Privacy at the Edge Using
Trusted Execution Environments.” In: Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services. MobiSys

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.ef.com/wwen/english-resources/english-vocabulary/top-1000-words/
https://www.ef.com/wwen/english-resources/english-vocabulary/top-1000-words/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188

BIBLIOGRAPHY 109

’20. Toronto, Ontario, Canada: Association for Computing Machinery,
2020, 161–174. isbn: 9781450379540. doi: 10.1145/3386901.3388946.
url: https://doi.org/10.1145/3386901.3388946.

[136] Akshay Gangal, Mengmei Ye, and Sheng Wei. “HybridTEE: Secure Mo-
bile DNN Execution Using Hybrid Trusted Execution Environment.” In:
2020 Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST). 2020, pp. 1–6. doi: 10.1109/AsianHOST51057.2020.9358260.

https://doi.org/10.1145/3386901.3388946
https://doi.org/10.1145/3386901.3388946
https://doi.org/10.1109/AsianHOST51057.2020.9358260

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Problem Definition
	1.2 Methodology
	1.3 Scope, Limitation and Assumptions
	1.4 Context
	1.5 Contributions
	1.6 Outline

	2 Background and Related Work
	2.1 Artificial Intelligence
	2.1.1 History
	2.1.2 AI Areas
	2.1.3 Machine Learning
	2.1.4 Deep Learning

	2.2 Edge Computing
	2.3 Distributed Software Architectures
	2.3.1 Controller/Agent
	2.3.2 Pipeline

	2.4 Directed Acyclic Graph
	2.5 Fault Tolerance
	2.5.1 Dependability
	2.5.2 Failure Models
	2.5.3 Redundancy and Resilience
	2.5.4 The CAP Theorem
	2.5.5 Detecting Failures in Distributed Systems

	2.6 Persistent Event Queue
	2.7 Related Work
	2.7.1 FRAME and CESSNA
	2.7.2 NAP and Falcon Spy Network
	2.7.3 Dryad and Cogset
	2.7.4 SEDA and Vortex

	2.8 Summary

	3 Requirement Analysis
	3.1 Low-Bandwidth Edge Environments
	3.2 Fault Tolerance and Security
	3.3 Privacy-Preserving Data
	3.4 Laws, Regulations and GDPR
	3.5 Incentive for Fisheries
	3.6 Requirement Specification of Áika
	3.6.1 Functional Requirements
	3.6.2 Non-Functional Requirements

	3.7 Summary

	4 Design
	4.1 System Overview
	4.2 System Components Structure
	4.3 Controllers
	4.3.1 Local Controller
	4.3.2 Cluster Controller

	4.4 Agents
	4.5 Monitor
	4.6 Summary

	5 Implementation
	5.1 Implementation Specific Details
	5.2 Testing
	5.3 Cluster Controller
	5.4 Local Controller
	5.5 Agents
	5.6 Monitor
	5.7 Logging
	5.8 Killer
	5.9 Summary

	6 Evaluation
	6.1 Overall Experimental Setup
	6.2 Micro-Benchmarks
	6.3 End-to-End Evaluation
	6.4 Distributed Word Counter
	6.5 Distributed Deep Feature Extraction
	6.6 Review of Non-Functional Requirements
	6.7 Discussion
	6.8 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Configuration Format
	B Local Run-time Example
	C Distributed Word Counter
	D Distributed Deep Feature Extractor

