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It is known that rapid edge cooling of magnetically confined plasmas can trigger heat pulses that

propagate rapidly inward. These can result in large excursion, either positive or negative, in the

electron temperature at the core. A set of particularly detailed measurements was obtained in

Large Helical Device (LHD) plasmas [S. Inagaki et al., Plasma Phys. Controlled Fusion 52,

075002 (2010)], which are considered here. By applying a travelling wave transformation, we

extend the model of Dendy et al., Plasma Phys. Controlled Fusion 55, 115009 (2013), which

successfully describes the local time-evolution of heat pulses in these plasmas, to include also

spatial dependence. The new extended model comprises two coupled nonlinear first order differ-

ential equations for the (x, t) evolution of the deviation from steady state of two independent vari-

ables: the excess electron temperature gradient and the excess heat flux, both of which are

measured in the LHD experiments. The mathematical structure of the model equations implies a

formula for the pulse velocity, defined in terms of plasma quantities, which aligns with empirical

expectations and is within a factor of two of the measured values. We thus model spatio-temporal

pulse evolution, from first principles, in a way which yields as output the spatiotemporal evolu-

tion of the electron temperature, which is also measured in detail in the experiments. We compare

the model results against LHD datasets using appropriate initial and boundary conditions.

Sensitivity of this nonlinear model with respect to plasma parameters, initial conditions, and

boundary conditions is also investigated. We conclude that this model is able to match experi-

mental data for the spatio-temporal evolution of the temperature profiles of these pulses, and their

propagation velocities, across a broad radial range from r=a ’ 0:5 to the plasma core. The model

further implies that the heat pulse may be related mathematically to soliton solutions of the

Korteweg-de Vries-Burgers equation. VC 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4923307]

I. INTRODUCTION

The transport of energy across magnetically confined

fusion plasmas, and the storage of energy within them,

reflects a wide range of turbulent and nonlinear phenome-

nology; see, for example, Refs. 1–32. There is extensive

experimental evidence for transport phenomena that are

non-diffusive and may be non-local. Examples have been

found in many tokamak plasmas, for example, JET,12,13

DIII-D,14–16 JT-60U,17 HL-2A,18 Alcator C-Mod,19

TEXTOR,20 TEXT,21 RTP,22 and TFTR,23 as well as in the

Large Helical Device (LHD) stellarator-torsatron.17,24–27 A

broad range of techniques for data analysis, see, for exam-

ple, Refs. 12, 14, and 28, have been used to identify various

forms of perturbation of heat and particle fluxes from their

steady states, see the reviews.29,30 Measurements of the

spatio-temporal propagation of strongly nonlinear localised

heat pulses provide a particularly interesting, and potentially

fruitful, challenge to theoretical understanding and models.

Here, we focus on cold pulse experiments, see, for example,

Refs. 18, 19, and 24. These cold pulses are typically initi-

ated by injection into the edge plasma of ice pellets or su-

personic molecule beams, by gas puffing, and by laser

ablation. The zero-dimensional model of Ref. 25, which

incorporates only time dependence, is successful in quanti-

tatively capturing the local time evolution of drTe and dqe

at a specific radius during two well diagnosed cold heat

pulse experiments24 using pellet injection in LHD; we refer,

in particular, to Figs. 3 and 5 of Ref. 25. This motivates the

following physical conjecture, which we test in the present

paper. The zero-dimensional model is known to work at the

best diagnosed spatial location, capturing the time evolution

of the pulse there, where t¼ 0 is defined to be the local ar-

rival time of the initial impulsive perturbation. Therefore,

we conjecture that the zero-dimensional model ought to

work at each location across the radial domain of the plasma

within which the same physical processes determine the

behaviour of the pulse. From this, we infer that the model

ought to apply in a frame that is co-moving radially with the
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heat pulse across this region. This final step in the conjec-

ture provides a simple path to construct a spatio-temporally

dependent model from the tested time-dependent-only

model of Ref. 25. We apply a travelling wave transforma-

tion by replacing t in Eqs. (1–3) of Ref. 25 by n ¼ xþ v0t;
here, v0 is to be considered as a proxy of the pulse propaga-

tion velocity in the radial direction x, and the sign conven-

tion adopted for t assists consideration of inward

propagation. Importantly, as we shall show, the mathemati-

cal structure of the resultant model equations, combined

with the choice of physical model parameters that carries

over from Ref. 25, yields a formula for v0 that aligns with

prior empirical expectations.

II. MODEL DESCRIPTION

The normalised zero-dimensional model25 examined

below is constructed in terms of the three key physical quanti-

ties that were measured24 so as to characterise pulse propaga-

tion in LHD. These quantities are the deviation from steady

state of the electron temperature gradient drTe, the excess

turbulent heat flux dqe, and the deviation dTe of electron

temperature from its steady-state value. The dimensionless

counterparts of these variables are denoted by x1, x2, and x3,

respectively, as defined in Ref. 25. The model of Ref. 25

shows quantitative agreement between its outputs and experi-

mental measurements of the time evolution of these variables

at fixed locations in the LHD plasma, after rapid cooling at the

edge. It is successful both when core electron temperature rises

on arrival of the pulse and when it drops. However, for given

parameters and initial conditions, the model only simulates the

time evolution of a passing heat pulse at a specific radius, for

example, r=a ¼ 0:19 in Ref. 25. Spatial dependence is elimi-

nated from the physical picture underlying the model in Ref.

25 by using the parameter 1=Lc as a proxy for divergence in

the heat flux energy conservation equation; here, Lc is the char-

acteristic scale-length of steady-state turbulent transport. The

model equations (5) to (7) of Ref. 25 are as follows:

dx1

dt
¼ jT0x2 þ x1x2

@jT

@x1

þ x2x3

@jT

@x3

� cL1x1; (1)

dx2

dt
¼ �jQ0x1 � x2

1

@jQ

@x1

� x1x3

@jQ

@x3

� cL1x2; (2)

dx3

dt
¼ � 1

sc

g
v0

x2 � cL2x3: (3)

Physically, Eqs. (1) to (3) embody on assumption of domi-

nant strong coupling between drTe and dqe, while the back-

ground transport acts to dissipate the pulse. The physical

significance of the various coefficients is described in the

discussion of equations (1)–(4) of Ref. 25. We note that the

mathematical structure of Eq. (3) above implies that x3 is

slave to x2. The change in the numerical value of x3 at each

time step is calculated directly from Eq. (3) using the time-

evolving value of x2 from the two-field system of Eqs. (1)

and (2), in which x3 acts as an x2-slaved coefficient. As

noted, physically, the value of x3 maps to the deviation in

electron temperature over time, which is a primary

experimentally measured time-dependent variable for the

model comparisons reported below.

Central to the present paper is the adoption of travelling

wave transformations as a method for generating (x, t)-de-

pendence from the t-dependent model of Eqs. (1) to (3). We

assume that

xiðx; tÞ ¼ yiðnÞ; n ¼ xþ v0t i ¼ 1; 2; 3: (4)

Here, x and t are considered to be independent variables, and

we refer to v0 as the pseudo-velocity of the pulse. This

pseudo-velocity is expected to be similar, but not identical,

to the real measured velocity of the pulse. It then follows

that

dxi

dt
¼ dyi

dn
@n
@t
¼ v0

dyi

dn
i ¼ 1; 2; 3: (5)

Due to the fact that y3 is a dependent variable, we choose to

simplify by neglecting all y3 related terms in Eqs. (1) to (3),

and substitute Eq. (5) into Eqs. (1) and (2), yielding

�v0

dy1

dn
¼ jT0y2 þ y1y2

@jT

@y1

� cL1y1; (6)

�v0

dy2

dn
¼ �jQ0y1 � y2

1

@jQ

@y1

� cL1y2: (7)

Our new model [Eqs. (6) and (7)] comprises only two inde-

pendent variables: y3 values are deduced directly from

the time series of y2, using Eq. (3) above. Let us now oper-

ate on Eq. (6) with d=dn and multiply Eq. (7) by jT0, then

eliminate dy2=dn by substitutions. This yields the following

equation after leading order approximation and

transpositions:

v0

d2y1

dn2
� cL1

dy1

dn
þ jT0

v0

@jQ

@y1

þ jQ0

v0

@jT

@y1

� �
y2

1 þ
jT0jQ0

v0

y1

¼ � jT0cL1

v0

y2 þ
jT0

v0

@jT

@y1

y2
2: (8)

The second coupled nonlinear ordinary differential equation

is derived by applying similar procedures

v0

d2y2

dn2
� cL1

dy2

dn
þ jT0jQ0

v0

y2

¼ jQ0cL1

v0

y1 � y1y2

jQ0

v0

@jT

@y1

þ 2
jT0

v0

@jQ

@y1

� �
: (9)

Equations (8) and (9) comprise our mathematical model

for the propagating heat pulse. Its physical motivation is that

of Ref. 25, combined with the co-moving conjecture outlined

above and expressed in Eq. (4). The mathematical structure

of Eq. (8) can be linked, in certain approximations, to the

Korteweg-de Vries-Burgers (KdV-Burgers) equation,31 and

Eq. (9) can be linked to a damped wave equation in the co-

moving frame. In particular, the left hand side of Eq. (8)

corresponds to that in the formulation of the KdV-Burgers

equation in Eq. (5.3) of Ref. 31. This nonlinear differential

operator, acting on y1, is known to support soliton pulses,
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and furthermore these pulses move at a speed determined by

the coefficient of the term which multiplies the linear term in

y1.31 The expression for this coefficient in Eq. (8) motivates

the following conjecture regarding heat pulse velocity in our

model:

v0 � ðjTjQÞ1=2: (10)

This scaling has previously been noted empirically from heat

pulse experiments.29,32 It is possible that there will in future

arise a convergence between the mathematical structure of

the present model, empirical scalings,29,32 and other theoreti-

cal work,33 which encompasses Eq. (10). An important ave-

nue to explore is a potential link between the present

approach and the theory of turbulence spreading,33 where the

propagation velocity of a turbulence front scales as the

square root of the product of a linear growth rate with heat

diffusivity.

III. COMPARISON OF MODEL RESULTS WITH LHD
EXPERIMENTAL DATA

We recall that y1, y2, and y3 are the dimensionless counter-

parts of drTe; dqe, and dTe respectively. Solution of our

model, embodied in the two coupled nonlinear ordinary differ-

ential equations (8) and (9), proceeds as follows. The numerical

values for jT ; jQ and their derivatives, together with the nu-

merical values of cL1; cL2; g; sc, and v0, carry over identically

from Ref. 25, to which we refer for the experimental motiva-

tion for these values; see Table I for detailed information.

The new model embodied in Eqs. (8) and (9) is strongly

nonlinear. In solving it, we have three kinds of degrees of

freedom. First, there are the initial values of y0iðn ¼ 0Þ.
Second, there is the value of the pseudo-velocity v0. Third, it

is possible to apply fixed horizontal and vertical shifts in the

values of the electron temperature and time, provided these

shifts are applied uniformly to all outputs of a simulation, as

a way of reducing systematic errors introduced by parameter

choices. We optimise model outputs, for comparison with

the experimental measurements, in these three ways. These

model outputs (time traces of y1, y2, and y3) reflect the under-

lying phase space structure of the solutions of the nonlinear

system of equations. This structure is robust, in the sense dis-

cussed in Ref. 25, and as demonstrated for the present system

of equation in Fig. 7 below, for example. We recall also that

the great majority of model parameter values, see, e.g.,

Table I, are determined by experimental measurements.

The boundary conditions on the yi, i¼ 1, 2, 3, and their

derivatives, evaluated at n¼ 0 and n¼ 10 which define the

solution domain, coincide with the experimentally motivated

values in Ref. 25 where these carry over. Specifically,

y1ðn ¼ 0Þ ¼ y1ðn ¼ 10Þ ¼ 0; y2ðn ¼ 0Þ ¼ �1:5; y2ðn ¼ 10Þ
¼ 0, and y3ðn ¼ 0Þ ¼ 0:01 for the core electron temperature

Rise (R) case in LHD plasma 49708. We take

y1ðn ¼ 0Þ ¼ y1ðn ¼ 10Þ ¼ 0; y2ðn¼ 0Þ ¼ 1; y2ðn¼ 10Þ ¼ 0,

and y3ðn¼ 0Þ ¼ �0:01 for the core electron temperature

Drop (D) case in LHD plasma 49719. Boundary conditions

unspecified in Ref. 25, which are needed in order to satisfy

the boundary conditions above, are assumed to be as follows

here: y01ðn¼ 0Þ ¼ �1:496 and y02ðn¼ 0Þ ¼ 3:552 for R case;

y01ðn¼ 0Þ ¼ 0:668 and y02ðn¼ 0Þ ¼ �1:156 for D case.

Table II lists all boundary conditions.

Figure 1 compares time traces of the evolving electron

temperature at multiple radial locations, obtained from the

model and from experimental data(# Te49708) for the R

case. Several representative radii are marked by arrows on

the right hand side. The model results are able to match ex-

perimental data from q ¼ 0:450 inward to the core, if we

uniformly apply horizontal (þ 0.01) and vertical (þ0.20)

shifts, suggesting that the model applies over this broad ra-

dial range. It is also clear that electron temperature profiles

from q ¼ 0:546 outward to q ¼ 0:703 are not simulated by

the model. This suggests that different physics dominates

heat pulse propagation in the outer region of this plasma.

Figure 2 demonstrates the comparison of model results and

experimental data(# Te49719) for the D case. In common

with the R case shown in Fig. 1, the model results are good

from q ¼ 0:450 inward to the core, with uniformly applied

horizontal (þ0.04) and vertical (þ0.07) shifts, but not in the

outer region of this plasma. Figs. 3 and 4 show zoomed-in

electron temperature pulse plots at three specific radii,

selected from Figs. 1 and 2, respectively.

Empirically, we approach v0 by identifying a best fit

straight line linking the positions of the peak or trough of the

heat pulse temperature profile in the two cases, see Figs. 5

and 6. The effect of data noise on peak location is minimised

by taking a five per cent running window. The width of the

TABLE I. Experimentally inferred parameter values25 for both Te rise and Te drop cases.

Parameter

Case jT0 @jT=@x1 ¼ @jT=@x3 jQ0 @jQ=@x1 ¼ @jQ=@x3 cL1 ¼ cL2 v0 g ¼ 2v0=3 g=scv0

Te rise (R) 15 1.5 225 22.5 35 3.2 2.13 10.5

Te drop (D) 20 2.0 400 40.0 35 3.2 2.13 10.5

TABLE II. Boundary conditions of both Te rise and Te drop cases.

Boundary condition

Case y1ðn ¼ 0Þ ¼ y1ðn ¼ 10Þ y2ðn ¼ 0Þ y2ðn ¼ 10Þ y3ðn ¼ 0Þ y01ðn ¼ 0Þ y02ðn ¼ 0Þ

Te rise (R) 0 �1.5 0 0.01 �1.496 3.552

Te drop (D) 0 1.0 0 �0.01 0.668 �1.156
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filter window determines the horizontal error bars. We

assume, for simplicity and to match our travelling-wave

model, that the inward radial propagation velocity of the

heat pulse is invariant across the plasma volume of interest.

A straight line fit to the radial location of the pulse peak ver-

sus time is thus applied. The error of this fitting may come

from the radial dependence of the pulse velocity, which

tends to increase in the central region. We find from Figs. 5

and 6 that v0 ¼ 15 for the temperature rise case and v0 ¼ 30

FIG. 1. Time evolution of electron temperature at multiple radial locations,

derived from LHD data (blue) and the model (red) for the core temperature

rise (R) heat pulse propagation experiment in plasma 49708. Radial loca-

tions range from edge(q ¼ 0:703) to core(q ¼ 0:015), where q ¼ r=a, r is

the radial co-ordinate, and a � 0.6 m is minor radius of LHD. Model results

match experimental data well from q ¼ 0:450 inwards to the plasma core,

especially amplitudes and the time structure of pulse decay. The amplitudes

of model time traces increase from edge to core, as in the measured electron

temperature profiles. Model results do not fit experimental data outwards

from q ¼ 0:546 to q ¼ 0:703, implying that different physics applies in the

outer LHD plasma.

FIG. 2. Time evolution of electron temperature at multiple radial locations,

derived from LHD data (blue) and the model (red) for the core temperature

drop (D) heat pulse propagation experiment in plasma 49719. Radial loca-

tions range from edge(q ¼ 0:703) to core(q ¼ 0:015), where q ¼ r=a, r is

the radial co-ordinate, and a � 0.6 m is minor radius of LHD. As in Fig. 1,

model results match experimental data well from q ¼ 0:450 inwards to the

plasma core. Again, model results do not fit experimental data outwards

from q ¼ 0:546 to q ¼ 0:703, reinforcing that different physics dominates

in the outer LHD plasma.

FIG. 3. Time evolution of electron temperature at three specific radii

selected from Fig. 1 for the central temperature rise (R) case, during the heat

pulse propagation experiment in LHD plasma # Te49708. Data and model

output are denoted by blue and red lines, respectively.

FIG. 4. Time evolution of electron temperature at three specific radii

selected from Fig. 2 for the central temperature drop (D) case, during the

heat pulse propagation experiment in LHD plasma # Te49719. Data and

model output are denoted by blue and red lines, respectively.
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for the temperature drop case. These dimensionless pseudo-

velocity values equate to the dimensional values (32.62 6

9.89) ms�1 and (53.50 6 20.97) ms�1, respectively, which

are comparable in magnitude to measured heat pulse propa-

gation velocities. The ratio 2 between these two velocities is

broadly consistent with the value inferred by substituting

experimentally measured values for transport coefficients

into Eq. (10). We have vD
0 =v

R
0 � ðjD

T jD
Q=j

R
TjR

QÞ
1=2

¼ 1:54 ’ 2, referring also to Table I, where superscripts R

and D denote the core Te rise and drop cases, respectively.

We note that the empirically determined velocities vR
0 and vD

0

of heat pulse propagation need not necessarily coincide with

the optimal value of the mathematical transformation param-

eter v0 in Eq. (4).

Mathematically, we may treat v0 as a free parameter in

Eqs. (8) and (9), which we have labelled the pseudo-

velocity. We solve Eqs. (8) and (9) repeatedly for different

values of this pseudo-velocity, see, for example, Fig. 7 for

the R case, and identify the best fit value. To test sensitivity

with respect to n, three other cases ðn ¼ 5; n ¼ 15; n ¼ 20Þ
have been examined. All three of these test options exhibit

the same properties as the case of n¼ 10. Various combina-

tions of initial conditions and pseudo-velocities were also

tested, showing that the combination specified above pro-

vides the best fit to the experimental data. For the phase

plots, see, for example, the right-hand panel of Fig. 7, circu-

lation directions are identical with those of the experimental

data for both the R and D cases.

The fitting operation can be assisted by shifting the ori-

gin of co-ordinates. The robustness, with respect to variation

of initial conditions, of this mathematical approach to identi-

fying pseudo-velocity has been tested. This robustness

reflects the structure of the underlying attractor in phase

space, projected in ðy1; y2Þ coordinates in these two figures;

compare also Figs. 6 and 7 of Ref. 25.

IV. CONCLUSIONS

We have derived from first principles a time-dependent

model in one spatial dimension, which is able to describe

quantitatively the radial inward propagation of heat pulses in

the core of two plasmas24 in the LHD. In one plasma the cen-

tral electron temperature rises, in the other it falls. This new

model is derived from a travelling wave transformation of

the zero-dimensional model of Ref. 25, which is known to

capture the time-evolution of the heat pulse as it passes

through a fixed radial location in these two plasmas. From

the experimental data, we infer that the velocity of the propa-

gating pulse is constant in both the electron temperature rise

and drop cases. The pulse velocity in the electron tempera-

ture rise case is smaller than in the drop case by a factor ’ 2.

This aligns with Eq.(10), which reaches back into the mathe-

matical structure of our model, and also coincides with em-

pirical expectations given the values of the heat conduction

parameters for these two plasmas. A pseudo-velocity param-

eter is introduced in the travelling wave transformations, in

order to model heat pulse propagation across spatial location

as well as in time. From numerical tests, we discover that

real pulse velocity is about two times the best estimate of the

travelling-wave transformation parameter v0, referred to as

the pseudo-velocity. Comparison between model outputs and

raw experimental data suggests that our model is able to

FIG. 5. Data analysis underpinning calculation of pulse velocity from the

experimental data, which requires a statistically robust identification of the

time of the pulse peak from the noisy data at each radius

0:450 � q � 0:015. Blue lines show timeseries of electron temperature data

versus time from the R case (Te49708). Red lines denote timeseries

smoothed over a window whose span is 5% of the total sample points, so

that approximately 50 sample points generate the moving average. Black

dots mark the maximum values, at each radius, of each smoothed time-

evolving electron temperature pulse. The width of the horizontal error bars

is defined by span of the moving window. The black dash line is the best fit

straight line joining all the peaks. From it, we infer the pulse propagation

speed, which is nearly independent of radius, to be ð32:6269:89Þ ms�1.

FIG. 6. As Fig. 5, demonstrating the calculation of the pulse velocity for the

electron temperature data for the D case. Despite data which are more noisy

than in Fig. 5, the pulse propagation velocity calculated from the dashed line

is approximately constant across all radii in this region 0:450 � q � 0:015

of LHD plasma 49719. We infer a pulse velocity ð53:50620:97Þ ms�1.
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describe heat pulse propagation well, within a broad radial

range of the LHD core plasma from r=a ’ 0:5 to the centre.

The results of the present paper provide additional sup-

port to the physical proposals, described in Sec. 2 of Ref. 25,

which motivate the simple model equations reproduced as

Eqs. (1) to (3) above. Central to these proposals is the con-

jecture that heat pulses are structures which involve plasma

physics processes which are so strongly nonlinear that heat

pulse evolution is primarily determined by the reactions of

the perturbed heat flux and the perturbed temperature gradi-

ent on each other. In the present model, this is the dominant

element of nonlinear physics, whereas conventional turbu-

lent transport plays a relatively minor dissipative role. It is

this mutually coupled interaction between perturbed heat

flux and temperature gradient that governs the local plasma

dynamics of the heat pulse in space, equivalent to the local

up-and-down dynamics of a water wave under gravity. We

have shown in this paper that this coupling model lends itself

readily to a travelling wave transformation, yielding spatio-

temporal pulse propagation, and that the pulse velocity that

emerges mathematically provides an adequate match to em-

pirical results and expectations. This aspect of the analysis

also provides guidance on a previously unanswered question,

namely, the generic character of the heat pulse: we have

shown that it may be closely related to a Korteweg-de Vries-

Burgers soliton. Two avenues of investigation would repay

immediate attention. First, this model has been tested on,

and motivated by, measurements from only two plasmas in

LHD—albeit plasmas with exceptionally high quality meas-

urements. The simplicity of the model encourages one to

hope that it may be more widely applicable and clearly it

should now be tested on a broader range of heat pulse experi-

mental datasets, provided that they possess the required spa-

tial and temporal resolution and that the other relevant

plasma parameters are well diagnosed, as in LHD. Second,

while gyrokinetic or other computationally intensive trans-

port simulations have not yet (to the authors’ knowledge)

been applied to heat pulse experiments, the outputs of any

future simulations of heat pulses could be tested directly

against the analytical model presented here, which is con-

structed in terms of variables that are directly measurable, as

distinct from the first-principles particle and field distribu-

tions of gyrokinetic theory.
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