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ABSTRACT 

The concept of availability importance measures can be used to 

identifying critical components from the availability performance 

point of view. The availability of an item depends on the combined 

aspects of its reliability and maintainability performance indices. 

These indices are considerably affected by operational and 

environmental conditions such as; ambient temperature, 

precipitation, wind, etc. Thus, different subsystems or components' 

availability in various conditions changes the performance priority 

of the system. In this way, the paper used the availability 

importance measure considering the operating environment for a 

mining fleet consisting of one shovel and six trucks. The reliability 

and maintainability characteristic of machines considering all 

influence factors (covariates) is analysed using by Cox regression 

model. The availability importance measure in two scenarios 

demonstrated that subsystem criticality changes in various 

conditions and the appropriate decisions should be made on 

different operational conditions. 
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1. INTRODUCTION 
The increasing demand for material is forcing mining companies to 

increase their output. To meet production targets, large-scale 

equipment with high performance is needed. 

Availability is a comprehensive metric for repairable systems 

performance management, which combines reliability and 

maintainability [1]. Since reliability and maintainability [2] 

characteristics of equipment are considerably affected by the 

operating environment (temperature, precipitation, etc.) thus, 

availability can change through the different conditions. 

As previously noted, availability is an important indicator of a 

repairable system. When the availability of a system is low, efforts 

are needed to improve it. In a system whose performance depends 

on the performance of its components, some of these components 

may play a more important role than others. Therefore, identifying 

the crucial components is an optimal way to improve system 

availability [3]. Importance measure is an effective approach that 

provides a guideline for performance improvement. Availability 

importance measure is an index that shows the contribution of 

components available on the system availability. The index 

provides a numerical ranking of components that highly ranked 

components have the greatest effect on system availability [4].  

Up to this time, many studies have investigated component 

contribution on system performance. At first, Birnbaum proposed 

a quantitative definition that measures the contribution of 

component reliability to system reliability. Then, Gao et al. [5] have 

proposed a maintainability importance measure to identify critical 

components from a maintainability perspective. Gao et al. [6] and 

Wu and Coolen [7] have proposed a cost-effective manner to 

improve system reliability using the concept of Birnbaum 

importance measure. Availability importance measure that 

identifies the importance of each component on system availability 

investigated by some authors. Thus, the best strategy selection 

through decreasing failure rate or increasing repair rate is proposed  

[4]. Finally, Qarahasanlou et al. have presented availability 

importance measure considering operation environmental factors 

on RAM characteristics. The study shows different operation 

conditions can change the availability of components [8]. 

The previous research shows that the reliability, maintainability, 

and availability importance of components have been conducted 

using time series data such as Time Between Failures (TBF’s) and 

Time To Repairs (TTR’s). However, RAM characteristics of 

components can be affected by operation environmental factors 

(covariates); thus, accurate estimation of system performance 

requires both time series data and covariates. Furthermore, since 

various operation conditions may have different influences on 

component availability performance, thus availability importance 

of components may change through different operation conditions, 

which has not been addressed in the previous studies. In this paper, 

the availability of the system is calculated using both time and 

covariate data. After that, the concept of availability importance 

measure is used to identify critical components from the 

availability point of view in various conditions. 

The paper is structured as follows: Section 2 introduces a 

methodology for reliability and maintainability analysis 

considering operation conditions after introducing availability and 

availability importance measures. Section 3 presents a case study 

describing component importance analysis in various conditions in 

Iran's Golgohar iron mine. Section 4, finally, concludes the paper. 



2. THEORETICAL BACKGROUND AND 

DEFINITIONS 

2.1 Reliability and maintainability analysis 
The traditional reliability approach is based on the lifetime  
distribution of event records of a population of identical  items. In 

this approach, the population  characteristics [e.g., mean time to 

failure (MTTF) and probability of reliable  operation] are estimated  
using historical failure time data. This popular technique was 

proposed as a standard tool for the planning and operation of 

automatic and complex  mining system reliability/maintainability in 

the mid-1980s [9]. The approach does not require condition and 

operating environment data, a limitation in dynamic operating and 

environmental conditions. Therefore, covariate-based hazard 

models (regression models) approaches were developed [10]. A 

pioneering covariate-based hazard model is the proportional hazard 

model (PHM), introduced by Cox (1972). The common form of 

PHM is log-linear and is expressed as Equation (1) [11]. 
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The component reliability influenced by covariates is expressed as 

Equation (2). 
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The mean time to failure (MTTF) can be given by Equation (3) [6]. 

In this Equation, 𝜆 (𝑡, 𝑧) and 𝑅 (𝑡, 𝑧) are the failure and reliability 

functions, respectively, z is row vector consisting of the covariate 

parameters (indicating the degree of influence which each covariate 

has on the failure function), 𝛼 (column vector) is the unknown 

parameter of the model or regression coefficient of the 

corresponding n covariates (z), 𝜆0(𝑡) and 𝑅0(𝑡) are baseline hazard 

rate and baseline reliability, respectively, dependent on time only 

and ( )
1=


n

i i
i

exp α z
, exponential function commonly used for covariates 

term [12]. 
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The proportional repair model (PRM) is proposed to predict repair 

rate considering the operating environment. PRM can be expressed 

as Equation (4) [2]. 
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The component maintainability influenced by covariates is 

expressed as [2]. 
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The mean time to repair (MTTR) can be given by [13]. 
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Where 𝜇(𝑡, 𝑤) and 𝑀(𝑡, 𝑤) are the repair and maintainability 

function, respectively; β is the regression coefficient of the 

corresponding m covariates (w); and 𝜇0(𝑡, 𝑤)  and 𝑀0(𝑡, 𝑤) are the 

baseline repair rate and baseline maintainability (cumulative 

distribution function of TTRs), respectively. The main assumption 

in the PHM/PRM is that the covariates are time-independent 

variables (PH assumption [2]. 

There are several approaches to evaluating the proportional hazards 

(PH) assumption of the PHM: a graphical procedure, a goodness-

of-fit testing procedure, and a procedure involving the use of time-

dependent variables [14]. However, the PH assumption may not be 

valid in some cases. This means the effect of the environment on 

reliability performance is time-dependent. In this case, we can use 

the stratified Cox regression model (SCRM). The stratified Cox 

model modifies the PHM, allowing for control by ‘‘stratification’’ 

of a predictor that does not satisfy the PH assumption. Predictors 

assumed to satisfy the PH assumption are included in the model, 

but the stratified predictor is not. For example, suppose the 

population can be divided into r strata for failure (/g strata for 

failure), based on the discrete values of a single covariate or a 

combination of discrete values of a set of covariates. Then, the 

hazard rate of an asset in the sth stratum can be expressed by 

Equation (7) [14].  
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As with the original SCRM, there are two unknown components in 

the hazard model: the failure regression parameter αi and the 

baseline failure function λ0s (t) for each stratum. The baseline 

failure functions for “r” strata could be arbitrary and assumed 

completely unrelated. The repair rate of an asset in the g’th stratum 

can be expressed as Equation (8) [11]. 
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Where 𝛽𝑗 is the regression parameter and 𝜇0𝑔(𝑡) the baseline repair 

function for each stratum. The baseline repair functions for ‘‘u’’ 

strata could be arbitrary and assumed completely unrelated. 

2.2 Availability performance 
Availability of a system depending on its component uptime 

(reliability performance), downtime (maintainability performance), 

and the system structure (i.e., configuration) [15]. Suppose that 1 

and 0 denote system up and downstate, respectively. Therefore, 

availability is the probability that the system is operational at time 

t. This measure can be represented mathematically by [16]: 

A(t)=Pr(X(t)=1) (9) 

A(t) is a point or instantaneous availability. However, a common 

measure of availability is steady-state availability. Steady-state 

availability is defined as the long-term fraction of time that an item 

is available. The system's steady-state availability (As.s) is the limit 

of the point availability as time tends to infinity [17].  

s.s
t

A lim A(t)
→

=  (10) 



Typical system structures are series, parallel and series-parallel. In 

the present paper, the series-parallel structure is discussed. For 

other structures, see references [4] and [18]. Steady-state 

availability of a series-parallel system that consists of n 

independent component in series and m independent component in 

parallel can be found in Equation (11). 
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2.3 Availability Importance Measure 
Importance analysis, as one of such tools, can be used to prioritize 

components in a system by mathematically measuring the 

importance level of each component on the system performance 

[4]. Availability importance measure can identify the weakest area 

of the system from an availability point of view. Availability 

importance measure is the partial derivative of the system’s 

availability for the component availability, which is mathematically 

expressed by Equation (12): 
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i

AI is availability importance of component i, As and Ai is the system 

and ith component availability, respectively. In a system, 

components with high 
A

iI  have the greatest effect on the system 

availability [4]. From Equations (11) and (12), the availability 

importance measure of ijth component in a series-parallel system 

can be found in Equation (13) [4]. 
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ij

AI  To determine the relative ranking of components, this index () 

should be normalized. represent the absolute value of importance 

measure, which may not be as significant as component relative 

ranking [19]. Therefore, normalized availability importance 

measure for component ij of a series-parallel system can be defined 

as [18]: 
ij
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After detecting critical components, the best strategy for 

availability improvement through increasing TBF or decreasing 

repair time should be identified. For this purpose, reliability and 

maintainability-based availability importance measures are 

appropriate metrics. Indeed, reliability and maintainability-based 

availability importance measure shows the influence of reliability 

and maintainability of component i on the availability of the whole 

system and can be represented by Equations (15) and (16), 

respectively [4]. 
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Normalized reliability and maintainability-based availability 

importance measure are defined by Equations (17) and (18), 

respectively [18]. 
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3. CASE STUDY 
Mining companies are using large-scale equipment with high 

investment. To meet the production target, high performance of this 

equipment is needed. Here, we present a case study to illustrate the 

proposed methodology. This mine is an open pit, and the shovel-

truck fleet is used for material handling. Therefore, a shovel-truck 

system illustrated in Figure 1 is selected as a case study. This fleet 

is considered a system, loading and hauling are considered a 

subsystem, and each machine is considered a component. Table 1 

represents the model of the machines and corresponding codes. 

Mine SH.

DT.1

DT.2

DT.3

DT.4

DT.5

DT.6

Stockpile

 
Figure 1- Block diagram for shovel-truck fleet 

Table 1- components of the mining system and their code 

Equipment Model Code 

Shovel Liebherr R9350 SH. 

Dump Trucks Terex-TR100 DT.1,2,3 and 4 

Dump Trucks Caterpillar-777D DT.5 and 6 
 

After identifying the system, subsystem, and component, required 

data were collected over 18 months. For each machine, TBF, TTR, 

and corresponding covariate were sorted, classified, and quantified. 

Identification and quantification of all influence covariates are 

curtailed tasks. For instance, the classification and quantification of 

covariates for haulage subsystem failure are shown in Table (2). In 

addition, identified covariates for shovel and dump truck subsystem 

failure and repair are appeared in Table (3). 

Table 2- Classification and quantification of failure covariates 

for haulage subsystem 

Covariate Classification Quantification 

Shift (Zsh) 
Morning 1 

Midday 2 

Night 3 

Working Place (ZWP) 
Bench 10-12 1 

Bench 13-15 2 

Bench 16-18 3 

Math with loader (ZML) Excavator 1 

Shovel 2 

Suitable 1 



Number of times 

service (ZNS) 

Moderate 

suitable 

2 

Unsuitable 3 

Rock kind (ZRK) Ore 2 

Waste 1 

Team (ZTeam) 

Team A 1 

Team B 2 

Team C 3 

Team D 4 

Table 3- Failure and repair covariates for subsystems 

Failure covariates 
repair covariates 

Dump trucks Shovel 

Shift Shift Shift 

Rock kind Rock kind Precipitation 

Number of services Number of services Temperature 

Match with loader Match with loader Wind 

Team Team  

Working place Precipitation 

Precipitation Temperature 

Temperature  

3.1 Reliability and Maintainability 

Performance Analysis 
In this case, graphical and theoretical models are used for checking 

PH assumption. In Cox PHM or PRM, Weibull distribution widely 

used for baseline hazard rate λ0 and baseline repair rate μ0. So, for 

ensuring  the Akaike Information Criterion (AIC) is used for 

goodness to fit baseline hazard rate and baseline repair rate for all 

subsystems. In the present study, test z for eliminated covariates 

was found to have no significant value from the subsequent 

calculations. The corresponding estimates of a regression 

coefficient were obtained and tested for their significance based on 

test z and (/or) p-value (obtained from the table of normal unit 

distribution). Used the p-value of 5% as the upper limit to check the 

significance of covariates. To avoid any bias in the results of PRM 

and PHM, the assumption of the proportional repair model and 

proportional failure model must be checked; Stata accommodates a 

statistical test of the PH assumption using the Schoenfeld residuals. 

The results of the PH assumption for DT.1 are shown in Table 4. In 

the theoretical model, if the p-value is bigger than 0.05, the PH 

assumption is established, and covariates are time-independent.  

 

Table 4- The results of theoretical model for PH assumption 

for subsystem DT.1 

Covariates Rho Chi2 Df P-value 

Temperature -0.04 0.91 1 0.3395 

Precipitation 0.008 0.07 1 0.7962 

shift 0.056 1.51 1 0.2196 

Rock type 0.042 0.81 1 0.369 

Number of service 0.063 1.27 1 0.259 

Proportional loading -0.05 1.26 1 0.262 

Operation team -0.009 0.04 1 0.838 

Working place 0.038 0.75 1 0.385 

Since the PH and PR assumption results show all covariates 

(continues and category)  for failure and repair data are time-

independent, thus PHM and PRM are selected as a suitable model 

for analysis. For instance, the results of selecting effective 

covariates for PHM of DT.1 are shown in Table 5. 

Table 5- The results of PHM for hazard ratio (HR) and select 

effective covariates for DT.1 

Covariates HR P-value 95% Conf. Interval 

Temperature 1.005 0.426 0.993 1.017 

Precipitation 0.891 0.038 0.800 0.994 

shift 0.929 0.216 0.827 1.043 

Rock type 0.816 0.626 0.361 1.845 

Number of service 0.056 0.000 0.047 0.075 

Match with loader 1.212 0.049 1.000 1.469 

Team 0.948 0.226 0.869 1.033 

Working place 0.848 0.32 0.769 1.046 
 

According to Table 5, the hazard ratio calculated for each covariate, 

the third column, shows the value of the z test statistic. The most 

important column is the last column, which determines the effective 

covariates. If the calculated p-value for the z-test is greater than 

0.05, the  null hypothesis will be accepted (covariate not affected); 

otherwise, the covariate is effective. According to Table 5, 

precipitation, the number of services, and match with loader are 

selected as effective covariates for DT.1. Finally, each component's 

reliability and maintainability functions are shown in Table 6 and 

Table 7, respectively. The MTBF and MTTR in the last columns 

were calculated according to Equation (3) and (6) and using 

Wolfram Alpha software with mean values of the covariate.

Table 6- Best-fit distribution for baseline, covariates, and MTTF calculation for failure data 

Equipment 
Baseline hazard rate (𝛌𝟎𝐬) n

i i

i 1

exp z
=

 
 

 
  

MTBF 

(Suitable) 

MTBF 

(Unsuitable) Best Fit Parameter 

DT.1 Weibull Shape=2, Scale=0.8 Exp(-2.5ZNS+0.19ZML-0.108ZP) 2.2 26.41 

DT.2 Weibull  Shape=2.03, Scale=0.57 Exp(-2.6ZNS) 1.82 23.55 

DT.3 Weibull Shape=2.2, Scale=1.7 Exp(-2.6ZNS-0.2ZML+0.108ZSh) 8.8 186.3 

DT.4 Weibull Shape=2.1, Scale=0.7 Exp(-2.6ZNS-0.09ZTeam+0.011ZT) 2.2 25.7 

DT.5 Weibull Shape=1.9, Scale=2.2 Exp(-2.6ZNS+0.14ZTeam+0.02ZT) 5.2 80.3 

DT.6 Weibull Shape=1.9, Scale=1.4 Exp(-2.6ZNS) 4.9 75.4 

SH Weibull Shape=1.9, Scale=8.8 Exp(-1.9ZNS+0. 9ZMT+0.17ZT) 2 15.12 



 

Table 7- Best-fit distribution for baseline, covariates, and MTTR calculation for repair data 

Equipment 
Baseline repair rate (𝛍𝟎𝐬) n

i i

i 1

exp z
=

 
 

 
  MTTR 

Best Fit Parameter 

DT.1 Weibull Shape=0.6, Scale=10 - 15.05 

DT.2 Weibull Shape=0.64, Scale=1.7 Exp(-0.28ZSh) 4.56 

DT.3 Weibull Shape=0.67, Scale=3.5 Exp(-0.02ZT) 8.22 

DT.4 Weibull Shape=0.6, Scale=4.8 - 7.22 

DT.5 Weibull Shape=0.7, Scale=1.7 Exp(-0.023ZT) 4.08 

DT.6 Weibull Shape=0.7, Scale=1.35 - 1.71 

SH Weibull Shape=0.6, Scale=9.6 - 14.44 

3.2 Availability importance measure 
After calculating RM characteristics and identification component 

interaction in a logical model, availability importance measure can 

be used to find the critical component of the system from an 

availability perspective. In this paper, we consider covariates that 

can change the availability of the system in dynamic conditions. 

Therefore, critical components in different conditions should be 

identified. For this purpose, two scenarios for the number of times 

service (suitable (ZNS=1), unsuitable (ZNS=3)) is considered. For 

each scenario, availability importance measure (IA), reliability-

based availability importance measure (IA, MTBF), and 

maintainability based availability importance measure (IA, MTTR) are 

calculated using Equations (13), (15), and (16) then normalized by 

Equations (14), (17) and (18) (NIA- NIA, MTBF- NIA, MTTR), the 

calculation are represented in Table 8 and Table 9.  

As shown in Tables 8 and 9, the list of components in decreasing 

order in the suitable condition is Sh., DT.6, DT.5, DT.3, DT.2, 

DT.4, and DT.1. The list of components in decreasing order in the 

unsuitable condition is Sh., DT.6, DT.3, DT.5, DT.2, DT.4, and 

DT.1. This indicates that various condition components may have 

different availability and correspondingly different importance 

from an availability point of view. From a reliability and 

maintainability perspective, each scenario has its own ordered list 

of components. From a reliability point of view in the suitable 

condition, the list of components in decreasing order is Sh., DT.2, 

DT.6, DT.5, DT.4, DT.3, and DT.1. However, in the unsuitable 

condition, again in descending order, the list of components is Sh., 

DT.2, DT.4, DT.1, DT.6, DT.5, and DT.3. Thus, various condition 

components have a different priority for resource allocation 

problems.

Table 8- Availability importance measure of mining fleet in the suitable condition 

Equipment Availability IA NIA IA, MTBF NIA, MTBF IA, MTTR NIA, MTTR 

DT.1 0.128 0.0037 0.0036 0.000185 0.00342 0.000027 0.0028 

DT.2 0.285 0.0045 0.0044 0.000501 0.00926 0.000200 0.0209 

DT.3 0.517 0.0066 0.0065 0.000188 0.00347 0.000201 0.0210 

DT.4 0.233 0.0042 0.0041 0.000339 0.00627 0.000103 0.0108 

DT.5 0.560 0.0073 0.0072 0.000344 0.00636 0.000438 0.0458 

DT.6 0.741 0.0123 0.0122 0.000483 0.00894 0.001385 0.1449 

Sh. 0.122 0.9738 0.9620 0.052014 0.96227 0.007202 0.7537 

 

Table 9- Availability importance measure of mining fleet in the unsuitable condition 

Equipment Availability IA NIA IA, MTBF NIA, MTBF IA, MTTR NIA, MTTR 

DT.1 0.637 0.0000008 0.0000008 7.22E-09 4.36654E-07 1.27E-08 7.3218E-07 

DT.2 0.838 0.0000018 0.0000018 1.06E-08 6.44055E-07 5.50E-08 3.1802E-06 

DT.3 0.958 0.0000071 0.0000071 1.54E-09 9.30580E-08 3.48E-08 2.0142E-06 

DT.4 0.781 0.0000014 0.0000014 9.09E-09 5.49841E-07 3.23E-08 1.8691E-06 

DT.5 0.952 0.0000062 0.0000062 3.55E-09 2.14521E-07 6.97E-08 4.0306E-06 

DT.6 0.978 0.0000135 0.0000135 3.88E-09 2.34757E-07 1.71E-07 9.8948E-06 

Sh. 0.511 0.99999942 0.9999692 1.65E-02 9.99998E-01 1.73E-02 9.9998E-01 

 

4. CONCLUSION 
Availability improvement with minimum effort is an interesting 

issue. Dynamic operation environment is changes component 

technical characteristics and correspondingly component 

influence on system availability. Thus, to avoid wrong results, all 

influence factors on system characteristics must be identified. In 

this paper, the RAM characteristics of the system are analyzed 

using both time and operating condition variables (covariates). 

After that, using availability importance measure, component 

priority in various working conditions is identified. To illustrate 

the proposed methodology, a shovel-truck fleet that consists of 

one shovel and 6 dump trucks is selected. Availability importance 

measure in two different conditions (suitable and unsuitable) 



shows that DT.5 has the greatest effect in suitable conditions than 

DT.3. However, in an unsuitable condition, DT.3 has the greatest 

effect on system availability. Comparing reliability and 

maintainability-based availability importance measure for sh., 

DT.1, DT.2, and DT.4 show that, in the suitable condition, 

reliability improvement is the best strategy. However, in 

unsuitable conditions decreasing repair time is more appropriate. 
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