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Summary 

Marine ecosystems are complex entities with varying structure and functions. These variations 

can result from (1) impacts of anthropogenic stressors, (2) internal dynamics, and (3) stochastic 

events. Previous studies have focused on assessing effects of anthropogenic stressors on the 

variability of marine ecosystems to define management policies aiming at reducing stressors 

impacts on marine ecosystems. Historically, variability was studied using ecological time-

series, but these often covered relatively short time periods and data were not available for some 

important groups. As an alternative to archaeological and paleontological data, one can also use 

numerical models to simulate ecosystem dynamics over periods longer than observational 

records permit. Chance and Necessity modelling (CaN) is a stochastic mass-balanced food-web 

modelling framework. Chance represents the indeterminacy of ecological processes, while 

Necessity corresponds to the physical and biological constraints of food-webs. Two CaN 

models have been developed: The Non-Deterministic Network Dynamic model (NDND) and 

the RCaN model. 

Three questions were addressed in this thesis. First, what are the possible food-web 

configurations of the Barents Sea in terms of biomass and trophic flows. I simulated biomass 

and trophic flow trajectories to define a reference for the stochastic variability of the Barents 

Sea food-web. I also reconstructed past trajectories of the Barents Sea food-web using the 

RCaN model to identify if the past variability of the Barents Sea food-web is representative of 

its possible variability. I found that the Barents Sea food-web could be characterized by four 

food-web configurations and three trophic pathways corresponding to gradients of biomass and 

trophic flows, respectively. The results also showed that food-web configurations observed in 

recent decades corresponded only to a fraction of possible configurations. 

Second, I explored trophic control in the Barents Sea food-web and the Norwegian pelagic 

food-web. Wasp-waist trophic control was previously described in the Barents Sea, where 

capelin plays an essential role in transferring energy from lower trophic levels to higher ones. 

A recent study suggested that trophic control in the Barents Sea is fluctuating on inter-decadal 

timescale. Thus, I aimed to identify whether trophic control was persistent in the Barents Sea 

food-web. As for the first question, I compared results from NDND simulations to results from 

RCaN model reconstructions. I found that fluctuating trophic control is to be expected in the 

Barents Sea food-web. Furthermore, trophic control in reconstructed dynamics also displayed 

fluctuating trophic control at inter-decadal timescale. In the Norwegian Sea, previous studies 
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investigating only a few species of the ecosystem suggested top-down control of zooplankton 

by herring. Using a RCaN model for the pelagic food-web of the Norwegian Sea, past dynamics 

for planktivorous fish species and zooplankton groups were reconstructed. The results are 

consistent with bottom-up trophic control of planktivorous fish species by zooplankton groups, 

but not with top-down control on copepods and krill. This suggest that previous conclusion may 

need to be reevaluated. 

Third, I investigated possible combined effects of climate change and fisheries on the stability 

of the Barents Sea food-web. I used a scenario-based approach for four scenarios of climate 

change and fisheries (16 scenarios in total). Changes in stability displayed synergism between 

temperature and fisheries given that temperature affected only harvested species. Species 

biomass was significantly affected by changes in temperature and fisheries while stability was 

weakly affected. Weak changes in stability were explained by the positive relationship between 

mean biomass and biomass variance (Taylor’s law). Given that the measure of stability 

corresponds to the inverse of the coefficient of variation, proportional increase of mean biomass 

and biomass variance resulted in constant stability values. 

Dynamical models have a central role in my work and their performance needs to be evaluated 

in relation to the specific objectives of this thesis. Unfortunately, an evaluation protocol 

allowing model evaluation in a consistent and transparent manner did not exist when I started 

this study. Thus, I contributed to the development of a standardized protocol for reporting the 

evaluation of model applications. This protocol was applied to a series of ecosystem models 

used in the framework of the Nansen Legacy project, among which the NDND model. This 

protocol aims at increasing the transparency and the reproducibility of the model evaluation 

process by developing a culture of reporting and describing such process. 
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1 Introduction 

1.1 Drivers of ecosystem variability 

Marine ecosystems are dynamic systems that constantly evolve through various structural and 

functional states (Calvo et al., 2011; Niiranen et al., 2013; Fossheim et al., 2015; Kortsch et al., 

2015). The complexity of ecosystem dynamics results from a large diversity of species and 

habitats, but also from non-linear feedback mechanisms (Levin, 1998, 2005; Levin et al., 2013). 

Variations in ecosystem dynamics can result from three different drivers: (1) External pressures 

driven by human activities, such as climate change and fisheries (Hoegh-Guldberg & Bruno, 

2010; Doney et al., 2012; Lilly et al., 2013), (2) internal dynamics emerging from its 

functioning (D. Ø. Hjermann et al., 2010; Stige et al., 2014), and (3) stochasticity (Lande, 1993; 

Shoemaker et al., 2020). Understanding the causes of variability in space and time is crucial 

for management of resources.  

Several studies have focused on how anthropogenic activities affect the occurrence of multiple 

ecosystem states in the same region at different time-periods (Poloczanska et al., 2016; Ortuño 

Crespo & Dunn, 2017). In marine ecosystems, human-induced climate change and fisheries are 

important drivers of ecosystem variability. Previous studies used sea surface temperature as an 

indicator of climate change and assessed its effects on ecosystems (e.g., Poloczanska et al., 

2013; Seabra et al., 2015). Increased temperatures affected primary production in marine 

ecosystems. For instance, an increase of 30% of primary production was observed in the Arctic 

Seas based on satellite derived chlorophyll-a concentrations (Arrigo & van Dijken, 2015). Yet, 

this increase is closely related to the retreat of the sea ice in the Arctic (Dalpadado et al., 2020) 

and model outputs do not support this trend in ice-free ecosystems (Holt et al., 2016). Increased 

temperatures also have triggered poleward migrations of marine species in many ecosystems 

(e.g., Fossheim et al., 2015; Kleisner et al., 2017). These poleward migrations have affected 

species abundances (R. A. Hastings et al., 2020), but it also triggered structural changes in the 

food-web due to replacement of northern species by southern species (Kortsch et al., 2015; 

Frainer et al., 2017). 

The direct effect of fisheries is the reduction in biomass of harvested species (Ortuño Crespo 

& Dunn, 2017). Top-predators biomass can particularly be affected by intensive fisheries (e.g., 

Cardinale et al., 2012; Dulvy et al., 2021). Studies focusing on the effects of top-predators 

removal by fisheries pointed out the establishment of trophic cascades in marine ecosystems 

(e.g., Frank, 2005; Donadi et al., 2017; Hernvann & Gascuel, 2020). For instance, removal of 
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benthic fish in the eastern Scotian Shelf resulted in increased biomass of their primary prey 

(Frank, 2005). A recent study also suggested that trophic cascades can occur in terms of 

biomass variation rather than in abundances (Uusi-Heikkilä et al., 2021). 

Ecological processes affecting ecosystem dynamics are often uncertain because the underlying 

mechanisms are not well understood and difficult to measure. For instance, single species 

recruitment (i.e., proportion of juvenile fish entering the adult population) can affect ecosystem 

dynamics. The Norwegian spring-spawning herring (NSSH) is an essential species in the 

Norwegian Sea to transfer energy from zooplankton to marine mammals. Low recruitment 

success of NSSH since 2009 resulted in a decline of the NSSH stock (ICES, 2021a). There are 

many possible factors affecting recruitment (Trenkel et al., 2014). A recent study focusing on 

the NSSH recruitment identified that only predation by mackerel and temperature could affect 

the dynamics of NSSH recruitment (Garcia et al., 2021), but observations fitted poorly to model 

estimates. Other existing models to predict recruitment are often not able to reproduce the 

variability of observed recruitment (Szuwalski et al., 2015). 

Stochasticity, i.e., the randomness in ecosystem dynamics changes (Vellend et al., 2014), is 

often considered as a hurdle for understanding the functioning of natural systems (Boettiger, 

2018). In management strategies, stochasticity is implemented as a source of uncertainty in 

models (Regan et al., 2002; Link et al., 2012). Yet, stochasticity can have an essential role in 

ecosystem dynamics and functioning. For instance, the duration of transient dynamics, i.e., 

ecosystem dynamics while not at equilibrium, can be extended due to stochasticity (Hastings 

et al., 2021). It is also an essential component of key ecological processes, such a prey 

encounter (Okamoto et al., 2016). A theoretical study showed that considering individual 

effects of environmental stochasticity (i.e., inherent stochasticity of environmental conditions) 

and demographic stochasticity (i.e., variability of demographic processes such as death or birth) 

makes it possible to predict the effect of stochasticity on ecosystem dynamics (Shoemaker et 

al., 2020). These authors advocated for the need to explore the role of stochasticity on 

ecosystem dynamics. 

1.2 Investigating natural variability for management 

Defining a reference state of the natural variability of marine ecosystem dynamics against 

which status and change can be measured is essential for understanding the present and possible 

future changes in ecosystem dynamics (Landres et al., 1999). Landres et al, (1999) defines 

natural variability as the ecosystem variability given a set of environmental conditions, that are 
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relatively unaffected by human activities. Historical natural variability informs researchers on 

the ecological processes which affected past ecosystem dynamics and is used to predict present 

and future dynamics of natural systems. In terms of ecosystem management, historical natural 

variability is used to define management goals (often to return to past states of the ecosystem) 

or to assess the effect of disturbances on ecosystem dynamics (Landres et al., 1999; Szabó, 

2010). Yet, natural disturbances represent a challenge for defining successful management 

policies. 

1.3 Available tools to investigate ecosystem variability 

Traditionally, ecological studies have estimated natural variability from ecological time-series 

(Poulsen, 2010; McClenachan et al., 2012; Gatti et al., 2015). Unfortunately, ecological time-

series are relatively short, typically less than 50 years (Lotze & Worm, 2009; K. Evans et al., 

2015), while important shifts in ecosystem dynamics occur at inter-decadal timescales. 

Relatively short time-series are also problematic given that the lifespan of some species, such 

as whales, is 50-100 years (Sears & Perrin, 2018). Additionally, ecological time-series are often 

only available for few commercial species whereas the data coverage of non-commercial fish 

species and benthos is relatively poor. Consequently, making inference about past or future 

ecosystem dynamics requires to make assumptions about the ecological processes that can 

result in large uncertainties (Longhurst, 2010). Considering that variability is expected to 

increase with the length of the considered time-period (Lawton, 1988; Pimm & Redfearn, 

1988), it is worth understanding ecosystem variability on longer timespan than 50 years. 

Ecosystem dynamics can be reconstructed using archeological or paleontological data (Lotze 

& Worm, 2009). These methods enable to identify the effects of drivers on the past ecosystem 

dynamics over hundreds or thousands of years. For instance, climate variability have triggered 

multiple shifts in fish abundances that occurred over centennial or millennial timescales 

(Finney et al., 2010). Also, the Pacific herring stock mean abundance was significantly higher 

and more stable during time-periods prior to industrial fisheries (McKechnie et al., 2014). It 

pointed out that unknown biological processes, such as diseases, migration, and predation, may 

have confounded climate or anthropogenic effects. An alternative approach to historical time-

series and paleontological data to investigate ecosystem variability is to simulate ecosystem 

dynamics using numerical models over multiple decades. 

Food-web models simulate species dynamics based on transfer of biomass from a prey to its 

predator (Christensen & Walters, 2004). The most common food-web model is the Ecopath 
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with Ecosim (EwE) model (Polovina, 1984; Walters et al., 1997, 1999). The EwE is a 

deterministic mass-balanced food-web model which aims at assessing the effect of 

environmental changes and fisheries on marine ecosystem dynamics and test management 

strategies (policies and marine protected areas, Christensen et al., 2005). It includes a number 

of ecological processes (e.g., production, density-dependence…) to simulate species biomass 

dynamics. As knowledge about ecosystems increased, food-web models have constantly 

become more complex by adding more parameters and variables. However, deterministic food-

web models are often not able to reproduce the species biomass variability emerging from 

ecological processes that are independent from trophic interactions, such as recruitment 

(Christensen & Walters, 2004). Recently, Pedersen et al. (2021) pointed out that EwE 

simulations for the Barents Sea ecosystem could not reproduce the variability of unexploited 

lower trophic levels. Additionally, regime shifts are manifestations of ecosystem dynamics but 

the lack of global understanding of their underlying mechanisms make them difficult to 

reproduce in simulations (Möllmann et al., 2015). 

Other deterministic and statistical end-to-end models are available to simulate ecosystems 

dynamics (e.g., Atlantis, OSMOSE, Gompertz models, Shin & Cury, 2001; Fulton et al., 2004; 

Langangen et al., 2017). These models rely on the definition of various functional relationships. 

Yet, knowledge about trophic functional relationships is relatively limited (Koen-Alonso & 

Yodzis, 2005), and model outputs can be significantly affected by the form of trophic 

functional relationships (Fulton et al., 2003; Kearney et al., 2012; Flynn et al., 2021). Thus, 

one can re-evaluate classic trophic functional relationships, or one can use models not relying 

on them. Mullon et al. (2009) suggested an alternative food-web modelling approach which 

does not rely on specification of functional relationships. Unlike deterministic approaches that 

consider intrinsic variability as a source of uncertainty in models, the authors suggested that 

this variability should be explored in a stochastic manner. Instead of adding stochasticity to 

modelled ecological processes, they developed a constrained non-deterministic food-web 

model, which allows to not formulate assumptions about uncertain ecological processes. Thus, 

the developed model accounts for the intrinsic variability of natural systems 

1.4 Chance and Necessity (CaN) 

Chance and Necessity (CaN) modelling addresses specifically the issue of the stochastic 

variability of food-webs and does not rely on the specific form of functional relationships 

(Mullon et al., 2009). It considers that an event is possible only of it complies with a set of 
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simple structural physical and biological constraints, e.g., population biomass cannot be 

negative. These structural constraints ensure that the simulated food-web states are biologically 

and physically possible. For instance, species biomass cannot be negative because it is 

physically not possible to have a negative weight. Structural constraints ensure that species 

biomass remains positive or equal to 0. CaN models are designed to reproduce the natural 

variability of natural systems by exploring the possible trajectories of food-webs. There are 

two CaN models described in the literature: the Non-Deterministic Network Dynamic model 

(NDND, Mullon et al., 2009; Planque et al., 2014), and the RCaN model (Planque & Mullon, 

2020). The NDND model is designed to explore the possible future trajectories of a predefined 

food-web and investigate their emerging patterns, such as diet patterns, trophic functional 

relationships, stability, and synchrony (Mullon et al., 2009; Planque et al., 2014; Lindstrøm et 

al., 2017). A recent study exploring the possible future trajectories of the Barents Sea food-

web was able to reproduce the variability patterns of ecosystem properties of the Barents Sea 

ecosystem observed during the last three decades (Lindstrøm et al., 2017). The RCaN model 

aims at reconstructing past trajectories of food-webs using available knowledge (i.e., data and 

their uncertainties) to investigate the past features of food-webs (Planque & Mullon, 2020). 

For instance, Planque & Mullon, (2020) applied the RCaN model for the simplified Barents 

Sea food-web and investigated the past changes in the biomass and trophic flows, and identified 

trophic control on trophospecies for the time-period 1988-2013. 

1.5 Model evaluation 

Food-web models are tools that aim to provide information and knowledge on the structure and 

the functioning of food-webs. The ability of models to address specific questions is central and 

needs to be assessed more systematically. A first issue is that ecosystem models are often 

complex, and transparency and reproducibility of model applications are not always ensured 

(Nichols et al., 2019; Powers & Hampton, 2019). The ODD protocol (Overview, Design 

concepts, and Details, Grimm et al., 2006, 2010, 2020), which is a standardized protocol aiming 

at describing models, represented a major advancement in the transparency of model 

applications. A second issue is that the model performance needs to be evaluated. There are 

many methods available to evaluate model outputs, e.g., measurement of errors between model 

outputs and observations (Allen & Somerfield, 2009; Stow et al., 2009; Hipsey et al., 2020), 

estimations of models’ forecast horizons (Petchey et al., 2015), Bayesian model checking 

(Conn et al., 2018), and sensitivity analysis (Travers et al., 2011; Morris et al., 2014; Hansen 

et al., 2019). These methods aim at assessing models’ skills, models’ predictive capacity, or 
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models’ sensitivity to initial conditions regarding the objective for which they were designed. 

Ecosystem models are general tools designed to address a multitude of questions. Thus, 

evaluating the performance of the model in a general framework is not particularly relevant. 

Instead, one should evaluate the performance of ecosystem models to address a specific 

objective in relation to a model application.  

The TRACE (TRAnsparent and Comprehensive Ecological) documentation (Grimm et al., 

2014), which provides a framework for documenting modelling processes, includes some 

aspects of model evaluation (evaluation of data quality and underlying assumptions of the 

model applications). Yet, a standardized protocol describing the evaluation methodology of a 

specific model application still needs to be developed. Such a standardized protocol would 

allow to increase the transparency and the reproducibility of model application and simplify 

the communication with non-modelers about food-web model performance. 

1.6 Nordic Seas 

1.6.1 The Barents Sea ecosystem 

The Barents Sea (Figure 1, blue polygon) is a subarctic shelf sea that has experienced important 

structural and dynamical changes since 1970 (Fossheim et al., 2015; Eriksen et al., 2017; 

Frainer et al., 2017). It is seasonally covered by sea-ice (the maximal yearly sea ice extent is 

observed in March and the lowest sea ice extent is observed in September, Onarheim et al., 

2018), but annual sea ice cover has decreased by 0.43x106 km2 since 1979 (Onarheim & 

Årthun, 2017). It has affected the biomass and trophic interactions of capelin (Mallotus 

villosus), krill, copepods, and amphipods (Stige et al., 2019). The main pelagic fish, capelin, 

juvenile herring (Clupea harengus) and polar cod (Boreogadus saida) are considered as the 

key species of the Barents Sea food-web, transferring energy from lower trophic levels to 

higher trophic levels (Hop & Gjøsæter, 2013). Pelagic fish stocks displayed large fluctuations, 

alternating between higher levels of biomass and extremely low levels of biomass since 1983 

and the first capelin stock collapse (ICES, 2021b). Over the same time-period, the Barents Sea 

food-web has been dominated by cod (Gadus morhua), which declined in the 1960’s before 

recovering recently and reaching 4500 thousand tons in total stock biomass in 2012, the largest 

stock size observed since 1955 (ICES, 2021b). Unfortunately, low recruitment rates during the 

time period 2011-2014 have limited the establishment of strong year classes leading to a 

decline (2500 thousand tons in 2021, ICES, 2021b). Recent studies suggested that the dynamics 

of cod is tightly linked to the harvesting rate and capelin abundance (Lindstrøm et al., 2009; 
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Koen-Alonso et al., 2021). Globally, the Barents Sea food-web has evolved through multiple 

states since 1970, but none of them lasted over a decade (Johannesen et al., 2012). 

 

Figure 1. Map of the study areas: the Barents Sea (blue polygon) and the Norwegian Sea (red polygon) 

Trophic control between capelin and their prey and predators have been well studied in the 

Barents Sea. Stige et al. (2014) showed that zooplankton biomass is driven by the predation by 

capelin (i.e., top-down control), while Stige et al. (2019) also found that capelin dynamics were 

driven by zooplankton dynamics (i.e., bottom-up control). The major difference in both study 

is the consideration of reduced sea ice cover and the resulting increase of zooplankton and 

capelin biomass in the Barents Sea. Yaragina & Dolgov (2009) suggested a wasp-waist control 

where pelagic fish (i.e., capelin) plays a key role and is assumed to exert a top-down control 

on zooplankton and a bottom-up control on their predators. Yet, Johannesen et al. (2012) 

identified fluctuating trophic control between demersal fish, pelagic fish, and zooplankton over 

decadal timescales. 

1.6.2 The Norwegian Sea ecosystem 

The Norwegian Sea (Figure 1, red polygon) is a deep northern sea (1800m depth in average) 

adjacent to the Barents Sea and the Arctic Ocean (Blindheim, 2004). The major oceanic current 

characterizing the Norwegian Sea is an Atlantic water inflow from the North Sea crossing the 
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area along the Norwegian coast up to the Barents Sea and the Arctic Ocean (Loeng & 

Drinkwater, 2007). There are also important arctic water inflows from the Greenland Sea and 

the Icelandic Sea (Blindheim, 2004). There are three major pelagic fish species in the 

Norwegian Sea: Norwegian spring spawning herring (Clupea harengus), Northeast Atlantic 

mackerel (Scomber scombrus) and blue whiting (Micromesistius poutassou). All three species 

overlap in space during the feeding season (Utne et al., 2012). Several studies have investigated 

competition between the three species (Prokopchuk & Sentyabov, 2006; Langøy et al., 2012; 

Utne et al., 2012; Bachiller et al., 2016; Mousing et al., in prep.). The pelagic fish species 

interact with other species such as amphipods, krill, and mesozooplankton, through both 

bottom-up and top-down controls (Melle et al., 2004; Olsen et al., 2007). The Norwegian spring 

spawning herring experienced a large decline in the 1960’s, mostly due to a combination of 

overexploitation and low recruitment (Dragesund et al., 1997), before recovering in 1980’s and 

stabilizing at high biomass levels (ICES, 2021c). Simultaneously, blue whiting biomass 

increased significantly in the Norwegian Sea (Misund et al., 1998). 

1.7 Climate change and fisheries effects on ecosystem 
variability 

Among all external pressures on marine ecosystems, climate change and fisheries are the most 

important (Lehodey et al., 2006; Halpern et al., 2008a). Climate change has many different 

manifestations (e.g. ocean acidification, thermohaline circulation alteration, freshwater inflow 

increase, Doney et al., 2012). This thesis focuses on one specific aspect of climate change, 

namely temperature change. In the Barents Sea, sea surface temperature increased by 1°C 

during the time-period 1982-2019 (Timmermans & Ladd, 2019), while temperature increased 

also in the Norwegian Sea until increased freshwater inflow lowered it since 2010 (ICES, 

2021c). Increased temperature matched with observed increases in primary production (PP) in 

Nordic Seas (Dalpadado et al., 2020; ICES, 2021c). Projections of net primary production in 

the Barents Sea and the Norwegian Sea, using the ECOSMO (Daewel & Schrum, 2013) and 

POLCOMS-ERSEM (Wakelin et al., 2012) suggested that net primary production would 

increase at the horizon 2099 (Holt et al., 2016). Increased temperature is expected to increase 

organisms’ metabolic rates in marine ecosystems (O’Connor et al., 2007; Carozza et al., 2019). 

Vasseur & McCann (2005) combined a differential equation model estimating biomass 

densities of prey and predators (see Yodzis & Innes, 1992) to the Metabolic Theory of Ecology 

(Brown et al., 2004) to estimate the effect of temperature on prey-predator interaction 

dynamics. They suggested that increasing temperature are likely to destabilize systems by 
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triggering a shift from a state with a single stable equilibrium to a state with cyclic dynamics. 

A more recent modelling study did not support these observations and suggested that increased 

metabolic rates reduced the variability of biomass densities (Fussmann et al., 2014). The 

observed reduction of variation in population dynamics resulted from a decrease in the energy 

flow from the prey to the predator for higher temperatures. Ultimately, Ibid observed a collapse 

of predator biomass for extremely high temperature due to starvation. 

The first effect of fisheries on the ecosystem dynamics is the decrease of harvested species and 

more specifically the decrease of large predator stocks (Ward & Myers, 2005). A number of 

studies suggested that fisheries affect the age-structure of fish communities by removing the 

largest individuals (Rouyer et al., 2012; Quetglas et al., 2013). Changes in the age-structure of 

populations may lead to important changes in ecosystem dynamics due to changes in life 

history traits and demographic features of fish populations (Jørgensen et al., 2007). Based on 

observed data, Hsieh et al. (2006) showed that harvesting increased the variability of exploited 

species in the California Current System which was supported by model outputs (Shelton & 

Mangel, 2011). In the Nordic Seas, fisheries have been linked to the important variations in 

fish stocks (Dragesund et al., 1997; Toresen & Østvedt, 2000; Hjermann et al., 2004; Frank et 

al., 2016; ICES, 2021b, 2021c). 

Simulations of future sea surface temperature, based on the RCP8.5 “Business-as-usual” 

scenario of greenhouse gas emissions (van Vuuren et al., 2011), predict an increase up to 0.5°C 

at the horizon 2099 (Alexander et al., 2018). Thus, the impact of such sustained increase on the 

dynamics of marine ecosystems needs to be assessed to better inform future management. 

Furthermore, previous studies suggested that a stressed ecosystem was more sensitive to 

additional small perturbations (Möllmann & Diekmann, 2012; Ortuño Crespo & Dunn, 2017), 

which advocates for investing cumulative impacts of anthropogenic stressors. Especially, the 

effects of temperature on the ecosystem dynamics should not be treated apart from the effects 

of fisheries (Shannon et al., 2010; Jarre et al., 2015). 

Combined effects can be conceptualized in three broad categories: antagonistic, synergistic, 

and additive (Crain et al., 2008). Piggott et al. (2015) defined and standardized the concepts of 

synergism and antagonism in the context of ecological effects. They point out that the direction 

in which combined stressors operate is essential when defining the nature of combined effects. 

For instance, while Crain et al. (2008) defined synergism as larger combined effects of stressors 

than the sum of the individual effects of these stressors, Piggott et al. (2015) make the 
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difference between positive synergism and negative synergism. Positive synergism 

corresponds to more positive effects than predicted additively, while negative synergism 

corresponds to more negative effects than predicted additively. 

Combined effects of the temperature and fisheries have been scarcely investigated in the Nordic 

Seas, but a recent large-scale multi-model study explored the effect of different climate 

scenarios on mean biomass in multiple marine ecosystems and suggested additive effects of 

temperature and fisheries on mean biomass (Lotze et al., 2019). In their study, temperature was 

the largest driver of biomass, while fisheries had a minimal effect. Finally, an application of 

the Atlantis model for the Benguela ecosystem identified that combined effects of temperature 

and fisheries were different for the individual species of the Southern Benguela upwelling 

ecosystem (Ortega-Cisneros et al., 2018). 

2 Objectives 

As mentioned above, changes in food-web dynamics can result from three elements: variations 

in anthropogenic stressors, changes in internal processes, and stochastic events. The present 

thesis focuses on investigating how these three elements may contribute to the dynamics of the 

Barents Sea and the Norwegian Sea food-webs. More specifically, this thesis addresses the 

following research objectives: 

1) Explore the possible variability of the Barents Sea food-web, in terms of biomasses 

and trophic flows among trophospecies, using the NDND model (Paper I). This 

objective will be addressed following three sub-objectives: 

a) What are the possible food-web configurations of the Barents Sea food-web? My 

aim is to explore the range of possible configurations of the Barents Sea food-

web and to define a reference for its variability accounting for stochastic 

variability. 

b) What are the possible trophic pathways in the Barents Sea food-web? My aim is 

to explore the recurrent trophic pathways of the Barents Sea food-web and to 

define a reference for the trophic pathway variability in the Barents Sea food-

web accounting for stochastic variability.  

c) How are past changes observed in species dynamics representative of the 

possible variability of the Barents Sea food-web? My aim is to identify if the 
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possible and the past configurations of the Barents Sea food-web are consistent 

with each other. In other terms, I want to identify if the range of past biomass 

and trophic flow configurations overlap with the possible ones. 

2) Explore the trophic control in the Barents Sea food-web and the Norwegian Sea 

pelagic food-web. More specifically, 

a) Do simulations of possible future trajectories of the Barents Sea food-web 

support persistent trophic control? (Paper I). My aim is to estimate trophic 

control for trophospecies of the Barents Sea food-web. I also aim to identify if 

trophic control (i.e., bottom-up, top-down, or wasp-waist) on species is constant 

over time. Finally, I aim to compare trophic control estimated from simulations 

to trophic control observed in the past three decades in the Barents Sea food-

web. 

b) Do reconstructions of past trajectories of the Norwegian Sea food-web support 

bottom-up or top-down controls on zooplankton and small pelagic fish species 

over the time-period 1988-2020? (Paper IV). My aim is to reconstruct 

ecological time-series of the Norwegian Sea food-web to identify if zooplankton 

and small pelagic fish dynamics were bottom-up or top-down driven during the 

time-period 1988-2020. 

3) Explore the combined effects of temperature and fishing mortality variations on the 

dynamics of the Barents Sea food-web (Paper II). My aim is to assess potential 

combined effects (i.e., additive, antagonistic, or synergistic effects) of climate change 

and fisheries on the variability of Barents Sea food-web using a scenario-based 

approach. I assess the effect of climate change and fisheries by investigating the 

changes in temporal stability in the individual scenarios. 

4) Contribute to the development of a standardized protocol aiming at reporting in a 

transparent manner the evaluation of ecological model applications. My first objective 

is to participate to discussions concerning the structure and content of such a 

standardized protocol (Paper III). My second objective is to apply the developed 

protocol to a specific application of the NDND model presented in this thesis. 
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3 Methodological considerations 

3.1 Model principles 

CaN models are possibilistic mass balanced food-web models (Mullon et al., 2009; Planque et 

al., 2014; Planque & Mullon, 2020). CaN is closely related to the viability theory (Cury et al., 

2005) in the sense that CaN modelling aims at exploring possible trajectories of the ecosystem 

rather than identifying the optimal one. Chance represents the indeterminacy of ecological 

processes while necessity corresponds to the structural physical and biological constraints 

ensuring that the ecosystems sustain itself over time (Planque & Mullon, 2020). The constraints 

define a set of possible trophic flow values among which trophic flow values are randomly 

sampled. There are five core constraints in CaN modelling; (1) the food intake of species is 

limited by satiation, the biomass variations are limited by (2) the upper inertia and (3) the lower 

inertia, (4) the trophic flows must be positive, and (5) species biomasses need to remain above 

a threshold value referred to as refuge biomass (Planque et al., 2014). 

In the NDND model, possible future biomass trajectories of food-webs are simulated in an 

iterative manner, i.e., trophic flows are sampled at each time step. The sampled trophic flows 

define deterministically species biomass at the next time step using the master mass-balanced 

equation (Eq. 1): 

𝐵𝑖,𝑡+1 = 𝑒−(𝜇𝑖)𝐵𝑖,𝑡 +
1 − 𝑒−(𝜇𝑖)

𝜇𝑖
[𝛾𝑖 ∑ 𝐹𝑗𝑖

𝑗

ϗ𝑗 + 𝐼𝑖 − ∑ 𝐹𝑖𝑗

𝑗

− 𝐸𝑖] Eq.1 

Where, Bi,t is the biomass of species i at time step t, µi is the metabolic losses rate of species i, 

γi is the assimilation efficiency rate of species i, κj is the digestibility rate of species j, Fji is the 

trophic flow from species j to species i, Fij is the trophic flows from species i to species j, Ii is 

the biomass import for species i, and Ei is the biomass export for species i. Estimated biomass 

(Bi,t+1) is then used to define the range of possible trophic flows at the next time-step. 

The RCaN model aims at reconstructing possible past trajectories of trophospecies. Past 

biomass trajectories are reconstructed at once. Instead of sampling one trophic flow values at 

each time-step, the entire time-series of trophic flow is sampled at once. Simulated possible 

future biomass trajectories are relatively unconstrained while reconstructed ones are further 

constrained by observed data and their uncertainties. The incorporation of available data and 

their uncertainties promotes the use of a participatory approach for building and parametrizing 
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CaN modelling. Furthermore, Planque & Mullon (2020) argue that simplicity of the model 

structure and parameters facilitates the use of CaN models for communication and participatory 

management in an Ecosystem-Based fisheries management framework. 

3.2 Non-trophic model components 

The two major non-trophic elements of the CaN models are the import and export terms (Ii and 

Ei in Eq.1). Originally, the import and export terms represented the inflow and outflow of 

biomass of the study area. Both terms can be used to represent key components of the 

ecosystem such as primary production (Planque et al., 2014) or losses due to fisheries (see 

supplementary materials in Lindstrøm et al., 2017). How import and export terms are expressed 

in CaN models is different between the NDND and the RCaN models. In the NDND model, 

import and export are expressed explicitly and correspond to input parameters of the model. In 

the RCaN model, import and export are represented as non-trophic flows (i.e., not affected by 

metabolic losses, assimilation, and digestibility) from or towards outside the model domain, 

respectively. The two following sections illustrate how primary production and fisheries are 

implemented in the CaN models using import and export. 

3.2.1 Primary production 

In the NDND model, import of phytoplankton biomass is used as proxy for primary production. 

Import of phytoplankton is a constant value during the entire simulation process that is defined 

based on the literature for the parametrization of the models. Rather than representing the real 

state of phytoplankton, algae, and bacteria present in the food-web, it corresponds to a pool of 

biomass available for predation for higher trophic levels. In other words, simulated 

phytoplankton biomass time series corresponds to the remaining biomass after consumption by 

predators rather than the real dynamics of the phytoplankton. In the RCaN model, however, 

one can use historical time-series for groups that are not included in the model domain to 

constrain trophic flows entering the model domain. In other words, the model reconstructs the 

dynamics of the trophic flows between the group and its predators constrained by historical 

data, but not the group biomass dynamics. In the Barents Sea RCaN model, presented by 

Planque & Mullon (2020) and used in Paper I, phytoplankton is not included in the model 

domain, but historical time-series of net primary production are used to constraint the trophic 

flows from phytoplankton to higher trophic levels. Yet, dynamics of phytoplankton are not 

explicitly reconstructed in the simulations. 
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3.2.2 Harvesting in CaN models 

In CaN models, there are six ways to lose biomass: non-assimilation, non-digestion, 

metabolism, export, predation, and harvesting. How the latter interacts with the five others led 

to two hypotheses on the interaction between fishing mortality and other sources of mortality: 

additivity and compensation (Péron, 2013). In the case of additivity, sources of mortality are 

considered independent from each other, and the total mortality corresponds to the sum of all 

sources of mortality. In the case of compensation, one of the sources of mortality affects the 

other sources of mortality. If the interaction between fishing mortality and other sources of 

mortality is additive or compensatory is still not clarified in the literature. In common food-

web models, such as EwE or Atlantis, fishing mortality is expressed as an additive process in 

the model structure (Heymans et al., 2016; Audzijonyte et al., 2019). Yet, it is expected that 

fishing mortality is on a continuum between fully additive and fully compensatory (Myers & 

Quinn II, 2002; Péron, 2013). Fisheries in the NDND model are assumed to be compensatory 

(i.e., losses due to fisheries are compensated by predation interactions). 

In the NDND model, fished biomass corresponds to an annual export of biomass for harvested 

species. The value of harvested biomass is estimated in two different ways: (1) harvest control 

rules (HCR), and (2) as constant annual catches. In fisheries science. HCRs are used to estimate 

the fishing mortality rate as a function of the spawning stock biomass. Based on the estimated 

fishing mortality rate, the number of individuals to catch is defined using the Baranov equation 

(Baranov, 1918; Branch, 2009). In Paper I and II, The HCRs are defined for fish species and 

resemble fishing regulations operating at present. The HCRs in the NDND model rely on three 

assumptions: (1) the catch/stock ratio is considered equivalent in biomass and number of 

individuals, (2) the fishing mortality is estimated based on the total stock biomass instead of 

the spawning stock biomass, and (3) HCRs for dominant species of harvested species are used 

as HCRs for the whole trophospecies (e.g., in Paper I, the HCR’s parameters for cod are used 

to define the HCR for demersal fish). Figure 2 summarize how HCRs are defined. 

In Paper II, harvesting of benthos and marine mammals was added to the existing fisheries 

module of the NDND model. Given that no HCR was defined for either group in Nordic Seas 

in the literature, harvesting was implemented as an annual catch (NAMMCO – North Atlantic 

Marine Mammal Commission, 2021). For marine mammals, annual catches are reported as 

individuals. Thus, conversion factors from number of individuals to tons·km-2 was applied. 

In the RCaN model, as for phytoplankton, fisheries are outside the model’s domain. Thus, 
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historical catches time-series are used to constrain the reconstructions of non-trophic flows 

from harvested trophospecies to fisheries (i.e., flows towards outside the model’s domain). 

 

Figure 2. Harvest control rule (HCR) pattern implemented in the NDND model. The red line corresponds to the 
fishing mortality as function of total stock biomass (TSB). The HCR can be divided in three phases: (1) When 

TSB < Blim, then F=0, (2) When Blim < TSB < Bmp, then F increases linearly, and (3) When TSB > Bmp, then 
F=Fmp. When F=Fmp, harvested biomass is estimated using the Baranov equation (Baranov, 1918; Branch, 

2009) 

3.3 Implementation of climate in CaN models 

The CaN models rely on six input parameters (assimilation efficiency, digestibility, other 

losses, inertia, satiation, and refuge biomass). In addition to these six input parameters, the 

NDND model requires values for the initial biomass, import and export. Among the input 

parameters, other losses, inertia, and satiation are defined using the metabolic theory of ecology 

(MTE, Brown et al., 2004) and life history theory. Conventionally, changes in metabolic rates 

due to variations in temperatures are estimated using Q10. It expresses the change in metabolic 

rate values for an increase in temperature across a range of 10°C (Gillooly et al., 2001). Gillooly 

et al. (2001) pointed out that using Q10 can lead to errors larger than 15% in the estimations of 

changes of metabolic rates in response to changes in temperature. Instead, the authors 

suggested to use the MTE to account for body-size and temperature dependence of metabolic 

rates. Applying Eq.2, where E (activation energy) = 0.63 eV, k (Boltzmann constant) = 8.26·10-

5, and an initial temperature (T) of 6°C leads an increase of 10% in metabolic rate values for 

an increase by 1°C. 
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 Eq.2 

4 Summary of results 

4.1 Paper I: Multiple configurations and fluctuating trophic 
control in the Barents Sea food-web 

This paper focus on identifying the possible biomass configurations and trophic pathways of 

the Barents Sea food-web (Figure 3), as well as identifying if trophic control on Barents Sea 

species is persistent over time. In that respect, we aimed at defining a reference for the 

variability of the Barents Sea food-web. 

 

Figure 3. Simplified food-web of the Barents Sea. Each icon corresponds to one trophospecies (i.e., 
phytoplankton, herbivorous zooplankton, omnivorous zooplankton, benthos, pelagic fish, demersal fish, marine 

mammals, and birds; from left to right and top to bottom). Red-full arrows correspond to trophic flows. Blue-
dashed arrows represent the non-trophic flows to the fisheries. 

We used the Non-Deterministic Network Dynamic model (NDND) to simulate possible 

biomass and trophic flow trajectories of the Barents Sea food-web. As principal component 

analysis performed on autocorrelated multivariate time-series can be spurious (Planque & 

Arneberg, 2018), we explored the possible food-web configurations in simulated time-series 

using dynamical principal component analysis to account for temporal autocorrelation. We 

applied this method to identify food-web configurations based on simulated biomass and 

trophic flows. We found four biomass configurations corresponding to two gradients of 

biomass (Figure 4). The first one opposed pelagic fish and omnivorous zooplankton while the 

second one opposed demersal fish and marine mammals. We also concluded that there were 
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three possible trophic pathways in the Barents Sea food-web: (1) a pelagic, (2) a planktonic, 

and (3) a benthic-demersal trophic pathway (Figure 5 in Paper I). 

 

Figure 4. Simulated (grey points) vs. reconstructed (black points) biomass configurations in the Barents Sea 
food-web. Each point represents the biomass configuration for one year. Arrows with trophospecies names 

corresponds to the projection of the variables on the PCA-space. Blue lines correspond to the density lines of 
configurations, i.e., the more line, the denser. 

We then reconstructed past biomass and trophic flow trajectories using the RCaN model to 

assess whether past dynamics of the Barents Sea food-web are representative of its possible 

variability. The reconstructions range of reconstructed food-web configurations completely 

overlapped with the range of simulated configurations, both for biomass and trophic flow 

configurations (Figure 4 and Figure 5 in Paper I). Yet, the range of reconstructed 

configurations was smaller than the range of simulated configurations. The projection of 

reconstructed biomass configurations showed that demersal fish was dominant in the Barents 

Sea food-web (Figure 4) and the major trophic pathway was the benthic-demersal one (Figure 

5 in Paper I).  

We found persistent trophic control in the Barents Sea food-web neither over 379 years (Figure 

6 in Paper I) nor over 40 years (Figure 7 in Paper I). Trophic control in the simulations of the 

Barents Sea food-web were fluctuating at interdecadal timescales, with correlation values 

varying between -0.8 and 0.9 (Figure 5A). A similar pattern was visible for the reconstructions, 
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where correlation varied between -0.8 and 0.8 (Figure 5B). This pattern of fluctuation trophic 

control at interdecadal timescale was present for all trophic interactions considered in the study 

(see supplementary material Figure 8 and 9 in Paper I). 

 

Figure 5. Fluctuating trophic control between demersal and pelagic fish in simulated food-web trajectories (A) and 
reconstructed ones (B). Correlation corresponds to the Pearson correlation between demersal and pelagic fish 
biomass estimated for a sliding window of 15 years. Dark grey envelopes contain 50% of estimated correlation 
values. The light grey envelopes contain 95% of estimated correlation values. Individual trajectories (dark blue, 

cyan, yellow, green, red) correspond to five randomly selected trajectories of correlations between demersal fish 
and pelagic fish biomass. 

This study defines a baseline for the variability of the Barents Sea food-web by exploring the 

possible range of stochastic variability. The possible range of stochastic variability is larger 

than the observed past variability of the Barents Sea food-web. Past configurations dominated 

by demersal fish correspond to one of the four identified possible food-web configurations, 

while the past trophic pathway represent a configuration where the trophic flows transiting 

through demersal fish are dominant. Furthermore, this study suggests that fluctuating trophic 

control is to be expected in the Barents Sea food-web. This finding is supported by Johannesen 

et al. (2012), who first suggested fluctuating trophic control based on historical data. Finally, 

while stochasticity is considered as a source of uncertainty in management policies (Link et al., 

2012), Paper I highlights the importance of considering stochastic variability for future 

management decisions. 

4.2 Paper II: Combined effects of temperature and fishing 
mortality on the Barents Sea ecosystem stability 

This paper focuses on the effect of temperature and fishing mortality on the temporal stability 
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of the Barents Sea food-web. We explored their effects independently before investigating if 

their combined effects on the temporal stability were antagonistic, additive, or synergistic. To 

this end, we used a scenario-based approach with four scenarios of temperature and fishing 

mortality (i.e., 16 crossed scenarios of temperature and fishing mortality in total) for which we 

simulated possible biomass trajectories of the Barents Sea food-web using the NDND model. 

For each trajectory, we estimated the stability for the whole Barents Sea food-web and 

individual species. 

We found that, although species biomass was affected by increasing temperature and fishing 

mortality (Figure 6), stability was weakly affected (Figure 7). Increasing temperature 

negatively affected species biomass (Figure 6A) as well as stability (Figure 7A), while higher 

fishing mortality triggered compensatory dynamics between both fish species (i.e., pelagic, and 

demersal fish, Figure 6B) but had no effect on stability (Figure 7B). We attributed the relative 

absence of effects on stability to the co-variability between the average biomass and its 

variance, where average biomass and variance had a positive linear relationship (see 

supplementary materials Figure S6 and S7 in Paper II). 

 

Figure 6. Effect of temperature (A) and fisheries (B) on species and food-web average biomass. Each violinplot 
corresponds to a scenario of temperature and fishing mortality. The green violinplot indicates the reference 

scenario (i.e., the scenario with no change in temperature and fishing mortality). Black line in violinplots 

corresponds to the median biomass and temporal stability. 
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Figure 7. Effect of temperature (A) and fisheries (B) on species and food-web temporal stability Each violinplot 
corresponds to a scenario of temperature and fishing mortality. The green violinplot indicates the reference 

scenario (i.e., the scenario with no change in temperature and fishing mortality). Black line in violinplots 
corresponds to the median biomass and temporal stability. 

We identified combined effects of temperature and fisheries by comparing the simulated effects 

to the sum of the individual effects of temperature and fisheries. No deviation from the sum of 

individual effects corresponded to additive effects of climate and fishing. A positive deviation 

indicated synergism while a negative deviation indicated antagonism between climate and 

fisheries. We found that increased fishing intensity (higher Fmp) amplified the effects of 

increasing temperature on stability (Figure 8). We also highlighted that increasing fishing 

mortality had positive effects on stability. For harvested species, we observed synergistic 

effects in scenario of colder temperature and antagonistic effects for scenarios of warmer 

temperatures, regardless of the fisheries. Finally, we observed a shift from synergistic to 

antagonistic effects for increasing fishing mortality in scenarios of colder temperature, and vice 

versa for scenarios of warmer temperature.  
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Figure 8. Combined effects of temperature and fishing mortality on the species and food-web temporal stability. 
Each barplot corresponds to a combined scenario temperature and fishing mortality. The reference scenarios 

(i.e., no change in temperature and fishing mortality) is identified by “*”. The black-framed bars correspond to the 
simulated effect of temperature and fishing mortality. Total overlap between the simulated and the sum of the 

individual effects of both drivers indicates additive effects. Larger simulated effects (the blue bar larger than the 
red one) indicate synergistic effects, and smaller simulated effects (the red bar larger than the blue one) indicates 

antagonistic effects. Blue arrows beside groups’ names summarize the effect of temperature on the group’s 
temporal stability. The orange arrows summarize the effect of fisheries on the group’s temporal stability. 

The negative effect of temperature on biomass is not supported by modelling studies suggesting 

that species biomass should increase in polar ecosystems at the horizon 2100 (Bryndum‐

Buchholz et al., 2019; Lotze et al., 2019). Surprisingly, the effects of fisheries on the species 

biomass does not propagate to lower trophic levels due to decoupled dynamics between 

zooplankton species and pelagic fish. In the literature, covariance of mean biomass and 

variance is expected to increase the stability of the ecosystem (Grman et al., 2010), while 
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synchrony is expected to destabilize it (Loreau & de Mazancourt, 2008). We suggest that 

covariance of mean biomass and variance, and synchrony in species dynamics compensate 

each other, maintaining a constant value of stability. The synergism between temperature and 

fisheries on the Barents Sea food-web we found in this study was only partly consistent with 

the past literature. Based on observations, Hsieh et al. (2006) suggested that harvesting 

increased the variability of exploited species, which supports our results. Contrarily modelling 

studies using ATLANTIS suggested that temperature and fisheries effects on the US 

Northeastern Shelf were mostly additive (Nye et al., 2013), while their nature was species 

dependent in in the Benguela upwelling system (Ortega-Cisneros et al., 2018). 

4.3 Paper III: A standard protocol for describing the evaluation 
of models 

This paper aims at presenting a standardized protocol to report the evaluation of model 

applications: the OPE protocol (Objectives, Patterns, Evaluation). The “Objectives” section 

describes the context and the objective of the model application. It should also inform on 

potential specific model setup in relation to the objective. In this section, one should describe 

all deviations of the initial model description that is required to address the objective (e.g., 

additional submodels, variables, or changes in the temporal or spatial scale of the model). The 

“Patterns” section provides a description of the ecological patterns used for the evaluation of 

the model in relation to the objective. More than just describing the patterns, one should 

describe the motivation for choosing an ecological pattern. In this section, the model user is 

asked to describe the type and sources of independent data (i.e., existing data that are not built 

by the evaluated model) used to evaluate the model. It includes the uncertainty associated to 

independent data. The user should also indicate which model outputs are used for the evaluation 

and if these outputs have uncertainties. The “Evaluation” section describes the evaluation 

methodology and the rationale behind its use. It is also the section where the user can describe 

a sensitivity analysis to the model structure or model parameters and its outcomes (if a 

sensitivity analysis was performed). The last questions of the OPE protocol focus rather on the 

limitations of the evaluation methodology (i.e., computational limitations or sensitivity of the 

evaluation outcomes to the chosen methodology). In total, the OPE protocol comprises 25 

questions aiming at reporting in a transparent manner the evaluation of a specific model 

application. 

This paper also presents case studies application of the OPE protocol for the following 
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ecological model applications: 1) estimating trophic levels of ecological groups of the Barents 

Sea in 2000 with an Ecopath model, 2) assessing the cumulative impact of fisheries and climate 

in the Norwegian and Barents Seas using an ATLANTIS model, 3) assessing the persistence 

of trophic control in the Barents Sea food-web in the Barents Sea using the NDND model, 4) 

reconstructing and predicting interannual-to-decadal variations in hydrology, biogeochemistry, 

and phytoplankton biomass in the Barents Sea ecosystem, 5) quantifying in field biomass 

estimates of Calanus finmarchicus in the Norwegian Sea as a function of the sampling design 

with the NORWECOM model, and 6) quantify the association between the dynamics of capelin 

and its main two prey (krill and Calanus species) in the Barents Sea with a Gompertz model. 

The reporting of model evaluation for the six cases studies presented in the paper led to 

additional discussion among the co-authors. First, in some cases, additional evaluation steps 

are not accounted for in the protocol. These steps do neither rely on the comparison of patterns 

between model outputs and independent data, nor on the sensitivity analysis of the model to 

input parameters. Second, for a better understanding of the applied protocol, it appeared 

necessary to provide some background on the model application. Therefore, we added 

introductory paragraphs summarizing the history of the models and their development. 

Unfortunately, documenting model evaluation is not a standard practice among the ecological 

modeler community because it is time-consuming and little rewarding. By presenting a 

standardized protocol for reporting the model evaluation in relation to an objective, we aim to 

provide a tool for better communication about model evaluation and hope to develop a culture 

of documenting model evaluation such as it is the case with the ODD protocol. However, a lot 

of work to promote the use of the OPE protocol is still needed to reach this goal. Furthermore, 

as for the ODD protocol, which was revised two times since its initial development (Grimm et 

al., 2006, 2010, 2020), the presented OPE protocol is work-in-progress. Future feedbacks and 

discussions on the OPE protocol are expected to lead to revisions in the present protocol. 

4.4 Paper IV: Quantification of trophic interactions in the 
Norwegian Sea pelagic food-web over multiple decades 

This paper focus on trophic control in the Norwegian Sea pelagic food-web (Figure 9) during 

the last three decades. We reconstructed possible past dynamics of Norwegian Sea pelagic 

food-web using the RCaN model and investigated if the reconstructions are supportive of 

bottom-up or top-down control of zooplankton and small pelagics, and of competition between 

small pelagics during the last three decades. Therefore, we used available time-series and 
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known uncertainties for the trophic groups of the Norwegian Sea pelagic food-web to constrain 

the reconstructions of past trajectories. Trophic control was estimated based on the relationship 

between the total consumption of a species and the growth, and the relationship between 

predation and growth for bottom-up and top-down control, respectively. 

 

Figure 9. Schematic representation of the Norwegian Sea pelagic food-web. (A) Geographic extent of the 
Norwegian Sea used to parametrize the RCaN model. (B) the food-web topology, where the black full-lined box 

corresponds to the geographical extent of the Norwegian Sea. Black icons inside the black-dashed box 
corresponds to trophospecies inside the model domain (i.e., copepods, krill, amphipods, mackerel, herring, blue 
whiting). Grey icons correspond to trophospecies outside the model domain (i.e., the dynamics of these groups 
are not reconstructed). Red icons correspond to fisheries. Black arrows correspond to trophic flows inside the 

model domain. Grey arrows correspond to trophic flows entering or exiting the model domain. Red arrows 

correspond to non-trophic flows towards fisheries. 

First, with the available data and their uncertainties, it was possible to reconstruct past 

trajectories of the food-web. The reconstructions showed lower uncertainties for fish species 

(i.e., herring, blue whiting, and mackerel), while zooplankton species reconstructed trajectories 

displayed relatively large uncertainties (Figure 10). In the reconstructions, we found a positive 

linear relationship between the consumption of zooplankton by herring and herring biomass 

growth indicating bottom-up control on herring dynamics (Figure 11-left panel). Contrarily, 

we did not find any relationship between the predation on herring and herring biomass growth 

(Figure 11-middle panel). It means that there was no top-down control on herring in the 

reconstructions of the Norwegian Sea pelagic food-web. Furthermore, the distribution of 

correlation calculated for individual reconstructed trajectories supported the presence of 

bottom-up control and the absence of top-down control on herring (Figure 11-right panel). The 
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same analysis displayed similar trophic interactions for the other species of the Norwegian Sea 

pelagic food-web (Figure 6 in Paper IV). Yet, amphipods displayed a different pattern where 

their dynamics are top-down and bottom-up driven (Figure 6 – top-right panel in Paper IV). 

The results also suggest that competition for amphipods between small pelagic fish of the 

Norwegian Sea pelagic food-web is weak while it is null for the two other preys (Figure 8 in 

Paper IV). 

 

Figure 10. Reconstructed biomass time-series of copepods, krill, amphipods, herring, blue whiting, and mackerel 
using the RCaN model for the Norwegian Sea pelagic food-web. The envelopes contain 100% (light), 95% 

(medium) and 50% (dark) of the reconstructed time-series. The plain, dashed, and dashed-dotted lines 
correspond to three individual reconstructed time-series. 

The results presented in Paper IV are in contrast with previous studies suggesting that the 

combination of higher herring biomass and the entry of blue whiting in the Norwegian Sea 

were concomitant with low copepod biomass in the following year (Olsen et al., 2007). 

Furthermore, Huse et al. (2012) and Olafsdottir et al. (2016) suggested that small pelagic fish 

compete for the access to limited resources. The inconsistency between our results and the 

previous studies may result from differences in the spatiotemporal dynamics of small pelagic 

fish species in the Norwegian Sea (i.e, different timing in feeding season, migration patterns, 
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timing in seasonal development of zooplankton, fish species co-occurrence). The sensitivity of 

the model conclusion to input parameters and data time-series used to constrain the 

reconstructions of food-web dynamics was evaluated (see supplementary materials S5 in Paper 

IV). The conclusions of the model were relatively robust to variations in the input parameter 

values. However, there were three cases for which the study’s conclusions were altered. First, 

for extremely low primary production levels (10% of the baseline values), the model could not 

reconstruct past trajectories. Second, for extremely high fisheries (100% of the baseline 

values), the sampling of the possible trajectories was suboptimal. Third, for strong increase or 

decrease of metabolic losses, there was no solution for the sampling of trophic flows. 

 

Figure 11. Relationship between herring growth and relative prey consumption (left panel), and relative predation 
on herring (middle panel). Each dot represents a reconstructed trajectory. The density plot helps to visualize the 

scatterplot of reconstructed trajectories. The distribution of correlation values between herring growth and relative 

predation (red) and relative consumption (green) are shown on the right panel. 

The RCaN model as it is applied in this study illustrate how CaN models can be used in a 

participatory modelling approach for integrated ecosystem assessment. It relies on principles 

that are simple, easily communicable, and understandable by a wider community. Furthermore, 

actual RCaN models can be easily updated by adding new data to the model, which is relatively 

straightforward. RCaN reconstructions can also be used to identify where data is lacking or is 

of insufficient quality 

5 Discussion 

5.1 Exploring the possible variability of the Barents Sea food-
web. 

The range of past ecosystem configurations of the Barents Sea food-web represented only a 

fraction of the possible variability displayed in the NDND simulations (Paper I). This result 

advocates for considering stochasticity in the development of management policies. 
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Stochasticity is commonly considered a source of uncertainty for management (Link et al., 

2012). Adaptive management aims at accounting for this uncertainty in the decision-making 

process (Walters, 1986). Yet, although adaptive management is highly recommended and 

supported in the literature, only few examples of successful adaptive management plan have 

been implemented (Westgate et al., 2013). Given that the NDND model explores the possible 

futures of the natural system by accounting for the uncertainties about them, it can be used for 

testing possible management strategies in a management strategy evaluation framework (MSE, 

(Punt et al., 2016). MSEs aim at identifying the possible trade-off in performance of different 

management strategies through a simulation-based approach, while accounting for 

uncertainties. Usually, MSE are performed in single-species context (ICES, 2020). Yet, single-

species approach does not account for biological interactions between species (e.g., predation). 

Using ecosystem models to perform MSE allows to account for species interactions and the 

direct effect between fisheries and the ecosystem (Perryman et al., 2021). The implementation 

of HCRs in the NDND model to estimate annual catches for fish trophospecies could possibly 

allow to test for multiple management strategies in a multi-species framework that accounts 

for species interactions and evaluate them to exclude non-relevant management strategies. 

The NDND model, used in Paper I and Paper II, includes a harvesting module that allows to 

run various HCRs for individual trophospecies. In Paper I, we used the HCRs defined for cod 

and capelin to estimate annual catches of demersal fish and pelagic fish, respectively. 

Although, the implemented HCRs are simplifications of the real HCRs used for the 

management of the cod and capelin stocks, it is possible to define more complex HCRs and 

test for different long-term management strategies for fisheries that account for the stochastic 

variability of the ecosystem. Furthermore, recent development of management strategies 

advocate for ecosystem-based management and a shift from single-species management to 

multi-species management (e.g., Olsen et al., 2007; Moffitt et al., 2016). The NDND model 

allows to test for fisheries management strategies and their impact on the dynamics of all 

trophospecies of the food-web. A previous modelling study used a stochastic viability approach 

to identify strategies ensuring ecological conservation of natural resources and economical 

sustainability (Doyen et al., 2012). Ibid advocate for the use of stochastic viability for 

ecosystem-based management because it can deal with core element of ecosystem-based 

management (i.e., risk, precaution, and sustainability). 

Nonetheless, such an approach to test management strategies would imply identifying the 

forecast horizon, i.e., the time horizon for which predictions are informative for decision 
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making (Petchey et al., 2015), of the NDND model. Anderson & Gillooly (2020) showed that 

species forecast horizon was dependent on the length of the generation time (i.e., the lifespan 

of individuals). The forecast horizon of species with short generation time was shorter. In the 

NDND model, the inertia parameter is related to the average lifespan of individual species 

(Mullon et al., 2009) and it was lower for short-lived species such as herbivorous zooplankton 

(lower inertia value indicates higher “biological” inertia for trophospecies). Thus, it is expected 

that the forecast horizon for these species should be shorter than the one of species with longer 

lifespans (e.g., marine mammals). Furthermore, as the NDND model simulates relatively 

unconstrained trajectories of the food-web, the forecast horizon is expected to be relatively 

short. 

Deterministic food-web models, such as EwE and Atlantis, account for many ecological 

processes in hope of better representing the real food-web dynamics. Their complexity 

increased by adding parameters (Fulton, 2010) leading to more uncertainty in model 

predictions (Evans, 2012). The NDND model represents a shift in the way of constructing a 

food-web model. Instead of including many ecological processes increasing the model 

complexity, it accounts only for structural biological constraints (i.e., satiation, inertia, positive 

trophic flows, biomass over refuge biomass). These constraints define the range of possible 

trophic flow values that comply with them. This range of possible values is then explored in a 

stochastic manner, which implies that simulated trajectories can be highly variable. As one can 

consider deterministic food-web models too constrained to reproduce the variability patterns 

of natural systems, one can also consider that the NDND model is too weakly constrained. It 

means that the simulated variability presented in Paper I would include food-web 

configurations of the Barents Sea that are unrealistic. A possible development of the NDND 

model in the future could imply to further constrain the NDND simulations by including 

ecological processes that can affect trophodynamics of the Barents Sea food-web, such as 

species distribution overlap. However, one needs to be careful to not include ecological 

processes that would not affect the range of possible food-web configurations while 

significantly increasing the simulation time. 

5.2 Trophic control in the Nordic Seas 

5.2.1 Fluctuating trophic control in the Barents Sea 

The results in Paper I show that trophic control is variable over time and fluctuates at 

interdecadal timescale in the Barents Sea for most trophic interactions. Yaragina & Dolgov 
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(2009) suggested a wasp-waist control where pelagic fish exerted bottom-up control on 

predators and top-down control on zooplankton, the latter being supported by statistical model 

outputs (Stige et al., 2014). Fluctuating trophic control in the Barents Sea was first suggested 

based on past observations over the time period 1970-2009 (Johannesen et al., 2012). Paper I 

shows that fluctuations in trophic control are to be expected in the Barents Sea food-web, and 

result from food-web stochastic dynamics. Fluctuating trophic control between cod and its prey 

has been described in the North Pacific ecosystem as well, but it was attributed to a rapid 

warming in 1970’s (Litzow & Ciannelli, 2007) rather than stochastic trophic interactions. 

Rather than triggering shifts in trophic control, it is likely that increasing temperatures affect 

the timescale of trophic control fluctuations due to higher turnover rates in species biomass, 

but this needs to be tested. 

5.2.2 Trophic control in the Norwegian Sea 

In Paper IV, the RCaN model was used to reconstruct past trajectories in a zooplankton multi-

species (amphipods, krill, and copepods) context. Trophic control in the reconstructions 

support the hypothesis of a bottom-up driven Norwegian Sea pelagic food-web while it is in 

conflict with the top-down hypothesis, i.e., growth of predators’ biomass was positively 

correlated to the trophic flows from their preys, and growth of prey biomass was not correlated 

to trophic flows to their predators. The performed sensitivity analysis on the model 

parametrization and the observed data time-series presented in the supplementary materials S5 

of Paper IV shows that the conclusions from this study are relatively robust, but they conflict 

with past studies suggesting top-down control on zooplankton by herring in the Norwegian Sea 

(Olsen et al., 2007). This study estimated trophic control in a single prey-predator context, i.e., 

Norwegian spring-spawning herring and Calanus finmarchicus. The results in Paper IV 

advocate for the development of multi-species approaches to improve the assessment of key 

ecological properties of ecosystems, among which ecosystem models. 

5.3 The combined effects of climate and fisheries on ecosystem 
stability 

5.3.1 Synergistic effect of temperature and fisheries 

A major result of Paper II is the synergism between temperature and fisheries, although the 

responses of stability to both drivers were relatively weak. Previous studies showed that 

harvested species displayed higher variability than non-harvested species (Hsieh et al., 2006). 

A more recent modelling study suggested that in an environmentally variable system, increased 
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fishing mortality led to higher species variability (Shelton & Mangel, 2011). The increased 

variability of harvested species is expected to result from the age-structure truncation of fish 

stocks by fisheries (Hsieh et al., 2006; Rouyer et al., 2012; Quetglas et al., 2013). In fact, three 

hypotheses were suggested to explain the changes in temporal variability of harvested fish 

stocks due to fisheries (Anderson et al., 2008). First, the variations in abundances can result 

from variations in fishing intensity (Jonzén et al., 2002). Second, age-truncated stocks may be 

more sensitive to environmental variations (Hsieh et al., 2006). Third, juvenescent populations 

are expected to be less stable due to differences in demographic parameters (Hsieh et al., 2005). 

Anderson et al. (2008) only found empirical evidence for the latter hypothesis. Given that 

trophospecies in the NDND model are not age-structured, the results presented in Paper II 

suggest that fisheries directly affect the stability of harvested species. This finding supports the 

first hypothesis rather than the two other ones. Nonetheless, the analysis in Paper II, also 

revealed a negative trend in species stability in response to temperature increase only for 

harvested species. This observation is in line with previous studies suggesting that fisheries 

increase the sensitivity of species dynamics to climate variability (Perry et al., 2010). Again, 

without affecting the age-structure that is not defined for trophospecies in the NDND model, 

this result suggest that harvesting amplifies the effect of climate change on species intrinsic 

variability. These results illustrate the need to account for both fisheries and climate change in 

decision-making for management. It advocates for the use of ecosystem-based management for 

fisheries to account for all the cumulative effects of anthropogenic drivers in management 

policies (Halpern et al., 2008b; Skern-Mauritzen et al., 2018). 

5.3.2 Taylor’s law 

The results in paper II, show that temporal stability (the inverse of the coefficient of variation, 

i.e., the mean divided by the standard deviation) displayed weak median responses to combined 

variations of temperature and fishing mortality. There are the two possible explanations for the 

reduced response in stability to temperature and fishing mortality variations: (1) fisheries and 

temperature did not affect the mean biomass nor the variance, or (2) mean biomass and variance 

covary in such way that stability remains unchanged. Hypothesis (1) is not support by the 

results in Paper II, given that they showed an effect of temperature and fishing individual 

species biomass. Thus, the investigation of mean-variance scaling relationships (Cottingham 

et al., 2001) showed that the variance increases for higher mean biomass (Figure S6 and S7 in 

supplementary material Paper II). Such relationship corresponds to a Taylor’s law, which 

relates the logarithm of variance to the logarithm of biomass linearly (Taylor, 1961). The slope 
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of the identified Taylor’s law is close to 1 (Figure S6 and S7 in supplementary material Paper 

II) which indicates that mean biomass and variance covary in such way that stability remains 

unchanged, supporting hypothesis (2). 

Despite covariation between mean biomass and variance, fisheries management policies aim 

at maintaining stable and sustainable fish stocks over time. In the case of stocks which have 

declined, management aims at restoring the state of the stocks by reaching identical biomass 

levels than historical ones. The Taylor’s law identified between mean biomass and variance 

indicates that aiming for higher levels of biomass might not be sufficiently robust to define 

management policies, given that higher biomass induces higher biomass variability. It 

advocates for the use of ecological indicators that integrate biomasses to other key 

characteristics of the ecosystem functioning, to summarize the effect of stressors on the 

ecosystem dynamics (Coll et al., 2016). For instance, the IndiSeas working group has provided 

several studies focusing on identifying relevant ecological indicators of the effect of fisheries 

(e.g., Coll et al. 2016). They also assessed their sensitivity to environmental changes (e.g., Shin 

et al. 2018), and evaluated their performance at identifying threshold for ecosystem-based 

management (e.g., Fu et al., 2019). 

5.3.3 Compensatory vs. additive fisheries 

In the RCaN model, available catch time-series are used to constrain reconstructions of past 

trajectories (Planque & Mullon, 2020). In other words, annual flows to fisheries are equal to 

the reported annual catches with an uncertainty of 10% (see supplementary materials S3 in 

Paper IV). Yet, the inertia constraint in the original RCaN model is not dependent on the 

amount of harvested biomass (Planque & Mullon, 2020). It means that the maximum annual 

biomass decrease is dependent on the state of the food-web and that fisheries does not affect it. 

Thus, as the harvested biomass is defined as a constraint in the model (i.e., the reconstruction 

must comply with the historical time-series of harvested biomass), trophic flow values must 

comply with the remaining biomass left after harvesting to respect the inertia constraint. In that 

sense, fishing mortality is fully compensatory in the RCaN model. Up to now, it is not possible 

to explore partial or full additivity of fishing mortality in the RCaN model. 

In the NDND model, harvesting is explicitly modelled as a compensatory process such as the 

sum of losses due to predation and the losses due to fisheries cannot exceed the inertia 

constraint. Other ecosystem models consider fishing mortality as additive (Heymans et al., 

2016; Audzijonyte et al., 2019). Whether fishing mortality is additive or compensatory is still 
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an ongoing debate in the literature (Froese et al., 2016; Walters & Christensen, 2019). But, it 

is expected that the degree of fishing mortality compensation is on a continuum between 

compensatory and additive (Myers & Quinn II, 2002; Péron, 2013). A simple exploration of 

the compensation degree of fishing mortality using NDND simulations revealed that low 

increase (25%) in additive fishing mortality triggers significant changes in species biomass 

(Figure 12, E. Sivel unpublished data). This exploration is only a preliminary result that 

requires further investigation to better assess the effect of case where fishing mortality is 

partially additive. 

 

Figure 12. Distribution of mean biomass for different degrees of additivity of fisheries to other sources of 
mortality, i.e., predation. Violin plots corresponds to simulations with different values of additivity. The green 

violin, i.e., degree of additivity = 0, correspond to the configuration of fisheries compensation in both applications 
of the NDND model (Paper I and Paper II). Increased additivity of fisheries significantly affects the mean biomass 

of pelagic fish, demersal fish, and birds for relatively low degree of additivity (>25%). The observed pattern is 

similar to the pattern of the effect of fisheries on species biomass. 

5.4 Model evaluation 

5.4.1 OPE protocol 

The protocol for reporting the evaluation of models regarding to a specific objective (OPE 

protocol, Paper III) is the result of a collaborative work between ecosystems modelers. The 

initial objective was to explore and identify suitable tools and methods to assess the 

performance of ecosystem models. Model evaluation is a time-consuming and complex work, 

and dedicated tools for reporting it were not available. The presented protocol in Paper III is 

the result from a collaborative work among a group of ecosystem modelers. Beside the 25 

questions of the protocol, the discussions highlighted that the evaluation should always be 
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performed in relation to a specific objective. Ecosystem models are generic tools designed to 

address a multitude of scientific questions. Hence, instead of evaluating the global performance 

of ecosystem models, the performance of the model to answer the specific scientific question 

for which it was applied should be evaluated. The aim of developing such a protocol is to 

contribute to the development of a culture of reporting model evaluation by providing 

standardized tools to do so. As for the initial ODD protocol (Grimm et al., 2006), the current 

OPE protocol must be considered as in development. The development of the reporting culture 

and feedback from model users would allow to improve it and make it more adapted to the 

needs of model users. 

The OPE protocol was applied in the different application of CaN models I present in this 

thesis. The major lesson learned from these applications is that model evaluation should be part 

of the study design. In the case of the applications of the OPE protocol to the NDND model 

(Supplementary material in Paper III and in Paper II), the protocol was prepared a posteriori 

to the model evaluation process. It showed that some elements of the evaluation could have 

been conducted differently if the protocol would have been filled a priori to the model 

evaluation process. For instance, in the case study in Paper III, the evaluation of the model 

application is done based on a visual inspection of the overlap between simulated and 

reconstructed date (see Figure 4). Yet, one could have defined a threshold value of the 

percentage of overlap between the range of simulated and reconstructed data. In that sense, the 

applications of the OPE protocol to the CaN model applications showed that the culture of 

evaluating model application is still poorly developed as evaluation is considered as a time-

consuming and little rewarding process. Model evaluation is often the topic of separate studies 

(e.g., Hansen et al., 2019) or it is not presented. The applications of the OPE protocol pointed 

out that protocol could be used a tool to include a systematic thinking of model evaluation 

while defining the study design. 

5.4.2 Sensitivity analysis 

Input parameters of the CaN models can be derived from first principles or from observations. 

In both cases, estimated parameter values are associated with uncertainties that can vary in time 

and space. These uncertainties can significantly affect the model outputs. Thus, the robustness 

of presented conclusions needs to be assessed with respect to the uncertainty in input 

parameters in CaN models. The robustness of the RCaN model to input parameters was 

assessed and presented in the supplementary materials of Paper IV. The sensitivity analysis 
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showed that the conclusions on trophic control in the Norwegian Sea pelagic food-web are 

robust. Only extreme modifications of the initial model setup (e.g., an increase of 100% of 

harvesting on all fish species, decrease of primary production to 10 % of the baseline 

conditions) significantly altered the conclusions. 

No sensitivity analysis was performed on the applications of the NDND model presented in 

this thesis (Paper I, Paper II). In Paper II, lower trophic levels are not affected by variations 

of fishing mortality. In the available literature based on observations, the absence of harvesting 

effect on lower trophic levels in the Barents is due to a decoupling between the zooplankton 

and capelin dynamics, which resulted from increased primary production (Dalpadado et al., 

2020). This increase in primary production in the Barents ensued increasing sea-ice free areas 

due to higher temperatures (Dalpadado et al., 2020). However, modelling outputs suggested 

that increasing temperature had the opposite effect on primary production (Holt et al., 2016). 

Reconstructions of past food-web dynamics for the Barents Sea using the RCaN model with 

identical parametrization as the NDND model in the Paper I (Planque & Mullon, 2020) 

suggested that zooplankton dynamics could be reconstructed with substantially lower 

phytoplankton import (unpublished data), which is used a proxy for primary production. 

Similarly, the sensitivity analysis on the RCaN model for the Norwegian Sea pelagic food-web 

presented in Paper IV suggests that, although reduced primary production lowers the biomass 

of individual groups, it did not affect the conclusions of the study. Thus, how changes in 

primary production can affect conclusions presented in Paper I and Paper II requires further 

investigations. 

6 Conclusion 

The present thesis addressed four research question articulated around the use of Chance and 

Necessity modelling to investigate the drivers of variability in the Nordic Seas' food-webs. 

First, I aimed at exploring the possible stochastic variability of the Barents Sea food-web to 

define a reference for its variability and compare it to the observed variability over the last 

three decades. I found that the past variability of the Barents Sea food-web corresponded only 

to a fraction of its possible variability (Paper I). It shows that the Nordic Seas’ food-web 

dynamics can be affected by other drivers than variations in anthropogenic stressors. Second, 

I explored trophic control in the Nordic Seas’ food-webs. With the NDND model, I tested for 

persistent trophic control over time in the Barents Sea food-web. I found fluctuating trophic 

control at inter-decadal timescale is to be expected and that it emerged from internal dynamics 
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and stochastic variability of the Barents Sea food-web (Paper I). With the RCaN model, we 

reconstructed the past dynamics of the Norwegian Sea pelagic food-web and identified trophic 

control of zooplankton groups and planktivorous fish. The results support bottom-up control 

of planktivorous species by zooplankton, but not top-down control of copepods and krill 

(Paper IV). Third, I investigated the effects of climate change and fisheries on the stability of 

the Barents Sea food-web. The results suggested that temperature and fisheries have synergistic 

effects, where harvesting amplifies the negative effects of increasing temperature on species 

stability (Paper II). Fourth, I contributed to the elaboration of a standardized protocol to report 

the model evaluation process and applied it to the NDND model (Paper III). 

The CaN models are novel food-web models that simulate a wide range of possible trajectories 

of the food-web. As such it should not be used as a predictive tool to project future trajectories 

of the ecosystem. Instead, the results I presented in this thesis illustrate that CaN models can 

be used a tool to explore the variability emerging from internal dynamics and stochastic events, 

and thus, provide relevant knowledge for adaptive management of the Nordic Seas natural 

resources. CaN models could be used to test management strategies, such as HCRs, or to define 

management goals, such as identifying the point of no return concerning increasing 

temperature, while accounting for internal dynamics and stochasticity. The results also 

advocate for the use of ecosystem-based approach for managing natural resources. We found 

that a whole-ecosystem approach using the RCaN model provide different conclusions than the 

historically single-species approaches used for management policies. Furthermore, the results 

showed that individual anthropogenic stressors should not be considered separately to assess 

their impact of the ecosystem dynamics. 
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Abstract

The Barents Sea is a subarctic shelf sea which has experienced major changes during the

past decades. From ecological time-series, three different food-web configurations, reflect-

ing successive shifts of dominance of pelagic fish, demersal fish, and zooplankton, as well

as varying trophic control have been identified in the last decades. This covers a relatively

short time-period as available ecological time-series are often relatively short. As we lack

information for prior time-periods, we use a chance and necessity model to investigate if

there are other possible configurations of the Barents Sea food-web than those observed in

the ecological time-series, and if this food-web is characterized by a persistent trophic con-

trol. We perform food-web simulations using the Non-Deterministic Network Dynamic model

(NDND) for the Barents Sea, identify food-web configurations and compare those to histori-

cal reconstructions of food-web dynamics. Biomass configurations fall into four major types

and three trophic pathways. Reconstructed data match one of the major biomass configura-

tions but is characterized by a different trophic pathway than most of the simulated configu-

rations. The simulated biomass displays fluctuations between bottom-up and top-down

trophic control over time rather than persistent trophic control. Our results show that the con-

figurations we have reconstructed are strongly overlapping with our simulated configura-

tions, though they represent only a subset of the possible configurations of the Barents Sea

food-web.

Introduction

Marine ecosystems have complex structures, functions, and dynamics. They include a diversity

of species, comprise various habitats, and often display non-linear feedback mechanisms [1–

3]. Interactions emerging at higher levels of the system can result from interactions and pro-

cesses occurring at lower levels and vice versa [1]. Marine ecosystems are dynamic and con-

stantly undergo structural and functional changes [4–7], evolving through different states or

“configurations”. A number of ecological studies focus on how external pressures may explain

the differences between configurations of a same ecosystem at different time-periods [5,7,8].

However, changes in ecosystem configurations can also result from the internal dynamics

emerging from its functioning or from external, stochastic events [9].
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The historical range of variability informs us on how an ecosystem varied in the past. It can

be used as a reference for the variability of an ecosystem to improve the assessment and the

prediction of future changes in its dynamics [10]. Available ecological time-series used to esti-

mate the historical range of variability of marine ecosystems are often relatively short, typically

less than 50 years [11,12]. Furthermore, ecological time-series are not available for all trophic

groups (e.g. benthos, marine mammals, birds) and the lifespan of some species exceeds 50

years. Consequently, it is difficult to make inference about the past and future variability of

marine ecosystems without making assumptions that can result in large uncertainties [11,13].

Yet, it is expected that ecosystem variability increases with the length of the study period

[14,15], and that the baselines used for the assessment of fish abundances have shifted since

1950 [16,17]. To better anticipate possible changes in future marine ecosystem dynamics, one

must explore the variability of the system dynamics on a timescale longer than the 50 years for

which data are available. In some instances, these dynamics can be reconstructed using paleon-

tological or archeological data (e.g. [18]). An alternative approach is to use numerical models

to simulate dynamics over multidecadal time-periods.

Numerical food-web models, which represent one specific type of ecosystem models, inte-

grate available data to simulate the dynamics of food-webs [19]. These models focus on trophic

interactions between a subset of species or functional groups in the ecosystem. In the search of

more realism, food-web models have become more complex by adding more parameters and

variables for which data are not always available [20] thus increasing both the structural and

parameter uncertainties. Despite this increase in complexity, these models are too constrained

and are not able to reproduce the observed variability patterns in the ecosystem [6,21].

An alternative modelling approach, proposed by Mullon and collaborators [22], addresses

specifically the issue of ecosystem stochastic variability. The Non-Deterministic Network

Dynamic model (NDND) is a mass-balanced stochastic food-web model based on the princi-

ples of chance and necessity [23]. Chance implies that any event is possible as long as it com-

plies with a number of basic biological and physical constraints ensuring that the ecosystem

sustains itself over time. As such, the NDND model has been designed to reproduce the high

variability of natural systems by exploring their “state-space”. It thereby allows us to explore

many possible food-web configurations (i.e. distribution of biomass among the species, trophic

controls between the compartments) and the temporal variability in these configurations. A

more recent study [24] showed that the NDND model was able to reproduce the variability

patterns of several ecosystem properties (e.g. stability, trophic control, density dependence,

etc.) observed in the Barents Sea food-web during the last three decades.

The Barents Sea is a subarctic shelf sea which has experienced major changes in species

composition and dynamics during the past decades [7,8,25]. Available ecological time-series of

the Barents Sea species revealed successive changes in food-web configurations reflecting shifts

of dominance between pelagic fish, demersal fish [8], and zooplankton [25]. A past modelling

study identified two distinct trophic pathways in the Barents Sea food-web based on an Eco-

path model [26]: one pelagic and one benthic. Yaragina and Dolgov [27] suggested a wasp-

waist control of the Barents Sea food-web where pelagic fish is assumed to exert a top-down

control on zooplankton and a bottom-up control on its predators, whereas, Johannesen and

collaborators [8] identified fluctuating trophic control between the species of the Barents Sea

food-web. However, there is a need to define a baseline for the variability of the Barents Sea

ecosystem to assess if the recent changes in its dynamics may reflect its stochastic variability or

if they were induced by variations in anthropogenic drivers.

In this study, we investigate the variability of the Barents Sea food-web configurations

emerging from random trophic interactions and how they differ from the configurations

observed during the past three decades. To this end, we perform food-web simulations using
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the NDND model for the Barents Sea food-web and analyze the biomass configurations and

trophic pathways of these simulated food-webs and compare past vs. simulated food-web

configurations. Furthermore, we investigate if the previously reported trophic control (top-

down or bottom-up) of the Barents Sea food-web are persistent features of the Barents Sea

food-web.

Material and methods

A. NDND model parametrization

The NDND model is a stochastic mass-balanced food-web model in which the food-web

topology (i.e. who eats who) is fixed but the predation rates are indeterminate [22–24]. In the

NDND model, the dynamics of the different trophospecies (hereafter named species) result

from biomass exchanges between species whose values are sampled randomly (chance), given

a set of biological and physical constraints (necessity). Trophic flows define mechanistically

the biomass at the next time-step according to the master equation of the model (see supple-

mentary materials S1 in S1 File). Estimated biomass values will then constrain the values of the

trophic flows for the next time-step, and so on. Five constraints are defined for the NDND

model: (1) the food intake of a predator is limited due to satiation, (2) the increase of biomass

per time-step is limited, as well as (3) the decrease of biomass per time-step, (4) a trophic flow

between two species cannot be negative, and (5) the biomass of species must stay above a

threshold value referred to as the refuge biomass. The mathematical formulation of the NDND

model is detailed in supplementary material S1 in S1 File.

In the present study, we used the food-web topology from Lindstrøm et al. [24] comprising

eight species (phytoplankton, herbivorous zooplankton, omnivorous zooplankton, benthos,

pelagic fish, demersal fish, mammals, and birds) and 18 trophic links (Fig 1). The values of the

inertia parameter were adjusted to account for asynchronous growth rates of different species

within species groups. Parameter values are presented in Table 1.

Harvesting of pelagic and demersal fish is explicitly included. In contrast to Lindstrøm et al.
[24], who modelled fish catches as a constant fraction of biomass, we express fishing using a

harvest control rule (HCR) that resemble the fishing regulations that operate in the Barents

Sea [28]. To apply the HCR to the NDND model, we make the following assumptions: (1) we

assume the ratio catch/stock to be equivalent in biomass and numbers, (2) the fishing mortality

is estimated based on the total stock biomass instead of the spawning stock biomass, and (3) as

capelin and cod are the major species of the pelagic and demersal fish groups, we use the

parameter values from these two species to construct the HCR for the pelagic and demersal

fish groups respectively.

The HCR is defined as follows:

1. when the stock biomass is smaller than the trigger biomass (Blim), then the catch is set to 0,

2. when the stock biomass is greater than Blim and lower than the target biomass (Bmp), the

catch increases linearly with the total stock biomass,

3. when the stock biomass is larger than Bmp then, the caught biomass is estimated using the

Baranov equation [29,30].

Parameter values of Fmp, Bmp and Blim are set according to [28] and the natural mortality

rates (M) are set according to [31]. Parameter values of the HCR are presented in Table 2.
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Fig 1. Schematic of the simplified Barents Sea food-web. Species are represented by icons, from the left to the right:

Phytoplankton, herbivorous and omnivorous zooplankton, benthos, pelagic and demersal fish, mammals, and birds.

Trophic links are represented by red arrows. Circular arrows correspond to cannibalistic interactions.

https://doi.org/10.1371/journal.pone.0254015.g001

Table 1. Parameter input for the simulation with the NDND model.

Phytoplankton Herbivorous zooplankton Omnivorous zooplankton Benthos Pelagics Demersals Mammals Birds

Initial Biomass (B0, tons�km-2) 25 23 12.9 66 0.36 1.18 0.34 0.007

Import (I, tons�km-2) 1000 8 2 0 0 0 0 0

Export (E, tons�km-2) 0 0 0 0 0 0 0 0

Assimilation efficiency (γ) 1 1 1 0.94 0.9 0.93 1 0.84

Digestibility (κ) 0.65 0.9 0.9 0.6 0.9 0.85 - -

Other losses (μ) 6.74 8.4 5.5 1.5 2.85 1.65 5.5 60

Inertia (ρ) 12.94 7.58 3.1 0.74 0.9 0.25 0.11 0.81

Satiation (σ) - 128 42 25.2 13.5 5.5 10.9 123

Refuge biomass (β, tons�km-2) 0.25 0.23 0.13 0.66 0.025 0.023 0.0034 0.0001

Assimilation efficiency and digestibility are ratio and do not have units. Other losses, inertia and satiation do not have units but represent ratios over a 1-year time-

period.

https://doi.org/10.1371/journal.pone.0254015.t001

Table 2. Harvesting control rule input parameter values.

Phytoplankton Herbivorous zooplankton Omnivorous zooplankton Benthos Pelagics Demersals Mammals Birds

Fishing mortality rate (Fmp) - - - - 0.05 0.4 - -

Target biomass (Bmp, tons�km-2) - - - - 0.125 0.475 - -

Trigger biomass (Blim, tons�km-2) - - - - 0.125 0.25 - -

Natural mortality (M) - - - - 0.85 0.2

https://doi.org/10.1371/journal.pone.0254015.t002
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B. Simulations

All simulations and statistical analysis are performed using R (v.3.6.2) [32]. A summary of all

data transformations and statistical analysis methods used in this study is given in supplemen-

tary material S2 in S1 File.

The sampling algorithm used in this study is the Complex Polytope Gibbs Sampling algo-

rithm (cpgs) available in the RCaN package [33].

To ensure an extensive exploration of the “state-space” of the system, we generated 1000

trajectories of 500 years each. Possible configurations of the food-web can be defined based on

the distribution of biomass in the different trophospecies or based on the distribution of tro-

phic flows. To ensure that the simulated biomasses used for statistical analysis were indepen-

dent from the initial biomasses at the start of the simulations, we removed a burn-in period of

121 years, leaving us with 1000 time-series of 379 years (biomass) and 378 years (flows) each.

The method used to estimate the burn-in period is described in supplementary material S3 in

S1 File. Finally, biomass data were log10 transformed to remove the scale difference between

species. For the same purpose but, as some flows are close to zero, the flow data were log10(x

+ 0.001) transformed.

In the NDND model, phytoplankton biomass time-series reflect the remaining primary

production after consumption by predator rather than the actual standing stock of algae or

bacteria. These time-series were therefore not included in the analysis.

In addition to the NDND simulations, we used reconstructed trajectories of the Barents Sea

food-web for the period 1988–2019 estimated from a Chance and Necessity model (CaN) for

the Barents Sea [34]. In essence, NDND and CaN trajectories result from the same dynamical

process but while the NDND trajectories are only constrained by ecological and biological lim-

its, the CaN trajectories are also constrained by historical time-series of abundance and food

consumption. Fishing in the CaN model is reconstructed as a non-trophic flow that is con-

strained by historical landing time-series for omnivorous zooplankton, pelagic fish, demersal

fish, benthos, and marine mammals. The CaN model outputs provide an ensemble of biomass

and trophic flow reconstructions for the whole food-web using available data series from a

subset of species groups only. CaN model outputs are hereafter referred to as “reconstructed

data”. The details of the CaN model setup are provided in Supplementary material S4 in

S1 File.

C. Statistical analysis

A main goal of this study is to explore possible food-web configurations in the Barents Sea

food-web and compare those to previously observed configurations. We define food-web con-

figurations as either 1) the relative distribution of biomass among species in the food-web or

2) the relative distribution of trophic flows. Because the configurations are multivariate, a

space reduction method such as principal component analysis (PCA) is useful to summarize

the configurations.

Principal component analysis (PCA) has been widely used to identify ecosystem configura-

tions [8,25,35]. PCA is best suited for cross-sectional studies, but as pointed out by Planque

and Arneberg [36], the patterns emerging from PCA performed on multivariate autocorrelated

time-series can be spurious. In such situations, an alternative statistical approach should be

considered. Dynamical principal component analysis (dPCA) is a statistical method aiming at

performing a PCA accounting for temporal autocorrelation [37,38]. In dPCA, time-lagged

data are included in the analysis in addition to the original observational series. The number of

lags to be considered can be defined by estimating partial autocorrelation (see method in Sup-

plementary material S5 in S1 File). In the present case, the biomass dataset was lagged by 1
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year, and trophic flow dataset was lagged by 3 years. Original and lagged datasets were merged

in single data tables (378000�14 for biomass data table and 375000�72 for trophic flow data

table). PCA was performed on the new matrix using the ade4 package [39]. To compare the

results of the NDND simulations against reconstructed food-web configurations, we projected

the reconstructed data for the reference period 1986–2019 into the PCA space.

To identify the nature of trophic controls, we used correlation measures between species

following the approach in Johannesen et al. [8]. Negative correlations and positive correlations

are interpreted as top-down and bottom-up control, respectively. To identify persistent pat-

terns of trophic control in the food-web, we then grouped biomass trajectories based on the

similarity of their correlation patterns. Correlation patterns refer to the partial Pearson correla-

tion matrix for each simulation. Partial correlation measures the direct correlation between

two variables while accounting for the indirect correlation between the same two groups [40].

The correlation matrix is calculated from the lagged biomass data table (i.e. the data table con-

taining the original observational series and the time-lagged series) and therefore includes

instantaneous correlations but also lagged correlations (e.g. prey in years t with predator in

year t+1, and vice versa). A complete linkage hierarchical clustering was performed on all sim-

ulations using the Euclidean distance between correlation matrices as the distance measure.

The relevant number of clusters was set visually based on the dendrograms, and average corre-

lation matrices were presented for each cluster. This analysis identified trophic controls over

centennial time scales.

To explore the possibility of transient correlations at shorter time scales and to compare

trophic control in simulated biomass trajectories with trophic control found based on

observed data, we removed the last 19 simulated years from each time-series and derived a set

of shorter time-series of 40 years each. A similar cluster analysis was performed on these

shorter time-series.

Finally, to explore the variability of trophic control at decadal time scales, we performed a

15-year centered sliding window marginal correlation analysis on the short biomass time-

series (40 years). The same analysis was conducted on the reconstructed data. The results of

this analysis were then compared to the results of Lindstrøm et al. [24] and Johannesen et al.
[8].

Results

A. Simulation outputs

Simulated time-series of individual species displayed high variability within and between sim-

ulations (Fig 2). Life history and biological traits of individual species led to inter-specific vari-

ability of biomass dynamics (Fig 2).

Not surprisingly, the herbivorous and omnivorous zooplankton biomass displayed more

rapid short-term and long-term changes than the other trophospecies: the simulated biomass

of herbivorous and omnivorous zooplankton varied by two and three orders of magnitude,

respectively. Benthos biomass varied by more than one order of magnitude. In the benthos

group, the individual trajectories were more autocorrelated than for herbivorous and omnivo-

rous zooplankton, and no long-term variability was observed. As omnivorous zooplankton,

pelagic fish displayed biomass varying up to three orders of magnitude, but pelagic fish showed

smaller short-term variability than omnivorous zooplankton leading to fewer shifts between

configurations with higher pelagic fish biomass and configurations with lower pelagic fish bio-

mass. Compared to previous trophospecies, demersal fish biomass displayed higher autocorre-

lation even though biomass could vary up to three orders of magnitude. The mammals

biomass showed the lowest short-term and long-term variability of all trophospecies. Birds

PLOS ONE Food-web configurations in the Barents Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0254015 July 9, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0254015


Fig 2. Biomass time-series (log10, tons.km-2) of Herbivorous zooplankton (A), omnivorous zooplankton (B), benthos (C),

pelagic (D) and demersal fish (E), mammals (F) and birds (G). The colored lines (red-dashed-detted, yellow-plain, and light

blue-dashed) represent three randomly selected simulations. The dark blue dotted line represents the refuge biomass constraint.

The light and dark grey areas contain 95% and 50% of all the simulated data, respectively.

https://doi.org/10.1371/journal.pone.0254015.g002
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biomass displayed higher variability on long-term scale with variations by approximately three

orders of magnitude, but with limited year-to-year variations.

The CaN model reconstructs trajectories by including historical observations. Although

observation data are not available for all the trophic groups specified in the model, the CaN

model can provide a range of plausible biomass trajectories for each species, based on existing

observations. As expected, the reconstructed data biomass envelopes of each trophospecies

were smaller than those of simulated biomass and were included in the range of simulated bio-

mass (Fig 3). For herbivorous and omnivorous zooplankton, benthos and birds, the

Fig 3. Density distributions of biomass (tons.km-2) in the NDND simulations (blue-right) and the CaN reconstructed biomass (red-left). Biomass

values are log10 transformed.

https://doi.org/10.1371/journal.pone.0254015.g003
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reconstructed data matched most of the simulated biomass as they overlapped with the dens-

est part of the distributions. For pelagic and demersal fish and mammals, reconstructed data

did not match the most frequent simulated biomass. The distribution of biomass for pelagic

fish in the NDND model was bimodal with two “states” centered around high (~30 t.km-2)

and a low (~0.03 t.km-2) biomass whereas the reconstructed data pointed toward intermedi-

ate levels (~1 t.km-2). In the reconstructed data, demersal fish biomass were generally higher

than most of the NDND simulated demersal biomass. On the contrary, the reconstructed

mammal biomass was on average lower than the mammal biomass simulated with the

NDND.

B. Biomass configurations

The two first axes of the dPCA performed on simulated biomass explained 39.45% of variance

(Fig 4). The projection of simulated (NDND) and reconstructed (CaN) biomass showed that

reconstructed biomass overlapped with the simulation space (Fig 4). The reconstructed bio-

mass configurations were included within the space of the simulated configurations, which

was consistent with the biomass distributions from individual species (Fig 4). Biplot of the

dPCA on simulated biomass highlighted two configurations of biomass. The first was aligned

with the first axis of the dPCA and represented an opposition between pelagic fish, bird and

omnivorous zooplankton biomass with pelagic fish and bird biomass being strongly positively

correlated. The second was aligned with the second axis of the dPCA and reflected the opposi-

tion between marine mammals, demersal fish and benthos with benthos and demersal fish

positively correlated. Interestingly, the reconstructed data displayed higher biomass of demer-

sal fish and benthos, and low biomass of mammals and omnivorous zooplankton. In other

words, past configurations of the Barents Sea food-web were dominated by demersal fish and

benthos.

C. Trophic pathways

The two first axis of the dPCA performed on the simulated flows explained 39.3% of variance

(Fig 5). Complete overlap between simulated flows (NDND) and reconstructed flows (CaN)

was observed (Fig 5A). Simulated flows formed three configurations of flows. The first config-

uration corresponded to the case where flows entering and exiting the pelagic fish group

towards mammals and birds were high (Fig 5B). The second configuration was characterized

by high flow rates between phytoplankton, omnivorous zooplankton, and mammals. The third

configuration reflected to cases where flows entering and exiting the demersal fish group were

high. In other words, the first main configuration corresponded to a pelagic trophic pathway,

the second one described a short pathway from plankton to mammals and the third one

reflected a benthic-demersal pathway. In the second configuration, both fish groups are

completely bypassed by mammals feeding directly on omnivorous zooplankton. The density

plots indicated that the pelagic and plankton-mammals pathway occurred more often than the

benthic-demersal pathway in the simulated flows. Reconstructed flows were characterized by a

benthic-demersal pathway as flows entering and exiting the demersal fish group were higher

in the reconstructed data (Fig 5B). The pelagic fish-demersal fish flow was not included within

any configuration. We assume that it is because the flow is part of the pelagic and the benthic-

demersal pathways. In the benthic-demersal pathway, the pelagic-demersal flow is an income

of biomass for the demersal fish, whereas in the pelagic pathway, it corresponds to removed

biomass from the pelagic species.
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D. Trophic control

Distances between partial correlation matrices of long time-series (379 years) revealed small

distances between the single partial correlation matrices indicating that partial correlation

matrices of single time-series were similar. The maximum measured distance was slightly

below 0.06 (see Supplementary materials S6 in S1 File). We cut the dendrogram in four

Fig 4. Biplot of the dynamical principal component analysis (dPCA) performed on the simulated biomass time-series with the NDND, showing

individual (grey points) and the projection of the original variables (arrows). The projections of the reconstructed data configurations in the dPCA

space are shown as black point. Blue lines show the contours of the density of observations in the simulated data only. The percentage of variance

explained is reported on each axis.

https://doi.org/10.1371/journal.pone.0254015.g004
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Fig 5. Dynamical principal component analysis (dPCA) on fluxes generated by the NDND and CaN models and displayed as scatter plot (A) and

projection of initial variables (B). Each individual point represents a simulated flow configuration at time step t (grey points). The projection of

reconstructed data is represented as black points. Blue lines show the contours of the density of observations in the simulated data only. The percentage

of variance explained is reported on each axis.

https://doi.org/10.1371/journal.pone.0254015.g005
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clusters. The number of time-series in each cluster was uneven (n1 = 135, n2 = 274, n3 = 311,

and n4 = 280).

The four clusters displayed few correlation patterns, i.e. the mean partial correlation of each

cluster displayed no correlation pattern, and very little difference was identified between clus-

ters (Fig 6). Most of the correlation values were between -0.21 and 0.07. Top-down control of

herbivorous zooplankton by omnivorous zooplankton was present in all four clusters but cor-

relation values were relatively low (between -0.21 and -0.19). Top-down control of pelagic fish

on herbivorous zooplankton was found for all four clusters but again correlation values were

Fig 6. Correlation plots of mean partial correlation matrices of clusters 1 (A), 2 (B), 3 (C) and 4 (D) defined in the hierarchical clustering. Values

in the plot correspond to mean Pearson partial correlation values between trophospecies. Red and blue colors indicate negative and positive correlations

between two trophospecies, respectively. Negative and positive correlation represent bottom-up and top-down control, respectively.

https://doi.org/10.1371/journal.pone.0254015.g006
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weak (-0.13, -0.15, -0.11 and -0.11 respectively) indicating weak trophic control. The absence

of strong correlation values indicates that no long-term persistent trophic control can be

highlighted.

The distances between 9000 partial correlation matrices of short biomass time-series (40

years) were higher than those between longer time-series. The maximum distance measured

was 0.6 (see Supplementary materials S6 in S1 File). Thus, there were important differences

between partial correlation matrices of single short time-series. We cut the dendrogram in

three clusters. As for longer time-series, the number of time-series within the clusters was

uneven (n1 = 4786, n2 = 3577 and n3 = 627). Surprisingly, like long time-series (379 years), we

observed almost no difference in correlation values between the clusters (Fig 7). Top-down

control of herbivorous zooplankton by omnivorous zooplankton was found but the correlation

values were relatively low (-0.21, -0.19 and -0.18 for each cluster respectively). Clusters 1 and 2

(Fig 7A & 7B) displayed higher correlation value between pelagic fish and herbivorous zoo-

plankton than cluster 3 (-0.1 and -0.11 respectively). Cluster 3 (Fig 7C) was also characterized

by negative correlation between mammals and benthos (-0.12). This interaction is indirect as

no direct trophic link is defined between benthos and marine mammals. Furthermore, the cor-

relation value was relatively low. Apart from the few correlation patterns mentioned above, no

other significant correlation values were found indicating that for shorter time-periods (40

years) as for long time-series (379 years), no persistent trophic control was found.

The absence of correlation can result from two factors: (1) Either the correlation between

two species stays close to 0, or (2) trophic control is variable within the same time-series, and

higher and lower correlation values compensate each other leading to low correlation values.

Estimating correlations on a sliding window, allows us to display the dynamics of trophic con-

trol within the same time-series. Correlation time-series displayed no trend (Fig 8A and 8C).

50% and 95% envelopes were centered around a correlation of 0. When time-series were con-

sidered separately, interdecadal shifts of trophic control were visible. Correlation between

demersal and pelagic fish were found between -0.8 and 0.9 whereas correlations between

pelagic fish and omnivorous zooplankton were found between -0.8 and 0.8 (Fig 8A and 8C).

Time-series of correlation between demersal and pelagic fish from reconstructed data ran-

ged from -0.8 to 0.8 whereas correlations between pelagic fish and omnivorous zooplankton in

the reconstructed data ranged from -0.75 to 0.5 (Fig 8B and 8D). Thus, reconstructed data

were included in the NDND simulation range for demersal vs pelagic correlations. Recon-

structed data also displayed variations of trophic control as observed in the NDND simula-

tions, but the length of time-series was smaller for reconstructed data making difficult to

observe possible cycles.

Discussion

Studying the historical range of variability is essential to define a baseline for the variability of

the Barents Sea ecosystem that can be used to design successful management policies [10].

However, past studies focusing on the variability of the Barents Sea food-web based on ecologi-

cal time-series often define this baseline based on short time-periods representing only a frac-

tion of the possible variability of the ecosystem. Thus, we explored the possible range of

stochastic variability of the Barents Sea food-web using the NDND model. The primary aim of

this study was to identify possible configurations of the Barents Sea food-web and to confront

them to historical data. Our study shows that the range of possible food-web configurations is

larger than the range observed during the last three decades.

Our analysis revealed four major configurations in the simulated biomass, which represent

two types of opposition of biomass. The first opposed pelagic fish and birds to omnivorous
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zooplankton, whereas the second opposed demersal fish and benthos to marine mammals.

The projection of reconstructed data in the dPCA space (Fig 4) indicated that the current state

of the Barents Sea ecosystem corresponds to a configuration dominated by demersal fish and

benthos. Reconstructed data displayed higher demersal fish biomass and lower mammals bio-

mass than the majority of simulated biomass in the NDND simulations (Fig 3). These results

are consistent with the hypothesized competition between mammals and demersal fish in the

Barents Sea [41] and with the lower levels of estimated marine mammals abundance during

the last three decades in the Barents Sea [42]. The simulated pelagic fish biomass displayed a

Fig 7. Correlation plots of mean partial correlation matrices for clusters identified in the hierarchical clustering performed on short time-series

(A-C for clusters 1–3 respectively). Values in the plot correspond to mean Pearson partial correlation values between trophospecies. Red and blue

colors indicate negative and positive correlations between two trophospecies, respectively. Negative and positive correlation represent bottom-up and

top-down control, respectively.

https://doi.org/10.1371/journal.pone.0254015.g007
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bimodal distribution with many high and low values of biomass, and few intermediate biomass

values (Fig 3). Reconstructed data for pelagic fish biomass corresponded to the intermediate

situation. A possible interpretation is that pelagic fish populations are in a transition phase

between two states and could possibly substantially decrease or increase in the future, towards

the levels observed in the simulations.

Fig 8. Correlation estimated on a 15-year centered sliding window between demersal vs pelagic in the NDND simulations (A) and CaN

simulations (B), and between pelagic vs. omnivorous zooplankton in the NDND simulations (C) and CaN simulations (D). The white/black dotted

line indicates when the correlation is null, the black envelope contains 50% of measured correlations, the grey envelope constraints 95% of all measured

correlations. Colored lines correspond to correlation values of five randomly selected short time-series (40 years).

https://doi.org/10.1371/journal.pone.0254015.g008
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Past studies described three configurations of the Barents Sea food-web based on observed

data for the last five decades [8,25], which are believed to have resulted from collapses of

pelagic fish stocks, predation of pelagic fish by demersal fish, and management policies applied

for pelagic and demersal fish groups. Our analysis pointed to four contrasted configurations

that are partly consistent with the ones described in previous studies. Marine mammal-domi-

nated configurations have not been reported in previous studies. In past dynamics of the

Barents Sea, omnivorous zooplankton biomass increased when the pelagic fish biomass col-

lapsed [25,27]. Our results are consistent with this observation as the configuration with low

pelagic fish biomass was also characterized by high omnivorous zooplankton biomass. The

pelagic fish-dominated configuration we define in this study is also characterized by a higher

biomass of birds. This result is in line with previous studies showing that bird population size

is linked to the biomass of pelagic fish in the Barents Sea, with observed declines in the popula-

tion size of birds at times of pelagic fish stock collapses [43].

Our results show that there are three different trophic pathways of biomass in the NDND

simulations. The pelagic and planktonic pathways appear to be the most common even

though, our results suggest that the benthic-demersal pathway is also possible. Interestingly,

the trophic pathway found in reconstructed data corresponded to the benthic-demersal tro-

phic pathway. Trophic pathways in the simulated data emphasize the key role of pelagic fish

for transferring energy from lower trophic levels to top-predators [27,44,45]. However, the

pelagic fish species can be bypassed by the mammals feeding directly on omnivorous zoo-

plankton in the NDND simulations. We assume that this pathway of energy corresponds to

configurations of the food-web where biomass of pelagic fish is low and not sufficient to main-

tain the biomass of mammals. The benthic-demersal trophic pathway we identified is in line

with trophic pathways identified using an Ecopath modelling approach [26]. Even though we

found a complete overlap between simulated and reconstructed flows, reconstructed flows cor-

responded to configurations occurring less frequently than the pelagic and planktonic trophic

pathways in the simulated flows. This indicates that according to the assumptions we have

made, the dominant pathway of the Barents Sea food-web during the last three decades did

not correspond to the dominant pathways identified in the simulations. An external factor,

not accounted for in our study, might be forcing the Barents Sea food-web into the benthic-

demersal pathway (i.e. the values of the trophic flows involving the demersal fish are higher in

the reconstructions than in the simulations).

Previous studies exploring trophic relationships in the Barents Sea [46,47] have suggested

that zooplankton species could be controlled by pelagic fish. However, a more recent study

suggested bottom up-control of pelagic fish by zooplankton combined with top-down control

of zooplankton by pelagic fish [48]. A study of demersal fish colonizing the northern part of

the Barents Sea and the associated rapid decline in stomach fullness also suggested a top-down

control [49]. In contrast to these studies, we found no persistent trophic control in the Barents

Sea food-web neither over centennial (Fig 6) nor over decadal time scales (Fig 7). Rather, tro-

phic controls tend to fluctuate on inter-decadal time scales and are highly variable between

time-series (Fig 8). This variability of trophic control is found for most of the trophic interac-

tions (see Supplementary material S7 in S1 File). Previously, in the Barents Sea food-web, tro-

phic control shifted between top-down, bottom-up and wasp-waist processes [8,27]. The

analysis of the NDND simulations suggests that this pattern of interannual variability in tro-

phic control [8,24] is to be expected, even in situations in which trophic flows are varying at

random.

The difference in the range of variability between our reconstructions and our simulations

ensues from the differences in the constraints between the CaN model and the NDND model.
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The CaN model and the NDND model are based on the same modelling principles: chance

and necessity. Yet, the CaN model is more constrained than the NDND model since it inte-

grates past observations to constrain the food-web trajectories [34]. Thus, we could expect the

range of variability of the CaN reconstructed food-web configurations to be smaller than the

range of variability of the NDND simulated food-web configurations.

The NDND model considers all configurations derived from a small number of biological

and physical constraints. Hence, just as we argue that large deterministic models are too con-

strained and thus are not able to generate the natural variability of food-webs, it is fair to con-

sider that the NDND simulations are under-determinate and that their variability could be

greater than the real range of variability of the food-web.

In the NDND model, the dynamics of the Barents Sea food-web is driven by trophic flows

[22,23]. At any time-step, the flows are drawn randomly (within the model constraints) and

their values determine the species biomass at the next time step. This in turns modifies the

constraints and thereby affects the drawing of the trophic flows at the following time step. The

overlap between simulated and reconstructed food-web configurations is primarily driven by

chance. It indicates that the reconstructed food-web configurations are part of a wider set of

configurations that reflect the possible range of stochastic variability of Barents Sea food-web.

Although exploring the range of historical variability is essential to define a baseline for the

variability of marine ecosystems for management purposes [10], it is a challenge to measure it.

In management policies, stochastic variability is described as a source of uncertainty in ecosys-

tem models [50]. The model we use in this study explores the possible range of stochastic

variability of the Barents Sea food-web instead of considering it as a source of uncertainty.

Our findings can be useful to management as it provides a baseline for the variability of the

Barents Sea food-web which can be used to assess the future changes in the dynamics of the

ecosystem.

Conclusion

This study shows that the diversity of possible biomass configurations and trophic pathways in

the Barents Sea food-web extends beyond what has been observed during the last three

decades. We found that reconstructed biomass configurations as well as reconstructed trophic

pathways are strongly overlapping with our simulations though they only represent a subset of

possible situations. Our simulations indicate that the Barents Sea food-web is dominated by

pelagic and planktonic pathways. Our analyses suggest four major types of biomass configura-

tions, characterized by opposite patterns in the abundance of pelagic fish and omnivorous zoo-

plankton on one side and demersal fish and marine mammals on the other. We found no

evidence for persistent trophic control in the Barents Sea food-web over centennial and multi-

decadal scales throughout the food-web but revealed fluctuating top-down and bottom-up

controls over interdecadal time scales.
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Abstract 25 

Temporal variability in abundance and composition of species in marine ecosystems results 26 

from a combination of internal processes, external drivers, and stochasticity. One way to 27 

explore the temporal variability in an ecosystem is through temporal stability, measured using 28 

the inverse of the coefficient of variation for biomass of single species. The effect of 29 

temperature and fisheries on the variability of the Barents Sea food-web is still poorly 30 

understood. To address this question, we simulate the possible dynamics of Barents Sea food-31 

web under different temperature and fishery scenarios using a simple food-web model 32 

(NDND; Non-Deterministic Network Dynamic). The NDND model, which is based on Chance 33 

and Necessity (CaN), defines the state-space of the ecosystem using its structural constraints 34 

(necessity) and explores it stochastically (chance). The effects of temperature and fisheries 35 

on stability are explored both separately and combined. The simulation results suggest that 36 

increasing temperature has a negative effect on species biomass and increasing fisheries 37 

triggers compensatory dynamics of fish species. There is a major intra-scenario variability in 38 

temporal stability while individual scenarios of temperature and fisheries display a weak 39 

negative impact and no effect on stability, respectively. However, Combined scenarios 40 

indicate that fisheries amplify the effects of temperature on stability while increasing 41 

temperature leads to a shift from synergistic to antagonistic effects between these two 42 

drivers. 43 

Keywords: Simulation modelling, Non-deterministic modelling, Chance and Necessity, 44 

Cumulative impacts, Climate change, Fishing mortality, Temporal variability,  45 
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Introduction 47 

Stability is an essential ecosystem feature that has relevance for conservation and 48 

management of resources in terrestrial and aquatic ecosystems (Donohue et al. 2016). Early 49 

works have investigated how species diversity and complexity influence stability (May 1972; 50 

Ives and Carpenter 2007; Pimm 1984; Rooney and McCann 2012). Ecosystem stability is 51 

generally expected to increase with diversity (Tilman, Reich, and Knops 2006; Campbell, 52 

Murphy, and Romanuk 2011) and complexity (May 1972; McCann 2000; Mougi and Kondoh 53 

2016). In contrast, a more recent study showed that species richness explained a relative 54 

small fraction of the variability in population or community abundances (Houlahan et al. 55 

2018). Also, Jacquet et al. (2016) found no association between indicators of food-web 56 

complexity and stability. 57 

Ecological stability is a multidimensional concept and encompasses many definitions (Grimm 58 

and Wissel 1997; Donohue et al. 2013; Kéfi et al. 2019). Some definitions of ecological stability 59 

(e.g., resilience, persistence, reliability, or resistance) quantify the response of ecosystems to 60 

perturbations (Donohue et al. 2013; Van Meerbeek, Jucker, and Svenning 2021). This 61 

approach often focuses on the asymptotical behavior of the ecosystem (i.e., the long-term 62 

dynamics of the ecosystem after the perturbation). However, the asymptotical state of 63 

ecosystems is rarely observed in nature (Morozov et al. 2020), leading to an emphasis on 64 

transient dynamics, i.e., short-term dynamics different from the asymptotical behavior 65 

(Hastings 2004; Frank et al. 2011; Dunn, Samhouri, and Baskett 2021). Stochasticity may 66 

promote the occurrence of transient dynamics (Hastings et al. 2021). 67 

Rather than to focus on response to perturbation, one can focus on temporal variability as an 68 

indicator of ecological stability (MacArthur 1955). Tilman (1999) proposed a measure of 69 

temporal stability, referred to as constancy (Orians 1975), that is the inverse of the variability 70 

of a variable (e.g., species biomass), often with reference to a specific value, such as the mean 71 

biomass. The inverse of the coefficient of variation is such a measure. It can be applied in a 72 

non-equilibrium context, and it can be generalized at the whole ecosystem scale (Lehman and 73 

Tilman 2000; Hillebrand et al. 2018). 74 

Temporal stability of a food-web or species can be calculated from ecological time-series, 75 

informing us about the past dynamics. Unfortunately, using ecological time-series has its 76 

limitations. First, ecological time-series are often relatively short, typically less than 50 years 77 



(Lotze and Worm 2009; Evans et al. 2015). Second, ecological time-series are not available for 78 

all species of the ecosystems (e.g., benthos and mammals). Consequently, the variability of 79 

ecological time-series only represents a fraction of the possible variability of marine 80 

ecosystems (Sivel et al. 2021). An alternative to investigate the ecosystem variability is to use 81 

numerical models to simulate ecosystem dynamics over multiple decades. 82 

In this study we used the Non-Deterministic Network Dynamic (NDND) model to simulate 83 

possible food-web trajectories. The NDND model is a mass-balanced stochastic food-web 84 

model (i.e., it simulates species dynamics based on their trophic interactions) based on the 85 

principles of chance and necessity (Planque, Lindstrøm, and Subbey 2014). In chance and 86 

necessity modelling, chance reflects the indeterminacy of ecosystem processes and necessity 87 

corresponds to the physical and biological constraints of the system (Mullon et al. 2009; 88 

Planque et al. 2014; Planque and Mullon 2020). In other terms, one considers that possible 89 

events are not pre-determined, but occur randomly (chance) within a set of physical and 90 

biological constraints of the system (necessity). The NDND model was designed to reproduce 91 

the high variability of natural systems by exploring their "state-space". Lindstrøm et al. (2017) 92 

used the model to explore the Barents Sea food-web dynamics and concluded that the model 93 

was able to reproduce multiple emergent food-web patterns, including the temporal stability, 94 

observed the past 30 years. 95 

The Barents Sea (Figure 1a) is a sub-arctic shelf sea which have experienced significant 96 

warming (ca. 1˚C increase in surface temperature) the past four decades(Timmermans and 97 

Ladd 2019). It resulted in an increase in primary production and a stabilization of the 98 

mesozooplankton biomass (Dalpadado et al. 2020). While, higher temperatures are expected 99 

to increase metabolic rates of organisms in marine ecosystems (O’Connor et al. 2007; Carozza, 100 

Bianchi, and Galbraith 2019), there is no clear consensus on the effect of higher metabolic 101 

rates on the temporal stability of ecosystems. Vasseur & McCann (2005) highlighted a 102 

destabilizing effect of temperature-induced increase of metabolic rates on biomass densities 103 

in simple consumer-resource systems whereas Fussmann et al. (2014) suggested the opposite 104 

for ecosystems. Furthermore, although fisheries are strongly regulated in the Barents Sea, 105 

they still represent an important disturbance of ecosystem dynamics (ICES 2020a). Beside the 106 

decrease of population sizes of harvested species stocks, fishing may also lead to increased 107 

variability of harvested species (Hsieh et al. 2006). 108 



Anthropogenic activities are expected to increase in the future (Hoegh-Guldberg and Bruno 109 

2010). Thus, their impact on ecosystems needs to be quantified properly to better inform 110 

management and to anticipate possible future changes in ecosystem structure and 111 

functioning. Past studies have assessed the effect of anthropogenic drivers on the ecosystem. 112 

They have pointed out that the effects of anthropogenic drivers should not be treated 113 

separately (e.g., Shannon et al., 2010; Jarre et al., 2015). Although the impact of 114 

anthropogenic drivers of marine ecosystems are well documented, their combined effects 115 

with climate change are still debated in the literature. Single species modelling studies 116 

highlighted synergistic effects between climate change and fisheries on species biomass in 117 

different ecosystems (Hidalgo et al. 2011; Fuller, Brush, and Pinsky 2015; Koul et al. 2021). At 118 

the ecosystem scale, a recent multi-model study suggested additive effects of temperature 119 

and fisheries on species mean biomass as they found no major alteration of the effects of 120 

climate change when harvesting was accounted for in their models (Lotze et al. 2019). 121 

Another model study using the end-to-end ecosystem model Atlantis suggested that 122 

combined effects of temperature and fishing on biomass were variable for individual species 123 

of the Southern Benguela upwelling ecosystem (Ortega-Cisneros et al. 2018). 124 

Perry et al. (2010) and Planque et al. (2010) suggested that climate variability and fisheries 125 

have synergistic effects on the ecosystem variability due to an increase in the sensitivity of 126 

marine ecosystems to climate variability. Barents Sea dynamics displayed large fluctuations 127 

during the past five decades as the result of a combination of harvesting and ecological 128 

processes (Hjermann, Ottersen, and Stenseth 2004; Koen-Alonso, Lindstrøm, and Cuff 2021). 129 

Fisheries led the cod stock to decline in the 1980’s before recovering only recently due to 130 

appropriate management policies (Lilly, Nakken, and Brattey 2013), while a combination of 131 

harvesting and predation triggered large fluctuations of the capelin stock on an interdecadal 132 

timescale since 1980 (Hjermann et al. 2004). As anthropogenic activities are expected to 133 

increase in intensity over the next decades, it is essential to understand how combined effects 134 

of climate change and fisheries affects the biomass variability of the Barents Sea ecosystem.  135 

In this study, we explore the combined impacts of climate change and fisheries on the 136 

temporal stability of the Barents Sea food-web. We performed simulations of food-web 137 

dynamics for scenarios of climate change (temperature) and fisheries (fishing mortality) using 138 

the NDND model for the Barents Sea. We estimated the temporal stability of the food-web 139 



for each simulation to assess the impact of climate change and fisheries on the food-web 140 

independently, and to test for additive, synergistic or antagonistic effects of both drivers on 141 

the temporal stability of the Barents Sea food-web. 142 

Material and Methods 143 

A. The Non-Deterministic Network Dynamics model (NDND) 144 

The NDND model is a stochastic mass-balanced food-web model in which trophic interactions 145 

are indeterminate (Mullon et al. 2009; Planque et al. 2014; Lindstrøm et al. 2017). In the 146 

NDND model, variations in biomass result from transfers of biomass between the 147 

trophospecies (hereafter named species). The values of trophic flows are randomly sampled 148 

(chance) given a set of simple physical and biological constraints (necessity). There are five 149 

constraints implemented in the NDND model: 1) satiation constrains the food intake of a 150 

predator, inertia constrains the maximum 2) increase and 3) decrease of species biomass at 151 

each time-step, 4) the trophic flows must be positive, and 5) species biomass must be higher 152 

than a threshold value referred to as the refuge biomass. 153 

In the present study, we used the simplified food-web topology of the Barents Sea, defined 154 

by Lindstrøm et al. (2017). It comprises eight trophospecies (phytoplankton, herbivorous 155 

zooplankton, omnivorous zooplankton, benthos, pelagic fish, demersal fish, marine 156 

mammals, and birds), 18 trophic links, and 4 flows towards fisheries (Figure 1b). 157 

We used the parametrization of the NDND model specified by Sivel et al. (2021) as the 158 

reference scenario (Table 1). We updated the initial biomass of the herbivorous zooplankton, 159 

omnivorous zooplankton, pelagic fish, and demersal fish groups with the biomass data from 160 

the working group on integrated assessment of the Barents Sea (WGIBAR) for the year 2018 161 

(ICES 2020b). For phytoplankton, benthos, marine mammals, and birds, biomass data were 162 

not available. Thus, we kept initial biomass values estimated by Lindstrøm et al. (2017). 163 

As in Sivel et al. (2021), we have expressed harvesting of fish species (i.e., pelagic and 164 

demersal fish) using harvest control rules (HCR) which resemble current fishing regulations in 165 

the Barents Sea (Gullestad et al. 2014). In this study, we added harvesting of benthos, and 166 

marine mammals. Harvesting of benthos corresponds to harvesting of Northern shrimp 167 

(Pandalus borealis) and snow crab (Chionoecetes opilio). Harvesting of marine mammals 168 

represents harvesting of harp seal (Pagophilus groenlandicus) and minke whale 169 



(Balaenoptera acutorostrata). Given that catches of Northern shrimp and snow crab 170 

represent only a small fraction of the total harvested benthos biomass, and that no HCR was 171 

defined for minke whales (Howell and Bogstad 2010), we implemented harvesting of benthos 172 

and marine mammals as a constant catch (C) at each time-step, over the entire simulation. 173 

Total catches for snow crab were not available for the year 2018, thus we implemented the 174 

total catches of benthos for the year 2017. The aggregated total catches of Northern shrimp 175 

and snow crab in 2017 was 0.026 tons·km-2 (Hjelset, Hvingel, and Sundet 2018; NAFO/ICES 176 

2020). Annual catches of marine mammals are expressed in number of hunted individuals. To 177 

estimate the catch of marine mammals in biomass (i.e., in tons·km-2), we applied conversion 178 

factors of 0.15 and 5 tons·ind-1 for harp seals and minke whales, respectively. For harp seals, 179 

we excluded the pups (i.e., all individuals younger than one year) from the total count of 180 

hunted individuals. In 2019, 568 harp seals and 429 minke whales were caught, leading to a 181 

total catch of 0.0014 tons·km-2 (NAMMCO – North Atlantic Marine Mammal Commission, 182 

2021). The initial harvesting parameters used for our simulations are presented in Table 2. 183 

For all harvested species, we assumed fisheries to be compensatory (i.e., losses due to 184 

harvesting are compensated by predation rates). 185 

B. Estimation of temporal stability 186 

The NDND model simulates multiple biomass trajectories for the species of the Barents Sea 187 

food-web. Temporal stability of individual species (Si) corresponds to the inverse of the 188 

coefficient of variation (Lehman and Tilman 2000): 189 

𝑺𝒊 =
𝑩𝒊
̅̅ ̅

𝒔𝒅(𝑩𝒊)
 Eq. 1 

Where 𝐵𝑖 is the mean biomass for species I and sd(Bi) is the standard deviation of biomass of 190 

species i. Lehman and Tilman (2000) suggested a generalized formulation of temporal stability 191 

for the whole food-web (S): 192 

𝑺 =
∑ 𝑩𝒊

̅̅ ̅
𝒊

√∑ 𝒗𝒂𝒓 𝑩𝒊𝒊 + ∑ 𝒄𝒐𝒗 𝑩𝒊,𝒋𝒊,𝒋

 
Eq. 1 

Where the numerator is the sum of mean species biomasses (𝐵𝑖), var Bi is the variance of 193 

biomass of species i and cov Bi,j is the covariance estimated from the biomass time-series of 194 

species i and j (i.e. the sum of all terms of the species covariance matrix). 195 



C. Scenarios of temperature and fishing mortality 196 

To assess the effect of climate change and fisheries on the stability of the Barents Sea food-197 

web, we used predefined scenarios of changes in temperature and fisheries catches. 198 

The four temperature change scenarios were as follows: 1) decrease by one degree, 2) no 199 

temperature variation, 3) increase by one degree, and 4) increase by two degrees. The effects 200 

of temperature on physiological parameters were applied only for ectotherms (i.e., all species 201 

except marine mammals and birds). Conventionally, the impact of temperature variations on 202 

the values of metabolic rates is expressed as Q10, which represent the temperature 203 

dependency of metabolic rates across a temperature range of 10˚C (Gillooly et al. 2001). In 204 

the Metabolic Theory of Ecology (MTE, Gillooly et al. 2001; Brown et al. 2004) the metabolic 205 

rates are expressed in terms of body size and temperature. According to the MTE, we 206 

estimated that a one degree increase in temperature leads to a 10% increase in metabolic 207 

rates (supplementary materials). This applies to metabolic losses (µ), inertia (ρ), and satiation 208 

(σ), which are expected to be temperature dependent (Brown et al. 2004; Vasseur and 209 

McCann 2005). 210 

Fisheries scenarios explored variations in fishing mortality. We considered four fishing 211 

mortality scenarios: 1) a 50% decrease in fishing mortality, 2) no change (reference level), 3) 212 

a 25% increase in fishing mortality and 4) a 50% increase in fishing mortality. We implemented 213 

the variation in fishing mortality by modifying the fishing mortality rate (Fmp) for pelagic and 214 

demersal fish, and the annual catches (C) for benthos and marine mammals.  215 

D. Simulations 216 

Simulations and statistical analysis were performed using R (v.4.1.0) (R Core Team 2021). The 217 

sampling algorithm used in the NDND model is the Complex Polytope Gibbs Sampling 218 

algorithm (cpgs) from the RCaN package (Drouineau, Planque, and Mullon 2021). 219 

To explore exhaustively the possible trajectories of the Barents Sea food-web, we generated 220 

1000 biomass trajectories of 230 years for each scenario. We removed the 200 first years as 221 

a burn-in period to ensure that the simulated biomass used for estimating the temporal 222 

stability is independent from the initial biomass. Temporal stabilities were thus estimated for 223 

time-series of 30y. This is comparable to the length of many existing observational time-series 224 

for the Barents Sea ecosystem. 225 



The simulated trajectories of phytoplankton correspond to the remaining biomass that has 226 

not been consumed at the previous time step and the import of phytoplankton into the 227 

Barents Sea. Thus, they do not reflect the dynamics of phytoplankton, and we removed 228 

phytoplankton from the analysis. 229 

E. Analysis of temperature and fishing mortality effects 230 

We estimated temporal stability for individual species and the whole food-web using Eqs. 1 231 

and 2, respectively. We analyzed the effect of variations in temperature and fishing mortality 232 

on temporal stability using violin plots to visualize changes in temporal stability across 233 

scenarios. Given that temporal stability is measured as the ratio between mean biomass and 234 

biomass variability, changes in stability can possibly arise from changes in mean biomass. We 235 

investigated the dependency of temporal stability to the mean biomass for the whole food-236 

web and the species. For this purpose, we plotted temporal stability against mean biomass. 237 

To eliminate the scale difference between biomass variations at different mean biomass 238 

levels (Fisher 1937), we plotted mean biomass on the log10-scale. 239 

To identify the nature of combined effects of variations of temperature and fishing mortality 240 

on temporal stability, we compared the anomalies between the measured median temporal 241 

stability in all scenarios and the median temporal stability in the reference scenario to the 242 

expected anomalies for additive effects (see Figure S2 in supplementary materials). Piggott et 243 

al. (2015) redefined the terms of antagonism and synergism as deviations from an additive 244 

effect prediction. The authors emphasized the importance of the direction of the effect of 245 

stressors and define five directional interaction classes: additive, synergistic (+ and -), and 246 

antagonistic (+ and -). Here, we defined the combined effects of temperature and fisheries on 247 

stability as follows: 248 

• No deviation from the additive expectation corresponds to additive effects of 249 

temperature and fishing. 250 

• A deviation greater in absolute term than the additive effect indicates synergism while 251 

a smaller deviation indicates antagonism between temperature and fisheries. 252 

Results 253 

A. Impact of temperature and fishing mortality on biomass  254 

Simulated biomass of each species covered a large range of values (Figure 2). While lower 255 



trophic levels biomass varied by one order of magnitude, marine mammals biomass varied by 256 

two orders of magnitude. Additionally, fish and birds biomass varied up to four orders of 257 

magnitude. Interestingly, the total biomass of the food-web only varied by a factor of three. 258 

Simulated biomass of each species and of the whole food-web revealed that changes in 259 

temperature and fishing mortality influenced biomass (Figure 2). Higher temperature had a 260 

negative effect on the biomass of all species (Figure 2A). Yet, demersal fish displayed lower 261 

biomass in the scenario with lower temperature (-1˚C). Pelagic fish biomass decreased by a 262 

factor of 5 between the scenario with the lowest temperature (-1˚C) and the one with the 263 

highest temperature (+2˚C) while birds biomass displayed a decline in biomass by a factor of 264 

3. For other species (zooplankton, benthos and mammals) and for the food-web as a whole, 265 

the decrease in biomass associated with increasing temperature did not exceed 20%.  266 

Increasing fishing mortality affected pelagic fish, demersal fish, and birds’ biomasses (Figure 267 

2B). Globally, fishing led to a redistribution of the biomass between these three species but 268 

did not significantly affect the total biomass of the food-web. Pelagic and demersal fish 269 

biomass displayed opposed responses to higher fishing mortality. Between the scenarios with 270 

the lowest (-50%) and the highest fishing mortality (+50%), pelagic fish biomass increased by 271 

a factor of 3 whereas demersal fish biomass decreased by the same factor. Birds displayed an 272 

increase in biomass of 50% between the three scenarios with the lowest fishing mortality (i.e., 273 

-50%, no variation, and +25%). In the scenario with the highest fishing mortality (+50%), birds’ 274 

biomass was at the same level as in the scenario with an increase of 25% in fishing mortality. 275 

Zooplankton species, benthos, and marine mammals’ biomasses did not display any response 276 

to variations in fishing mortality. 277 

B. Impact of temperature and fishing mortality on temporal stability 278 

We estimated temporal stability from simulations for relatively short time periods (30 years) 279 

and observed a large range of temporal stability values for all species in all scenarios of 280 

temperature and fishing mortality (Figure 3). For example, the ranges of estimated stabilities 281 

for demersal fish covered one order of magnitude. This level of uncertainty remained similar 282 

across temperature and fishing scenarios. Median stability varied between temperature 283 

scenarios (Figure 3A) but displayed little variations between fishing scenarios (Figure 3B). 284 

Temporal stability declined in response to higher temperatures for benthos, pelagic fish, 285 

demersal fish species, and the whole Barents Sea food-web. Yet, changes in median stability 286 



as a response to changes in temperature were small compared to the variability of stability 287 

estimates. We found the largest decrease in stability between the coldest and the warmest 288 

scenario for demersal fish (30%). For other species, the temporal stability between the coldest 289 

and the warmest scenario did not decrease by more than 10%. 290 

C. Effect of biomass variations on temporal stability 291 

Given equation 1, observed changes in stability, can result from changes in the standard 292 

deviation of biomass and from the mean biomass. We investigated the dependency of 293 

stability estimates to the values of mean biomass of individual species and the whole food-294 

web. For herbivorous zooplankton, omnivorous zooplankton, and benthos, stability increased 295 

with higher mean biomass (Figure 4). Pelagic fish stability decreased in response to increasing 296 

mean biomass when mean biomass was low (< 0.01 tons·km-2), while it remained constant 297 

for intermediate values of mean biomass (between 0.01 tons·km-2 and 0.1 tons·km-2), and it 298 

increased when mean biomass was high (> 0.1 tons·km-2). For demersal fish, stability 299 

decreased gradually with increasing mean biomass. For marine mammals, birds, and the 300 

whole food-web, we found no relationship between stability and mean biomass. 301 

D. Combined effect of fisheries and temperature on temporal stability 302 

Variations in temperature were the largest driver of changes in temporal stability (Figure 5), 303 

and these changes were only observed for harvested species. The largest response was 304 

observed for demersal fish. For herbivorous zooplankton, and birds there were no visible 305 

effect of temperature and fishing on stability. Increased fishing mortality had a positive 306 

impact on demersal fish and marine mammals’ stabilities regardless of the temperature 307 

scenario. Omnivorous zooplankton displayed antagonistic effects of temperature and fishing, 308 

but we found no increase in stability anomalies in response to increased temperature and 309 

harvesting. Benthos and pelagic fish showed small differences in stability anomalies indicating 310 

mostly additive effects of temperature and fishing. In the higher temperature scenario (+2˚C), 311 

the response of stability to cumulated temperature and fishing pressures were lower than the 312 

addition of responses to individual pressures, indicative of antagonistic interactions. 313 

Demersal fish exhibited larger combined effects on stability than the additive ones in the 314 

scenarios with lower temperature indicating synergistic effects on stability. Contrarily, we 315 

found antagonistic effects of temperature and fishing on demersal fish stability in warmer 316 

temperature scenarios. Marine mammals displayed strong antagonistic effects of 317 



temperature and fishing mortality on stability, given that the expected anomalies were larger 318 

than the measured ones. 319 

Stability of the whole food-web displayed a similar pattern as the harvested species. 320 

Temperature and fishing had synergistic effects in scenarios of colder temperature and low 321 

harvesting. As for demersal fish, in scenarios of low fisheries and warmer temperatures, we 322 

found antagonistic effects. In scenarios of higher harvesting, the nature of combined effects 323 

was opposed to the scenario of low harvesting. In scenarios of colder temperature and higher 324 

fisheries combined effects were antagonistic while they were synergistic in scenarios of 325 

warmer temperature and higher fisheries. 326 

Discussion 327 

In this study, we explored the combined effects of temperature and fisheries on the temporal 328 

stability of the Barents Sea food-web. Temperature negatively affected the species and food-329 

web biomass, while fisheries redistributed biomass among individual species without 330 

affecting the total biomass of the food-web. Individual drivers had weak effects on stability. 331 

However, we found amplified effects of temperature for harvested species. Also, we observed 332 

synergistic effects of temperature and fisheries in response to colder temperature scenarios 333 

and antagonistic effects in warmer temperature scenarios. 334 

A. Effects of temperature and fishing mortality on biomass 335 

Globally, increasing temperature had a negative effect on the biomass and stability of the 336 

Barents Sea food-web. The observed biomass decreases in response to increasing 337 

temperature, for all but one species (demersal fish), goes against observations of increasing 338 

zooplankton biomass in response to warmer temperature in the Barents Sea (Dalpadado et 339 

al. 2020). Furthermore, recent modelling studies suggested that increasing temperatures in 340 

polar marine ecosystems should lead to a significant biomass increase at the horizon 2100 341 

(Bryndum‐Buchholz et al. 2019; Lotze et al. 2019). Lotze et al. (2019) also highlighted that 342 

biomass decreases were higher in higher trophic levels due to trophic amplification. Our 343 

results do not fully support this statement because the biomass of demersal fish and marine 344 

mammals did not decline in response to higher temperatures as much as the zooplankton 345 

species. In our simulations, demersal fish biomass decreased for the coldest temperature 346 

scenario. The analysis of the trophic flows showed that, for this scenario, the food intake by 347 



demersal fish was reduced (supplementary materials Figure S4). This was caused by reduced 348 

feeding capacity at lower temperature which was not compensated by changes in other 349 

temperature dependent processes (i.e., inertia and metabolic losses). 350 

Fisheries affected the biomass of pelagic fish, demersal fish, and birds. The decline of 351 

demersal fish biomass in direct response to increased fishery mortality triggered an increase 352 

in pelagic fish and birds’ biomass suggesting that predatory effects outweigh harvesting 353 

effects on pelagic fish. This is to some extent in line with a previous study (Lindstrøm et al. 354 

2009), which showed that reduced abundance of cod from harvesting led to increased 355 

abundance of capelin, whereas reduced harvesting on capelin had minor impact on its own 356 

dynamics and on the dynamics of cod and herring. This is further confirmed in the study by 357 

Myers and Worm (2003), which provides multiple examples of compensatory dynamics 358 

between pelagic and demersal fish in marine ecosystems due to released predation on pelagic 359 

fish and competition. Using a simple end-to-end model, Heath et al. (2021) presented similar 360 

conclusions for the North Sea ecosystem, which are consistent with our results. The ensuing 361 

birds’ biomass increase in our simulation can be explained by the increase of food availability 362 

due to higher pelagic fish biomass. However, we see that the biomass of birds is also limited 363 

by satiation as their biomass do not increase for higher fisheries although pelagic fish biomass 364 

does. 365 

Interestingly, the biomass of zooplankton species, benthos, and marine mammals was not 366 

affected by variations in the biomass of other species. The relative stability of marine 367 

mammals’ biomass in response to decreasing demersal fish biomass reflects the shift in the 368 

diet of marine mammals from demersal fish to pelagic fish (supplementary materials Figure 369 

S3 & S4). We assume that the lack of response of zooplankton species to variations in upper 370 

trophic levels resulted from the decoupling of zooplankton and pelagic fish dynamics. This is 371 

thought to have occurred in the past when primary production was high (Dalpadado et al. 372 

2020). When conducting model reconstructions of the past dynamics of the Barents Sea food-373 

web, with a parametrization similar to the current study, Planque & Mullon (2020) observed 374 

that assumed that zooplankton dynamics could be reconstructed with substantially lower 375 

primary production, which suggested that the assumed primary production in the model was 376 

likely too high. In this study, we can interpret the decoupling of zooplankton and pelagic fish 377 

dynamics as a result of too high import of phytoplankton biomass, which is a proxy for primary 378 



production in the NDND model. Another possible explanation is that we have underestimated 379 

some trophic flows in our simulations. For example, a recent study highlighted that feeding 380 

rates of baleen whales on krill (i.e., omnivorous zooplankton) estimated from metabolic rates 381 

were underestimated by at least a factor of three (Savoca et al. 2021). Allowing marine 382 

mammals to feed more on omnivorous zooplankton in the model could have significantly 383 

reduce the omnivorous zooplankton biomass and affect the trophic dynamics of other species 384 

feeding on omnivorous zooplankton.  385 

In the NDND model, fishing mortality is implemented as a fully compensatory process i.e., the 386 

sum of the different sources of mortalities (predation, fisheries catch, and other losses) is 387 

bounded by inertia. An alternative formulation is to consider individual mortality sources as 388 

being additive, and not jointly-bounded. Full compensation of fishing mortality by other 389 

sources of mortality has not been observed in natural systems (Froese et al. 2016). It has been 390 

argued that the degree of fisheries compensation is expected to be on a continuum between 391 

compensatory and additive (Myers and Quinn II 2002; Péron 2013). Further investigations are 392 

required to better assess the degree of fisheries compensation in the Barents Sea, and to 393 

verify that the current conclusions are robust in the case of mortalities being partially additive 394 

and partially compensatory. 395 

B. Effects of temperature and fishing mortality on stability 396 

In our simulations, increased temperature led to increased metabolic rates which rendered 397 

the system more dissipative. Increased temperature also relaxed the inertia and satiation 398 

constraints which in turn increased the range of possible biomass variations and the 399 

maximum food intake. Consequently, we expected higher temperature to destabilize the 400 

Barents Sea food-web and its species by increasing biomass variability. However, our results 401 

only partly support these expectations as only benthos and fish species temporal stability 402 

were affected by increased temperature. It indicates that the changes in biomass variability 403 

could be compensated by changes in mean biomass, or by trophic feedbacks within the food-404 

web. 405 

We expected increased fishing mortality to increase the variability of harvested species (Hsieh 406 

et al. 2006). Yet, we found minimal effects of fisheries on stability. The limited response of 407 

marine mammals’ stability can result from low annual catch relative to the total marine 408 

mammals’ biomass. The absence of effects of harvesting on pelagic and demersal fish stability 409 



indicates that mean biomass and biomass variance covary (supplementary materials Figure 410 

S6 & S7). In other words, biomass variations for both fish species are compensated by 411 

variations in biomass standard deviation. 412 

Pelagic fish displayed three distinct relationships between stability and mean biomass. We 413 

interpret these relationships as being primarily a result of the model structure, which sets 414 

hard minimum and maximum limits to the biomass of small pelagics. The refuge biomass 415 

prevents biomass to decrease below a threshold value. When the biomass tends towards this 416 

value, predators continue feeding on this species while its biomass cannot decrease further, 417 

which leads to decreasing variability. As temporal stability measures the biomass variability 418 

in relation to mean biomass, the lower variability corresponds to higher stability. A 419 

comparable effect is visible for extremely high values of biomass. In this case, a plausible 420 

explanation is that a combination of inertia and satiation that limits biomass increase while 421 

higher biomass allows higher predation on pelagic fish. It results in an increase in stability 422 

with increasing biomass. Consequently, given the absence of relationship between stability 423 

and mean biomass at intermediate levels of mean biomass, we assume that if the structural 424 

constrains of the NDND model were modified, the relationship between mean biomass and 425 

temporal stability for pelagic fish could be similar to the one observed for demersal fish.  426 

Individual effects of temperature and fisheries on the stability of the whole food-web were 427 

minimal. Our results suggest “mean-variance rescaling” (Cottingham, Brown, and Lennon 428 

2001), which implies that increasing mean biomass result in increased biomass variance. 429 

Mean-variance rescaling relationships are expected to increase stability (Grman et al. 2010). 430 

On the contrary, synchrony in species dynamics is expected to have a destabilizing effect on 431 

the food-web and its species (Loreau and de Mazancourt 2008). Thus, a possible explanation 432 

for the absence of temperature effects on stability is that mean-variance rescaling and 433 

synchrony compensate each other which maintain stability at similar levels in all temperature 434 

scenarios. In our simulations, pelagic and demersal fish displayed opposite responses to 435 

increased fisheries while the stability of the whole food-web remained constant for different 436 

levels of harvesting rates. Asynchrony leads to negative covariance which result to increase 437 

the food-web’s stability (Loreau and de Mazancourt 2008). Again, the combination of mean-438 

variance rescaling effect with the stabilizing effect of species asynchrony is a possible 439 

explanation for the absence of response of food-web level stability to increased harvesting 440 



rates. 441 

Species that were not harvested in our simulations (i.e., herbivorous zooplankton, 442 

omnivorous zooplankton, and birds) displayed minimal combined effects of temperature and 443 

harvesting on estimated stabilities. Increasing temperature had a negative effect on benthos, 444 

pelagic fish, and demersal fish stabilities. We assume that increasing temperature did not 445 

affect marine mammals because temperature did not affect their metabolic rates in our 446 

study. Demersal fish displayed the strongest response to increasing temperature among all 447 

harvested species. It suggests that more intense harvesting amplifies the effects of increasing 448 

temperature on stability. This result is in line with the expectations that harvesting increases 449 

the variability of exploited species (Hsieh et al. 2006). Yet, it also shows that the harvesting 450 

rate also plays a role in the sensitivity of the food-web dynamics to temperature changes. 451 

For benthos and fish species, we found that in colder scenarios, combined effects were 452 

synergistic while they were antagonistic in warmer temperature scenarios. These findings are 453 

not in line with the existing literature. Nye et al. (2013) suggested that the combined effects 454 

of temperature and harvesting on the US continental shelf were mostly additive but that in 455 

some cases, strong synergistic effects were identifiable. Another study using the Atlantis 456 

model for the Benguela upwelling ecosystem high-light antagonistic, additive, and synergistic 457 

effects of temperature and fisheries (Ortega-Cisneros et al. 2018). However, their findings 458 

suggest that the nature of the combined effects of temperature and fishing were dependent 459 

on the species while our results suggest that they depend on the temperature scenario. 460 

The combined effects of temperature and fisheries on the whole food-web displayed a similar 461 

pattern to the combined effects on harvested species (i.e., negative effect of temperature 462 

and positive effect of fisheries). However, the shifts in the nature of the combined effects in 463 

response to increased fishing mortality indicate that the effect of fisheries on stability is lower 464 

than expected if combined effects were additive. Furthermore, we consider that the negative 465 

effect of temperature on stability also reduces the effect of fisheries on stability. Indeed, 466 

individual effects of harvesting on stability is larger than the combined effects of temperature 467 

and harvesting in the crossed scenarios. 468 

C. Limitations 469 

In this study, we have estimated the temporal stability over time-periods of 30 years, a 470 



duration that is in line with many observational time-series in the Barents Sea. Pimm & 471 

Redfearn (1988) suggested that variability increase with the length of time-series. The NDND 472 

model can be used to simulate longer time-series, and when this is done, temporal stability 473 

declines with increasing length of available time-series (Supplementary material Figure S1). 474 

This is consistent with Pimm & Redfearn (1988) proposition. Our results are therefore valid 475 

for 30y time series, but additional simulations would be required to verify that the conclusions 476 

hold for longer time periods. 477 

We aimed at assessing the effect of climate change on the temporal stability of the Barents 478 

Sea food-web using temperature variations as a proxy for climate change. We have 479 

implemented the effect of temperature on the metabolic rates of the concerned species. 480 

However, we have not considered other aspects of climate change in our analysis, such as 481 

climate driven changes in primary production. We maintained a constant import of 482 

phytoplankton (i.e. proxy for primary production in the NDND model) in our simulations. Past 483 

observations displayed an increase in primary production in response to higher temperatures 484 

(Dalpadado et al. 2020). However, this increase is also closely related to the decrease of sea 485 

ice cover, which does not necessarily imply an increase of productivity per spatial unit. In 486 

addition, a modelling study suggested that increasing temperature would reduce primary 487 

production in the Barents Sea (Holt et al. 2016). In this context, as we did for temperature 488 

and fishing mortality, we assume that the effect of increased and decreased primary 489 

production on the Barents Sea food-web needs to be further investigated to anticipate for 490 

both cases. 491 

Conclusion 492 

In this study, we found that climate and fisheries affected the biomass of individual species in 493 

the Barents Sea while the biomass of the entire food-web was not significantly altered. 494 

Temperature increases generally led to reduced species biomass, while variations in 495 

harvesting rates led to compensatory dynamics between fish species. Counter-intuitively, 496 

climate and fisheries didn't strongly affect the stability of the food-web. We also found that 497 

the effect of fisheries on stability was negligible compared to the effect of temperature. 498 

However, increased fishing amplified the effects of climate variations. Finally, we found that 499 

combined effects of climate and fisheries shifted from synergism to antagonism with 500 

increasing temperature. 501 
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Tables 767 

Table 1. Initial parameters input for the NDND simulations. Units are given in brackets. Assimilation 768 
efficiency and digestibility are ratios and do not have units. Other losses, inertia, and satiation are 769 
ratios but integrated for a 1-year time-period. Initial biomass, Import, Export, and Refuge biomass 770 
correspond to total weights for a species but expressed per spatial unit. For demersal fish, Initial 771 
biomass corresponds to 2.31*1600 = 3696 thousand tons for the entire Barents Sea area. Refuge 772 
biomass corresponds to 0.023*1600 = 36.8 thousand tons for the entire Barents Sea area 773 
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Initial Biomass (B0, tons·km-2) 25 25.64 3.32 66 1.02 2.31 0.34 0.007 

Import (I, tons·km-2) 1000 8 2 0 0 0 0 0 

Export (E, tons·km-2) 0 0 0 0 0 0 0 0 

Assimilation efficiency (γ) 1 1 1 0.94 0.9 0.93 1 0.84 

Digestibility (κ) 0.65 0.9 0.9 0.6 0.9 0.85 - - 

Other losses (µ) 6.74 8.4 5.5 1.5 2.85 1.65 5.5 60 

Inertia (ρ) 12.94 7.58 3.1 0.74 0.9 0.25 0.11 0.81 

Satiation (σ) - 128 42 25.2 13.5 5.5 10.9 123 

Refuge biomass (β, tons·km-2) 0.25  0.23 0.13 0.66 0.025 0.023 0.0034 0.0001 

 774 

Table 2. Initial harvesting parameter input for the NDND simulations. Units are given in brackets. 775 
Fishing mortality (Fmp) and the natural mortality (M) do not have units because they are ratios 776 
integrated for a 1-year time-period. 777 
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Fishing mortality rate (Fmp) - - - - 0.05 0.4 - - 

Target biomass (Bmp, tons·km-2) - - - - 0.125 0.475 - - 

Trigger biomass (Blim, tons·km-2) - - - - 0.125 0.25 - - 

Natural mortality (M) - - - - 0.85 0.2 - - 

Catches (C, tons·km-2) - - - 0.026 - - 0.0014 - 

 778 
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 780 

Figure 1. The study area of the Barents Sea (a) and its simplified food-web topology (b). Icons represent 781 
the eight species (phytoplankton, herbivorous zooplankton, omnivorous zooplankton, benthos, pelagic 782 
fish, demersal fish, marine mammals, and birds). Red-full arrows represent the possible flows towards 783 
other species of the food-web. Red-circular arrows represent cannibalistic interactions. Blue-dashed 784 
arrows represent flows towards the fisheries. 785 
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 787 

Figure 2. Effect of variations of temperature (A) and fishing mortality (B) on the simulated biomass of 788 
each species and the entire Barents Sea food-web (Global). The reference scenario (i.e. no variation in 789 
temperature and fishing mortality) is identified in green. The variations in biomass are expressed as 790 
anomalies on the log10-scale regarding the median of the reference scenario. The black dotted line 791 
indicates biomass values equal to the median biomass of the reference scenario. 792 
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 794 

Figure 3. Effect of variations in temperature (A) and fishing mortality (B) on the temporal stability (on 795 
a log10 scale) of each species and of the entire Barents Sea food-web. Higher values indicate higher 796 
stability. The black lines in the violin plot correspond to the median of the stability of each species in 797 
each scenario. The reference scenario is identified in green. 798 
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 800 

Figure 4. Density plots between mean biomass (on the log10-scale) and temporal stability for all 801 
species and the whole food-web (the darker, the denser). The black/white-dashed lines represent the 802 
geometric mean of the mean biomass by species and the mean temporal stability by species. 803 
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 805 

Figure 5. Combined effects of temperature and fisheries the temporal stability of the Barents Sea food-806 
web and its species. Bars represent the anomalies in stability regarding the reference scenario 807 
(identified by “*”). Each bar represents a scenario of temperature and fishing mortality. Blue and black-808 
outlined bars represent the simulated combined effects of temperature and fisheries. Red bars 809 
represent the additive effects of temperature and fisheries. Complete overlap indicates additive effects. 810 
Larger combined effects than additive effects correspond to synergistic effects. Combined effects 811 
smaller than additive effects correspond to antagonistic effects. Dark blue arrows indicate the 812 
anomalies trend for scenarios of temperature. Orange arrows indicates the anomalies trend for 813 
scenarios of fishing mortality. The black-dashed line corresponds to anomalies of 0 (i.e. estimated 814 
stability equals stability of the reference scenario). The grey dashed lines represent the trends in 815 
stability anomalies for demersal fish. 816 
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Abstract 

Numerical models of ecological systems are increasingly used by scientists to address complex 

environmental questions. One challenge for scientists, managers, and stakeholders is to appraise 

the performance of these models to answer specific questions of scientific or societal relevance, 

that is to perform, communicate or access transparent evaluations of ecological models. While 

there have been substantial developments to support standardised descriptions of ecological 

models, less has been done to standardise and to report model evaluation practices. We present 

here a general protocol designed to guide the reporting of model evaluation. The protocol is 

organised in three major parts: the objective(s) of the modelling application, the ecological 

patterns of relevance and the evaluation methodology proper, and is termed the OPE 

(objectives, patterns, evaluation) protocol. We present the 25 questions of the OPE protocol 

which address the many aspects of the evaluation process and then apply them to six case 

studies based on a diversity of ecological models. In addition to standardising and increasing 

the transparency of the model evaluation process, we find that going through the OPE protocol 

helps modellers to think more deeply about the evaluation of their models. From this last point, 

we suggest that it would be highly beneficial for modellers to consider the OPE early in the 

modelling process, in addition to using it as a reporting tool and as a reviewing tool. 

Keywords 

Standardisation, best practice, ecological patterns, skill assessment, transparency.  
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1. Introduction 

Scientists, managers, and stakeholders increasingly rely on numerical models of ecological 

systems. One challenge is to appraise the efficiency of these models to tackle complex 

environmental questions. Providing clear evaluations of model performance is one way to 

address this challenge. Models are constructed, analysed, and used by different actors, from 

scientists to policymakers, and these actors have different understandings and expectations 

from models. Assessing how good a model is at addressing specific problems is difficult when 

ecological modellers use a variety of model types, have different modelling cultures and 

practices, and use different vocabularies. This can hinder communication, transparency, 

reproducibility, and the general development of good practices within the modelling 

community. It is therefore essential to provide tools to support a collective understanding of 

what can be expected from a model and how a model is to be validated (Cartwright et al. 2016; 

Eker et al. 2018).  

Transparency and reproducibility are at the core of the scientific method. However, the 

complexity of the tools used to observe and model ecological systems challenges 

reproducibility and transparency (Powers and Hampton 2019). The ongoing so-called 

reproducibility or replicability crisis reflects this difficulty, although the crisis has primarily 

been identified in the fields of psychology (Pashler and Wagenmakers 2012), clinical studies 

(Begley and Ioannidis John 2015) and economics (Camerer et al. 2016). It is much less 

discussed in ecological research (but see Ives 2018; Nichols et al. 2019, 2021). It may not be 

possible to strictly replicate ecological observations, but transparency in workflow and data 

analyses can facilitate reproducibility. It is nevertheless possible to reproduce ecological model 

simulations, given that the relevant information is provided for that purpose. In addition to 

replicating a model and the associated simulations, it is equally important to be able to 

understand, assess and replicate how model performance was evaluated. This step is critical, 

given that almost every new method published are claimed to outperform existing ones, but are 

seldom re-evaluated (Boulesteix et al. 2020). Providing relevant and comprehensive 

information is a first step towards replicability, which needs to be complemented by appropriate 

communication and quality standards. How is the information communicated? Is it accessible? 

Is it unambiguous? Is it sufficient? A standardised protocol for reporting model evaluation 

procedures would address these questions and contribute to increased transparency and 

reproducibility of ecological models. 
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There have been considerable collective efforts in recent decades to develop standardized 

modelling practices, from model building to evaluation of model performances. A major 

advancement has been the development of standardised protocols such as the ODD (Overview, 

Design concepts, and Details, Grimm et al. 2006). The ODD protocol was originally developed 

to respond to the lack of a standard protocol for describing individual based models (IBMs). 

The protocol was reviewed and updated twice since its original publication (Grimm et al. 2010, 

2020) and it is now commonly used by ecological modellers, beyond the original IBM 

community, to describe their models in reports and publications. The ODD protocol has been 

inspirational to groups of modellers with diverse focus, such as on model optimisation (ODDO, 

Mahévas 2019), data-mapping (ODD+2D, Laatabi et al. 2018), and inclusion of human 

decisions (ODD+D, Müller et al. 2013). In each case these groups have borrowed from the 

original ODD protocol idea and extended it for their specific purpose, thereby contributing to 

the harmonisation and communication of modelling practices.  

A major step in the development and application of ecological models is the evaluation phase. 

There exists a large body of literature on how to perform model evaluation for various classes 

of models (e.g. Stow et al. 2009; Allen and Somerfield 2009; Bennett et al. 2013; Conn et al. 

2018; Hipsey et al. 2020), but much less work has been done to standardise the reporting of 

model evaluations. The TRACE (TRAnsparent and Comprehensive Ecological modelling) 

documentation (Grimm et al. 2014) is a notable exception which provides a framework for 

documenting the modelling process, including several aspects of model evaluation. 

Standardised protocols for reporting model evaluation can constitute useful tools for modellers 

and end-users to easily understand and compare evaluation procedures and appreciate the 

performance of models in relation to specific objectives. Making such tools available is 

therefore anticipated to benefit the scientific community and model end-users. 

The issue of model validation and evaluation in environmental science has been the subject of 

extensive research and debate. Oreskes (1998) argued that quantitative models cannot be 

validated but only evaluated. In Oreskes’ view, evaluation is described as “an assessment in 

which both positive and negative results are possible, and where the grounds on which a model 

is declared good enough are clearly articulated”. This assessment implies an examination of 

model outputs against pre-specified performance criteria. In the literature, the term model 

validation has remained pervasive (Eker et al. 2019) although often overlapping with the 

concept of evaluation as originally presented by Oreskes. In their 10-step procedure for 

developing and evaluating environmental models, Jakeman et al. (2006) introduced a stepwise 
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approach in which every stage is open to critical review and revision, in consort with end-users. 

The evaluation step is left to the end and is concerned with the model being fit for purpose, 

although the criteria for achieving this goal are not fully developed. More recently, Parker 

(2020) explores the meaning of a model being adequate for purpose for different classes of 

models, whether pedagogical, explanatory or pexplanatory,In the works of Jakeman and Parker, 

model evaluation is primarily achieved by measuring the performance of a model against pre-

specified objectives, thereby following the original argument of Oreskes. This excludes the idea 

of a general validity of a model and favours the principle of an evaluation of a model for a 

specific objective (or a set of objectives). This mirrors George Box's notorious statement that 

"all models are wrong; the practical question is how wrong do they have to be to not be useful" 

(Box and Draper 1987), where useful implies use and therefore purpose. This also is in line 

with Augusiak’s review of the literature on model evaluation and validation which concludes 

that despite little agreement on terms and underlying notions in the literature, it has repeatedly 

been pointed out that the evaluation of a model should depend on its purpose (Augusiak et al. 

2014). 

Evaluating that an ecological model is fit for purpose implies that the same model can (and 

should) be evaluated each time it is used for a new purpose. This is a rather trivial implication 

of the fit for purpose evaluation, however examples of re-evaluation of the performance of 

complex ecological models are scarce. Complex ecological models require extensive 

development efforts, and these materialise in the first publication of the model, together with a 

global evaluation (or validation) of the model (see e.g., Radach and Moll 2006; Link et al. 2010; 

Travers-Trolet et al. 2014; Pedersen et al. 2021). A fit-for-purpose approach would require that 

this first model evaluation be revised and reported for each new application of the model. One 

challenge in doing so is that the task of reporting model evaluation, which is already substantial 

when the model is first published, may seem daunting if it is to be repeated for every new model 

application. This can possibly be eased by reporting primarily on aspects of the model 

evaluation that are specific to each new application. An additional help can be provided by 

following a template in which a set of questions can guide the modeller through the reporting 

process. 

By taking inspiration from the success and utility of the ODD protocol and the following 

extensions, we here present a complementary protocol for the reporting of ecological model 

evaluation procedures: the OPE (Objectives, Patterns, Evaluation) protocol. We discuss the 

rationale for the different elements of this protocol and provide a list of questions that can guide 
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modellers to report in OPE format. We summarise the protocol (Table 1) and provide an easy-

to-use Word template to support documenting model evaluations. (Supplementary material S1). 

Finally, we test the protocol on six case studies taken from a collection of marine ecosystem 

models with which the authors are familiar. These case studies are presented in detail in the 

supplementary material (S2). These modelling applications pre-existed the OPE protocol. The 

OPE has therefore not been used to guide the model evaluations presented here, but only to 

report how these evaluations were performed. 

2. Elements of the OPE protocol 

The elements of the OPE protocol are divided in three sections: Objectives, Patterns and 

Evaluation. Each section is then divided in subsections which contain one to six questions. 

2.1. Objectives 

2.1.1. Context and motivations 

We recognize that many environmental models are not developed with the sole purpose of 

answering a single, well circumscribed question. Rather, models take time to develop and are 

gradually applied to a range of questions. Models of natural systems are inevitably embedded 

with multiple sources of uncertainty, and modellers make decisions during model construction 

(e.g., on which processes to include or simplify) which will affect the final outcome (Babel et 

al. 2019). There is a risk that assumptions which are reasonable for one particular model 

application are inadequate for another (Parker 2020; Saltelli et al. 2020). It is therefore essential 

that model suitability and performance are assessed and described for each application, and a 

crucial first step is describing the purpose of the specific application. In other words, to evaluate 

that a model is fit for purpose one must first specify the purpose. In this contribution, we refer 

to model as the generic description of the modelling tool (e.g. Ecopath, Atlantis, NorCPM1)(e.g. 

Ecopath with Ecosim, Polovina 1984; Christensen and Walters 2004), we use the terms goal, 

purpose andpurpose,ive in an interchangeable manner to express the motivation driving the 

study and we refer to a model application when the model is applied towards a pre-defined 

objective or set of objectives. Central in the OPE framework is our conception that it is sensical 

to evaluate the same model against different patterns or data when applied for different 

purposes. 

Describing the main objectives of the study and how modelling will contribute to reach these 

objectives is perhaps the most crucial step in evaluating model performance and suitability, and 
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it should be a key reference point throughout the evaluation process. Without a clear 

understanding of the purpose, it becomes difficult to communicate credibility and generate trust 

in the modelling work. Furthermore, it may be sensible to evaluate the same model against quite 

different patterns or data when applied for different purposes. Defining the aims and objectives 

of the model application early in the research process can save time, for instance with the 

realisation that objectives may depend on key processes for which the model of choice lacks 

functionality.  

The aims and objectives of a model application should be stated in simple, clear language. We 

suggest using active sentences (e.g., construct, produce, test, document) and avoid vague 

wordings (e.g., explore, study, investigate). Beware that ambiguity in the description of the 

purpose of a model often leads to multiple (subjective) interpretations of whether an outcome 

was successful or not (Parker 2020). This hinders a reliable evaluation process. The following 

questions guide the reporting of objectives: 

1. What are the objectives of the model application?  

2. Why is the model suitable to address the objectives? 

3. What would count as successful in achieving these objectives? 

2.1.2. Specific model setup 

Optimally, the ecological model has already been fully described following a standardized 

protocol such as the ODD. It is possible that the original description is adequate for a new 

application of the model, but specific applications may also require adjustments of the model 

structure, parameters, or assumptions. Assumptions are particularly important to report when 

the model is used to perform predictions at other points in time and space (Wenger and Olden 

2012; Yates et al. 2018). This is the case when the objective of the model is to produce forecasts 

or to predict ecosystem properties in one region based on a model developed in another. It is 

wise to explicitly state what lies behind the often-implicit assumption of ceteris paribus 

(everything else being equal). For example, are trophic interactions assumed to follow the same 

rules in different regions? Are spatial distributions or environmental conditions assumed to be 

unchanged in the future? When models are used for conditional forecasting, one should also 

report assumptions about expected changes that can affect the system studied. For example, 

how are posslikely futurenges in water temperature, fishing effort, accidental oil spill or 

increase in noise due to shipping represented in the model? A model can be revised to better 

reproduce the ecological components or processes that are relevant to a new application. It is 



DRAFT MANUSCRIPT – Planque et al. – Describing the evaluation of ecological models  

9 

 

also possible that revised estimates of input parameters or new data on the forcing conditions 

of the model become available. All these updates should be reported in this section which 

describes any changes or additions which have been made since the original model description. 

4. Are there any deviations from the original model description?  

a. In the model assumptions, 

b. in the model structure (e.g., addition of submodels, variables, components, 

modifications of spatial or temporal scales), 

c. in the model details (e.g., changes in parameter values, functional relationships), 

d. in the model forcing (e.g., initial conditions, boundary conditions, forcing time 

series and maps). 

2.2. Patterns 

2.2.1. Selected patterns 

A pattern may be defined as a characteristic and clearly identifiable structure in nature, or in 

data extracted from nature (e.g., population cycles, animal space use, species diversity etc.), 

that can be attributed to a generative process (Levin 1992; Grimm et al. 1996). Thus defined, a 

pattern is key to ecological understanding and prediction. Ecological patterns emerge from 

multiple ecological processes, which operate at multiple spatial and temporal scales and levels 

of organization (individual, population, community, and ecosystem). Understanding the causal 

mechanisms responsible for pattern formation is a primary goal of ecology (Levin 1992).  

Modelling complex adaptive systems (see Levin 1992), such as marine ecosystems, is 

challenging, but pattern-oriented modelling (POM) may facilitate the task (Grimm et al. 1996, 

2005; Grimm and Railsback 2012). POM “starts with identifying a set of patterns observed at 

multiple scales and levels that characterize a system with respect to the particular problem being 

modelled” (Grimm and Railsback 2012). In other words, the selection of patterns to be used in 

model evaluation, depends on the objective or hypothesis of the study.  

Relevant ecological patterns may be related to numbers, biomass, production, or consumption 

of relevant ecological entities, to dynamic behaviour at equilibrium, or to character of state 

transitions in perturbation studies or in systems undergoing change (e.g. Beisner et al. 2003). 

Other examples are spatial patterns such as spatial synchrony or traveling waves (e.g. Sherratt 

and Smith 2008). More complex emerging patterns (e.g., spatial structure described by a 

variogram, degree of spatial overlap between species) may also be candidate targets for model 
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evaluation. The selection of specific patterns is motivated by the objectives of the modelling 

application and is generally driven by the hypotheses that can explain the emergence of these 

patterns. It is therefore critical to report on the selection of patterns and on the justification for 

this selection.   

5. Which ecological patterns are used for the model evaluation?  

a. temporal patterns such as cycles, regime shift or trends, measures of temporal 

variability, and autocorrelation. 

b. spatial patterns such as spatial synchrony, traveling waves, patchiness, and 

autocorrelation. 

c. structural and functional patterns, such as taxonomic diversity, biomass ratios, 

integrated production, diet fractions, and trait distributions. 

6. Why are these patterns important/essential to address the objectives? 

In the following part of the OPE one must describe the data used for evaluation purposes, which 

can include both data from the model output and data which are independent of the model. 

Information on data used for model building should be provided in the model description 

(typically, an ODD protocol) and data used for optimization should be reported in the 

optimization description (e.g. in an ODDO protocol, Mahévas 2019).  

2.2.2. Independent data 

Independent data – that is data that exists independently of the model being built – are often 

derived from field observations, and procedures for collecting and processing these 

observations should briefly be summarized in this part of the OPE. Relevant information 

includes i) whether the data originate from a dedicated field survey, an open database, or 

another model, ii) the spatial/ temporal/ taxonomic/ etc. extent and resolution of the data, iii) 

data representativeness, and iv) accuracy, precision, bias, or uncertainty. Data 

representativeness is the degree to which data can be used to represent the ecological patterns 

that are relevant for the objective of the study. For example, daily, weekly, or monthly time-

series will have different representativeness if the ecological pattern of interest is phenology. 

Similarly, the representativeness of data collected at a single sampling station is also expected 

to vary with the spatial scale of the ecological question of concern, being more representative 

for small scale modelling studies centred around the sampling station than for larger scale 

investigations. Deriving ecological patterns (section 2.2.1) from observations can involve 

extensive data processing, and this should be reported here. When the same type of data can be 
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used for model optimisation and evaluation (as in cross validation) this should be reported in 

this section. In some cases, although the data is collected independently of the model being 

built, the model and data may not be completely independent from each other (for example, 

knowledge from historical data used to build the model, or input data in an Ecopath model is 

also expressed as an output of the model) and this should be reported. The following questions 

guide the collection of information about the independent data used to evaluate the model, given 

selected pattern(s). 

7. Where do the independent data originate from? 

Field survey, open database, another model, … 

8. What are the extent and resolution of the independent data? 

Spatially, temporally, taxonomically, … 

9. How representative are the independent data of the ecological process?  

10. Are there estimates of independent data accuracy, precision, bias, or uncertainty? 

11. How are the independent data processed to represent the selected patterns and are 

assumptions made to derive these patterns from the data? 

2.2.3. Model outputs 

Often, only parts of the model outputs are used in a specific application and the aim of this 

section is to describe which outputs have been used and evaluated. In some cases, the data may 

be post-processed (e.g., aggregation of results by guild, geographical region, or integration in 

time). The purpose of post-processing can be to generate indicators of the relevant patterns (ex. 

species spatial distribution, biomass ratios, index of seasonality, see section 2.2.1) or to generate 

model outputs that are comparable with independent data (section 2.2.2). The post processing 

step can require new assumptions (e.g., assume that conversion rates such as C:Chla are 

constant in time/space/taxa). The aim of this section is to describe the selection of model 

outputs, the post-processing operations, and to report on quality, quantity, representativeness, 

uncertainties, or potential bias in the model outputs. 

12. Which model outputs are used for the evaluation?  

13. Have the outputs been post-processed, and how?  

14. Are there estimates of model outputs accuracy, precision, bias, or uncertainty?  

15. Are additional assumptions made when deriving patterns from model outputs?  
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2.3. Evaluation 

2.3.1. Evaluation methodology 

We refer here to the evaluation method applied in the context of a specific application of a 

model to address stated objectives (section 2.1.1). Model verification (sensu Grabner 2018) - 

the act of testing whether the model does what it is supposed to do, i.e., that it is technically 

functional - should precede any application of the model and is not considered here. A first 

model evaluation step is often to conduct sanity checks. These are rapid explorations of the 

model outputs which ensure that, even though the model is technically functional, it is not 

behaving poorly. Sanity checks are often non-quantitative and based on domain knowledge 

rather than on quantitative comparisons of observations vs. model outputs. Though these are 

not often reported in model evaluation procedures, they inform about key conditions that the 

model must satisfy to be considered useful. Examples of sanity checks can include an inspection 

that population sizes or biomasses are within plausible ranges, that seasonal patterns are 

plausible or that emerging spatial patterns are visually credible. These can be done via Fermi 

estimations, often referred to as ‘back of the envelope’ calculations of plausible ranges. 

16. Are sanity checks conducted? If so, what is the method used?  

a. Which data and patterns are used for this?  

b. Does this apply to patterns that are not otherwise evaluated for this model 

application?  

The core of the evaluation process is the comparison of patterns emerging from model outputs 

against those obtained from independent observations. This first raises the issue of the 

comparability between independent observations and model outputs, i.e., whether model 

outputs and independent data are directly comparable and whether modelled patterns are 

directly comparable to observed patterns. For example, are modelled biomass integrated over a 

large continuous geographical domain comparable with biomass field observations from a 

limited number of sampling sites? The second issue is the methodology used to compare 

ecological patterns derived from observations to those derived from the model. There can be 

many methodological approaches, ranging from qualitative visual comparisons to fully 

quantitative estimates of the model performance at reproducing observed patterns (Allen and 

Somerfield 2009; Bennett et al. 2013). The latter can include univariate or multivariate 

approaches, and can be based on error-based measures, information theory measures, 
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parametric tests, non-parametric tests, distance-based measmeasures,combined measures (Hora 

and Campos 2015). This stage of the evaluation is sometimes referred to as skill assessment.  

The choice of methods and metrics used in model skills evaluation will depend on the relevant 

patterns. For example, when dealing with cycles, the degree of congruence between modelled 

and observed cycles amplitude and frequency should be reported. When modelling state 

transitions, agreement in the rate of change of a trend should be reported. With ecosystem 

models addressing ecological stability or temporal variability, the stability measure should be 

reported at multiple levels of organisation (e.g., species, functional group, community etc). The 

quantitative criteria to evaluate the match between observed and simulated patterns must be 

reported. For example, if the mean of the simulations is within a certain range (e.g. 1 standard 

deviation) of the observed pattern, the model satisfactorily addresses the pattern (e.g. Kramer-

Schadt et al. 2007). Each methodology usually comes with associated assumptions that need 

fulfilling for the method to be valid, and these should also be reported here.  

The core issue at the end of the evaluation process is whether the model outputs can be 

considered satisfying for the purpose of answering the modelling objective, i.e., that the grounds 

on which a model is declared good enough are clearly articulated (Oreskes 1998). 

17. What is the methodology used to compare ecological patterns derived from independent 

data with patterns derived from the model?  

a. What is the rationale for choosing this method? 

b. How are observational and/or model output uncertainties handled? 

c. Does the methodology rely on specific assumptions? 

18. Is there a threshold level (in the match between observed and modelled patterns) that 

can separate acceptable from unacceptable models? 

19. How comparable are the patterns derived from the model and those derived from the 

independent data? 

By answering the above questions, researchers should also discuss if there are patterns that 

cannot be well evaluated with the chosen method. 

2.3.2. Sensitivities 

We distinguish between two types of sensitivities to be reported. First, model sensitivity which 

is the result of a sensitivity analysis (SA), usually performed on model structure and parameters. 
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Second, evaluation method sensitivity, which refers to the sensitivity of the model evaluation 

to the choice of evaluation methodology and available observational data. 

Sensitivity analysis (SA) scrutinizes how variations in model inputs influence variations in 

model outputs, a fundamental step in model evaluation and corroboration (EPA 2009). A 

diverse array of SA approaches has been developed to help cope with the various needs dictated 

by differing model assumptions, computational compcomplexity, availability of relevant 

information (Saltelli et al. 2004; EPA 2009). Reviews and guidelines for best SA practice in 

the context of ecological and environmental modelling are an important aid to SA planning, 

implementation, and reporting (Saltelli et al. 2004, 2021; EPA 2009; Pianosi et al. 2016).  

Attributes of SA methods worth considering in reporting include: independence of model 

linearity and additivity assumptions, ability to address interaction effects among input factors, 

capacity to handle differences in scale and shape of input probability distribution functions, 

ability to deal with differences in input spatial and temporal dimensions, and capacity to 

evaluate the effect of an input while all other inputs are allowed to vary as well (Frey 2002; 

Saltelli et al. 2004).  

In this section, one should consider the sensitivity of the model outputs that are relevant to the 

objective of the study i.e., the modelled patterns (section 2.2.3). Priority should be given to 

reporting sensitivity analyses that were conducted specifically for the model application. 

Sensitivity analyses performed in earlier stages of model development can be reported if also 

relevant for the objective(s) of the study. 

20. Has a model sensitivity analysis been performed? How? 

a. on the model structure? 

b. on the model parametrization? 

c. on other aspects of the model?  

21. Which elements are the modelled patterns most sensitive to?  

a. input parameters 

b. priors and assumptions 

c. structural elements 

22. How sensitive are the modelled patterns to the choice of initial conditions, boundary 

conditions, spatial and temporal resolution? 
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While there is no perfect model to address a specific ecological question, there is no perfect 

method either to evaluate the performance of a model (Makridakis et al. 2020). Typically, the 

choice of the sensitivity analyses depends on the availability of observational data with which 

the model can be compared, on the computational requirements to perform certain types of 

model evaluation, and on the availability of evaluation methodologies to the modellers. This 

section reports on the rationale and criteria for choosing a particular approach to evaluate the 

model performance, stressing when the choices are dictated by the objectives of the study as 

opposed to computational constraints, lack of relevant information or other considerations. For 

example, run times for complex simulation models impose restrictions on the parameter space, 

thus limiting the scope for global SA and simultaneous exploration of known sources of 

uncertainty, two desirable features of SA in relation to the objectives of the study. This section 

also reports on how sensitive the evaluation method is to the data used for evaluation (section 

2.4). Could the model evaluation give significantly different results if other/new/more precise 

data were used? In summary, this section highlights the relevant attributes of the model 

evaluation, caveats, and possible limitations, clarifying the implications of the model evaluation 

in relation to the objectives. 

23. How sensitive is the model evaluation to availability and uncertainty of the independent 

data?  

24. How much is the model evaluation constrained by computational or theoretical limits? 

25. How does the perceived performance of the model depend on the chosen evaluation 

methodology?  

3. OPE template 

As a practical tool, we provide in Table 1 a summary of the OPE protocol which highlight the 

main sections of the protocol, the 25 questions as well as guidelines on how to answer them. 

We also provide in supplementary material (S1), a Word template that can be used to directly 

input information relevant to a modelling study. 



DRAFT MANUSCRIPT – Planque et al. – Describing the evaluation of ecological models  

16 

 

Table 1. The 25 questions of the OPE protocol, grouped into three headings: Objectives, Patterns and Evaluation. A brief comment 

accompanies each question to guide the reporting. A template form is provided in appendix S1, in which reporting can be directly entered. 

  # Question Comments 

O
B

JE
C

TI
V

ES
 

C
O

N
TE

X
T 

A
N

D
 M

O
TI

V
A

TI
O

N
S 

1 What are the objectives of the model application?   Describe here the motivation and context for using the model. What is 

the purpose of the study? Do not describe the model, or its general 

objectives but focus on study-specific objectives. Use active sentences 

(e.g., produce, test, quantify, reconstruct dynamics) and avoid vague 

wordings (e.g., explore, study, investigate, understand). 

2 Why is the model suitable to address the objectives? Provide the main rationale for why this specific model approach is 

suited to address the objective(s) raised in question 1. For example, is 

the model representing a process that is central to addressing the 

objectives? 

3 What would count as successful in achieving these objectives? Explain here which criteria are used to determine if the model can 

address the objective or not. For example, if the objective of the model 

is to quantify a variable/process, is success defined based on the 

uncertainty around these estimated quantities? 

SP
EC

IF
IC

 M
O

D
EL

 S
ET

U
P 

4 Are there any deviations from the original model description?  

a. In the model assumptions? 

b. In the model structure – submodels, variables, components, 

scales? 

c. In the model details – parameter values, functional 

relationships 

d. In the model forcing – initial conditions, boundary 

conditions, observation forcing, maps? 

If this is the first time the model is presented, a full ODD description 

should be provided (Grimm et al., 2006, 2010, 2020). If the model has 

already been presented elsewhere, only deviations from the original 

description should be provided here. Models are often adjusted to 

address a specific ecological question/objective. It is these adjustments 

that should be reported here. 
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  # Question Comments 
P

A
TT

ER
N

S 

SE
LE

C
TE

D
 P

A
TT

ER
N

S 
5 Which ecological patterns are used for the model evaluation?  

a. Temporal patterns – cycles, shifts, trends, variability, 

autocorrelation 

b. Spatial patterns – synchrony, travelling waves, patchiness, 

autocorrelation 

c. Structural, functional patterns – diversity, biomass ratio, 

integrated production, diet, traits 

The term "ecological pattern" refers to Pattern Oriented Modelling 

(POM, Grimm et al., 1996, 2005; Grimm and Railsback, 2012). Relevant 

ecological patterns can be observed at various scales and characterize 

the ecological system with respect to the particular problem being 

modelled. The patterns listed in a, b, and c are by no mean required or 

exhaustive, but are provided as examples of possibly relevant patterns. 

6 Why are these patterns important/essential to address the 

objectives? 

Explain here how the selection of ecological patterns is justified in 

relation to the objectives of the modelling application. Are there 

hypotheses that can explain the emergence of these patterns? Do not 

discuss how these patterns can be derived from observations or model 

outputs, this is addressed in questions 11-15. 

IN
D

EP
EN

D
EN

T 
D

A
TA

 

7 Where do the independent data originate from? Independent data refers to data that exists independently from the 

current model being developed. These can be observational data or 

outputs from other models. Do not discuss outputs from the modelling 

study, these are addressed in questions 12-15. 

8 What are the extent and resolution of the independent data? Report here the spatial, temporal, taxonomic extent and resolution of 

the independent data identified in question 7. For example, if a data 

series is presented, what are the starting and ending time and the time-

frequency of data acquisition; if biodiversity data is provided, what is 

the taxonomic resolution and the method used to determine taxonomic 

units. 

9 How representative are the independent data of the ecological 

processes? 

This is a follow-up from question 8 to link data with key processes and 

patterns. For example, if a central process in the study is interannual 

variations in population numbers, and observational data of population 

numbers are available: do these data appropriately represent the 

annual abundance, or do they represent a snapshot in time or space? 
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  # Question Comments 

Do not report on uncertainty estimates here, this is addressed in 

question 10. 

10 Are there estimates of independent data accuracy, precision, bias, or 

uncertainty? 

Uncertainty estimates for the independent data should be reported 

here (uncertainty estimates for the model outputs are reported in 

question 14). 

11 How are the independent data processed to represent the selected 

pattern and are assumptions made to derive these patterns from the 

data? 

Independent data – whether observational or modelled – may provide 

a representation of the patterns of interest (question 5) only after 

further processing. For example, survey data may be spatially 

interpolated to derive spatial distribution patterns. Another example: 

biomasses from several taxonomic units may be grouped to derive 

patterns of interannual changes in biomass for particular functional 

groups. Report these post-processing steps here. 

M
O

D
EL

 O
U

P
U

TS
 

12 Which model outputs are used for the evaluation? This is a list of model outputs that have been selected based on the 

modelling objectives and related ecological patterns. The full set of raw 

outputs, which is often large, unprocessed, and not targeted towards 

the specific objectives of the modelling study, should not be reported 

here. 

13 Have the outputs been post-processed, and how? As for independent data, model outputs may provide a representation 

of the patterns of interest only after further processing (see question 

11). Report here the post-processing steps that are used to go from raw 

model outputs to ecologically relevant patterns. 

14 Are there estimates of model output accuracy, precision, bias, or 

uncertainty? 

Uncertainty estimates for the model outputs should be reported here. 

Focus should be on model outputs that are used for the model 

evaluation. 
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  # Question Comments 

15 Are additional assumptions made when deriving patterns from model 

outputs? 

Report here when some assumptions may be required to derive outputs 

at the appropriate scale or in the appropriate units. For example, a 

dry:wet weight ratio may be assumed across species/seasons/areas to 

derive weight wet estimates (the relevant pattern) from dry weight (the 

model output).  

EV
A

LU
A

TI
O

N
 

EV
A

LU
A

TI
O

N
 M

ET
H

O
D

O
LO

G
Y 

16 Are sanity checks conducted? If so, what is the method used?  

a. Which data and patterns are used for this? 

b. Does this apply to patterns that are not otherwise evaluated 

for this model application? 

Sanity checks are informal steps that are taken throughout model 

development to ensure that the model is not behaving badly. They 

inform on key conditions that the model must satisfy to be considered 

useful. For example, checking that a population neither becomes extinct 

nor grows to unrealistic size. 

 

17 What is the methodology used to compare ecological patterns derived 

from independent data with patterns from the model?  

a. What is the rationale for choosing this method?  

b. How are observational and/or model output uncertainties 

handled?  

c. Does the methodology rely on specific assumptions? 

This section describes how model outputs are evaluated against 

independent data. This is sometimes referred to as model "skill 

assessment". This section should describe the methodology used as well 

as the rationale for the choice of methods, i.e., how the methods relate 

to data, model outputs, objectives of the study, and relevant ecological 

patterns. 

18 Is there a threshold level (match between observed and modelled 

patterns) that can separate acceptable from unacceptable models? 

When are the model outputs reliable enough to be used to answer the 

main question of the study? Answering this question is critical to 

evaluate when the model can address the main objective of the study. 

One should not discuss here the conclusions of the study, but only the 

skill level required to consider the model useful. 

19 How comparable are the patterns derived from the model and those 

derived from the independent data? 

This section describes the result of the model skill assessment, plus any 

other qualitative features (patterns) that can be compared between 

model outputs and independent data. 



DRAFT MANUSCRIPT – Planque et al. – Describing the evaluation of ecological models  

20 

 

  # Question Comments 

SE
N

SI
TI

V
IT

IE
S 

20 Has a model sensitivity analysis been performed, and how? 

a. on the model structure?  

b. on the model parametrization?  

This section describes the approach used to conduct model sensitivity 

analyses (SA), in a broad sense, from individual parameter SA to global 

SA. Various aspect of the methods used for SA can be reported here, 

including sensitivity to parameters, model structure, boundary/initial 

conditions, simulation design, and so on (see e.g. Pianosi et al. 2016).  

21 Which elements are the modelled patterns most sensitive to?  

a. input parameters  

b. priors and assumptions  

c. structural elements 

If applicable, report here the results of the SA on parameters, model 

structure and assumptions. 

22 How sensitive are the modelled patterns to the choice of initial 

conditions, boundary conditions, spatial and temporal resolution? 

If applicable, report here the results of the SA on the choice of initial 

conditions, spin-up time, boundary conditions, spatial and temporal 

resolution. 

23 How sensitive is the model evaluation to the independent data 

availability and uncertainty? 

  

Could the model evaluation give significantly different results if other, 

new, or more precise data were used than those described in question 

7? 

24 How much is the model evaluation constrained by computational or 

theoretical limits? 

Models that are structurally simple and computationally fast can 

generally be explored through in-depth SA. It is more demanding to run 

appropriate SA on models that are structurally complex or that use 

substantial CPU resources to run. For some models, complexity & run 

time make SA non-achievable in practice. These issues should be 

reported here. 

25 How does the perceived performance of the model depend on the 

chosen evaluation methodology? 

Could the model evaluation give significantly different results if another 

evaluation approach had been used (other than reported in question 

17)? 
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4. Applications 

We provide in the supplementary material (S2) examples of applications of the OPE protocol 

in the context of six modelling applications: 

1. an Individual Based Model (IBM) used to quantify uncertainties in the estimates of 

mean biomass of the copepod Calanus finmarchicus as a function of sampling design, 

2. a statistical food-web model used to quantify the association between capelin 

(Mallotus villosus) and its main two prey (krill and Calanus species),  

3. simulations from the Non-Deterministic Network Dynamics (NDND) model to assess 

the persistence of trophic controls in the Barents Sea,  

4. an Ecopath model to estimate trophic positions for ecological groups in the Barents Sea,  

5. the Nordic and Barents Seas Atlantis Model (NoBa) simulations to assess cumulative 

impact of fisheries and climate in the Norwegian and Barents Seas, and 

6. the reconstructions and predictions of selected physical and biogeochemical properties 

using the NorCPM1 model in the Barents Sea 

These case studies cover a range of modelling practices, modelling tools and study objectives. 

Knowledge about context within which a model is developed and of the history of the model 

development is essential to understand the evaluation approach.  We realise that the OPE case 

studies presented in this manuscript can be difficult to read without prior knowledge of each 

model context and history. In stand-alone modelling studies, model descriptions would 

normally be provided in full, but this is not the case here. To correct for this, we included 

introductory paragraphs that describe the models that were used in each case study and provide 

a brief history of the models, i.e., where they originate from and how they evolved to finally be 

used in the current case studies. 

5. Discussion 

The OPE protocol as we present it here is complementing other reporting protocols, in particular 

the ODD protocol and the extensions (e.g., ODDO, ODD+D), by focusing on the model 

evaluation. We argue that such a protocol can significantly contribute to improving model 

evaluation and can in general increase transparency and reproducibility of published models.  
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Model evaluation is essential and should accompany all model studies. We have therefore 

developed the OPE protocol for model evaluation, which is generic enough to apply to a wide 

range of ecological modelling studies, from coupled physical-chemical-biological systems 

(NORWECOM.E2E, NorCPM1, Atlantis), to simpler models focussed on food-webs 

interactions (NDND, Ecopath, Gompertz). In our experience, most modellers consider their 

model as somewhat special (i.e., not like other models) and therefore assume that it would be 

difficult to evaluate models using a standardised protocol like the OPE. Indeed, we found that 

it was often work-demanding for modellers to answer the 25 questions of the OPE protocol. 

Through the six case studies, we identified several challenges in documenting the OPE. 

Documenting model evaluation is not a standard step in most modelling studies. Lack of 

experience and training in doing so made it a time-consuming and demanding task that required 

several iterations, and substantial amount of thinking and discussion. At times, the OPE 

exercise was perceived as too time-consuming, little rewarding in the short term and easy to 

postpone. It was often difficult to find the balance between providing informative answers and 

remaining concise. In several cases, it was not always obvious what was the right amount of 

contextual information required to inform readers about the model. When sensitivity analysis 

had been performed in earlier studies, it could be unclear how much this should be reported. At 

first sight, some questions appeared unclear or redundant, though these issues were usually 

resolved after some iterations. Some questions were also of little relevance for some of the 

model applications explored here. Nevertheless, it was possible to successfully apply the OPE 

protocol to each specific case study, despite the diverse collection of model types. We therefore 

anticipate that the protocol will be applicable to many ecological modelling studies. 

The protocol can be used from the start of a modelling study, to guide model evaluation 

throughout the study. Though the primary motivation for this protocol was to construct a tool 

to help modellers reporting how they evaluated their models given specific objectives, we found 

that answering the protocol questions for the individual case studies led to additional 

discussions and reflexions on model evaluation. In some instances, it was identified that 

additional evaluation steps could be taken or that some steps in the evaluation process could 

have been better specified. In the case of the Gompertz case study, documenting the OPE 

revealed that posterior predictive checks could have been considered to improve the evaluation. 

In the NDND case study, it was only after the OPE was documented that the issue of 

determining a threshold between acceptable and unacceptable models became clear. In the 

NoBa case study, it became apparent that many aspects of model evaluation for a complex end-
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to-end model like Atlantis, were still under-developed, and that the OPE could guide future 

work towards improved model evaluation methodology. In all case studies the OPE helped to 

clarify existing evaluation procedures and identify possible improvements. Had the OPE been 

available at the start of these studies, the model evaluation would likely have been conducted 

more thoroughly. This highlights the potential utility of the OPE to stimulate higher standard 

of model evaluation, in addition to its original goal of merely reporting how evaluation was 

conducted. 

It is important to note that the OPE protocol goes far beyond model skill assessment. Assessing 

the prediction skill of ecological models has been the focus of recent literature (see e.g., Stow 

et al., 2009, Olsen et al., 2016 or Steenbeck et al., 2021 and references therein). Skill assessment 

is an integral part of model evaluation and is clearly identified in the first part of the Evaluation 

section of the OPE protocol (questions 17-19). The OPE protocol expands beyond skill 

assessment by addressing issues related to objective, patterns, data, and sensitivity analyses and 

puts balanced focus on these different elements. 

Documenting model evaluation is not yet standard practice. The 25 questions outlined in the 

OPE protocol are a guide to present an extensive – but not exhaustive – description of a model 

evaluation. A full description of the evaluation is often too long to be included in the core part 

of a published manuscript. We advocate that the OPE documentation be presented as a technical 

supplement. By documenting the details of the model evaluation procedure, the OPE provides 

essential information for the peer-review of a modelling study and directly contributes to higher 

transparency. We encourage modellers to try the OPE protocol by using the word template (S1) 

and get help and inspiration from the answers provided in the six case studies (S2). We also 

encourage reviewers to use the OPE questions as a guide when evaluating modelling studies.  

As noted by Grimm et al. (2014), building a 'culture' of model reporting is about doing all these 

things as well as you can because you know that peers and model clients are expecting you to; 

there is no point any more in complaining about “additional effort” for these things. We 

recognise that we are not there yet. Promoting the OPE and similar documentation during the 

peer review process would help in getting this culture in place. 

The current version of the OPE protocol is a work-in-progress. Model evaluation is complex 

and the development of tools for reporting how evaluation is conducted is not a simple problem. 

During the discussions that formed the basis for the current protocol, a central point was that 

modellers have various cultures, experiences, and practices when it comes to model evaluation. 
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These points of view are not always easy to reconcile with each other. Further discussions based 

on the use of the protocol on a wider range of models are expected to lead to revisions of the 

OPE protocol in the future. 

6. Conclusion 

The OPE protocol is proposed as a tool to report the evaluation of ecological models. The 

reporting template is organised along 25 questions which make it easier and faster for modellers 

to report model evaluation. The OPE structure further promotes comprehensive reporting of the 

evaluation process, ranging from objectives, to data, skill assessment, and sensitivity analyses. 

Our experience is that structured reporting of model evaluation helps modellers to think more 

deeply about the evaluation of their models. From this last point, we suggest that it would be 

highly beneficial for modellers to consider the OPE early in the modelling process, in addition 

to using it as a reporting tool (as we have done here) and as a reviewing tool. 
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Abstract:  13 

While ecosystem-based fisheries management calls for explicit accounting for interactions 14 

between exploited populations and their environment, moving from single species to 15 

ecosystem-level assessment is a significant challenge. For many ecologically significant 16 

groups, data may be lacking, collected at inappropriate scales or be highly uncertain. In this 17 

study, we aim to reconstruct trophic interactions in the Norwegian Sea pelagic food-web during 18 

the last three decades. For this purpose, we develop a food-web assessment model compatible 19 

with existing observations and knowledge. The model is based on inverse modelling and is 20 

designed to handle input observations and knowledge that are uncertain. We analyse if the 21 

reconstructed food-web dynamics are supportive of top-down or bottom-up controls on 22 

zooplankton and small pelagic fish and of competition for resources between the three small 23 

pelagic species. Despite high uncertainties in the reconstructed dynamics, the model results 24 

highlight that interannual variations in the biomass of herring, mackerel and blue whiting can 25 

primarily be explained by changes in consumption rather than by predation or fishing. 26 

Variations in the biomass of copepods and krill were also linked to variations in consumption, 27 
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while the past dynamics of amphipods can be explained by both consumption and predation. 28 

The model results provide little support for the hypothesised competition for resources between 29 

the three small pelagic species, despite their overlapping diets. We conclude that it is unlikely 30 

that the assessment and management of these commercial stocks during the last 30 years would 31 

have benefited from explicit incorporation of trophic interactions. 32 

Keywords: 33 

Linear inverse modelling, herring, mackerel, blue whiting, copepods, krill, amphipods, 34 

Norwegian Sea, competition 35 

1. Introduction 36 

The gradual implementation of ecosystem-based fisheries management (EBFM) and associated 37 

integrated ecosystem assessments (IEAs, Levin et al., 2009) has called for models that can 38 

account for interactions between exploited populations and their physical and biological 39 

environment (Fulton, 2010; Link et al., 2010; Collie et al., 2014; Guo et al., 2020). Of relevance 40 

to IEAs are models that explicitly account for trophic interactions between species or groups 41 

of species. Plagányi (2007) reviewed several such models, which include – among others - 42 

multi-species assessment models, mass balanced food-web models, size-based trophic models, 43 

and end-to-end models. The latter resolve a collection of complex processes that can include 44 

ocean circulation, biogeochemistry, trophic interactions across multiple trophic levels, 45 

population dynamics, and human pressures (including fishing).  46 

Moving from single species to ecosystem-level modelling is a significant leap for several 47 

reasons. For many ecologically significant groups, data may be lacking, collected at 48 

inappropriate scales or highly uncertain. The rationale for including or excluding particular 49 

ecosystem components (e.g., jellyfishes, top predators, mesopelagic fauna, etc.) is not always 50 

easy to clarify. It is common that some model input parameters may not be readily available, 51 

may be uncertain or may vary in time and space in ways that are not well described or 52 

understood (Levins, 1974). For example, fish diet composition is known to vary with graphical 53 

locations, seasons, years, age, and size but there is rarely enough data to describe these 54 

variations accurately. Given the high uncertainties associated with food-web models inputs – 55 

whether this concerns observations, parameters, model structure or assumptions – it is likely 56 

that different models based on the same inputs may reconstruct different food-web dynamics.  57 



 3 

Modelling food-webs from low to high trophic levels requires contributions from a range of 58 

experts who may have different conceptual representations of the food-web as well as different 59 

practices in collecting data and in modelling. The inclusion of participants with diverse 60 

expertise during the modelling process, from the conception of the model to the interpretation 61 

of the results, is therefore important to build trust and to allow for the appropriation of the 62 

model results.  63 

Our point of view is that food-web models that support IEAs should 1) be inclusive of various 64 

types of expertise in all phases of the modelling process, 2) acknowledge that input data may 65 

be lacking or may be highly uncertain, 3) recognize that, rather than a single trajectory, an 66 

ensemble of past food-web trajectories may be equally supported by available data and 67 

knowledge. One modelling framework that matches these requirements is the “Chance and 68 

necessity” modelling approach (CaN, Planque and Mullon, 2020). CaN modelling is an inverse 69 

modelling approach that explicitly accounts for uncertainties in input data/information and 70 

provides multiple possible reconstruction of food-web trajectories as outputs. CaN models are 71 

possibilistic, i.e., they provide possible reconstructions of food-web dynamics, without 72 

assigning probability or likelihood (‘probabilistic’ models would provide these). In CaN 73 

models, food-web dynamics are controlled by the flow of biomass between ecosystem 74 

components, and these dynamics are considered possible when they are compatible with the 75 

biological and observational constraints that reflect the knowledge and uncertainties shared by 76 

multiple experts. 77 

In this study, we use CaN modelling to quantify trophic interactions in the pelagic food-web 78 

over multiple decades, in order to support the integrated ecosystem assessment of the 79 

Norwegian Sea (ICES, 2021a). The motivation is to provide a better understanding of the 80 

energy flows within the food-web of the pelagic ecosystem and to understand the connections 81 

between these flows and the interannual changes in the biomass of commercial pelagic fish and 82 

their planktonic prey. The pelagic system in the Norwegian Sea is well studied and monitored, 83 

with regular surveys for commercial species and plankton and accurate reporting of fisheries 84 

catches (ICES, 2021a). In addition, single stock assessments for the main epipelagic fish stocks 85 

(herring, mackerel and blue whiting) provide reliable and consistent biomass estimates (ICES, 86 

2020). There remain, however, large gaps in knowledge and observations. Most observations 87 

take place during the spring and summer months when productivity is high and when several 88 

fish species seasonally migrate into the Norwegian Sea (Skjoldal, 2004). Zooplankton 89 

patchiness and vertical migrations combined with a diversity of escaping behaviour of 90 
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planktonic groups makes it difficult to obtain absolute biomass estimates for the different 91 

planktonic prey from vertical net sampling. The biomass of the mesopelagic fauna and its 92 

contribution to trophic flows is highly uncertain (Siegelman-Charbit and Planque, 2016). There 93 

is also a large uncertainty about the proportion of the annual net primary production (NPP) that 94 

is transferred to higher trophic levels, as this proportion depends on plankton community 95 

composition (Sigman and Hain, 2012) and trophic transfer efficiency that can be highly 96 

variable (Eddy et al., 2021). These make it challenging for experts to assess whether model 97 

results are plausible and can lead to disagreements about the role of particular species or species 98 

groups, their abundance or contribution to the food-web, and ultimately how these should be 99 

represented within a food-web model.  100 

The major pelagic fish stocks in the Sea comprise Norwegian spring spawning herring (Clupea 101 

harengus), Northeast Atlantic mackerel (Scomber scombrus) and blue whiting (Micromesistius 102 

poutassou) which together form the Northeast Atlantic pelagic fish complex. All three stocks 103 

perform large scale seasonal feeding migrations and overlap spatially and temporally during 104 

the feeding season (Utne et al., 2012). Several studies have investigated potential important 105 

ecological interactions within the complex including interspecific competition (Prokopchuk 106 

and Sentyabov, 2006; Langøy et al., 2012; Utne et al., 2012; Bachiller et al., 2016; Mousing 107 

et al., in prep.), regulatory processes such as predation on larvae by older individuals (Skaret 108 

et al., 2015) and redistribution of energy within different ecosystem compartments and adjacent 109 

ocean regions (e.g., Varpe et al., 2005). In addition, the pelagic fish complex is reported to 110 

interact with other species such as amphipods, krill, and mesozooplankton, through both 111 

bottom-up and top-down controls (Melle et al., 2004; Olsen et al., 2007). Bottom-up control 112 

occurs when the abundance or biomass of predators is dependent on available resources from 113 

lower trophic levels, while in top-down control it is the mortality imposed by higher trophic 114 

levels that drives variations in prey biomass (Cury et al., 2003). 115 

Huse et al. (2012) concluded that “the planktivorous fish populations feeding in the Norwegian 116 

Sea have interactions that negatively affect individual growth, mediated through depletion of 117 

their common zooplankton resource”. Ibid argued for the importance of accounting for these 118 

interactions in future ecosystem-based management. 119 

The objectives of this study are threefold. First, we aim to reconstruct an ensemble of possible 120 

trajectories of the Norwegian Sea food web during the last three decades, compatible with 121 

existing observations and knowledge. The second aim is to analyse if the model results support 122 

top-down or bottom-up controls on zooplankton and small pelagic fish. Third, we aim to 123 
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identify if there was possible competition for resources between the three small pelagic species. 124 

We stress the importance of uncertainties associated with the inputs and outputs of this 125 

modelling study and discuss the implication of the results in the context of integrated ecosystem 126 

assessment and fisheries management advice. 127 

2. Material and Method 128 

2.1. The Norwegian Sea pelagic food-web  129 

The Norwegian Sea is located northwest of Norway between 62°N and 75°N (Figure 1), 130 

covering an area of about 1.1 million km2. Its average depth is 1800 m (Skjoldal, 2004) and is 131 

composed of two basins deeper than 3000 m: the Lofoten Basin in the North and the Norwegian 132 

Basin in the South. The Norwegian Sea is a highly productive, seasonally mixed ecosystem 133 

with an annual primary production of ca. 80 gC m-2 y-2 (Rey, 2004; Skogen et al., 2007). The 134 

Norwegian Sea exhibits strong seasonal changes in temperature, light and nutrients conditions 135 

(Rey, 2004; Nilsen and Falck, 2006), leading to a typical spring-bloom dominated system with 136 

initial dominance by diatoms, followed by smaller flagellates as silicate becomes depleted. The 137 

spring bloom begins in May in the south-eastern part and propagates northwards and westwards 138 

(Rey, 2004). Copepods is the dominant zooplankton group in terms of abundance in the 139 

Norwegian Sea and the species Calanus finmarchicus (Gunnerus, 1770) constitutes the main 140 

part of the total zooplankton biomass (Melle et al., 2004). The larger zooplankton krill and 141 

amphipods are also abundant in this area. The Norwegian Sea is a feeding area for some of the 142 

largest exploited fish stocks in the world, such as the Norwegian spring spawning herring 143 

(Clupea harengus, Linnaeus, 1758), blue whiting (Micromesistius poutassou, Risso, 1827) and 144 

Northeast Atlantic mackerel (Scomber scombrus, Linnaeus, 1758) which feed on the 145 

aforementioned zooplankton groups (Langøy et al., 2012; Bachiller et al., 2016). The deep 146 

basins and the slopes are characterised by the presence of a deep scattering layer populated by 147 

mesopelagic fauna. Commonly found species in this layer includes the armhook squid 148 

(Gonatus steenstrupi, Kristensen 1981), ribbon barracudina (Arctozenus risso, Bonaparte 149 

1840), beaked redfish (Sebastes mentella, Travin 1951), helmet jellyfish (Periphylla 150 

periphylla Péron & Lesueur, 1810), and glacier lanternfish (Benthosema glaciale, Reinhardt 151 

1837). The degree of trophic interaction between mesopelagic species and the epipelagic food-152 

web is highly uncertain, though the deep scattering layer may hold a total biomass similar or 153 

greater to that in the epipelagic layer (Siegelman-Charbit and Planque, 2016). The Norwegian 154 

Sea is an important feeding area for several marine mammals (Skern-Mauritzen, M. et al., 155 
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submitted) such as fin-, minke-, sperm- and humpback whales. Ibid study suggest that marine 156 

mammals in the Norwegian Sea consume an average of 4.6 million tonnes annually, which is 157 

significantly more than the average fisheries catch (1.45 million tonnes in the period 2006-158 

2015).    159 

2.2. The Norwegian Sea CaN model 160 

The food-web model for the Norwegian Sea was constructed in a participatory manner. Two 161 

workshops were organised in December 2020 and February 2021, followed by several short 162 

meetings between February and May 2021. These were attended by members of the ICES 163 

working group on the integrated assessment of the Norwegian Sea (WGINOR, ICES, 2021a) 164 

and selected specialists for the Norwegian and Barents Sea ecosystem working at the Institute 165 

of Marine Research, Norway. These meetings were used to refine the objectives of the CaN 166 

model, to elaborate the food-web structure, to identify relevant data and to discuss the model 167 

outputs. In parallel, model input parameters were derived from literature reviews. The 168 

description of the CaN model for the Norwegian Sea food-web is provided below, following 169 

the standard ODD model description protocol (Grimm et al., 2006, 2010, 2020). 170 

2.2.1. Purpose and patterns 171 

CaN is a framework for modelling the dynamics of food-webs. The purpose of using CaN 172 

models is to reconstruct the possible trajectories of a food-web given existing knowledge and 173 

observations about its past dynamics. The primary ecological patterns are the interannual 174 

fluctuations in the biomass of the different species groups and the fluctuations in the fluxes of 175 

biomass between them. Other patterns can be derived, such as emerging trophic functional 176 

relationships, diet composition, or correlations between species biomass and trophic fluxes. 177 

The latter are used to address the objectives of the present study regarding trophic controls and 178 

competition for resources. 179 

2.2.2. Entities, state variables and scales 180 

In CaN, food-webs are defined by a set of components (species or tropho-species) and a set of 181 

fluxes between them (feeding interactions). The state variables are the biomass of the different 182 

species at each time step. In the Norwegian Sea CaN model, there are six trophospecies within 183 

the model domain: copepods, krill, amphipods, herring, mackerel, and blue whiting. We 184 

consider six additional components outside the model domain which contribute to the transfer 185 

of biomass in and out of the model domain: primary producers, small mesozooplankton 186 

(< 2mm), large mesozooplankton (> 2mm), mesopelagic species, marine birds, and mammals. 187 
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Also, fisheries catch for the three main fish species, are included in the model. The time step 188 

of the model is annual, covering the period 1988-2020. The geographical extent is the open 189 

basin of the Norwegian Sea (Figure 1). The model is not spatialised and considers the 190 

Norwegian Sea as one single entity. 191 

 192 

 Figure 1. Schematic representation of the Norwegian Sea CaN model. A: geographical extent of the model. B: 193 
Food-web structure. a: blue whiting, b: mackerel, c: herring, d: copepods, e: krill, f: amphipods, g: primary 194 
producers, h: small zooplankton, i: mesopelagic fauna, j: large zooplankton, k: birds, l: marine mammals, m: 195 
fisheries operating in the Norwegian Sea, n: fisheries operating outside the Norwegian Sea. Arrow symbolise 196 
trophic (plain) and non-trophic (dashed) fluxes. Species coloured in black are included in the model domain. For 197 
species coloured in grey, only the fluxes in/out from these species are considered in the model.  198 

2.2.3. Process overview and scheduling 199 

A CaN model reconstruct the dynamics of the biomass of species from the balance between 200 

ingoing fluxes (consumption or import) and outgoing fluxes (predation, export, or fisheries). 201 

The model is discrete in time and the biomasses at time t+1 are fully determined by the 202 

biomasses at time t and the fluxes operating between t and t+1. This is the deterministic part 203 

of the model. The fluxes between compartments are not deterministic. Instead, they are drawn 204 

randomly within a set of possible values that fulfils pre-defined constraints. This is the 205 

stochastic part of the model. The Norwegian Sea model includes 32 trophic links, which 206 

express the prey-predator interactions in the food-web, and 6 non-trophic links which represent 207 

fishing of the small pelagic fish species by fisheries operating inside and outside the Norwegian 208 

Sea. 209 
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2.2.4. Design concepts 210 

2.2.4.1. Basic principles 211 

CaN models are biomass-based dynamic food-web models. The principles are similar to those 212 

outlined in other food-web models such as Ecopath (Polovina, 1984) or Ecopath with Ecosim 213 

(Christensen and Walters, 2004) with the notable differences that 1) the food-web is not 214 

assumed to be at equilibrium and 2) the trophic flows are modelled as a stochastic process, 215 

within some specified constraints (section 2.2.7) and 3) the master equation of Ecopath and 216 

CaN are slightly different (appendix 1 in Planque et al., 2014). 217 

2.2.4.2. Emergence 218 

The raw outputs of CaN models are time-series of all biomass fluxes and the initial biomass of 219 

the modelled species. From these, it is possible to derive emergent properties of the food-web 220 

such as diet fractions for individual predator species, total consumption, ratios of consumption 221 

over biomass, production, throughflow, or other indices relevant to ecological network analysis 222 

(ENA, Ulanowicz, 2004; Fath et al., 2007; Guesnet et al., 2015). In this application of the CaN 223 

model, the focus is on three emergent properties: the relationship between consumption and 224 

population growth which can be indicative of bottom-up control, the relationship between 225 

predation and population growth which can be indicative of top-down control and the 226 

relationship between consumption rates of predatory species with overlapping diets, which can 227 

be indicative of resource competition.  228 

2.2.4.3. Adaptation, objectives, learning, prediction, sensing and interaction 229 

These ODD descriptors, that are mostly relevant to individual based models, are not applicable 230 

for the description of the CaN model presented here. 231 

2.2.4.4. Stochasticity 232 

CaN models are stochastic. The principle in CaN is to draw many random food-web trajectories 233 

within the set of possible ones. The food-web trajectories are referred to as "CaN samples". 234 

There is no probability associated with an individual CaN sample, which represents one 235 

possible trajectory of the food-web dynamics. The CaN model is said to be possibilistic. 236 

2.2.4.5. Collectives 237 

This section is not relevant for CaN models. 238 

2.2.4.6. Observation 239 

We derive 3 types of observations from CaN simulations: 240 

1. Time-series of species biomass and fluxes between species/fishery 241 
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2. Diet composition 242 

3. Correlations between biomasses and fluxes 243 

These three types of observations can be derived from individual CaN samples. We use many 244 

CaN samples to explore the range and the distribution of these observations. 245 

2.2.5. Initialization 246 

The elements necessary to build the CaN model for the Norwegian Sea are: 247 

- The list of species and the biomass fluxes (Figure 1) 248 

- The species-specific input parameters used for the CaN master equation and the implicit 249 

constraints (Table 1)  250 

- The list of available observations, often in the form of data-series (Table 2) 251 

- The list of explicit constraints (Supplementary material S3) 252 

The biomass of species at the start of the modelling time-period (year 1988) constitutes the 253 

initial conditions. These do not need to be specified in the initialisation phase as they are 254 

sampled during CaN modelling. 255 

Table 1: input parameter values for RCaN 256 

 
Tropho-species 

Satiation 
(σ) 

Inertia 
(α) 

Other 
losses (μ) 

Assimilation 
efficiency (γ) Digestability (κ) 

Refuge 
biomass (β) 

Outside 
the 

model 
domain 

Phytoplankton 
Small zooplankton 
Large zooplankton 

Mesopelagics 

/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 

0.65 
0.90 
0.90 
0.90 

/ 
/ 
/ 
/ 

Inside 
the 

model 
domain 

Copepods 
Krill 

Amphipods 
Herring 

Blue whiting 
Mackerel 

141.6 
60.0 
34.0 
12.0 
9.3 

12.0 

8.22 
4.05 
3.67 
0.55 
0.72 
0.52 

9.22 
5.19 
7.04 
3.40 
3.00 
4.20 

1.0 
1.0 
1.0 
0.9 
0.9 
0.9 

0.84 
0.84 
0.84 
0.90 
0.90 
0.90 

500 
165 
10 

175 
105 
175 

 257 

2.2.6. Input data 258 

Many data time-series for the Norwegian Sea ecosystem are compiled and reported annually 259 

by WGINOR (ICES, 2019). In addition to these series which mostly originate from dedicated 260 

monitoring programs, there are punctual observations, i.e. for one or few years only. Some 261 

input data are directly derived from field measurements, like survey indices of zooplankton 262 

biomass (ICES, 2021b). Others can result from complex modelling operations, such as fish 263 

stock biomass derived from fish stock assessment models (ICES, 2020) or net primary 264 

production derived from satellite‐based primary production models (Arrigo and van Dijken, 265 
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2011). Diet data for herring, mackerel and blue whiting have been collected through stomach 266 

sampling programs (Langøy et al., 2012) starting in 2004 and total consumption estimates for 267 

small pelagic fish species are taken from bioenergetic model results (Bachiller et al., 2018). 268 

The complete list of input data series and punctual observations used in this study is provided 269 

in Table 2. 270 

Table 2: list of data series/input information, used to inform and constrain the model 271 

Observational series Years Sources 

Primary production 2003 – 2019 Unpublished results 

Zooplankton biomass 1995 - 2019 WGINOR 2019, figure 2.4 

Herring biomass 1988 - 2020 WGWIDE 2020, table 4.5.1.4 

Blue whiting biomass 1988 - 2020 WGWIDE 2020, table 2.4.2.5 

Mackerel biomass 1988 - 2020 WGWIDE 2020, table 8.7.3.1 

Consumption/Biomass herring 2005 - 2010 Bachiller et al, 2018, figure 9 

Consumption/Biomass blue whiting 2005 – 2010 Bachiller et al, 2018, figure 9 

Consumption/Biomass mackerel 2005 - 2010 Bachiller et al, 2018, figure 9 

Herring diet 2004 - 2016 Unpublished results from IMR diet database 

Blue whiting diet 2004 - 2016 Unpublished results from IMR diet database 

Mackerel diet 2004 - 2016 Unpublished results from IMR diet database 

Herring catches 1988 - 2019 WGWIDE 2020, table 4.4.1.1 

Blue whiting catches 1988 - 2019 WGWIDE 2020, table 2.3.1.1 

Mackerel catches 1988 - 2019 WGWIDE 2020, table 8.4.1.1 

 272 

2.2.7. Model constraints 273 

Constraints are specific to CaN models (and therefore not listed in the items of the ODD 274 

protocols).  275 

In CaN models, constraints express our knowledge about the system, and how we distinguish 276 

possible from impossible dynamics. CaN model outputs are stochastic solutions within a set of 277 

predefined constraints. All CaN models contain implicit/compulsory constraints which reflect 278 

that: biomasses are always positive, fluxes are always positive, the growth and mortality rates 279 

of a tropho-species is bounded (inertia constraint) and feeding by unit time/biomass is also 280 

bounded (satiation constraint). Additonal explicit constraints can be specified to reflect 281 

additional knowledge about the food-web, such as information on the production, biomass, or 282 

consumption of different trophospecies. Explicit constraints are written in the form of symbolic 283 

expressions (equalities or inequalities) that relate model components, fluxes, and observations. 284 

CaN model deals with uncertainties through the constraints. For example, if the biomass of an 285 
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animal group is not monitored but has been inferred to be between a minimum and a maximum 286 

bound, these bounds can be used to constrain the possible dynamics of the food-web. Similarly, 287 

if diet data is available for some groups for some years, these can be used to constrain the 288 

possible food-web trajectories within these dietary limits. The construction of different types 289 

of constraints is further developed in Drouineau et al. (2021). 290 

The CaN model for the Norwegian Sea includes several types of constraints that can directly 291 

and/or indirectly restrict fluxes by constraining the range of possible biomass. Constraints on 292 

fish catches directly affect fluxes from pelagic fish to fisheries. Constraints on satiation directly 293 

limit incoming fluxes for the six species within the model domain. Constraints on NPP directly 294 

affect fluxes from primary producers to copepods and krill and indirectly affect fluxes from 295 

small zooplankton to copepods and krill. Constraints associated with diet or total consumption 296 

estimates affect the fluxes from zooplankton and mesopelagic fauna towards small pelagic fish. 297 

The range of possible biomass for the six main species is additionally constrained by inertia, 298 

refuge biomass and compliance with biomass observations. While some constraints apply for 299 

the entire model period (1988-2020) others only apply for selected years when appropriate data 300 

were available. In total 107 constraints were used in this study. The list of constraints used in 301 

this model, their period of application as well as their sources can be found in Supplementary 302 

Material S3. 303 

2.2.8. Submodels 304 

CaN models have only one main model structure which is summarised by its master equation 305 

and the set of constraints. The CaN master equation accounts for how temporal changes in 306 

biomass in the various model components are related to the biomass fluxes between 307 

components: 308 

𝐵𝑖,𝑡+1 = 𝑒(−𝜇𝑖)𝐵𝑖,𝑡 +
(1−𝑒(−𝜇𝑖))

𝜇𝑖
[𝛾𝑖 ∑ 𝜅𝑗𝐹𝑗𝑖𝑗 − ∑ 𝐹𝑖𝑗𝑗 ] (1) 309 

where Bi,t is the biomass of component i at time t, Fij and Fji are the biomass fluxes between 310 

components i and j, and 𝜇, 𝛾 and 𝜅 are input parameters. Model input parameters were derived 311 

from life history theory (Hoenig, 1983), metabolic theory of ecology (Savage et al, 2004), 312 

allometric relationships (Yodzis and Innes, 1992; Gillooly et al., 2001; Makarieva et al., 2008) 313 

or direct measurements (Johnstone et al., 1993). For each species within the model domain, six 314 

biological parameters are provided: satiety (σ), inertia (α), metabolic losses (μ), assimilation 315 

efficiency (γ), digestibility (κ) and refuge biomass (β) (Table 1). For trophospecies outside the 316 

model, no input parameter is required except for prey species for which the digestibility (κ) 317 
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must be provided. The details of the derivation and calculation of the input parameters are 318 

presented in Lindstrøm et al. (2017) and in Supplementary Material S2.  319 

Sampling of CaN trajectories is achieved using a Gibbs polytope sampling algorithm which is 320 

efficient for problems of high dimensionality (Aditi Laddha and Santosh Vempala, 2020; 321 

Drouineau et al., 2021). A total of 100,000 food-web trajectories were sampled and only one 322 

for every 1000 samples were retained (a procedure known as thinning, designed to avoid non-323 

independence between MCMC samples). The resulting 1000 trajectories were analysed to 324 

explore past food-web trajectories and trophic-controls. 325 

2.2.9. Summary 326 

The Norwegian Sea CaN model is a food-web model defined by 1) six main trophospecies and 327 

six additional components, 2) 32 biomass fluxes, 3) a master equation that relate biomass to 328 

fluxes, 4) 6 input parameters for each species, 5) 4 species-specific implicit constraints, 6) 107 329 

explicit constraints and 7) observational data.  330 

The steps for the implementation of CaN models include 1) model design (defining the 331 

components and the fluxes), 2) entry of input parameters, 3) provision of observational data, 332 

4) definition of explicit constraints, 5) construction of the system of in/equalities that defines 333 

possible trajectories, 6) sampling possible trajectories and 7) graphical representation and 334 

analysis of the model results. The model was built using the R library RCaN and the Java 335 

graphical user interface RCaNconstructor (Drouineau et al., 2021) which integrate all these 336 

steps into an interactive platform that can be used in a participatory context. 337 

2.3. Analysis of CaN model outputs 338 

The primary outputs of CaN models consist of time-trajectories of the biomass and fluxes. 339 

These provide a first level assessment of the past dynamics of the food-web. This assessment 340 

explicitly includes uncertainties about biomass and fluxes, which reflect the degree of precision 341 

in the input knowledge and data. From these trajectories, it is possible to derive additional 342 

patterns that are relevant for the investigation of the food web dynamics. These patterns include 343 

for example the representation of diet fractions, i.e. the proportion of different prey in the diet 344 

of individual predator species.  345 

The present study has a primary focus on trophic controls, either by predation pressure (top-346 

down) or by resource availability (bottom-up). We investigated the relationship between 347 

individual species growth and the relative predation pressure (the fluxes going out) and food 348 

consumption (the fluxes coming in). Species growth is defined as the ratio of species biomass 349 
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between two time-steps 𝐵𝑖,𝑡+1 𝐵𝑖,𝑡⁄ . Relative predation pressure is defined by the sum of 350 

outgoing fluxes relative to the species biomass ∑ 𝐹𝑖,𝑗𝑗 𝐵𝑖,𝑡⁄ , while relative consumption is 351 

defined by the sum of ingoing fluxes relative to the species biomass ∑ 𝐹𝑗,𝑖𝑗 𝐵𝑖,𝑡⁄ . A positive 352 

Pearson correlation coefficient between species growth and consumption provides an 353 

indication for the presence of bottom-up control. A negative Pearson correlation coefficient 354 

between species growth and predation provides an indication for the presence of top-down 355 

control. 356 

We investigated the potential for competition between small pelagic fish species by running 357 

pairwise comparisons of relative consumption. A negative correlation between consumptions 358 

is indicative of resource competition i.e., when one species consumes more the other consumes 359 

less and vice-versa. The competition was investigated by comparing consumption of all 360 

planktonic prey (total consumption) and by comparing consumption of individual prey groups 361 

(prey-specific consumption). For total consumption we performed pairwise comparisons 362 

between pelagic fish species. In this case, a negative correlation supports the hypothesis that 363 

the total consumption by one species is negatively affected by (or affecting) the total 364 

consumption by the other. For prey-specific consumption, we performed comparisons between 365 

one pelagic fish and the two other combined. In this case, a negative correlation supports the 366 

hypothesis that the consumption of a given prey by the first pelagic fish is affected by (or 367 

affecting) the consumption of the same prey by the two others pelagic fish. 368 

For the trophic control and competition analyses, we computed the Pearson correlation 369 

coefficients for each RCaN trajectory. We then plotted the density distribution of the 370 

correlation coefficients based on the full set of trajectories.  371 

3. Results 372 

The primary output of the CaN model is a set of possible food-web trajectories. Each trajectory 373 

is composed of six biomass time-series and 38 flux time-series that are compatible with each 374 

other and with every model constraint. 375 

3.1. Biomass trajectories 376 

The envelopes of the biomass trajectories of the six species reflect the uncertainty around the 377 

input observational data.  The biomass time series of the pelagic fish have a relatively high 378 

certainty, unlike  the biomass time series of zooplankton groups (Figure 2). Individual 379 

trajectories display high year-to-year variations within these envelopes, and individual time-380 
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series tend to reach extreme high or low biomass (i.e., close to the limit of the envelope) in at 381 

least one year of the sampling period 1988-2020.  382 

 383 

Figure 2. Reconstructed time-series of biomass for the six species within the model domain: copepods, krill, 384 
amphipods, herring, blue whiting, and mackerel. Each panel shows the envelopes containing 100% (light), 95% 385 
(medium) and 50% (dark) of the 1000 sampled trajectories. Three individual trajectories are provided for 386 
illustration in plain, dashed and dash-dotted lines. 387 

3.2. Fluxes trajectories 388 

The envelopes of the flux time-series highlight how certain or uncertain the reconstructions of 389 

historical fluxes may be, given currently available data and knowledge (Figure 3). For the 390 

consumption of primary producers by copepods, the CaN reconstructions range between 300 391 

and 800 Mt.year-1. No clear temporal trend can be detected while there is high variability 392 

between years and between CaN trajectories. The consumption of copepods by herring is 393 

provided with slightly greater certainty, in particular for the period 2004-2016 when estimates 394 

of consumption are available based on stomach contents analysis of fish collated at specific 395 

surveys. Note the higher uncertainties in years 2008 and 2011, when these estimates were not 396 

available. The reconstructions of fluxes from the herring population to the fishery are heavily 397 

constrained by the catch data, which are known with high precision. As was the case for 398 

biomass time-series, flux time-series display high year-to-year variations and reach extreme 399 



 15 

high or low fluxes (i.e., close to the limit of the envelope) in at least one year of the period 400 

1988-2020. The complete set of reconstructed fluxes is provided in Supplementary Material 401 

S4.  402 

 403 

Figure 3. Reconstructed time-series of biomass for three selected fluxes: primary producers to copepods (left), 404 
copepods to herring (middle) and herring to fisheries (right). Each panel shows the envelopes containing 100% 405 
(light), 95% (medium) and 50% (dark) of the 1000 sampled trajectories. Three individual trajectories are provided 406 
for illustration in plain, dashed and dash-dotted lines.  407 

3.3. Diets 408 

It is possible to derive the proportion of prey in the diet of copepods, krill, amphipods, herring, 409 

blue whiting, and mackerel (Figure 4) from the CaN reconstructions. These diets reflect the 410 

information provided in constraints (e.g., constraint 11 which specifies that the proportion of 411 

small zooplankton in the diet of copepods cannot exceed 20%, or constraints 57 and 58 which 412 

relate the consumption of copepods by herring in the model to the consumption reported in 413 

field observations). These diets also reflect the dynamic balance between resource 414 

requirements and prey availability which is expressed in the CaN master equation. From these 415 

results, the diets of herring, blue whiting and mackerel appear to be diversified and overlap 416 

with each other (Figure 4-top). When averaged over many trajectories, the diets display little 417 

interannual variability as exemplified for herring (Figure 4-middle). However, estimates from 418 

individual trajectories highlight the within-year uncertainty in the proportion of individual prey 419 

(Figure 4-bottom). 420 
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 421 

Figure 4.  Reconstruction of diets. Average diet for each of the six modelled species (top), annual diet for herring 422 
in individual years averaged over all CaN samples (middle) and in one year (2010) for 30 selected CaN sample. 423 
Coloured bars indicate the proportion of each prey consumed by each predator (top) or for herring in each 424 
individual year (middle) or individual CaN samples (bottom). 425 

3.4. Top-down and bottom-up controls 426 

For herring, there is a clear positive link between consumption and population growth across 427 

all trajectories (Figure 5-left), despite uncertainties in the consumption of individual prey 428 

(Figure 4 and S4). This is in line with a possible bottom-up control. On the other hand, there is 429 

no clear relationship between herring population growth and predation/fishing (Figure 5-430 

middle), which suggests that top-down control is not operative. The density distribution of the 431 

correlations - between population growth and consumption/predation - calculated at the 432 

individual trajectory level confirms the support for apparent bottom-up control and lack of 433 
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support for top-down control (Figure 5-right). A similar pattern of trophic control is observed 434 

for mackerel and blue whiting and to a lesser extent for copepods and krill (Figure 6). The case 435 

of amphipods is more complex. There appears to be a possible combination of top-down and 436 

bottom-up controls. There are few trajectories for which the correlation between consumption 437 

and growth are positive-high (bottom-up) and few trajectories for which the correlation 438 

between predation and growth are negative-high (top-down). The hypotheses that amphipods’ 439 

population growth could be limited by either predation or food availability are both plausible. 440 

 441 

 Figure 5. The relationship between population growth of herring and relative consumption (left) or relative 442 
predation, including fishing (middle). Each dot represents the estimated growth and feeding/predation for a given 443 
year in a given RCaN sample. The coloured density contours help to visualise the shape of the scatterplot. The 444 
distribution of the correlation coefficients between feeding (green-dotted) or predation (red-plain) and 445 
population growth are shown on the right panel.  446 
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 447 

Figure 6. Distribution of the correlation coefficients between consumption (green-dotted) or predation (red-plain) 448 
and population growth. A positive correlation between growth and consumption is indicative of bottom-up 449 
control. A negative correlation between growth and predation is indicative of top-down control. The bottom-left 450 
panel (herring) is the same as in Figure 5. 451 

3.5. Competition between small pelagic fish 452 

The pairwise correlations between total prey consumption by herring, mackerel and blue 453 

whiting are generally close to zero, which is indicative of absent or weak competition for 454 

resources between the three species (Figure 7). The slight negative correlation between herring 455 

and mackerel suggests a possible but limited competition between the two species while the 456 

positive correlations for blue-whiting vs mackerel and blue whiting vs herring suggest that 457 

these may jointly have increased consumption when more resources became available. To 458 

further investigate how competition for specific prey resources may operate, we represented 459 

the correlation between the consumption of specific resources (copepods, krill and amphipods) 460 

by herring, mackerel and blue whiting (Figure 8). Most correlations are centred around zero, 461 

which suggests absence or weak competition between the three pelagic species. The slightly 462 

negative correlation between copepod consumption by herring and by mackerel + blue whiting 463 

(Figure 8) is consistent with the negative correlation between herring and mackerel total 464 

consumption (Figure 7). This supports a possible resource limitation for herring feeding on 465 

copepods when mackerel feed heavily on copepods. The slight positive correlations for the 466 
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consumption of amphipods suggested that amphipods production has possibly been driving 467 

variations in consumption by the three pelagic fish. These positive correlations do not support 468 

the hypothesis of competition for amphipod resources by the three pelagic fish populations. 469 

 470 

Figure 7: Distribution of the correlation coefficients between herring, mackerel, and blue whiting consumptions 471 
in the Norwegian Sea. Each panel shows the density distribution of the correlation coefficient between species 472 
consumption. Positive correlations are indicative of similar variations in consumption between predators. 473 
Negative correlations are indicative of competition.  474 
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   475 

 476 

Figure 8: Distribution of the correlation coefficients between the consumption of copepods (top), krill (middle) 477 
and amphipods (bottom) by herring (left), mackerel (centre), and blue whiting (right) and the consumption of the 478 
same prey by the 2 other pelagic fish. Positive correlations are indicative of joint variations in consumption 479 
between predators. Negative correlations are indicative of resource limitations due to competition for specific 480 
prey. 481 

 482 

4. Discussion 483 

4.1. Trophic interactions between small pelagic fish and their prey 484 

Using CaN modelling we have reconstructed a collection of food-web trajectories for the 485 

Norwegian Sea, compatible with existing data and knowledge, and explicitly accounting for 486 
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uncertainties. From these trajectories we have reconstructed the diets of herring, mackerel, and 487 

blue whiting and of their planktonic prey: copepods, krill and amphipods. We have estimated 488 

correlations between population growth, prey consumption and predation pressure. Our results 489 

show that for all species except amphipods, there is a clear positive correlation between 490 

population growth and consumption of prey, supportive of a possible bottom-up control. On 491 

the other hand, we have found no evidence for top-down controls by any of the predators on 492 

their planktonic prey. Our results also suggest no or very limited support for interspecific 493 

competition between the small pelagic species at the population scale, as no significant 494 

covariations in biomass and consumption of the three species was observed on an interannual 495 

time scale.  496 

These results are in contrast with previous studies that have argued for strong top-down 497 

controls by planktivorous fish on zooplankton (Skjoldal, 2004; Huse et al., 2012). Large stocks 498 

of herring and concomitant increased entry of blue whiting have been correlated with low 499 

copepod biomasses the following year (Olsen et al., 2007). Similarly, long term trends seem to 500 

indicate a decreased zooplankton biomass coordinated with an increase in planktivorous fish 501 

biomass (Huse et al 2012). It has also been suggested that small pelagic fish may compete for 502 

limiting resources at local scales and that this can affect somatic growth (Huse et al., 2012; 503 

Olafsdottir et al., 2016).  504 

A recent modelling study, assessing the impact of sampling design on zooplankton biomass 505 

estimates, suggests that the above zooplankton trends are highly uncertain, mainly as a result 506 

of zooplankton patchy distribution (Hjøllo et al., 2021). While previous works have focused 507 

on the copepod species Calanus finmarchicus, the dominant mesozooplankton species in the 508 

Norwegian Sea (Melle et al., 2004), the CaN model presented here includes multiple prey 509 

groups. This provides more flexibility to account for possible changes in diet or in trophic 510 

controls that are known to vary spatially and seasonally (Olsen et al., 2007; Varpe and Fiksen, 511 

2010). The apparent lack of interspecific competition could be explained by differences in 512 

phenology with different timing of the main/peak feeding season (Langøy et al., 2012) and/or 513 

behavioural differences in their daily movement patterns (Debes et al., 2012). Furthermore, 514 

changes in migration behaviour may also have been a major factor affecting food availability 515 

and the potential for competition between pelagic fish. The standing biomass, production, and 516 

spatiotemporal dynamics of zooplankton during the feeding season may affect the pelagic fish 517 

complex. Separate areas and water masses in the Nordic seas differ in the relative abundance 518 

of zooplankton during the feeding season due to differences in, among others, growth rate, 519 
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species composition and seasonal vertical migration (Dalpadado et al., 1998; Broms et al., 520 

2009, in prep.; Bagøien et al., 2012). Generally, the seasonal zooplankton development in the 521 

Norwegian Sea and adjacent areas is progressively delayed from southeast to northwest and 522 

from coastal- to Atlantic and further to Arctic waters (Broms and Melle, 2007; Bagøien et al., 523 

2012). The feeding migration pattern of herring have been suggested to follow spatial gradients 524 

in prey availability (Broms et al., 2012) and the geographical expansion of mackerel since the 525 

mid-2000s have partly been explained by food limitation (Olafsdottir et al., 2019).  526 

Interspecific competition depends on the degree of spatiotemporal overlap between predator 527 

species. Even when species do co-occur, intra- and interspecific competition implies resource 528 

limitation. Bachiller et al. (2016) reported dietary overlap between herring and mackerel to be 529 

larger when the fish co-occurred indicating that the species were predating on the same 530 

zooplankton patches. In addition, they argued that the lack of prey switching indicated limited 531 

interspecific competition. In our study, we found possible but limited competition between 532 

mackerel and herring which is in accordance with Utne et al. (2012) who, based on a modelling 533 

study, reported only a minor increase in annual consumption when species were simulated 534 

individually (i.e., with no interspecific competition). We found no indication of competition 535 

between blue whiting and the two other pelagic species.  536 

4.2. Model uncertainties and sensitivity 537 

Uncertainties in the outputs of the CaN model presented here are generally high, at least in 538 

comparison with other commonly used food-web models for the same region (Skaret and 539 

Pitcher, 2016; Bentley et al., 2017; Pedersen et al., 2021). This may appear, at first sight, as a 540 

limitation of the CaN modelling approach. Rather, we contend that these high uncertainties are 541 

a true representation of uncertainties in input data and knowledge. Constructing a CaN model 542 

compatible with the entire set of available input information is an iterative process during 543 

which 'precisely wrong' models are gradually eliminated by relaxing model constraints or 544 

decreasing certainty in some of the input observations. This process, which was conducted in 545 

a participatory manner, is a way to identify where information might be lacking, biased, not 546 

easily scalable to the entire Norwegian Sea or simply uncertain. One key feature of the CaN 547 

models emerging from this process is that the outputs – i.e.  all individual food-web trajectory 548 

sampled with CaN - are always compatible with input data and knowledge. This is often not 549 

the case for EwE models for which at least part of the past observations lie outside the 550 

confidence bounds of the model outputs (see for example Figure 5 in Bentley et al., 2017;  and 551 

Figure 2 in Pedersen et al., 2021).  552 
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It is possible to draw robust conclusions on trophic controls and competition for the three 553 

pelagic fish stocks and their prey in the Norwegian Sea, despite the large uncertainties in 554 

individual biomass and trophic flux estimates. This is because all food-web components are 555 

linked to each other and to the input observations, thereby constraining the range of possible 556 

trophic interactions.  557 

As with any model, the results obtained with the CaN model and the conclusions drawn from 558 

them depend on the modelling choices and, in particular, on the values of the input parameters. 559 

Presently, it’s not yet possible to handle uncertainty in model input parameters in RCaN, but 560 

the sensitivity of the model to uncertain parameter values can be assessed through standard 561 

sensitivity analyses (EPA, 2009). We explored the sensitivity of our main conclusions to a 562 

range of parameter values and assumptions, including primary production, fishing intensity, 563 

metabolic losses, inertia, and satiation (Supplementary material S5). When primary production 564 

is reduced to extreme low levels (10% of the baseline level) there is no solution i.e., the primary 565 

production is not sufficient to sustain the observed food-web dynamics. When fisheries catches 566 

are raised to significantly higher levels (200% of the baseline level), the CaN sampling is 567 

suboptimal. Extreme decrease or increase in metabolic losses of mackerel are also incompatible 568 

with the remainder of the model parameters (i.e. no model solution). Increasing the satiation of 569 

blue whiting or increasing the satiation of mackerel led to few trajectories in which blue whiting 570 

and mackerel consumptions were negatively correlated, suggesting apparent competition. 571 

Aside from these few extreme cases, our conclusions are robust to uncertainties in model 572 

parameters and inputs. 573 

The evaluation of the model was performed based on the match between observed and 574 

simulated ecological patterns. These patterns primarily include time-series of biomass and 575 

fluxes, and diet patterns. The sampling performance of the model was also diagnosed by 576 

inspecting that the MCM sampling chains were mixing properly and were not autocorrelated. 577 

A detailed report on the model evaluation is provided in supplementary material S6. 578 

4.3. Contribution to integrated assessment and management 579 

Ecological models are important tools to perform marine integrated ecosystem assessments. 580 

The present modelling study was stimulated from discussions within the IEA group for the 581 

Norwegian sea (WGINOR, ICES, 2021a). Ecological observations on their own could not 582 

clarify matters concerning competition between the small pelagic fish species and the role of 583 

their main zooplankton prey. Food-web modelling represented a suitable approach to integrate 584 
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existing information, but this was further complicated by uncertainties and variability in many 585 

ecological parameters, and the lack of precise population estimates of biomasses and trophic 586 

fluxes. Building and tuning ecosystem models often requires extensive time and effort 587 

(Plagányi, 2007), and the resulting models may be perceived as ‘black boxes’ for non-588 

modelers. In comparison, the CaN model presented here is transparent and relatively simple, 589 

which provides an opportunity for participatory modelling. This, in turn, promotes better 590 

communication and a sense of ownership of the model and its results, by a wider community. 591 

Adding new observations and modifying model constraints is straightforward in CaN models. 592 

This flexibility supports joint explorations of the model results under varying assumptions and 593 

input data, which favours trust building between modelers, experimental and observational 594 

scientists, and end-users. Because the precision of the model outputs is directly related to the 595 

precision of the input information, CaN model also helps modellers and users in defining where 596 

information is critical and where it might be lacking or be of insufficient quality.  597 

A key task of the IEA group in the Norwegian sea is to consider if single-species assessments 598 

could be improved by adding multispecies interactions, either through competition or bottom-599 

up/top-down controls. In a way similar to single-species assessment, which are used to 600 

reconstruct populations’ dynamics, CaN model can reconstruct past dynamics of the food web, 601 

and give insights into past and present multispecies interactions that can inform management. 602 

The present CaN model results do not support resource competition as a main driver for the 603 

dynamics of individual small pelagic fish populations, which points to the likely limited impact 604 

of including competition for the management of herring, mackerel and blue whiting. On the 605 

other hand, the population growth of the three species is tightly coupled to their prey 606 

consumption which could point towards a possible use of zooplankton monitoring data to 607 

directly inform management. This can however be challenging. In a recent modelling study, 608 

Kaplan et al. (2020) added the level of mesozooplankton as a control mechanism in the harvest 609 

control rule for mackerel but this resulted in higher variability, both in the catches and in the 610 

biomass of the mackerel. The potential large uncertainties associated with zooplankton biomass 611 

estimates (Hjøllo et al., 2021) add a further challenge to the prospect of incorporating 612 

zooplankton into management. In addition, the CaN results do not show any evidence for a 613 

relation between zooplankton consumption by small pelagic fish and available zooplankton 614 

biomass. So, while fluctuations in pelagic fish population growth have been tightly coupled to 615 

consumption during the last three decades, this doesn't imply that food resources have been 616 

limiting. 617 
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Though ecosystem models have been available for several decades (e.g. Ecopath with Ecosim, 618 

Polovina, 1984; Walters et al., 1997; Christensen and Walters, 2004; Heymans et al., 2016), 619 

they remain underused in management (Hyder et al., 2015; Schuwirth et al., 2019). Some major 620 

challenges are the large uncertainties, the lack of transparency that emerge from their 621 

complexity, and the difficulty to communicate complex models to stakeholders (Plagányi and 622 

Butterworth, 2004; Lehuta et al., 2016; Grüss et al., 2017; Schuwirth et al., 2019). The CaN 623 

framework presents the advantage of explicitly including data uncertainties, of avoiding 624 

explicit representation of complex processes that are difficult to observe and parameterise, a of 625 

presenting assumptions, parameters, data, and outputs in a transparent manner (Planque and 626 

Mullon 2020). It is also easily communicable to peer scientists and stakeholders, as it 627 

transparently uses the existing expertise and data collected on the system.  628 

5. Conclusion 629 

Reconstructing the past dynamics of marine food-webs is a challenge because many species 630 

and trophic fluxes are poorly sampled and because model inputs are often highly uncertain. 631 

Using CaN modelling we have reconstructed an ensemble of possible past dynamics for the 632 

Norwegian Sea pelagic food-web, with focus on the three main small pelagic fish species and 633 

their planktonic prey. Our reconstructions are fully compatible with existing observations and 634 

knowledge. We show that despite large uncertainties in reconstructed food-web dynamics, it is 635 

possible to draw conclusion on the trophic interactions in this system. Population growth of 636 

herring, mackerel and blue whiting are tightly coupled to consumption. Copepods and krill 637 

dynamics are also explained by consumption while population growth of amphipods can be 638 

controlled by consumption and by predation. There is little evidence for resource competition 639 

between the three small pelagic species. This suggests that the assessment and management of 640 

these commercial stocks during the last 3 decades would have likely benefited little from 641 

explicit incorporation of trophic interactions. 642 

6. Acknowledgments 643 

The authors would like to thank the members of the ICES Working Group on the Integrated 644 

Assessment of the Norwegian Sea (WGINOR) who actively contributed to early discussions 645 

which motivated the present study. This work was supported by the Norwegian Research 646 

Council project SIS-Høsting (NFR Grant agreement 299554). Plankton observational data was 647 

provided by the member countries contributing to the PGNAPES database. 648 



 26 

7. Supplementary material 649 

S1: xlsx formatted RCaN file. This contains all the necessary input data and meta-information 650 

to fully describe the food-web model for the Norwegian Sea. 651 

S2: The methods used to derive the values of the species-specific input parameters, based on 652 

life-history and metabolic theory. 653 

S3: Description of all the constraints used in the food-web model for the Norwegian Sea, with 654 

associated rationale and references. 655 

S4: plots of the time-series for the 32 fluxes in the food-web model for the Norwegian Sea 656 

S5: description of the outputs of the analyses conducted to evaluate the sensitivity of the model 657 

to input parameter values and associated standardised plots. 658 

SM6: model evaluation report based on the OPE (Objectives, Patterns, Evaluation) protocol. 659 
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