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SOME NEW (Hp,Lp) TYPE INEQUALITIES OF

MAXIMAL OPERATORS OF VILENKIN–NÖRLUND

MEANS WITH NON–DECREASING COEFFICIENTS

L. E. PERSSON, G. TEPHNADZE AND P. WALL

(Communicated by N. Elezović)

Abstract. In this paper we prove and discuss some new (Hp,Lp) type inequalities of maximal
operators of Vilenkin-Nörlund means with non-decreasing coefficients. We also apply these
inequalities to prove strong convergence theorems of such Vilenkin-Nörlund means. These in-
equalities are the best possible in a special sense. As applications, both some well-known and
new results are pointed out.

1. Introduction

The definitions and notations used in this introduction can be found in our next
Section. In the one-dimensional case the weak (1,1)-type inequality for the maximal
operator of Fejér means

σ∗ f := sup
n∈N

|σn f |

can be found in Schipp [19] for Walsh series and in Pál, Simon [17] for bounded
Vilenkin series. Fujji [9] and Simon [21] verified that σ∗ is bounded from H1 to
L1 . Weisz [31] generalized this result and proved boundedness of σ∗ from the mar-
tingale space Hp to the space Lp, for p > 1/2. Simon [20] gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A counterexample for
p = 1/2 was given by Goginava [6] (see also [23]). Moreover, Weisz [33] proved that
the maximal operator of the Fejér means σ∗ is bounded from the Hardy space H1/2
to the space weak− L1/2 . In [24] and [25] it was proved that the weighted maximal
operator of Fejér means

σ̃∗
p f := sup

n∈N+

|σn f |
(n+1)1/p−2 log2[1/2+p] (n+1)
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is bounded from the Hardy space Hp to the space Lp, when 0 < p � 1/2. Moreover,

the rate of the weights
{

1/(n+1)1/p−2 log2[p+1/2] (n+1)
}∞

n=1
in n -th Fejér mean was

given exactly.

Móricz and Siddiqi [13] investigated the approximation properties of some special
Nörlund means of Walsh-Fourier series of Lp function in norm. In the two-dimensional
case approximation properties of Nörlund means was considered by Nagy (see [14]–
[16]). In [18] it was proved that the maximal operator of Nörlund means

t∗ f := sup
n∈N

|tn f |

with non-decreasing coefficients is bounded from the Hardy space H1/2 to the space
weak− L1/2 . Moreover, there exists a martingale and Nörlund means, with non-dec-
reasing coefficients, such that it is not bounded from the Hardy space Hp to the space
weak−Lp, when 0 < p < 1/2.

It is well-known that Vilenkin systems do not form bases in the space L1 . More-
over, there is a function in the Hardy space H1 , such that the partial sums of f are
not bounded in L1 -norm. Simon [22] proved that there exists an absolute constant cp,
depending only on p, such that the inequality

1

log[p] n

n

∑
k=1

‖Sk f‖p
p

k2−p � cp ‖ f‖p
Hp

(0 < p � 1)

holds for all f ∈ Hp and n = 2,3, . . . , where [p] denotes the integer part of p. For
p = 1 analogous results with respect to more general systems were proved in [2] and
[4] and for 0 < p < 1 another proof can be found in [27].

In [3] it was proved that there exists an absolute constant cp , depending only on
p , such that the inequality

1

log[1/2+p]n

n

∑
k=1

‖σk f‖p
p

k2−2p � cp‖ f‖p
Hp

(0 < p � 1/2, n = 2,3, . . .) . (1)

holds. An analogous result for the Walsh system can be found in [28].

In this paper we derive some new (Hp,Lp)-type inequalities for weighted maximal
operators of Nörlund means with non-decreasing coefficients. Moreover, we prove
strong convergence theorems of such Nörlund means.

This paper is organized as follows: In order not to disturb our discussions later on
some definitions and notations are presented in Section 2. The main results and some
of its consequences can be found in Section 3. For the proofs of the main results we
need some auxiliary Lemmas, some of them are new and of independent interest. These
results are presented in Section 4. The detailed proofs are given in Section 5.
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2. Definitions and notation

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m := (m0,

m1, . . .) be a sequence of the positive integers not less than 2. Denote by

Zmk := {0,1, . . . ,mk −1}
the additive group of integers modulo mk .

Define the group Gm as the complete direct product of the groups Zmi with the
product of the discrete topologies of Zmj .

The direct product μ of the measures

μk ({ j}) := 1/mk ( j ∈ Zmk)

is the Haar measure on Gm with μ (Gm) = 1.
In this paper we discuss bounded Vilenkin groups, i.e. the case when supn mn < ∞.
The elements of Gm are represented by sequences

x := (x0,x1, . . . ,x j, . . .) ,
(
x j ∈ Zmj

)
.

Set en := (0, . . . ,0,1,0, . . .) ∈ G, the n -th coordinate of which is 1 and the rest are
zeros (n ∈ N) .

It is easy to give a basis for the neighborhoods of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . ,yn−1 = xn−1},
where x ∈ Gm, n ∈ N.

If we define In := In (0) , for n ∈ N and In := Gm \ In, then

IN =

(
N−2⋃
k=0

N−1⋃
l=k+1

Ik,l
N

)⋃(N−1⋃
k=1

Ik,N
N

)
, (2)

where

Ik,l
N :=

{
IN(0, . . . ,0,xk �= 0,0, . . . ,0,xl �= 0,xl+1 , . . . ,xN−1 , . . .), for k < l < N,

IN(0, . . . ,0,xk �= 0,0, . . . , ,xN−1 = 0, xN , . . .), for l = N.

If we define the so-called generalized number system based on m in the following
way:

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n = ∑∞
j=0 n jMj, where n j ∈ Zmj ( j ∈

N+) and only a finite number of n j ’s differ from zero.
We introduce on Gm an orthonormal system which is called the Vilenkin sys-

tem. At first, we define the complex-valued function rk (x) : Gm → C, the generalized
Rademacher functions, by

rk (x) := exp(2π ixk/mk) ,
(
i2 = −1,x ∈ Gm, k ∈ N

)
.
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Next, we define the Vilenkin system ψ := (ψn : n ∈ N) on Gm by:

ψn(x) :=
∞

∏
k=0

rnk
k (x) , (n ∈ N) .

Specifically, we call this system the Walsh-Paley system when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak−Lp (Gm) (0 < p < ∞)

are respectively defined by

‖ f‖p
p :=

∫
Gm

| f |p dμ , ‖ f‖p
weak−Lp

:= sup
λ>0

λ pμ ( f > λ ) < +∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [29]).
Now, we introduce analogues of the usual definitions in Fourier-analysis. If f ∈

L1 (Gm) we can define Fourier coefficients, partial sums of the Fourier series and Dirich-
let kernels with respect to the Vilenkin system in the usual manner:

f̂ (n) :=
∫

Gm

fψndμ (n ∈ N) ,

Sn f :=
n−1

∑
k=0

f̂ (k)ψk, Dn :=
n−1

∑
k=0

ψk , (n ∈ N+) ,

respectively.
The σ -algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by

�n (n ∈ N) . Denote by f =
(

f (n), n ∈ N

)
a martingale with respect to �n (n ∈ N) .

(for details see e.g. [30]).
The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp consist of all martingales f for
which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f =
(

f (n), n ∈ N

)
is a martingale, then the Vilenkin-Fourier coefficients must

be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k)ψ idμ .

Let {qk : k � 0} be a sequence of nonnegative numbers. The n -th Nörlund mean
tn for a Fourier series of f is defined by

tn f =
1
Qn

n

∑
k=1

qn−kSk f , (3)
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where Qn := ∑n−1
k=0 qk.

We always assume that q0 > 0 and limn→∞ Qn = ∞. In this case it is well-known
that the summability method generated by {qk : k � 0} is regular if and only if

lim
n→∞

qn−1

Qn
= 0.

Concerning this fact and related basic results we refer to [12]. In this paper we
consider regular Nörlund means only.

If qk ≡ 1, we respectively define the Fejér means σn and Kernels Kn as follows:

σn f :=
1
n

n

∑
k=1

Sk f , Kn :=
1
n

n

∑
k=1

Dk.

It is well-known that (see e.g. [1])

n |Kn| � c
|n|
∑
l=0

Ml
∣∣KMl

∣∣ (4)

and
‖Kn‖1 � c < ∞. (5)

Denote

log(0) x = x and log(β ) x :=

β times︷ ︸︸ ︷
log . . . logx, for β ∈ N+.

Let α ∈ R+, β ∈ N+ and
{

qk = log(β ) kα : k � 0
}

. Then we get the class of

Nörlund means, with non-decreasing coefficients:

θn f :=
1
Qn

n

∑
k=1

log(β ) (n− k)α Sk f ,

where

Qn =
n−1

∑
k=1

log(β ) (n− k)α =
n−1

∑
k=1

log(β ) kα = log

(n−1

∏
k=1

log(β−1) kα
)

� log

(
log(β−1)

(
n−1

2

)α) (n−1)
2

� n
4

loglog(β−1)
(

n−1
2

)α
∼ n log(β ) nα .

It follows that

qn−1

Qn
� c log(β ) (n−1)α

n log(β ) nα
= O

(
1
n

)
→ 0, as n → ∞.

Finally, we say that a bounded measurable function a is a p -atom, if there exists
an interval I , such that∫

I
adμ = 0, ‖a‖∞ � μ (I)−1/p , supp(a) ⊂ I.
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3. The main results and applications

Our first main result reads:

THEOREM 1. a) Let 0 < p < 1/2, f ∈ Hp and {qk : k � 0} be a sequence of
non-decreasing numbers. Then there exists an absolute constant cp, depending only on
p, such that the inequality

∞

∑
k=1

‖tk f‖p
p

k2−2p � cp‖ f‖p
Hp

holds.
b) Let f ∈ H1/2 and {qk : k � 0} be a sequence of non-decreasing numbers, sat-

isfying the condition
qn−1

Qn
= O

(
1
n

)
, as n → ∞. (6)

Then there exists an absolute constant c, such that the inequality

1
logn

n

∑
k=1

‖tk f‖1/2
1/2

k
� c‖ f‖1/2

H1/2
(7)

holds.

EXAMPLE 1. Let 0 < p � 1/2, f ∈ Hp and {qk : k � 0} be a sequence of non-
decreasing numbers, such that

sup
n

qn < c < ∞.

Then
qn−1

Qn
� c

Qn
� c

q0n
=

c1

n
= O

(
1
n

)
, as n → 0,

i.e. condition (6) is satisfied and for such Nörlund means there exists an absolute con-
stant c, such that the inequality (7) holds.

EXAMPLE 2. Let 0 < p � 1/2 and f ∈ Hp. Then there exists absolute constant
cp, depending only on p, such that the following inequality holds:

1

log[1/2+p] n

n

∑
k=1

‖σk f‖p
p

k2−2p � cp ‖ f‖p
Hp

.

REMARK 1. This result for the Walsh system can be found in [28] and for any
bounbed Vilenkin system in [3].

We have already considered the case when the sequence {qk : k � 0} is bounded.
Now, we consider some Nörlund means, which are generated by a unbounded sequence
{qk : k � 0}.
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EXAMPLE 3. Let 0 < p � 1/2 and f ∈Hp. Then there exists an absolute constant
cp, depending only on p, such that the following inequality holds:

1

log[1/2+p]n

n

∑
k=1

‖θk f‖p
p

k2−2p � cp‖ f‖p
Hp

.

Up to now we have considered strong convergence theorems in the case 0 < p �
1/2, but in our next main result we consider boundedness of weighed maximal opera-
tors of Nörlund means when 0 < p � 1/2, and now without any restriction like (6).

THEOREM 2. Let 0 < p � 1/2, f ∈ Hp and {qk : k � 0} be a sequence of non-
decreasing numbers. Then the maximal operator

t̃∗p f := sup
n∈N+

|tn f |
(n+1)1/p−2 log2[1/2+p] (n+1)

is bounded from the Hardy space Hp to the space Lp.

EXAMPLE 4. Let 0 < p � 1/2, f ∈ Hp and {qk : k � 0} be a sequence of non-
decreasing numbers. Then the maximal operator

σ̃∗
p f := sup

n∈N+

|σn f |
(n+1)1/p−2 log2[1/2+p] (n+1)

is bounded from the Hardy space Hp to the space Lp.

REMARK 2. This result for the Walsh system when p = 1/2 can be found in [7].
Later on, it was generalized for bounded Vilenkin systems in [24]. The case 0 < p <
1/2 can be found in [25]. Analogous results with respect to Walsh-Kachmarz systems
were considered in [8] for p = 1/2 and in [26] for 0 < p < 1/2.

EXAMPLE 5. Let 0 < p � 1/2, f ∈ Hp and {qk : k � 0} be a sequence of non-
decreasing numbers. Then the maximal operator

θ̃ ∗
p f := sup

n∈N+

|θn f |
(n+1)1/p−2 log2[1/2+p] (n+1)

is bounded from the Hardy space Hp to the space Lp.
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4. Auxiliary lemmas

We need the following auxiliary Lemmas:

LEMMA 1. (see e.g. [32]) A martingale f =
(

f (n), n ∈ N

)
is in Hp (0 < p � 1)

if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (μk, k ∈ N)
of real numbers such that, for every n ∈ N,

∞

∑
k=0

μkSMnak = f (n), a.e. (8)

and
∞

∑
k=0

|μk|p < ∞.

Moreover,

‖ f‖Hp
� inf

(
∞

∑
k=0

|μk|p
)1/p

where the infimum is taken over all decompositions of f of the form (8).

LEMMA 2. (see e.g. [32]) Suppose that an operator T is σ -sublinear and for
some 0 < p � 1 ∫

−
I

|Ta|p dμ � cp < ∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded from L∞
to L∞, then

‖T f‖p � cp‖ f‖Hp
, 0 < p � 1.

LEMMA 3. (see [5]) Let n > t, t,n ∈ N. Then

KMn (x) =

⎧⎪⎪⎨⎪⎪⎩
Mt

1−rt(x)
, x ∈ It \ It+1, x− xtet ∈ In,

Mn−1
2 , x ∈ In,

0, otherwise.

For the proof of our main results we also need the following new Lemmas of
independent interest:

LEMMA 4. Let {qk : k � 0} be a sequence of non-decreasing numbers, satisfying
condition (6). Then

|Fn| � c
n

{ |n|
∑
j=0

Mj
∣∣KMj

∣∣} ,

for some positive constant c.
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Proof. By using Abel transformation we obtain that

Qn :=
n−1

∑
j=0

q j =
n

∑
j=1

qn− j ·1 =
n−1

∑
j=1

(
qn− j −qn− j−1

)
j +q0n (9)

and

Fn =
1
Qn

(
n−1

∑
j=1

(
qn− j −qn− j−1

)
jKj +q0nKn

)
. (10)

Since {qk : k � 0} be a non-decreasing sequence, satisfying condition (6) we ob-
tain that

1
Qn

(
n−1

∑
j=1

∣∣qn− j −qn− j−1
∣∣+q0

)
� 1

Qn

(
n−1

∑
j=1

(
qn− j −qn− j−1

)
+q0

)
=

qn−1

Qn
� c

n
. (11)

By combining (4) with equalities (10) and (11) we immediately get that

|Fn| �
(

1
Qn

(
n−1

∑
j=1

∣∣qn− j −qn− j−1
∣∣+q0

)) |n|
∑
i=0

Mi |KMi | �
c
n

|n|
∑
i=0

Mi |KMi | .

The proof is complete. �

LEMMA 5. Let n � MN and {qk : k � 0} be a sequence of non-decreasing num-
bers. Then ∣∣∣∣∣ 1

Qn

n

∑
j=MN

qn− jD j

∣∣∣∣∣� c
MN

{ |n|
∑
j=0

Mj
∣∣KMj

∣∣} ,

for some positive constant c.

Proof. Let MN � j � n. By using (4) we get that

∣∣Kj
∣∣� 1

j

| j|
∑
l=0

Ml
∣∣KMl

∣∣� 1
MN

|n|
∑
l=0

Ml
∣∣KMl

∣∣ .
Let the sequence {qk : k � 0} be non-decreasing. Then

MNqn−MN−1 � qn−MN−1 +qn−MN + . . .+qn−1 � Qn.

If we apply (9) we obtain that

n−1

∑
j=MN

∣∣qn− j −qn− j−1
∣∣ j +q0n �

n−1

∑
j=0

∣∣qn− j −qn− j−1
∣∣ j +q0n

=
n−1

∑
j=1

(
qn− j −qn− j−1

)
j +q0n = Qn.
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By using Abel transformation we find that∣∣∣∣∣ 1
Qn

n

∑
j=MN

qn− jD j

∣∣∣∣∣=
∣∣∣∣∣ 1
Qn

(
n−1

∑
j=MN

(
qn− j −qn− j−1

)
jKj +q0nKn−MNqn−MN−1

)∣∣∣∣∣
�
(

1
Qn

(
n−1

∑
j=MN

∣∣qn− j−qn− j−1
∣∣ j+q0n+MNqn−MN−1

))
c

MN

|n|
∑
i=0

Mi |KMi |�
c

MN

|n|
∑
i=0

Mi |KMi | .

The proof is complete. �

LEMMA 6. Let {qk : k � 0} be a sequence of non-decreasing numbers, satisfying
condition (6). Let x ∈ Ik,l

N , k = 0, . . . ,N−2, l = k+1, . . . ,N−1. Then∫
IN
|Fn (x− t)|dμ (t) � cMlMk

nMN
.

Let x ∈ Ik,N
N , k = 0, . . . ,N−1. Then∫

IN
|Fn (x− t)|dμ (t) � cMk

MN
.

Here c is a positive constant.

Proof. Let x ∈ Ik,l
N . Then, by applying Lemma 3, we have that

KMn (x) = 0, when n > l. (12)

Let k < n � l . Then we get that

|KMn (x)| � cMk. (13)

Let x ∈ Ik,l
N , for 0 � k < l � N−1 and t ∈ IN . Since x− t ∈ Ik,l

N and n � MN , by
combining Lemma 4 with (12) and (13), we obtain that

∫
IN
|Fn (x− t)|dμ (t) � c

n

|n|
∑
i=0

Mi

∫
IN
|KMi (x− t)|dμ (t)

� c
n

∫
IN

l

∑
i=0

MiMkdμ (t) � cMkMl

nMN
(14)

and the first estimate is proved.
Now, let x ∈ Ik,N

N . Since x− t ∈ Ik,N
N for t ∈ IN , by applying Lemma 3, we obtain

that
|KMi (x− t)| � cMk, (k ∈ N) .
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Hence, according to Lemma 4, we have that

∫
IN
|Fn (x− t)|dμ (t) � c

n

|n|
∑
i=0

Mi

∫
IN
|KMi (x− t)|dμ (t)

� c
n

|n|−1

∑
i=0

Mi

∫
IN

Mkdμ (t) � cMk

MN
. (15)

By combining (14) and (15) we complete the proof of Lemma 6. �

Analogously we can prove the similar estimation, but now without any restriction
like (6).

LEMMA 7. Let x ∈ Ik,l
N , k = 0, . . . ,N−1, l = k+1, . . . ,N and {qk : k � 0} be a

sequence of non-decreasing sequence. Then

∫
IN

∣∣∣∣∣ 1
Qn

n

∑
j=MN

qn− jD j (x− t)

∣∣∣∣∣dμ (t) � cMlMk

M2
N

,

for some positive constant c.

5. Proofs of the theorems

Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be complete, if we
show that

1

log[1/2+p] n

n

∑
m=1

‖tma‖p
Hp

m2−2p � cp, (16)

for every p -atom a, with support I , μ (I) = M−1
N . We may assume that I = IN . It is

easy to see that Sn (a) = tn (a) = 0, when n � MN . Therefore, we can suppose that
n > MN .

Let x ∈ IN . Since tn is bounded from L∞ to L∞ (the boundedness follows from
(5)) and ‖a‖∞ � M1/p

N we obtain that

∫
IN
|tma|p dμ � ‖a‖p

∞
MN

� c < ∞, 0 < p � 1/2.

Hence,

1

log[1/2+p] n

n

∑
m=1

∫
IN
|tma|p dμ
m2−2p � 1

log[1/2+p]n

n

∑
k=1

1
m2−2p � c < ∞. (17)
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It is easy to see that

|tma(x)| =
∫

IN
|a(t)Fn (x− t)|dμ (t)

=
∫

IN

∣∣∣∣∣a(t)
1
Qn

n

∑
j=MN

qn− jD j (x− t)

∣∣∣∣∣dμ (t)

� ‖a‖∞

∫
IN

∣∣∣∣∣ 1
Qn

n

∑
j=MN

qn− jD j (x− t)

∣∣∣∣∣dμ (t)

� M1/p
N

∫
IN

∣∣∣∣∣ 1
Qn

n

∑
j=MN

qn− jD j (x− t)

∣∣∣∣∣dμ (t) (18)

Let tn be Nörlund means, with non-decreasing coefficients {qk : k � 0} and x ∈
Ik,l
N , 0 � k < l � N. Then, in the view of Lemma 7 we get that

|tma(x)| � cMlMkM
1/p−2
N , for 0 < p � 1/2. (19)

First, we consider the case 0 < p < 1/2. By using (2), (18), (19) we find that∫
IN
|tma|p dμ =

N−2

∑
k=0

N−1

∑
l=k+1

mj−1

∑
x j=0, j∈{l+1,...,N−1}

∫
Ik,lN

|tma|p dμ +
N−1

∑
k=0

∫
Ik,NN

|tma|p dμ

� c
N−2

∑
k=0

N−1

∑
l=k+1

ml+1 . . .mN−1

MN
(MlMk)

p M1−2p
N +

N−1

∑
k=0

1
MN

Mp
k M1−p

N

� cM1−2p
N

N−2

∑
k=0

N−1

∑
l=k+1

(MlMk)
p

Ml
+

N−1

∑
k=0

Mp
k

Mp
N

� cM1−2p
N . (20)

Moreover, according to (20), we get that

∞

∑
m=MN+1

∫
IN
|tma|p dμ
m2−2p �

∞

∑
m=MN+1

cM1−2p
N

m2−2p < c < ∞, (0 < p < 1/2) .

Now, by combining this estimate with (17) we obtain (16) so the proof of part a) is
complete.

Let p = 1/2 and tn be Nörlund means, with non-decreasing coefficients {qk : k �
0} , satisfying condition (6). We can write that

|tma(x)| �
∫

IN
|a(t)| |Fm (x− t)|dμ (t)

� ‖a‖∞

∫
IN
|Fm (x− t)|dμ (t) � M2

N

∫
IN
|Fm (x− t)|dμ (t) . (21)

Let x ∈ Ik,l
N , 0 � k < l < N. Then, in the view of Lemma 6 we get that

|tma(x)| � cMlMkMN

m
. (22)
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Let x ∈ Ik,N
N . Then, according to Lemma 6 we obtain that

|tma(x)| � cMkMN . (23)

By combining (2), (21), (22) and (23) we obtain that∫
IN
|tma(x)|1/2 dμ (x) � c

N−2

∑
k=0

N−1

∑
l=k+1

ml+1 . . .mN−1

MN

(MlMk)
1/2 M1/2

N

m1/2
+

N−1

∑
k=0

1
MN

M1/2
k M1/2

N

� M1/2
N

N−2

∑
k=0

N−1

∑
l=k+1

(MlMk)
1/2

m1/2Ml
+

N−1

∑
k=0

M1/2
k

M1/2
N

� cM1/2
N N

m1/2
+ c.

It follows that

1
logn

n

∑
m=MN+1

∫
IN
|tma(x)|1/2 dμ (x)

m
� 1

logn

n

∑
m=MN+1

(
cM1/2

N N

m3/2
+

c
m

)
< c < ∞. (24)

The proof of part b) is completed by just combining (17) and (24). �

Proof of Theorem 2. Since tn is bounded from L∞ to L∞ (the boundedness follows
from (5)), by Lemma 2, the proof of Theorem 2 will be complete, if we show that∫

IN

(
sup
n∈N

|tna|
log2[1/2+p] (n+1)(n+1)1/p−2

)p

dμ � c < ∞

for every p -atom a, where I denotes the support of the atom. Let a be an arbitrary
p -atom, with support I and μ (I) = M−1

N . Analogously to in the proof of Theorem 1
we may assume that I = IN and n > MN .

Let x ∈ Ik,l
N , 0 � k < l � N. Then, by combining (18) and Lemma 7, (see also

(19)) we get that

|tn (a(x))|
(n+1)1/p−2 log2[1/2+p] (n+1)

� M1/p
N

M1/p−2
N N2[1/2+p]

∫
IN

∣∣∣∣∣ 1
Qn

n

∑
j=MN

qn− jD j (x− t)

∣∣∣∣∣dμ (t)

� cM1/p
N

M1/p−2
N N2[1/2+p]

MlMk

M2
N

=
cMlMk

N2[1/2+p] . (25)

By combining (2) and (25) we obtain that (see also [24] and [25])∫
IN
|t∗a|p dμ =

N−2

∑
k=0

N−1

∑
l=k+1

mj−1

∑
x j=0, j∈{l+1,...,N−1}

∫
Ik,lN

|t∗a|p dμ +
N−1

∑
k=0

∫
Ik,NN

|t∗a|p dμ

�
N−2

∑
k=0

N−1

∑
l=k+1

ml+1 . . .mN−1

MN

(
MlMk

N2[1/2+p]

)p

+
N−1

∑
k=0

1
MN

(
MNMk

N2[1/2+p]

)p

� c

N2[1/2+p]

N−2

∑
k=0

N−1

∑
l=k+1

(MlMk)
p

Ml
+

c

M1−2p
N N2p[1/2+p]

N−1

∑
k=0

Mp
k

Mp
N

< ∞.
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The proof is complete. �

A FINAL REMARK. Several of the operators considered in this paper, e.g. those
described by the Nörlund means are called Hardy type operators in the literature. The
mapping properties of such operators, especially between weighted Lebegue spaces, is
much studied in the literature, see e.g. the books [10] and [11] and the references there.
Such complimentary information can be of interest for further studies of the inequalities
considered in this paper.
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