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Abstract

Navigating the world is a fundamental ability for any liv-
ing entity. Accomplishing the same degree of freedom in
technology has proven to be difficult. The brain is the only
known mechanism capable of voluntary navigation, making
neuroscience our best source of inspiration toward auton-
omy. Assuming that state representation is key, we explore
the difference in how the brain and the machine represent the
navigational state. Where Reinforcement Learning (RL) re-
quires a monolithic state representation in accordance with
the Markov property, Neural Representation of Euclidean
Space (NRES) reflects navigational state via distributed ac-
tivation patterns. We show how NRES-Oriented RL (neoRL)
agents are possible before verifying our theoretical findings
by experiments. Ultimately, neoRL agents are capable of be-
havior synthesis across state spaces – allowing for decompo-
sition of the problem into smaller spaces, alleviating the curse
of dimensionality.

Introduction
Autonomy or any form of self-governed activity implies
an ability to adapt with experience; hard-coded algorithms,
agents governed by external control, or deterministic model-
based path planning can hardly be said to be autonomous.
“Navigation can be defined as the ability to plan and execute
a goal-directed path” (Solstad, 2009). Robot motion plan-
ning can be defined in similar terms (Latombe, 2012); how-
ever, cybernetics and robot motion control involves model
with limited validity intervals or algorithms for determin-
istic control. The reward hypothesis from Reinforcement
Learning (RL) is relevant in this context: “That all of what
we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum
of a received scalar signal (reward).” (Sutton and Barto,
2018). With a proven track record for learning to solve
digital challenges or for intelligent games, RL agents have
demonstrated a capability of autonomy for specific chal-
lenges. Via methods from function approximation by Deep
Learning, methods from RL can form agents with superhu-
man abilities for certain board games (Tesauro, 1994; Sil-
ver et al., 2016, 2017) and games of hazard (Heinrich and

Silver, 2016). However, RL supported by deep function ap-
proximation is known to require a tremendous amount of
training: Robot autonomy by RL remains an unsolved chal-
lenge, partially due to requirements for real-time execution
and model-uncertainty – limiting the number of accurate
samples for training (Kober et al., 2013). RL agents sup-
ported by deep function approximation can learn impressive
abilities, but statistical machine learning approaches require
much experience, do not generalize well, and are monolithic
during training and execution (Kaelbling, 2020).

Autonomous navigation is an ability unique to the cen-
tral nervous systems in the animal and insects. Determining
one’s parameter configuration relative to an external refer-
ence, one’s allocentric coordinate, is critical for navigation
learning (Whitlock et al., 2008). Several mechanisms have
been identified in the brain that represent Euclidean coor-
dinates at the single-neuron level (Bicanski and Burgess,
2020). Notable examples for navigation are Object Vector
Cells (Høydal, 2020), representing the allocentric location
of objects around the animal, Head-Direction Cells (Taube
et al., 1990), representing the heading of the animal, and
border cells (Solstad, 2009), representing the proximity of
borders for navigation. Possibly the most well-known cell
for Neural Representation of Euclidean Space (NRES) is the
Place Cell. This first identified NRES modality represents
the allocentric location of the animal (O’Keefe and Dostro-
vsky, 1971): When an animal’s location is within the recep-
tive field of one place cell, the neuron is active in terms of
having a heightened firing frequiency. The activation pattern
in an appropriate population of NRES neurons can thus map
any position in a finite Euclidean space (Fyhn et al., 2004).
Other NRES modalities have later been identified, with a
similar mechanism for representing coordinates in other Eu-
clidean spaces (Bicanski and Burgess, 2020). With our sense
of orientation originating from multiple NRES modalities,
distributed representation of state appears to be of critical
importance for navigational autonomy.

This article starts out by presenting important consider-
ations from RL and directions that could allow for a dis-
tributed representation of state. Off-policy learning allows

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/30/1929957/isal_a_00444.pdf by guest on 04 April 2022



agents to learn general value functions for independent as-
pects of a task (Sutton et al., 2011). When a hoard of learn-
ers base their value function on a mutually exclusive reward
signal, inspired by NRES cells, we propose a method for
learning an orthogonal basis for behavior. Experiments with
NRES-Oriented RL (neoRL) agents by the Place Cell NRES
modality demonstrate how the proposed framework allows
for reactive navigation in real-time.

Interaction learning by RL in AI
Reinforcement learning is the direction in machine learning
concerning learning behavior through interaction with an en-
vironment. We say that the decision agent learns to achieve
a task according to a scalar reward signal R by interaction
with an environment. The accumulated experience takes the
form of agent value function, reflecting the benefit of vis-
iting different states or state-actions pairs according to the
reward signal during training. When the algorithm learns
the value of state-action pairs, i.e., learning the value of se-
lecting specific actions from different states, this is referred
to as Q-learning. An important aspect of RL environments
is the Markov property: When a state-action pair uniquely
defines the probability distribution of the next state, the de-
cision process is referred to as a Markov Decision Process
(MDP). When a problem can be represented as an MDP, an
RL-agent can, in theory, learn an optimal solution to tasks
expressed by a reward function from interaction alone (Sut-
ton and Barto, 2018).

The prediction problem in reinforcement learning con-
cerns estimating the value of visiting different states s while
following policy π. The agent state is a compact representa-
tion of the history and necessary information for the agent to
make a decision at time t. The value function can be updated
according to the Bellman equation:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] (1)

Updating the value function under policy π from experience
gathered while following the policy π, is referred to as on-
policy learning (Sutton and Barto, 2018). Off-policy learn-
ing allows an agent to form the value function while follow-
ing another behavior policy. Through off-policy learning, an
agent can learn the value function under a target policy πt
while following a different behavior policy πb 6= πt. The
agent can, for example, initially follow a more exploratory
policy or learn while observing human control (Abbeel et al.,
2007). Learning the value function is possible through pure
observation.

General Value Function (GVF) is one identified use of
off-policy learning, where the agent learns value functions
potentially unrelated to the control problem (Sutton et al.,
2011). These partial agents, only concerned with accumu-
lating experience, can be seen as independent learners of an
auxiliary value function used to answer questions about the

environment. Examples of questions, as listed in the original
paper, could be time-to-obstacle or time-to-stop for the Crit-
terbot demonstration (Sutton et al., 2011). Auxiliary value
functions can also be directly involved in policy, as demon-
strated for the Atari game Ms. PacMan. A set of General
Value Functions were trained for manually designed sub-
challenges in the Ms. Packman computer game, resulting
in an exponential breakdown of problem size compared to
“single-headed” RL agents (Van Seijen et al., 2017). Wier-
ing and Van Hasselt (2008) gave a methodological overview
over ensemble methods for integrating experience from mul-
tiple algorithms when forming policies. Notably, Boltzmann
addition and Boltzmann multiplication could integrate poli-
cies from multiple sources before action selection (Wiener,
1948). Both Wiering and Van Hasselt (2008) and Van Sei-
jen et al. (2017) propose ways multiple off-policy learners
could be involved in forming policy. From these demonstra-
tions on how multi-learner agents are possible, we shall dive
further into the mechanism of behavior synthesis. But first,
some neuroscience.

Neural Representation of Euclidean Space
The 1906 Nobel price in physiology and medicine was
awarded Santiago Ramón Y Cajal for work initiating the
neuron doctrine (Ramón y Cajal, 1911), claiming that be-
havior originates from a network of cells with signaling ca-
pabilities rather than a monolithic soul. The neuron doctrine
supplied a mechanistic understanding of biological compu-
tation as a distributed network of weak computational units.
Only by network phenomena and a delicately connected net
of neurons can decisions, policies, and ultimately behav-
ior emerge. Eric Kandel later reported how synaptic con-
nections change with use and how learning and memory
are consequences of synaptic plasticity (Kandel and Tauc,
1965). Before the neuron doctrine, the consensus was that
behavior and decision-making originate from a monolithic
entity that followed us in this life and beyond – the soul.

Neural Representation of Euclidean Space (NRES) have
been reported for different Euclidean spaces on a per-neuron
cellular activation: when the Euclidean coordinate falls
within the receptive field of an NRES neuron, the neuron
fires with a heightened firing frequency. A growing num-
ber of NRES modalities have been identified, with notable
examples for navigation being place cells (O’Keefe and
Dostrovsky, 1971), head-direction cells (Taube et al., 1990),
and object-vector cells (Høydal, 2020). While some NRES
neurons have simple receptive fields centered around a co-
ordinate, others have complicated repeating shapes like the
hexagonal pattern of grid cells (Moser et al., 2008). For
a comprehensive review of NRES modalities identified in
neuroscience, see (Bicanski and Burgess, 2020).

Neural state is very different from the monolithic state
of RL. Analogous to separate cells representing coordinates
of one Euclidean space, separate NRES modalities reflect
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Figure 1: Two simple sinusoidal functions can be combined
to a complex function by superposition. (Ling et al., 2016)

different aspects of the navigational state. The receptive
fields of NRES neurons have a systematic increase from the
dorsal to the ventral pole of the hippocampus (Fyhn et al.,
2008; Kjelstrup et al., 2008; Solstad, 2009), allowing for
NRES maps of multiple resolutions in parallel. The fully
distributed representation of state thus allows for learning
state representation by individual receptive fields, for differ-
ent NRES resolutions and across NRES modalities in paral-
lel. The monolithic Markov state of RL (Sutton and Barto,
2018), on the other hand, could explain difficulties for robot
interaction learning (Kaelbling, 2020). The most protruding
difference between AI and neural state representation lies in
the distributed nature of NRES. We now explore how this
can be emulated for RL systems.

Decomposing the Prediction Problem
The purpose of an agent in reinforcement learning is to es-
tablish a proper behavior as defined by a reward signal. The
agent improves behavior based on two intertwined aspects
of experience: (1) The prediction problem for learning the
value of visiting states or state-action pairs as defined by the
environment representation, and (2) The control problem for
selecting the most appropriate action based on the value as
learned by the prediction problem. In this section, we ex-
pand on the concept of the prediction problem by consider-
ing the value function as a potential field across orthogonal
reward signals.

Let Orthogonal Value Functions (OVFs) be value func-
tions of the state space S that adhere to mutually exclusive
reward signals in S. A relevant analogy would be to think
of the value function as a potential field between different
sources of energy. With multiple forces working on an ob-
ject, the resultant work can be found as a linear combination
of components. Similarly, a set of independent reward func-
tions in S acting on agent value function can form a basis
for agent value function in S. NRES with mutually exclu-
sive receptive fields is a good candidate for independent re-
ward signals; with the place cell as our leading example, it

is simple to visualize how agent position activates receptive
fields and OVFs. Each learner has a simple reward shape,
with a positive reward of R = +1 upon activation of the
corresponding NRES cell and R = 0 otherwise. A separate
learner form the OVF according to reward signals as defined
by mutually exclusive receptive fields of S.

Figure 2: An agent in N5 allocentric place-cell represen-
tation of Euclidean space: An N5 representation involves
that each axis is divided into 5 equal intervals. A learner
could, for example, form the OVF toward cell (4, 4), with a
reward signal defined by the activation of the corresponding
NRES cell. The reward function of this particular learner is
illustrated in red for feature sR ∈ S. The current parame-
ter configuration of the agent defines from which s ∈ S this
NRES modality’s value function is extracted.

Let there beK individual learners, one for every receptive
field of an NRES representation S. With mutually exclusive
receptive fields, the set of learners in S can be considered an
orthogonal basis of the value function in this representation.
Value functions of S can be expressed as a linear combina-
tion of OVFs formed by the K learners, allowing a neoRL
agent to synthesize a range of behaviors. The challenge of
learning apt behavior now reduces to learning priorities be-
tween policies expressed via OVFs. Estimating scalar val-
ues based on supervised samples is a well-studied field in
machine learning. However, for the sake of clarity, static
priorities defined by the associated reward is used.

The Control Problem by Superposition
The motivation for learning the value function is ultimately
to form an effective policy for the challenge at hand. A
simple challenge in Euclidean space can be for the agent
to move to one particular position, activating feature sx. If
learners use Q-learning to establishing a potential that con-
tributes to the Q-field of the agent, the next action can be
chosen by

a = argmaxaQtot(s, a)

where Qtot is the resultant Q-field of the current situation.
With a single learner as input to the agent value potential,
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the agent’s prediction problem becomes equivalent to that of
the single learner, and the mechanism surrounding the value
function of the agent simplifies to that of a monolithic agent.

For slightly more interesting challenges, multiple rewards
can be expressed in the decomposed NRES representation.
Each learner can be said to represent one consideration in
this environment, learning the value function related to ac-
tivating the corresponding NRES cell. When multiple con-
siderations have priority, the superposition principle allows
the Q-field to form over relevant OVFs.

Qtot(s, a) =
∑
i∈SR

QLi(s, a) (2)

where SR is the set of NRES cells associated with reward
and QLi(s, a) represent learner Li’s value component. The
K learners in the full features set can thus be considered to
be peer learners for the task of navigating the environment
representation.

SR = {s ∈ S
∣∣∣ |Rs| > 0}

An elegant approach would be to consider rewards to be
linked to elements of interest in the environment rather than
allocentric features: Let an Element of Interest (ξi) be an in-
stance in the environment associated with a reward. Assume
for now that the priority and Euclidean parameter configu-
ration of every element of interest in the set E = {ξi} is
provided by the environment. Any parameter configuration
is possible to map uniquely to the mutually exclusive NRES
feature map S. With element i’s importance wi proportional
to the reward associated with the element activating feature
s, the corresponding peer learner’s contribution to the Q-
field becomes:

Qtot(s, a) =
∑
i∈SR

wiQLi(s, a) (3)

Isolating rewards that comes from elements of interest, i.e.
abstaining from utilizing timestep rewards or other shaped
rewards, the set of rewarded states is defined by the set of
NRES cells occupied by an element of interest ξi.

SR = {s ∈ S
∣∣ ∃ξi ∈ E, ξi ∈ s} (4)

Note that an element of interest can be any element asso-
ciated with a reward in a particular state set representation,
decoupling the prediction problem in an environment from
the rewards of one task. Experience expressed by distributed
Q-fields is more general than monolithic value functions; In
the neoRL approach, moving rewards or changing agent pri-
orities during an agent’s life-time does not require retraining
the agent.

Experiments
Algorithms in RL learn behavior by interaction with the en-
vironment, making the environment defining for the out-

Figure 3: Element of Interest (EoI) activates desires for al-
locentric features according to their importance: An EoI sit-
uated in feature (4, 4) makes this desirable with 1.0 , an-
other positive EoI activates feature (1, 1) with priority 0.5 ,
as represented by a green with lower saturation. An aversive
element located in feature (2, 2) activates the corresponding
learner with a negative weight wi < 0.

come of any RL experiment. Numerous environments ex-
ist to highlight challenges for state-of-the-art reinforcement
learning agents. Learning autonomous navigation in allo-
centric space does not seem to get much attention, as finding
appropriate test-environments can be difficult. Preferably,
an environment for autonomous real-world navigation learn-
ing is represented by continuous allocentric coordinates and
with a complexity that requires reactive navigation. Real-
time execution would be a plus since it limits the amount
of training data available to the agent to a realistic order of
magnitude. Physical systems generally depend on temporal
aspects like inertia. Most of these qualities can be found in
Karpathy’s WaterWorld challenge.

WaterWorld
Karpathy’s WaterWorld challenge as implemented in
Pygame learning environment(PLE) (Tasfi, 2016) is an envi-
ronment with a continuous 2D resolution, inertia dynamics
and external considerations referred to as creeps. Creeps
move with a constant speed vector, reflected when hitting a
wall. Creeps have a demeanor, as illustrated by color: green
creeps are desirable with [+1] reward, and red creeps are re-
pulsive with [-1] reward upon capture. When the agent cap-
tures a creep, a new one is initialized with a random speed,
position, and demeanor – causing a chaotic scenario that re-
quires reactive navigation. When all green creeps have been
captured, the board is restarted with an accompanying [+5]
reward. In all experiments, a constant number of 8 creeps
have been used, as illustrated in Figure 4. We find the al-
locentric PyGame implementation (Tasfi, 2016) of Water-
World appropriate for RL research for real-time navigation
autonomy. However, the environment is listed as unsolved
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Figure 4: NRES N5 representation of Element-of-Interest
(EoI) in the WaterWorld environment. Each EoI and the
location of the agent represented in the PlaceCell NRES
modality. Red and Green represent the demeanor of each
creep, whereas Blue represents the current agent location.
In addition, arrows have been drawn to illustrate the current
speed vector of each element.

(OpenAI, 2020) – making comparisons to alternative solu-
tions difficult.

Instantaneous information regarding elements-of-interest
(EoI), i.e., the position and demeanor of each creep, is pro-
vided by the environment. Demeanor defines the reward as-
sociated with the creep, crucial for priority wi associated
with EoI i by equation 3. Positions are represented in 2D
allocentric coordinates from the environment, allowing for
extracting ξi ∈ S for the Place Cell NRES modality of EoI
i. Basal actions affect the agent by accelerating it in the car-
dinal directions, [N, S, E, W].

Allocentric Position Modality, Single layer: Our pri-
mary assumption is that the agent value function in effect
can be considered a potential field across OVFs, pulling
the agent toward the next decision. Our first experiment
explores to what degree the superposition principle holds
for the value function of individual learners. We compare
the accumulated score of neoRL agents based on single-res
NRES to Brownian motion, i.e., an ε-greedy policy with
ε = 1.0. Under the convention used in Figure 4, where N5
signifies an NRES map with 5x5 tiles, five different resolu-
tions are explored from N10 to N90. All experiments were
conducted over 150.000 time-steps for each neoRL agent.

Allocentric Position Modality, Multiple resolutions:
Our second experiment explores how integrating experience
across multiple state spaces affect neoRL performance. An
interpretation of the progressive increase for receptive fields
in the ventral direction of the hippocampus is that different
NRES maps exist with different resolutions. We adopt this
view in experiment 2, where we let the neoRL agent com-

bine value function across multiple NRES state representa-
tions. In this experiment we assess whether the neoRL agent
is capable of forming apt policies by integrating experience
across multiple state spaces. We compare the proficiency of
a multi-res neoRL agent that learns over {N3, N7, N23}
NRES state spaces to three single-res agents by N3, N7,
and N23 NRES. The neoRL agent layout is illustrated in
Figure 5. Prime numbers are used as the resolution for each
layer, minimizing the potential for overlapping boundaries.
The resulting 587 learners in the multi-res agent learn in par-
allel by off-policy learning. In this setup, the contribution of
each learner is inversely proportional to the size of its recep-
tive field.

Figure 5: Illustration of multiple state representation in the
decision agent, where each tile represent the objective of its
respective learner. [Red] N3 representation [Blue] N7 rep-
resentation [Black] N23 representation.

One approach of measuring the proficiency of the agent is
as the per-timestep average reward across parallel runs. We
are interested in real-time learning efficiency and initialize a
neoRL agent with no priors at the beginning of each run. A
per-timestep average across 100 independent runs provides
information about the transient timecourse in navigation ca-
pabilities. Note that every run starts with a separate neoRL
agent with no prior experience. All experiments are con-
ducted on an average desktop computer, with one run taking
somewhat under one hour on a single CPU core.

Results
Results are reported as real-time execution of agents as they
learn, without any previous experience at the task. Reported
resolution for each experiment adheres to the convention
from Figure 2, dividing each axis of the Euclidean space
into N steps. The x-axis of all plots represents the number
of time steps since the beginning of a run, i.e., the real-time
execution in time-steps since initiation of the agent.

Allocentric Position Modality, Single layer A dis-
tributed representation of the Markov state is plausible for
neoRL agents. Figure 6 shows the accumulated score of
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neoRL agents with NRES Place Cell representations from
N10 to N90. All neoRL agents perform better than con-
trol. Brownian motion seems incapable of achieving a single
board reset since the accumulated score fluctuates around 0
for the length of the experiment. All neoRL agents are ca-
pable of accumulating a significant amount of experience,
verifying that OVF can function as a basis for synthezing
successful behavior.

A strong correlation between NRES resolution and pro-
ficiency at the task can also be observed in Figure 6. The
immediate proficiency at the task can be seen from the steep-
ness of the curve. Agents based on lower NRES resolution
initially learn quicker than agents with higher NRES resolu-
tion. However, neoRL agents based on lower NRES resolu-
tions seem to saturate at a lower proficiency. For these par-
ticular runs, with 8 creeps and during a 150.000 time step in-
terval, theN50 representation appears to achieve the highest
score. Although this number is task-specific, it is worth not-
ing how all neoRL agents are comparable in learning speed.
Despite N70 NRES having almost 50 times the dimension-
ality of N101, the two neoRL agents based on these repre-
sentations are comparable in learning. This effect requires
further attention.

Allocentric Position Modality, Multiple resolutions
Combining the value potential from multiple representations
of state can significantly increase navigation performance.
The transient proficiency of the neoRL agent in the four ex-
periments, N3, N7, N23, and multi-res {N3, N7, N23},
is presented in Figure 7. Each curve is the result of a per-
timestep average over 100 independent runs. These results
verify without any doubt that neoRL agents benefit from
combining experience across multiple NRES feature sets.
With the algebraic sum of the per-timestep proficiency of
the three mono-res agents shown in grey, we see that the
multi-res neoRL agent learns quicker, to higher proficiency,
than the sum of its parts.

The superposition principle for behavior across state
spaces seems to alleviate the curse of dimensionality: The
almost 6-fold increase in the number of states (from 72 = 49
to 32 + 72 + 232 = 290 states) resulted in a 3.5-factor in-
crease in received reward without increasing training time.
Figure 7 shows that learning happens as fast or possibly a
little faster for the multi-res agent than for the N7 mono-res
agent. This effect could be defining for real-world interac-
tion learning and requires further attention.

Discussion
Navigation autonomy is plausible in real-time by RL agents
with an emulated neural representation of space. NRES-
Oriented RL (neoRL) agents are possible due to developed

1The N10 representation is comprised of 100 receptive fields,
whereas the finer N70 resolutions have 4900 receptive fields.

theory on orthogonality in the value domain, allowing for
behavior synthesis across multiple learners.

Whereas neural systems are capable of autonomous nav-
igation, modern technology is not. The most protruding
difference between these systems is how state is repre-
sented. Digital RL systems require a monolithic state con-
cept, whereas neural systems work by patterns of activa-
tion. The Markov state in RL holds enough information
to uniquely define the probability distribution of the next
state (Sutton and Barto, 2018). The Markov decision pro-
cess works well with deep function approximation, and RL
agents supported by deep learning have mastered a selec-
tion of board games. However, deep RL agents require
much training, do not generalize, and are neither incremen-
tal nor compositional (Kaelbling, 2020). With deep RL ap-
pearing to struggle with real-world interaction learning, we
have looked elsewhere for inspiration. Evidence suggests
that Neural Representation of Euclidean Space (NRES) rep-
resent Euclidean coordinates by activation patterns on the
per-neuron level. An NRES set S with mutually exclusive
receptive fields provides a set of orthogonal reward signals
of S. Utilizing these signals as reward signal for indepen-
dent learners, the set of Orthogonal Value Functions (OVFs)
form a basis for any reward function of S. Experiments ver-
ify that NRES-Oriented RL (neoRL) agents are capable of
forming skilled navigation while learning.

Considering this work as a plausibility study for neoRL
navigation, we see at least three important directions for
further study. Firstly, a thorough mathematical analysis on
the relevance of orthogonality could be key for proper un-
derstanding of neoRL capabilities. Specifically, deriving
the equations for how singular reward functions cause or-
thogonal value functions can cause a better understanding
of behavior synthesis. In experiment 2, we have seen how
different state-space representations of the same parameter
set can improve performance. We believe the same to be
possible for state spaces across different parameter spaces.
Secondly, the priority wi in Equation 3 remains static in this
work but allows for a dynamic weighing of OVF based on
importance. Directly learning the association between el-
ement i and global reward R would make neoRL learning
comply to the reward hypothesis, and be an important con-
tinuation of this work. Lastly, all experiments conducted on
the neoRL framework have yet been with the WaterWorld
environment. The WaterWorld represents a quite general
task in a highly general Euclidean space across undefined
parameters. Many would find it more interesting with a
tangible demonstration in a more specific Euclidean space,
e.g., navigation of the joints’ angles in a robot manipulator
task. A most important next step would be to demonstrate
neoRL navigation for other Euclidean spaces, e.g., for mar-
itime autonomy, (learned) autonomous driving, or for adap-
tive control of robot manipulators.
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Figure 6: Accumulated Reward by peer agents with elements of interest for runs with grid coding resolutions, N10−N90 over
150.000 time steps. Brownian motion in black is believed to be comparable to a first run of an untrained Deep RL agent.

Figure 7: The neoRL agent is capable of incorporating experience from multiple state sets for navigation. A neoRL agent with
experience from all three layers seen in Fig. 5 (purple) performs better than neoRL agents based on the individual NRES layer
(blue, orange, green). The grey line represents the algebraic sum of the mono-res agents, highlighting that the multi-res neoRL
agent performs better than the sum of its parts. Each curve is a presentation of the per-timestep average of 100 independent
runs.
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