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ABSTRACT 

Throughput capacity (TC) is defined as the total amount of material 

processed or produced by the system in the given time. In practice, 

full capacity performance for industrial equipment is impossible 

because the failures are affected and cause a reduction. Therefore, 

failure interruptions, especially critical ones (bottlenecks), must be 

detected and considered in production management. From the point 

of production view, the bottleneck has the lowest production or 

performance. Most of the previous works used the availability and 

related importance measures as performance indicators and 

prioritization of subsystems. However, these measures cannot 

consider system production in their prioritization. This paper 

presents a bottleneck detection framework based on system 

performance and production capacity integration. The integrated 

approach is used to assess the loading and hauling subsystems of 

Golgohar Iron Mine, Iran. As a result of the analysis, the hauling 

subsystem identifies the system's bottleneck. 
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1. INTRODUCTION 
Nowadays, the deliverability of systems is the main challenge of 

the competitive environment. Production performance analysis is a 

proposed tool for deliverability assessment in the production plants 

[1]. Capacity and availability are both important dimensions of the 

production performance of a production plant and mining 

equipment [2], [3]. In mining equipment, capacity is a function of 

equipment utilization and performance [3], [4]. Therefore, the 

availability and capacity analysis of mining equipment is the first 

step for assessing system throughput and detecting bottleneck(s) of 

the production process. 

Availability is the function of uptime and downtime, controlled by 

failures. The failure can be caused by production loss, company 

reputation, safety, environmental issues, maintenance costs, etc. 

[2]. In engineering systems, failures cannot be eliminated, but it is 

possible to mitigate the impact of failures with a better 

understanding of system behaviour and management. 

Availability is defined as “the ability of an item to be in a state to 

perform a required function under given conditions at a given 

instant of time or over a given time interval, assuming that the 

required external resources are provided.” Availability is a function 

of reliability (uptime), maintainability, and supportability 

(downtime) [2]. Therefore, calculating the system technical 

characteristics (RAMS) prerequisite for production performance 

analysis. 

Quantitative Reliability, Maintainability, Availability, and 

Supportability (RAMS) analysis in mining equipment can be traced 

to the last 1980s. After that, various studies such as Loud-haul-

dump machine in fleet and equipment level [5-7], drum shearer [8], 

powered supports [9], conveyor system [10], Crushing plant as a 

part of processing plant [11] had been carried out. Also, open-pit 

mine equipment’s such as wagon drill [12], shovel [13], and truck 

[14], [15], have been analyzed in other studies using a statistical 

approach. Artificial intelligence techniques such as Genetic 

Algorithm (GA) [16], [17] and Machine Learning (ML) [18], [19] 

have been used for reliability and maintainability analysis and 

maintenance management of the mining equipment. In this paper, 

the statistical method is preferred due to the lack of data and user-

friendly statistical procedures for managers and practitioners. In the 

mining operation, drilling, loading, and hauling equipment should 

interact with material production. Therefore, fleet or navigation 

level studies are needed to analyze the real situation. Recently, 

some studies have focused on RAM-based TC analysis and their 

equipment's or subsystems interactions in system networks [20], 

[21]. The studies at this level can reveal the production line 

bottleneck used for future planning and decision-making process 

on improving bottleneck and throughput capacity. The reviews 

present a narrow study carried out in the equipment level of the 

system in bottleneck recognition. Therefore, the present paper 

considers loading and hauling a fleet consisting of a shovel and 

trucks as a system in an open-pit mine. Since the primary purpose 

of the article is detecting bottleneck in system level, thus, 

performance characteristics of equipment (RAM) must be 

analyzed. After that, the TC of each subsystem based on 

availability, system configuration and capacity is predicted. 

Finally, subsystems prioritize and critical one is detected. The rest 

of the paper organized as follow: 

Section 2 describes the proposed methodology, which is how to 

analyze the system's reliability, maintainability, and simulated TC. 

Section 3 analyzes a case study of Golgohar Iron Mine equipment 

by the proposed methodology. Finally, in section 4, the conclusions 

of the paper are provided. This study assumed that: 

• Each component, subsystem, and system has two states: 

working or failed. 



• The effect of risk factors (covariates) such as 

environmental condition, operator skill, etc. not 

considered in the study. 

• The equipment is repairable. 

• Due to a lack of supportability data, the indicator is not 

considered in the study. 

2. Methodology 
Figure 1 illustrates the proposed approach flowchart. The 

methodology consists of four main steps that represent in detail as 

follows: 

1. The identifying system, subsystem, and component 

boundaries and collecting required data in defined 

boundaries. 

2. The identical and independent (iid) assumptions 

validation. Then select the best model for reliability and 

maintainability. 

3. The estimation of reliability, maintainability, and 

availability characteristics.  

4. Merging RAM characteristic and capacity at equipment 

level and simulating considering by system 

configuration, finally, predicting system and subsystem's 

TC.
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Figure 1- TC analysis methodology 

 

2.1 Boundary identification and data 

collection 
Preceding of data collection, system, subsystem, and component 

boundaries should be defined. These boundaries depend on the 

importance of the studied system, expert opinions, system 

configuration, management comments, data sources, and data 

collection process. Also, it must be preventing overlap in adjoining 

systems, subsystems, and components [20]. Sometimes, the study 

level (fleer or equipment) can be a useful factor in defining these 

boundaries [22]. 

When boundaries are defined, required data should be collected. 

Data can be gathered from many sources such as sensors, operator 

interfaces onboard equipment, historical operational and 

maintenance reports [23]. In addition, data collecting time intervals 

is a crucial issue. The data collecting time interval must be at least 

ten months [24]. The reliability and maintainability data is sorted 



as Time between Failures (TBFs) and Time to Repairs (TTRs) in 

chronological order. This data can be categorized into censored and 

complete groups. Failure occurring time is precisely not known in 

the censored data, but it is correctly known in the complete data 

[25]. 

2.2 Validation of assumption of identical and 

independent distribution (IID) 
After the data collection, these data should be sorted into the 

required formatting, and the assumption of the Identical and 

Independent (iid) nature of data must be validated. Independency 

means that the data are free of trends and that each failure (repair) 

is independent of the preceding or succeeding failure (repair). 

Identically distributed data mean that all the data in the sample are 

obtained from the same probability distribution. In the non-

repairable component, a failed component is replaced by the new 

one; therefore, the new component failure is independent of the 

previous component failure [26]. But in the repairable component, 

verification of the assumption that the data are iid should be done. 

Otherwise, completely wrong conclusions can be drawn [27]. 

Two common methods for validating the assumption of 

independent and identically distribution of sample are trend and 

autocorrelation test, respectively. If the assumption that the data are 

identical and independent is valid, the homogeneous Poisson 

Process (HPP) and Renewal Process (RP) must be fitted. 

Otherwise, the Non-Homogeneous Poisson Process (NHPP) is an 

appropriate model. For more information, see ref [25], [28], [29]. 

2.2.1 Trend test 
Trend tests can be categorized into two main groups; graphical and 

analytical. The graphical method is simple and does not require any 

calculations. The cumulative failures are plotted against the 

cumulative time in this kind of test. The straight line indicates trend 

free and convex or concave shows the trend in the data. The 

graphical method is strong when there are definite trends in the 

data. This solution may not be enough when slight trends are 

present and analytical tests should be performed [28]. 

In the analytical methods, the null hypothesis (H0) is trend-free, and 

the alternative hypothesis (H1) is a monotonic or non-monotonic 

(or both of them) trend. Four communal tests to trend analysis are 

the Laplace test, Military handbook test, Mann-Kendall test, and 

Anderson–Darling test. Depending on the nature of data, two or 

more tests must be performed. The null hypothesis in the military 

handbook and Laplace test is HPP. However, in the Mann-Kendall 

test is RP. Therefore, the Mann test must be performed after the 

rejection null hypothesis by both the Military handbook and 

Laplace test [25]. For more information about the tests as 

mentioned earlier, see [29]: 

2.2.2 Autocorrelation 
According to the proposed framework in Figure 1, if there is no 

apparent trend, then the autocorrelation test needs to be carried out 

to check the  independence between the TBF and TTR data. After 

sorting data in chronological order, ith failure against (i-1)’th 

failure is plotted. If all plot points generate a single cluster, then the 

data are independent, whereas the multi-clusters (two or more 

clusters) or a straight line lead to data dependency [28]. 

2.3 Reliability and Maintainability 

characteristics estimation 
After selecting the best analysis model for the system's technical 

characteristics, parameter estimation and the goodness of fit test 

should be carried out. Weibull is the most popular distribution in 

the field of reliability engineering. Weibull distribution can model 

the early phase (decreasing failure rate), useful life (constant failure 

rate), and wear-out phase (increasing failure rate) of the system [7]. 

However, the lognormal distribution is suitable for mechanical 

component maintainability modeling [30]. The goodness of fit tests 

such as Anderson Darling (A-D), Kolmogorov-Smirnov (K-S), 

etc., can be used for best distribution selection through candidate 

distributions.  

2.4 Throughput capacity 
TC is defined as; the amount of material that each system can 

process. When output at the system level is analyzed, the 

interaction between components must be considered [20]. For this 

purpose, the reliability block diagram (RBD) [26] and Fault tree 

(FT) [31] are two conventional methods. TC can be calculated 

using analytical and simulation techniques. The analytical approach 

is cheaper; on the other hand, the simulation method is more 

realistic [32].  

To measure the product's availability, its component's availability 

must be calculated. However, to deal with this issue, the Norwegian 

oil and gas industry (Norwegian Technology Standards Institution, 

1998) developed the Norsok Z-016 standard to assess the 

production availability of the system based on Figure 2. This 

standard shows that system availability is the function of item 

availability and product availability is the function of system 

availability [1]. 

However, capacity performance must be considered an essential 

parameter to assess production performance. For instance, one has 

a production plant availability of 90 percent, the plant throughput 

capacity, and production rate may be less than desired due to the 

low capacity of items. Therefore, capacity performance at the item 

level must be considered. Figure 3 illustrates the production 

performance that consists of availability and capacity performance. 

It is noteworthy that throughput capacity can be described by 

production performance and production availability [2] 

3. Case study 
Here we present a case study describing the proposed methodology. 

Golgohar complex is the first-largest iron mine in Iran. This 

complex is located in Sirjan, southeast of Iran. The complex 

consists of six mines, named by numbers, from one to six. Mine 1 

is the largest and oldest mine in this complex and is operated by 

Arman Gohar Sirjan (AGS) Co. Golgohar mines are open-pit, so 

the shovel-truck fleet is used for raw material production. 

This mine uses Liebherr shovels and three trucks: Terex, 

Caterpillar, and Komatsu. Dispatching priority in this mine has led 

to choosing Terex trucks for top levels and a combination of 

Komatsu and Caterpillar trucks for lower levels. The top-level 

(bench 10 to 12) using expert opinion and dispatching data shovel-

truck fleet illustrated in figure 4 is selected as a case study. 

This shovel-truck fleet is defined as a system. Each series and 

machine is defined as a subsystem and component. As previously 

noted, the illustrated system is working in the pre-stripping phase 
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Figure 2- Relationship between the availability of component and production availability [1] 
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Figure 3- Production performance concept, Adapted from [2]

and on the top-level (bench 10 to 12) (Figure 5). According to the 

mine production plan, this system will work about 500 hours on 

the mentioned level. Therefore, analysis of this system during 500 

hours operation time is interesting. Table 1 depicts the production 

line corresponding codes as well as their functional capacity 

Mine SH.

DT.1

DT.2

DT.3

DT.4

DT.5

DT.6

Stockpile

DT.7

Figure 4- Block diagram for shovel-truck fleet 
 

After boundary identification, required data were collected, 

sorted, and classified in the form required for the analysis (i.e., 

TBF and TTR). This mine uses the SmartMine system, so every 

moment equipment state (working or failed) automatically is 

recorded. Therefore, archived data in this data bank is a reliable 

data source. Data is used in this study were collected over 18 

months. 

The  next  step  after collecting, sorting, and classifying the data is 

to validate the iid assumption of the nature  of the data. As 

mentioned in Figure 1, trend tests should be performed using two 

or more tests, according to trend behavior. Table 2 shows the p-

value statistic of tests. The null hypothesis is considered in the 

confidence level of 95%. Thus, this assumption is rejected for less 

than 5% P-value. 
 

Table 1- Mine equipment model and functional capacity 

Row Equipment Model Code 
Mean 

capacity 
(m3/h) 

1 Shovel Liebherr R9350 SH. 420 

2 Dump Truck Terex-TR100 DT.1 53.8 

3 Dump Truck Terex-TR100 DT.2 53.3 

4 Dump Truck Terex-TR100 DT.3 54.5 

5 Dump Truck Terex-TR100 DT.4 53.4 

6 Dump Truck Terex-TR100 DT.5 53.7 

7 Dump Truck Caterpillar-777D DT.6 57.7 

8 Dump Truck Caterpillar-777D DT.7 60 
 

 

 

 
Figure 5- Location of the selected system 

Stock Pile 

System 

Location 



NHPP (PLP) must be fitted for components that have a trend. 

Trend-free groups are subject to dependency analysis. Due to the 

scarcity of space, the DT.7 TTR autocorrelation test is illustrated 

in Figure 6. 
  

Table 2- Computed p-value of trend tests 

Eq. Data MIL. Laplace A-D M-K Result 

SH. 
TBF 0.002 0 -  0.02 R* 

TTR 0.05 0.017 - 0.035 R 

DT.1 
TBF 0.2 0.042 0.029 0.078  NR** 

TTR 0.059 0.004 0.003 0.04 R 

DT.2 
TBF 0.076 0.38 - - NR 

TTR 0 0 - 0.007 R 

DT.3 
TBF 0.18 0.62 - - NR 

TTR 0 0 - 0.22 NR 

DT.4 
TBF 0.015 0.033 - 0.03 R 

TTR 0.67 0.74 - - NR 

DT.5 
TBF 0 0 - 0 R 

TTR 0 0.001 - 0.15 NR 

DT.6 
TBF 0.54 0.82 - - NR 

TTR 0.87 0.49 - - NR 

DT.7 
TBF 0.16 0.021 0.019 0.04 R 

TTR 0.22 0.42 - - NR 

*R: Rejected 

**NR: Not Rejected 

 

As can be seen, the first lag in the ACF graph is in the confidence 

level (95%), and the data has no evidence of any trend in the 

scatter plot. For all trend-free components, the dependency test 

shows the same result. 

The next step is selecting the best distribution through candidate 

distributions. For this purpose, the Anderson-Darling goodness of 

fit test is used. The distribution that has the lowest AD is chosen 

as the best distribution. The reliability and maintainability 

characteristics of the equipment have been calculated and 

presented in Table 3 and Figure 7 using the software Minitab 18. 

As can be seen, Weibull and lognormal distributions are 

appropriate for reliability and maintainability modeling, 

respectively.  

 

 
Figure 6- Autocorrelation test for the DT.7 TTR 

The logical relationship between components and components 

capacity is calculated for the TC analysis component technical 

characteristic. After that, the TC of the fleet is predicted using 

BlockSim 9 software for 500 hours. 

In the “Blocksim software” at the first step, simulate failure and 

repair characteristics of components, then incorporate the 

component's capacity into simulated times [33]. The failure and 

repair characteristics simulation technique works as the 

following; the first simulation yields first a random time to first 

failure, then a random time to first repair, then a random time to 

second failure, then a random time to second repair, and so on, 

until the chosen mission time ends. This sequence is repeated 

based on the number of simulations, yielding a different 

sequence. All the different sequences are stored each time. The 

number of simulations represents the number of different times to 

the first failure, the number of different times to first repair, and 

so on. The average of all times to the first failure is used as the 

time to the first failure. Similarly, the average of all times to first 

repair is used as the repair time for the first repair. The same 

process applies for the rest of the failures and repairs until the 

mission end time is reached [34]. 

Table 3- Best-fit distribution for TBF and TTR data 

Eq. 
Reliability Maintainability 

Best-fit Parameters Best-fit Parameters 

Sh. PLP Beta=1.3; Eta=140.4 PLP Beta=1.18; Eta=18.36 

DT.1 Weibull 3P. Beta=0.88; Eta=12.08, Gamma=0.44 PLP Beta=1.09; Eta=10.31 

DT.2 Weibull 3P. Beta=0.803; Eta=9.8; Gamma=0.437 PLP Beta=1.19; Eta=16.93 

DT.3 Weibull 2P. Beta=0.99; Eta=19.9 Lognormal LMean=1.16; LStd=1.31 

DT.4 PLP Beta=0.89; Eta=7.53 Lognormal 3P. LMean=1.08; LStd=1.45; Location= 0.12 

DT.5 PLP Beta=0.75; Eta=2.27 Lognormal LMean=1.08; LStd=1.48 

DT.6 Weibull 2P. Beta=0.88; Eta=27.94 Lognormal 3P. LMean=0.347; LStd=1.25; Location=0.028 

DT.7 PLP Beta=1.08; Eta=41.75 Lognormal LMean=0.68; LStd=1.14 
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Figure 7- Reliability and Maintainability characteristics of the trucks and shovel. 

 

The result of the simulation is shown in Table 4; the following are 

revealed: 

• FCI is the contribution of equipment failure to system 

failure. Because of existing only one shovel in the 

system, shovel failure has the greatest influence on the 

system failure.  

• Excess Capacity is the additional amount a component 

could have produced while up and running. 

• The utility is a proportion of time that available 

components can produce without blockage. 

Because of low reliability and maintainability, Terex trucks have 

a weak performance (Table 4), while based on the result, 

Caterpillar trucks have higher strength and reliability. Therefore, 

a detailed study should be performed on Terex trucks at the 

equipment level. According to the simulation result, system 

throughput will be the sum of the truck’s mean capacity (110039). 

Due to the high gap between loading and hauling subsystems, the 

hauling subsystem was identified as a bottleneck from the 

throughput capacity perspective. In other words, improving the 

truck’s performance or increasing the number of trucks is needed. 

 

Table 4- Throughput analysis result for individual 

equipment 

Eq. 
FCI 

(%) 
MA* (%) 

MC** 

(m3/h) 

EC*** 

(m3) 

Utility 

(%) 

DT.1 0.21 69 15960 2617 85.92 

DT.2 0.12 47 10399 2122 83.05 

DT.3 0.5 76 18018 2700 86.97 

DT.4 0.44 54.46 12279 2256 84.48 

DT.5 0.35 30.2 6176 1920 76.28 

DT.6 0.65 91.7 23294 3145 88.1 

DT.7 0.36 90.32 23913 3182 88.25 

SH. 95.76 88.81 186457 49 99.97 

MA*: Mean Availability, MC**: Mean Capacity, EC***: Exceed Capacity 

 

4. Conclusion 
The fleet level is more effective for the mining production system 

than the equipment level assessment for weakness point 

detection. Therefore, the right decision can be made for system 

improvement at the right time. In this paper, the reliability and 

maintainability characteristics of equipment were analyzed. After 

that, the system's throughput capacity using RM characteristics 

predicted the logical relationship between components and 

components capacity. The result shows that Terex trucks are 

tangibly weaker than Caterpillar trucks. Caterpillar truck’s high 

performance is due to high reliability and maintainability (dashed 

lines in Figure 7). The shovel is the newest equipment in the 

system, so; this equipment represents high reliability. In addition, 

poor maintainability of the shovel can result in in-site 

maintenance. Therefore, a detailed study should be performed on 

the feasibility of Terex trucks. From the bottleneck point of view, 

the high gap between loading and hauling subsystems (76418 m3) 

demonstrated that improving trucks' performance or increasing 

trucks' number is necessary for throughput capacity 

improvement.  
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