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ABSTRACT 
Recently, to evaluate the response of systems against disruptive 

events, the application of the resilience concept has been 

increased. Resilience depicts the system's ability to return to its 

normal operational status after the disruption. Various studies in 

the field of engineering and non-engineering systems have only 

considered systems' performance indicators to estimate resilience. 

Therefore, the impact of operating and environmental factors 

(risk factors) has been neglected. In this paper, the influence of 

the risk factors (rock type), as well as the system's performance 

indicators, are considered in the resilience estimation of the 

excavator system of Gol-E-Gohar Iron mine.  
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1. INTRODUCTION 
Keeping the stable operation of systems is a challenge for 

engineering design. External or internal events like failures or 

disturbances affect the system operation, negatively. Systems 

based on their stability have a different reaction against failures. 

Some systems are vulnerable in case of disruption and lost their 

functionality. In the engineering domain, the ability of systems to 

withstand against the failure events and recover their performance 

in a suitable time is known as resilience [1]. At first, the concept 

of resilience was introduced by Holling in 1973 in the field of 

geological systems [2]. 

According to the necessary role of the resilience concept in the 

mitigation of the risk of disturbances, it has been used in various 

fields such as engineering [3], [4], social [5], [6], economic [7], 

[8], ecological [2], [9], socio-technical [10], [11], and socio-

ecological [12], [13]. Newly, it has also been used to COVID-19 

pandemic by many researchers [14]–[17]. For example, Barabadi 

et al. [14] evaluate the resilience of the health infrastructure 

systems (HIS) in Jajarm and Garme cities before and after the 

pandemic. Therefore, the resilience concept can be applied in 

each field.   

There is a wide range of definitions for system resilience in the 

literature. Here are some of these definitions. Allenby and Fink 

[18] defined resilience as the system's ability to preserve its 

operations and structure in the presence of internal or external 

disturbances and to degrade gracefully when it must. Rose [19] 

defined resilience as the system's ability to maintain its 

functionally when a disruption occurs. Haimes [20] defined 

resilience as the system's ability to withstand a major disturbance 

within acceptable degradation parameters and to recover with a 

suitable time and reasonable costs and risks. Moreover, the 

number of resilience definitions have been presented for more 

specific domains such as engineering, economy, social, 

ecological, etc. In the engineering domain, resilience is defined as 

the system’s ability to predict, absorb, adapt, and/or quickly 

recover from a disruptive event [1]. The given definitions 

highlight the ability of the system to resist against the failures and 

absorb failures adverse consequences. It should be noted, the pre-

failure (preparedness) and post-failure (recovery) activities are 

both essential in the resilience concept [3]. These activities make 

the system reliable, supportable, flexible, adaptable, and 

maintainable. 

In Figure 1, the schematic view of the system resilience is shown. 

As can be seen, the performance level of the system degraded 

after the disruptive event at 𝑡𝑒. Then, the system performance 

level reached to lowest value at 𝑡𝑑, and remained at this level 

until 𝑡𝑠. After commence of the recovery activities, this level 

increased and reached to the new steady state. It can be either 

close to or higher than the initial state of the system [21]. It 

depends on the quality and quantity of the pre- and post-failure 

activities. 

There are many approaches to resilience analysis. Hosseini et al. 

[1] classified the resilience analysis approach into the qualitative 

and quantitative groups (see Figure 2). Qualitative approaches, 

which are divided into the conceptual frameworks and semi-

quantitative indices, analysed the resilience of the system without 

any quantifications. Qualitative approaches are often used in the 

field of non-engineering systems. Quantification approaches, 

which are classified into general measures and structural based 

models, are suitable to apply in the field of engineering systems. 



 

Figure 1. System performance and state transition to 

describe resilience [1]. 
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Figure 2. Resilience analysis approaches [1]. 

The structural based models are divided into optimization, 

simulation, and fuzzy models. These models examine how the 

structure of a system affects its resilience. In these models, system 

behaviour must be observed and the characteristics of the system 

must be modelled or simulated. General measures are 

deterministic and probabilistic metrics. In these approaches, the 

system performances are compared before and after the failure 

event [1]. Deterministic measures never used uncertainties (like 

the probability of system repair) in order to analyse the system 

resilience. While probabilistic measures consider the 

uncertainties. Here, some of the presented resilience analysis 

models in the field of engineering are described in Table 1. 

Among these models, Rød et al. model has more capability to use. 

It is probabilistic and time-dependent. It considers the resilience 

of the owner organization of the system as well as system 

performance indicators. Therefore, in this paper, this model is 

used for resilience analysis. However, none of these models 

considers the impact of operational factors on system resilience. 

These factors, which have different origins, impact the system 

reliability, maintainability, and supportability [22]. Therefore, in 

this study, the impact of these influence factors is considered in 

the resilience analysis process.  

2. RESILIENCE ANALYSIS 

METHODOLOGY 
In the present paper, the resilience analysis is based on the Rød et 

al. model. Hence, system reliability, maintainability, and 

supportability (RMS) analysis should be carried out. It must be 

mentioned these analyses can be conducted considering the effect 

of risk factors. For this aim, five steps are considered, which are 

described in the following (see Figure 3). 

Table 1. Resilience analysis models. 

Author(s) Model Model description 

Bruneau et al. 

[23] 
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𝑅: Resilience reduction 

𝑄(𝑡): System performance 

function 

𝑡0: Disruption initiation time 

𝑡1: Recovery actions stoppage time 

- It is deterministic 

- The initial system performance level is 
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𝜓: System resilience 

%∆𝐷𝑌: Difference in non-

disrupted and expected disrupted 

system performance 

%∆𝐷𝑌𝑚𝑎𝑥: Difference in non-

disrupted and worst case disrupted 

system performance 

- It is deterministic 

- It measures the ratio of the avoided 

drop in system output and the 

maximum possible drop in system 

output 

Orwin and 

Wardle [24] 
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𝜓: System resilience 

𝐷0: Refers the maximum intensity 

of absorbable force without 

perturbing the system function 

𝐷𝑥: Refers to the magnitude of the 

disturbance effect on safety at time 

(𝑡𝑥) 

- It is deterministic 

- Resilience can take the value between 

0 and 1 

- When the magnitude of the 

disturbance's effect is equal to zero 

(𝐷𝑥 = 0), the maximum resilience can 

be obtained 

Tierney and 

Bruneau [25] 
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𝑅: Resilience reduction 

𝑄(𝑡): System performance 

function 

𝑡0: Disruption initiation time 

𝑡1: Recovery actions stoppage time 

𝑡1 − 𝑡0: System recovery duration 

- It is deterministic 

- It is time-dependent 

- The initial system performance level is 

not considered as 100% 

Cimellaro et 

al. [26] 
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𝜓: System resilience 

𝑄1(𝑡): System services quality 

before the disruption, 

- It is deterministic 

- It considers both pre- and post-failure 

activities 



𝑄2(𝑡): System services quality 

after the disruption 

𝑇𝐿𝐶  : Control time of the system 

𝛼 : Weighting factor representing 

the importance of pre- and post-

failure activities qualities 

- It considers the importance levels 

(weights) of the pre- and post-failure 

activities 

Ayyub [27] 
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𝜓: System resilience 

𝑇𝑖: Time to incident, 

𝑇𝑓: Time to failure 

𝑇𝑟: Time to recovery 

Δ𝑇𝑓 = 𝑇𝑓 − 𝑇𝑖: Duration of failure 

Δ𝑇𝑟 = 𝑇𝑓 − 𝑇𝑓: Duration of 

recovery 

𝐹: Failure profile 

𝑅: Recovery profile 

- It is probabilistic 

- It is time-dependent 

- It considers both pre- and post-failure 

activities 

- The failure profile is a measure of 

robustness and redundancy 

- the recovery profile measures 

recoverability 

Youn et al. 

[28] 
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𝜓: System resilience 

𝑅: System reliability 

𝜌: System restoration 

𝜅: Probability of successful 

recovery event 

Λ𝑃: Probability of correct 

Prognosis event 

Λ𝐷: Probability of correct 

diagnosis event 

- It is probabilistic 

- It is time-independent 

- It considers both pre- and post-failure 

activities 

- Resilience can take the value between 

0 and 1 

Rød et al. [6] 
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𝜓: System resilience 

𝑅: System reliability 

𝛽1: System maintainability 

𝛽2: Owner organization resilience 

𝛽3: Prognostic and health 

management (PHM) efficiency 

𝛽4: System supportability 

- It is probabilistic 

- It is time-dependent 

- It considers both pre- and post-failure 

activities 

- Resilience can take the value between 

0 and 1 

- It considers the system  resilience as a 

function of system reliability and 

recoverability 

Sarwar et al. 

[29] 
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𝜓: System resilience 

𝑅: System reliability 

𝜇: System recoverability function 

𝑉: System vulnerability 

𝑀: System maintainability  

- It is probabilistic 

- It is time-dependent 

- It considers both pre- and post-failure 

activities 

- Resilience can take the value between 

0 and 1 

Najarian and 

Lim [30] 

𝑟 = 𝑟1𝜆1 + 𝑟2𝜆2 + 𝑟3𝜆3,                 

∑ 𝜆𝑖 = 1 𝑎𝑛𝑑 𝜆𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,2,3    
3

𝑖=1
 

𝑟: System resilience 

𝑟1: System absorptive component 

𝑟2: System adaptability component 

𝑟3: System recovery component 

𝜆𝑖: Weight of the ith component 

- It is time-dependent 

- It considers both pre- and post-failure 

activities 

- Resilience can take the value between 

0 and 1 

2.1 Database establishment 
A database, including time between failure (TBF), time to repair 

(TTR), and time to delivery (TTD) data should be collected from 

the accessible sources. Simultaneously, the most critical 

operational factor should be identified. Afterward, the collected 

database must be segmentation based on the identified risk factor. 

2.2 Selection of the best fit statistical model 
After data collection, to pick the best fit model, the assumption of 

the independent and identically distributed nature (iid) of data 

should be judged. For this aim, trend tests include Military 

handbook (MIL), Laplace, Anderson-Darling (A-D), and Mann-

Kendall (M-K)) tests should be adopted. Moreover, 

autocorrelation tests include Graphical method and 

autocorrelation function (AFC) should be performed. Here, to 

conduct trend and serial correlation tests, the represented 

algorithm in Figure 3 is suggested. For more information about 

trend and autocorrelation tests refer to [31], [32].  

2.3 RMS analysis 
Here, based on the results of the previous step, if there is any sign 

of the presence of the trend among the data, then the 

nonhomogeneous models like the Power Law Process (PLP) 

should be applied. If there is autocorrelation in data and trend test 

results do not confirm the potential of the presence of the trend 

among the data, then the Branching Poisson Process (BPP) 

models can be utilized. Furthermore, if there is no indication of 

the existence of trend and autocorrelation among the data, the 

classical distribution models such as normal or lognormal models 

can be used (see Figure 3). For more details refer to [8-10]. 



2.4 Estimation of the management indicators 
In this step, the PHM efficiency of the system and the 

organization's resilience should be estimated. 

2.5 Resilience analysis of the system and 

subsystems 
Finally, using the obtained results from the previous steps, the 

resilience of a subsystem of the series system with n subsystems 

can be analysed as follow [3]: 

( ) ( ) ( ) ( )( )1   i i i it R t t R t = + −                                      (1) 

The resilience of the series system can be analysed as follow:  

( )  
1

( ) ( )(1 ( ))
n

i i i

i

t R t t R t
=

= + −                                          (2) 

3. CASE STUDY 
The mining industry is one of the most important sectors among 

the industries. It is consisted of many complex processes like ore 

mining, ore processing, and so on, to supply the raw material of 

other industrial sectors. This field consists of many critical 

systems like the excavator system. Out of schedule stoppage of 

this system will lead to mine production reduction and create 

several problems for the mine management. The application of 

the resilience concept seems necessary for this sector. 
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Figure 3. Resilience analysis algorithm. 

 



In this work, Gol-E-Gohar Iron mine is selected as a case study. 

This mine, with six mining sites, is one of the largest producers 

of Iron with and supplies the raw material of some industries like 

automobile manufacturing. The estimated deposit of this mine is 

about 1135 million tons. It is situated 55 km southwest of Sirjan 

between 551150E and 551240E longitudes and 29,130 N and 

29,170 N latitudes at an altitude of 1750 m above sea level (see 

Figure 4), and surrounded by 2500 m height Mountains [34]. The 

excavator system of the mining site No.1 is selected for resilience 

analysis. The excavator system consists of six series subsystems.    

The characteristics of this system and its flowchart are presented 

in Table 2 and Figure 5, respectively. 

 

Figure 4. Gol-E-Gohar Iron mine location. 

Table 2. Excavator system characteristics. 
System model Series subsystems Codes 

Caterpillar 390DL 

Boom Bo 

Cabin Ca 

Engine En 

Electric El 

Hydraulic Hy 

Undercarriage Un 

Bo Ca En El Hy Un

ExcavatorSystem

Subsystem

 
Figure 5. Flowchart of the excavator system. 

4. RESULTS AND DISCUSSION 
According to section 2, a database of TBFs, TTRs, and TTDs of 

the excavator system and its subsystems were collected. These 

data belonged to a period of 24 months from January 2016 to 

December 2018. Moreover, rock type was recognized as the most 

important factor that impacts the failure of the excavator system. 

In the field of mining engineering, rock type is such operational 

factors. This factor can be divided into ore and waste rocks, based 

on the hardness and specific gravity variations. For example, high 

hardness of rock can damage the teeth of the bucket, and the high 

specific gravity of rock can put excessive pressure on the engine. 

The collected database (only TBFs) was segmented based on the 

rock type. Some parts of the collected data are displayed in Table 

3. Afterward, the iid assumption was evaluated for TBFs, TTRs, 

and TTDs. For checking the data autocorrelation, the Graphical 

method is used. In the graphical method, the autocorrelation test 

was carried out graphically by plotting the ith TBF (TTR) against 

(i-1)th TBF (TTR). If the plotted points do not follow a special 

trend and randomly scattered without any clear pattern, it can be 

inferred that the data are free from serial correlation or 

independent [35]. For example, the results of the autocorrelation 

test for the TBFs data of the Bo subsystem is shown in Figure 6. 

As can be seen, the TBFs data of the Bo subsystem has no 

autocorrelation. 

The results of the trend tests for failure, repair, and delivery data 

are illustrated in Tables 4 and 5, respectively. Based on the 

results, in the ore segment, TBFs of El, En, Hy, Ca, and Bo 

subsystems had not trend and autocorrelation. Then classical 

distribution models were used for their modelling. As there were 

signs of the trend in TBFs of the Un subsystem, the PLP model 

was used for it. Moreover, based on the obtained results in the 

waste segment, there was no evidence of the trend, and 

autocorrelation in the TBFs of El, En, and Bo subsystems, thus 

classical distribution models were used for them. While the TBFs 

of Ca, Hy, and Un subsystems had trend, then the PLP model was 

used for these subsystems. According to the TTRs data, Bo, Ca, 

Hy, and El subsystems had no trend and autocorrelation. Then 

classical distribution models were used for their modelling. While 

the TTRs of En and Un subsystems had trend, then the PLP model 

was used for these subsystems. It must be mentioned, because of 

the same model, repair and, spare parts for the excavator 

subsystems, the supportability analysis was performed only for 

the entire excavator system. In Figures 7-9 and Table 6, the best-

selected models for the subsystems are presented. 

 
Figure 6. Autocorrelation test for the TBFs data of the Bo 

subsystem. 

Table 3. Samples of the collected database. 
Reliability database Maintainability 

database 

Supportability 

database Ore section West section 

TBF 

(Hr) 

sy
st

em
 

TBF 

(Hr) 

sy
st

em
 

TTR 

(Hr) 

sy
st

em
 

TTD 

(Hr) 

sy
st

em
 

160.45 1 6.56 1 0.33 1 0.80 1 

54.17 1 40.85 1 1.20 1 31.11 1 

5.86 1 203.00 1 0.61 1 0.33 1 

143.31 1 29.78 1 0.22 1 1.20 1 

 

 



Table 4. The result of the trend test for TBFs data. 
Index subsystem Data  MIL Laplace A-N M-K Result 

Reliability 

Bo 

TBF of ore 
Test statistic 920.53 0 6.13 _ 

 No Trend 
P-value 0.409 0.709 0.001 _ 

TBF of west 
Test statistic 418.24 0.99 - _ 

No trend 
P-value 0.97 0.321 - _ 

Ca 

TBF of ore 
Test statistic 47.98 1.02 - _ 

No trend 
P-value 0.354 0.307 - _ 

TBF of west 
Test statistic 31.86 1.99 - -2.084 

trend 
P-value 0.025 0.046 - 0.018 

En 

TBF of ore 
Test statistic 126.86 3.59 - -4.238 

No trend 
P-value 0.001 0 - 0.13 

TBF of west 
Test statistic 208.19 0.07 - _ 

No trend 
P-value 0.811 0.946 - _ 

Hy 

TBF of ore 
Test statistic 179.18 -0.34 - _ 

No trend 
P-value 0.839 0.733 - _ 

TBF of west 
Test statistic 242.48 -3.03 - 3.55 

trend 
P-value 0 0.002 - 0.019 

El 

TBF of ore 
Test statistic 86.41 1.01 - _ 

No trend 
P-value 0.504 0.314 - _ 

TBF of west 
Test statistic 71.99 1.18 - _ 

No trend 
P-value 0.66 0.24 - _ 

Un 

TBF of ore 
Test statistic 135.94 4.33 - -4.48 

Trend 
P-value 0 0 - 0.036 

TBF of west 
Test statistic 158.58 5.71 2.68 -4.162 

trend 
P-value 0 0 0.04 0.0157 

Table 5. The result of trend test for the TTRs and TTDs data. 

Index System or Subsystems   MIL Laplace A-N M-K Result 

Maintainability 

Bo 
Test statistic 1295.05 -0.64 - - 

No Trend 
P-value 0.19 0.523 - - 

Ca 
Test statistic 119.06 0.64 - - 

No trend 
P-value 0.986 0.52 - - 

En 
Test statistic 238.65 3.12 - -3.73 

trend 
P-value 0.07 0.002 - 0.0092 

Hy 
Test statistic 343.43 -1.29 - - 

No trend 
P-value 0.161 0.199 - - 

El 
Test statistic 186.16 1.34 6.77 - 

No trend 
P-value 0.566 0.179 - - 

Un 
Test statistic 455.59 2.8 - -3.129 

trend 
P-value 0.024 0.005 - 0.009 

Supportability Excavator 
Test statistic 2680.97 -0.65 - - 

No trend 
P-value 0.446 0.516 - - 



 
Figure 7. Excavator system supportability analysis results 

for 81 hours of activities. 

 
Figure 8. Excavator subsystem reliability analysis results for 

Ore section for 81 hours of activities. 

 
Figure 9. Excavator subsystem reliability analysis results for 

waste section for 81 hours of activities. 

 
Figure 10. Excavator subsystem maintainability analysis 

results for 81 hours of activities. 

Table 6. Best-fitted models for the subsystems reliability, maintainability, and supportability. 

Subsystems 
  

Reliability 
Maintainability 

ore West 

Bo 

Model weibull-3P weibull-3P loglogistic-3P 

parameter 

β 0.905 β 0.975 β 0.20717  - 

η(hr) 33.69 η(hr) 57.77 η(hr) 0.51 

ɤ(hr) 0.3706 ɤ(hr) 0.315 ɤ(hr) 0.121 

Ca 

Model Normal PLP Log logistic 

parameter 

mean 333.72 β 1.633 β 1.069 

Std 209.66 η(hr) 3170 η(hr) 0.778 

- - ɤ(hr) - ɤ(hr) - 

En 

Model PLP weibull-3P PLP 

parameter 

β 1.448 β 0.664 β 1.173 

η(hr) 692.35 η(hr) 172.2 η(hr) 4.4146 

ɤ(hr) - ɤ(hr) 0.633 ɤ(hr) - 

Hy 

Model wiebull-3P PLP weibull-3P 

parameter 

β 0.6437 β 0.66 β 0.8423 

η(hr) 260.61 η(hr) 19.93 η(hr) 5.887 

ɤ(hr) 0.154 ɤ(hr) - ɤ(hr) 0.10132 

El 

Model lognormal weibull-2P Lognormal-3P 

parameter 

LMe  4.977 β 1.078 β 0.555 

LSt 1.207 η(hr) 371.5 η(hr) 1.542 

- - ɤ(hr) - ɤ(hr) 0.912 

Un 

Model PLP PLP PLP 

parameter 

β 1.588 β 1.778 β 1.154 

η(hr) 469.69 η(hr) 652.4 η(hr) 4.866 

ɤ(hr) - ɤ(hr) - ɤ(hr) - 

System 

 
Supportability 

Excavator 

Model Loglogistic-3P 

parameter 

β 0.275 

η(hr) 0.603 

ɤ(hr) 0.018 



Based on Figure 3, After RMS analysis, management indicators 

should be determined. According to Rød et al. [3], the values of 

PHM efficiency and organization resilience can be considered as 

the constant values. In this study, the adopted values by Rød et al. 

were considered for PHM efficiency and organization resilience 

(see Table 7). 

Table 7. The considered values for PHM efficiency and 

organization resilience [3]. 
Parameters Values 

 Organization resilience 0.85 

 PHM efficiency 0.75 

Finally, using Equations 1 and 2, the resilience of the excavator 

system and its subsystems (in the ore and waste rocks) for 81 

hours of activities were analysed. The results are shown in 

Figures 11-13. For example, the resilience of the Hy subsystem 

(see Figures 11 and 12) in the waste rocks will be notably lower 

than its resilience in the ore rocks. After 81 hours of activities, the 

Hy subsystem resilience in the ore rocks will be reached to 86%, 

but it will be 66% in the waste rocks. Because the hardness and 

specific gravity of waste rocks are more than ore rocks, which can 

damage the excavator subsystems like the Bo subsystem.  These 

differences indicate the influence of rock type on system 

resilience. Moreover, as can be seen, the impact degree of this 

factor depends on its direct contact with the subsystem. For 

example, the impact of rock type on the Ca subsystem is lower 

than the impact on the Hy subsystem.  

 
Figure 11. Excavator subsystem resilience analysis results 

for ore section for 81 hours of activities. 

 
Figure 12. Excavator subsystem resilience analysis results 

for waste section for 81 hours of activities. 

 
Figure 13. Excavator system resilience analysis results for 

ore and waste sections for 81 hours of activities. 

5. CONCLUSION 
Systems based on their stability have a different reaction against 

failures. Some systems are vulnerable in case of disruption and 

lost their functionality. In the engineering domain, the ability of 

systems to withstand against the failure events and recover their 

performance in a suitable time is known as resilience. In this 

work, the resilience concept was used in the field of mining 

industry, and the excavator system of Gol-E-Gohar Iron mine was 

considered as a specific case study. In this paper, the influence of 

the risk factors on the system resilience was considered. The rock 

type was identified as the risk factor that affects the resilience of 

the excavator. Therefore, by segmentation of the collected 

database into the ore and waste rocks groups, the impact of rock 

type on the excavator resilience were evaluated. This factor 

affects the reliability indicator. The results emerge the importance 

of consideration of the risk factors in the resilience estimation 

process.  As shown, the resilience of the excavator system can be 

varied based on the rock type. It can be due to the high hardness 

and density of the waste rock compared to the ore rock. It must 

be mentioned that the mining industry is an essential industry that 

supplies the raw material of other sectors. Thus, the application 

of the resilience concept with consideration of risk factors will 

improve its overall functionality.  
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