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SUMMARY

Breast carcinoma (BC) has been extensively profiled
by high-throughput technologies for over a decade,
and broadly speaking, these studies can be grouped
into those that seek to identify patient subtypes
(studies of heterogeneity) or those that seek to iden-
tify gene signatures with prognostic or predictive
capacity. The sheer number of reported signatures
has led to speculation that everything is prognostic
in BC. Here, we show that this ubiquity is an appari-
tion caused by a poor understanding of the interrelat-
edness between subtype and the molecular determi-
nants of prognosis. Our approach constructively
shows how to avoid confounding due to a patient’s
subtype, clinicopathological profile, or treatment
profile. The approach identifies patients who are pre-
dicted to have good outcome at time of diagnosis by
all available clinical and molecular markers but who
experience a distantmetastasis within 5 years. These
inherently difficult patients (�7% of BC) are priori-
tized for investigations of intratumoral heterogeneity.

INTRODUCTION

There has been a sustained effort to identify markers of prog-

nosis in women diagnosed with invasive breast cancer (IBC), a

highly prevalent disease that accounts for 14% of all cancer

deaths in women (Jemal et al., 2011). The estimation of prog-

nosis at time of diagnosis relies primarily upon clinicopatholog-

ical parameters such as tumor size, histological grade, stage,

lymph node (LN) infiltrate, and molecular properties including
expression of the estrogen receptor (ER), progesterone receptor

(PR), and the human epidermal growth factor receptor 2 (HER2)

(Reis-Filho and Pusztai, 2011). Prognostic insight can in turn

provide predictive insight with respect to patient benefit from

chemo-, endocrine, and targeted therapies.

The paradigm shift promised by technologies that measure

expression of genomic features of IBC in a massively parallel

fashion has inarguably occurred but is tempered by the fact

that few prognostic gene signatures have found clinical use

(Hornberger et al., 2012). The primary contribution of breast

cancer genomics to date has been a deeper appreciation of

IBC heterogeneity (Weigelt et al., 2010). Although the four clinical

subtypes defined by ER and HER2 status have long been recog-

nized as distinct forms of the disease, early genomic studies

underscored their vast differences at the molecular level (Gruv-

berger et al., 2001; Perou et al., 2000) and stimulated work to

identify other markers that capture proliferation, progenitor cell

properties, androgen-receptor-related signaling, and other biol-

ogies (Desmedt et al., 2008; Guedj et al., 2012; Rakha et al.,

2010). Moreover, unbiased bioinformatic analyses of profiles

generated the so-called intrinsic subtyping scheme, consisting

of two subtypes enriched for ER+ tumors (luminal A, B), a

HER2+-enriched subtype (her2-enriched), a ER�/HER2�-en-

riched subtype (basal-like), and a so-called normal-like subtype

(Perou et al., 2000; Sørlie et al., 2001). The intrinsic subtyping

scheme has been refined (Parker et al., 2009) and extended to

include the claudin-low class of tumors that display a high fre-

quency of metaplastic and medullary differentiation (Prat et al.,

2010). Other genomics-based subtyping schemes have been

proposed, including the Cartes d’identité des tumeurs (CIT)

scheme (Guedj et al., 2012), a ‘‘triple negative’’ specific scheme

(Lehmann et al., 2011), a scheme based on joint DNA and RNA

copy number (Curtis et al., 2012), and others (Haibe-Kains

et al., 2012; Jönsson et al., 2010; Wirapati et al., 2008).
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Figure 1. Characteristics of the ExpC and Subtyping Schemes

(A) The compendium of IBC gene expression profiles by intrinsic and clinical

schemes. Total number of subjects with observed good (superscript) and poor

(subscript) outcome, respectively.

(B) Kaplan-Meier plots of observed patient outcome defined as distant

metastasis-free survival across the ExpC in both the clinical and intrinsic

schemes.

See also Figures S1 and S2.
In parallel with, but largely disjoint from, this work, many

(>100) gene signatures have been reported to have prognostic

capacity in IBC. The signatures were typically derived either

by manual curation of specific molecular processes (e.g., anti-

gen presentation and processing [APP] pathway), from experi-

mental perturbations in cell lines and transgenic mouse models

of the disease (e.g., Ursini-Siegel et al., 2010), or directly from

gene expression profiles of IBC samples by contrasting

observed good and poor outcome patients (van ’t Veer et al.,

2002). A classification of good prognosis by a signature sug-

gests that an individual will respond positively to standard of

care for their tumor type, whereas a prediction of poor prognosis

suggests the need for an alternative regimen. Clinical utility for a

few signatures has been established and translated to the clinic

(Hornberger et al., 2012), including, for example, OncotypeDX,

which assists in determining which ER+/LN� patients may

benefit from additional adjuvant chemotherapy (Paik et al.,

2004).

Themarginal overlap and the differences in the underlying bio-

logical processes polled by these signatures have generated

criticisms regarding experimental design and lack of standard-

ized bioinformatics techniques (Ioannidis et al., 2009), leading

to speculation that almost all genes and processes are prog-
130 Cell Reports 9, 129–142, October 9, 2014 ª2014 The Authors
nostic in IBC (Venet et al., 2011). However, the root cause of

the myriad of dissimilar signatures may be primarily due to

deep, structural interdependencies between a patient’s clinico-

pathological profile, tumor subtype, and prognosis (Iwamoto

and Pusztai, 2010). Here, we clarify the nature and ubiquity of

this poorly understood confounding.

The prognostic predictions made by published gene signa-

tures are compared enmasse patient by patient, in order to iden-

tify if andwhere additional progress is possible. Using essentially

all available data, this investigation establishes that there is large

confounding in existing signatures between clinicopathological

variables, subtype, and clinical outcome. A de novo subtyping

scheme is presented that ablates the majority of these effects.

The resultant scheme highlights approximately 20% of patients

whose prognosis appears inherently difficult to predict at time

of diagnosis.

RESULTS

A Comprehensive Examination of Prognosis in Breast
Cancer
Publicly available gene expression data sets for IBC were evalu-

ated according to technical quality, clinical attributes, treatment

regimen, data set size, and patient outcome (Supplemental

Experimental Procedures, 2.1). Data sets deemed sufficient

were harmonized as much as possible (Supplemental Experi-

mental Procedures, 2.1.1) to measure patient outcome as

event-free survival at 5 years (good outcome) versus the exis-

tence of distant metastases within the same time interval (poor

outcome). The resultant compendium, referred to as the ExpC,

contains approximately 5,000 patients from over 11 data sets

using seven microarray and RNA-sequencing (RNA-seq) plat-

forms (Table S1), including our de novo effort (McGill Genome

Quebec [MGGQ] n = 314, GSE58644).

Samples of ExpC were labeled according to five subtyping

schemes, where possible (Figure 1A; Table S7). ER and HER2

status were used to determine the so-called clinical subtypes

(ER+/HER2+, ER+/HER2�, ER�/HER2+, and ER�/HER2�).

The PAM50 gene set (Parker et al., 2009) was used for the

intrinsic subtypes of luminal A (lumA), luminal B (lumB), normal-

like (normL), basal-like (basalL), and her2-enriched (her2E).

Patients were also labeled according to the IntClust (Curtis

et al., 2012), CIT (Guedj et al., 2012), and triple-negative breast

cancer (TNBC) (Lehmann et al., 2011) schemes (Tables S1 and

S7). Although there are enrichments between subtypes of

different schemes, all five are distinct (Table S2; see also Tables

S4 and S5 and Figure S1). As expected, the vastmajority (96.5%)

of luminals (lumA and lumB) is ER+; however, over 25%of basalL

and 50% of her2E patients are ER+ (Figure 1A).

We collected gene signatures from the literature reported to

have prognostic capacity in IBC (n = 106; Table S3). Together,

the signatures use one-third (�6.4K) of all human genes with

few appearing in multiple signatures (Table S9). Not sur-

prisingly then, these signatures are enriched for a wide range of

biological processes (Table S3). Using a standardized technique

with each prognostic signature, a naive Bayes’ classifier was

trained for each patient subtype within each subtyping scheme

when there were a sufficient number of good- and poor-outcome



individuals (Supplemental Experimental Procedures, 2.6). This

procedure was carried out systematically, and each signature

was evaluated in all subtype stratifications irrespective of the

subtype in which the signature was originally derived. We also

developed de novo classifiers using the same methodology for

training (Figure S2E; Supplemental Experimental Procedures,

2.7). The performance of both the de novo and literature-derived

classifiers was thoroughly investigated (Figures S2F–S2I). This

signature collection is referred to as SigC (n = 122). All analyses

are available at http://www.bci.mcgill.ca/bresect.

Prediction of Outcome Is Confounded in Pan-IBC
Analysis
When patient subtype is not considered in the training and appli-

cation of classifiers, almost every signature in SigC appears

capable of predicting patient outcome (89% with log-rank test

p < 0.05; ‘‘unstratified’’ in Figure 2A). This suggests that an

extremely broad range of biological processes represented

by signatures in SigC including proliferation (Vanvliet-2008),

microenvironmental factors (Finak-2008), and immunological re-

sponses (Rody-2009) all have prognostic capacity, an observa-

tion consistent with previous reports (Venet et al., 2011; Weigelt

et al., 2010).

To investigate this apparent ubiquitous prognostic signal, we

plotted the predictions of individual SigC classifiers across all

patients stratified by outcome (Figure 3). The classifiers are

ordered from top to bottom by decreasing performance in both

good and poor outcome (Supplemental Experimental Proce-

dures, 2.6.1). Only �56% of SigC signatures perform better

than random signatures built by choosing 25 arbitrary genes

(Figure 3F). Those classifiers that did not perform better than

random (Figure 3G) tend to systematically predict all patients

as good outcome, likely because the majority (79%) of patients

with IBC have good outcome. Such classifiers offer neither

clinical utility nor insight into the molecular mechanisms of the

disease.

The classifiers that outperform 99% of random gene signa-

tures exhibited a high degree of agreement in their predictions.

That is, either all signatures predict the patient to be good

outcome (Figures 3B and 3E) or poor outcome (Figures 3C and

3D). Figures 3B and 3C then represent patients that are easy

to predict correctly, whereas Figures 3D and 3E represent pa-

tients that appear inherently difficult to predict.

We asked if the surprisingly concordant incorrect predictions

for the patients in Figures 3D and 3E could be due to the fact

that the classifiers systematically confuse patient outcome with

intrinsic subtype or other clinicopathological variables. To do

this, a de novo statistical method entitled the Systematic

MisPrediction (SMP) test was developed that identifies when

predictions of outcome made by the classifiers en masse are

highly associated with a variable of interest (e.g., ER status,

treatment) within both the good- and poor-outcome subcohorts

(Supplemental Experimental Procedures, 2.6.3). In essence, sig-

nificance for the SMP test suggests that the classifiers have

learnt to predict the variable of interest rather than patient prog-

nosis per se.

For example, across all IBC samples, the SMP test finds that

ER status is highly significant (p < 0.001; Table 1): nearly all
ER+ patients are classified as good outcome, and nearly all

ER� are assigned poor outcome. This represents systematic

misprediction, since there are a significant number of both

poor-outcome ER+ patients and good-outcome ER� patients;

these patients are almost never predicted as such by the SigC

classifiers. Intrinsic subtypes were similarly found associated

with systematic misprediction of outcome; patients were pre-

dicted as good outcome if and only if their subtype was lumA,

lumB, or normL (Table 1; Figure 3H). In summary, although the

SigC classifiers were trained to predict outcome, they have

instead learnt (clinical or intrinsic) subtype.

Prediction of Outcome Is Confounded in ER and HER2
Defined Cohorts
We asked if prediction of outcome within cohorts restricted to

only ER+ tumors would ablate confounding. Here, 77% of the

SigC classifiers still remain significant under survival analysis

(log rank, p < 0.05; Figure 2A), and the SMP test establishes

that the classifiers consistently assign prognosis according to

intrinsic subtype: lumA and normL patients as good outcome,

and her2E and basalL patients as poor outcome (p < 0.001 for

each intrinsic subtype; Table 1; Figure S3A). Similar problems

were identified for ER�, HER2�, and HER2+ cohorts (Table 1;

Figures S3B and S3C). In fact, instead of prognosis, the classi-

fiers built for ER-defined subtypes tend to learn HER2 status

and HER2 cohorts learn ER status. The differential in rates of

poor outcome between ER+ and ER� cohorts explains their

apparent prognostic capacity (similarly for HER2), suggesting

that the prognostic classifiers have no power to predict outcome

above and beyond the information implicit in the patient’s

subtype.

Limitations of the Clinical and Intrinsic Schemes
We next built SigC classifiers for each subtype of the clinical

scheme. No signature had significant prognostic capacity in all

four cohorts (Figure 2A). The ER+/HER2� cohort contained the

greatest degree of systematic misprediction where patients

were still predicted based on their intrinsic subtype (Table 1; Fig-

ure S3C). The ER�/HER2� cohort contains a high number of

claudin-low (CL) patients (p < 0.0001; Table S2) with evidence

of systematic misprediction of CL patients as good prognosis

(SMP test, p < 0.0001; Table 1). We investigated the refinement

of the ER�/HER2� subtype into CL and non-CL cohorts for

prognostic prediction but identified only 12 weakly differentially

expressed genes (linear models for microarray data [limma],

false discovery rate < 0.5; Table S10).

With respect to the intrinsic subtypes (Figure 2B), patients with

high-grade tumors were systematically mispredicted as poor

outcome within the lumB subtype (SMP test, p < 0.01; Table 1;

Figure S3D). Since high-grade tumors often receive chemo-

therapy, it is not surprising that patients who received chemo-

therapy were also systematically mispredicted as poor outcome

(p < 0.01). As per the ER�/HER2� clinical subtype, basalL was

confounded by CL status with good prognosis assigned to CL

individuals (SMP test, p < 0.01; Figure S3D).

The SMP test did not identify significant confounding by ER or

HER2 status for the normL, basalL, or her2E subtypes, suggest-

ing that these subtypes represent a sufficiently homogeneous
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Figure 2. Subtype-Specific Performance of Prog-

nostic Classifiers

Colors are proportional to the rank of the classifier within the

specific patient cohort, with red representing the highest-

performing classifiers relative to the remaining SigC

members. Ticks represent the level of significance of the

classifier (log-rank test, p < 0.05, 0.01, 0.001, respectively).

Bottom row contains percentage of SigC significant at p <

0.05. Major signatures of interest have been highlighted.

See also Figure S2.
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Figure 3. Patient-Signature Heatmap of Classifiers in Unstratified Analysis of IBC

Blue and red shaded columns correspond to good- and poor-outcome patients, respectively. The classifiers (rows) from SigC are ordered by their ability to

predict patient outcome. Asterisks correspond to significance by survival analysis (log-rank test). Dark and light shades correspond to correct and incorrect

predictions, respectively. Patients (columns) are ordered by the degree of agreement of predictions across all members of SigC across good and bad outcome.

(A) Difficulty score of predicting outcome.

(B and C) A subset of patients that almost every classifier predicts correctly.

(D and E) Patients mispredicted by almost every classifier.

(F) The percentage of trials (n = 100K) whereby the specific classifier (row) outperformed a classifier built from a random set of k = 25 genes.

(G) The box shades the subset of classifiers from SigC that does not outperform classifiers built from a random set of k = 25 genes over 99% of the trials.

(H) Clinicopathological, treatment, and subtype attributes per patient. A red tick in ‘‘Outcome (5 yrs)’’ refers to an observed distant metastasis within 5 years.

‘‘Outcome’’ does not place a restriction on length of follow-up. Color-coding for PAM50 and IntClust follows original publications. Color-coding for data sets is

given in Table S1.

See also Figure S3.
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Table 1. Table of Associations from the Systematic MisPrediction Test

IHC Treatment Patient Tumor PAM50 Claudin-Low

ER HER2 Chemotherapy Tamoxifen Age LN Size Stage Grade lumA lumB normL her2E basalL CL

Unstratified ++++ ���� ���� ++++ ++++ ���� ++++ ++++ ++++ ���� ����
ER+ NA ���� ��� ���� ++++ ++++ ���� ����
ER� NA ��� NA ���� ++ ++++

HER2+ ++ NA ++

HER2� ++++ NA ���� ++++ ++++ ���� ++++ ++++ ����
ER+/HER2+ NA NA NA NA

ER+/HER2� NA NA ��� ���� ++++ ++++ ���� ����
lumA NA NA NA NA NA NA

lumB �� NA NA NA NA NA

normL NA NA NA NA NA

her2E NA NA NA NA NA

basalL NA NA NA NA NA ++

ER�/her2E NA NA NA NA NA NA

ER�/basalL NA NA NA NA NA NA ++

ER+/lumA NA NA NA NA NA NA

ER+/lumB �� NA NA NA NA NA

ER+/normL NA NA NA NA NA NA NA

ER+/her2E NA NA NA NA NA NA

ER+/basalL NA NA NA NA NA NA NA

ER�/HER2+ NA NA NA NA

ER�/HER2- NA NA NA NA ++++

Each entry represents the extent to which consistent misclassification with a specific subtype (row) is associated with a specific clinicopathological or

patient attribute. ‘‘+’’ indicates that patients positive for that attribute are systematically assigned good prognosis, and ‘‘�’’ indicates the reverse. The

number of ticks (two, three, or four) corresponds to p values < 0.01, 0.001, and 0.0001, respectively. NA indicates insufficient data.
group of patients suitable for prognostic studies. The homoge-

neity suggests that a biological process that has prognostic

capacity in an ER+/her2E tumor will also have capacity in an

ER�/her2E tumor, and vice versa. However, a comparison of

the SigC classifiers between the her2E, ER+/her2E, and

ER�/her2E cohorts shows a marked difference (Figure 2C; Fig-

ure S4A). The most significant classifiers for ER+/her2E poll

biological processes shown previously to be prognostic in ER+

tumors (e.g., Chanrion-2008). In contrast, several classifiers

are only prognostic in ER�/her2E including metastasis to bone

(Smid-2006) and lung (Minn-2005) signatures and diverse

immune-related signals (Beck-2009, Rody-2009, Tosolini-2001,

and Ursini-Siegel-2010). Lastly, the ER+ and ER� subcohorts

of her2E have distinct survival characteristics, suggesting that

her2E is a very heterogeneous subtype (Figure S2B; log-rank

test, p < 0.0001; Cox proportional hazards: 1.86, 95% confi-

dence interval: [1.34, 2.59]).

Similarly for the basalL related comparisons (Figure S4B), rela-

tively few (22%) SigC classifiers are significant for ER+/basalL

tumors compared to ER�/basalL (Figure 2D). Although ER+

and ER� basalL tumors displayed similar survival characteristics

(Figure S2C), ER+/basalL were less likely to have received

chemotherapy (Table S2).

Together, these differences suggest that joint clinical and

intrinsic subtyping may be necessary to move beyond the

strong, dominant ER- and HER2-related signals found in IBC.
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Identification of a De Novo Hybrid Subtyping Scheme
We computationally searched across all possible combi-

nations of the clinical and intrinsic subtyping schemes for a

hybrid approach maximizing prognostic capacity while mini-

mizing systematic misprediction. The most complicated hybrid

scheme would partition tumors into 20 subtypes: 2 (ER±) 3 2

(HER2±) 3 5 (intrinsic subtypes). A single gene expression-

based classifier would be created for each subtype (Supple-

mental Experimental Procedures, 2.7; Figures S2E and S2F;

Table S7). For example, an ER+, HER2+, and basalL tumor

would be evaluated with a classifier learnt previously in a

training set specific to this cohort.

This search identified a scheme that partitions IBC into seven

hybrid subtypes (Figure 4A). For ER+ tumors, intrinsic subtyping

is used for further refinement. For ER� tumors, the search rec-

ommends the use of only HER2 status. Figure 5 depicts the per-

formance of the SigC classifiers across the hybrid subtypes

(Ward’smethod, Euclidean distance) with Figures 5A–5C depict-

ing performance, overlap between signatures, and the MSigDB

molecular processes enriched in these gene sets (Subramanian

et al., 2005; Supplemental Experimental Procedures, 2.4).

Although none of the SigC classifiers were significant across

all hybrid subtypes, the most universal (area labeled ‘‘Immune

SigC’’) or significant (‘‘Top’’) classifiers were mainly immune

related: Ursini-Siegel-2010, Finak-2008, and Rody-2009 signa-

tures (Figure 5A).



Figure 4. The Hybrid Subtyping Scheme

(A) A decision tree where the root corresponds to all patients. ER+ samples move left in the tree. The row labeled ‘‘vs. Unstratified’’ is a comparison of the

predictions made by a classifier trained in unstratified analysis versus the classifier trained in an ER+-restricted cohort. Green entries correspond to samples

where the ER+-restricted classifier is correct but the parental classifier is incorrect (improvements due to additional stratification). Brown corresponds to incorrect

predictions by the ER+ classifier but correct predictions by the unstratified classifier (deteriorations). The row labeled ‘‘Clinical’’ at each node of the tree compares

classifiers built with the hybrid scheme versus classifiers built using the clinical scheme (similarly for row ‘‘Intrinsic’’). For instance, for an ER+/HER2�/basalL

sample, the row labeled ‘‘vs Intrinsic’’ compares the prediction made by a ER+/basalL classifier with a basalL classifier, while the row labeled ‘‘vs Clinical’’

compares the predictions made by a ER+/basalL classifier with a ER+/HER2� classifier.

(B) Patient-signature heatmap for each hybrid subtype as per Figure 2. Vertical black lines delimit the inherently easy and difficult cases within both good-

outcome (blue) and poor-outcome (red) portions.

See also Figure S4.
The coclustering of ER+/lumA and ER+/lumB in Figure 5A sug-

gest that roughly the same signatures (labeled ‘‘Sub-ER+’’ and

‘‘ER+ SigC’’) have prognostic capacity in both cohorts, in turn

suggesting that both cohorts share the same prognostic biolog-

ical processesprimarily related toproliferation andcell cycle (Fig-

ures 5B and 5C, pink region). However, some immune-related

signatures appear to have more prognostic capacity in ER+/

lumB than inER+/lumA (e.g., Ursini-Siegel-2010 andBeck-2009).

The hybrid scheme separates classification of ER+/her2E

tumors from ER�/HER2+ tumors. Consistent with this is the

observation that very few SigC signatures are significant in

both cohorts (e.g., immune related signatures Ascierto-2012,

APP, and a chromosomal instability signature, Carter-2006).

The scheme recommends separate classifiers for the ER+/

normL cohort, whereas ER�/normL tumors should be classified

using ER�/HER2� (Figure 4A). The ER+/normL subtype is an

outgroup within the ER+ subtree containing lumA, lumB, and

her2E (Figure 5A), and some of the most prognostic signatures

for this subtype are shared with ER� cohorts (e.g., Yau-2010

and Hallett-2012).
Finally, we observe that the ER+/basalL subtype is most

similar to ER� related cohorts. However, some ER+/basalL sig-

natures do remain significant within the ER+/luminal subtypes

(e.g., Saal-2007) but are not significant in the ER�/basalL sub-

type, suggesting that ER+ and ER� basalL tumors are signifi-

cantly different from a prognostic perspective (Figure S4B).

The Hybrid Scheme versus Alternatives
The hybrid scheme was then compared against alternative sub-

typing schemes including IntClusters (IC), CIT, and the TNBC

subtypes. For each hybrid subtype, we asked (1) if it contains a

surprising number of patients from a subtype of an alternative

scheme (Table S2) and (2) if the SMP test identified a subtype

from an alternative scheme that confounds prognostic predic-

tions (Table S8).

ER+/lumB contains surprisingly many tumors of subtype IC8

and IC9 (both p < 0.0001; Table S2). The IC9 subtype corre-

sponds to ER+ tumors with 8q cis-acting/20q-amplification

events (Curtis et al., 2012). Within ER+/lumB, they are systemat-

ically mispredicted as poor outcome (p < 0.01). The IC8 tumors
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are characterized by classical 1q gain/16q loss. In ER+/lumB,

these tumors are systematically mispredicted as good outcome

(p < 0.01).

With respect to ER�/HER2� tumors, we observed systematic

misprediction of IC4 tumors (characterized by extensive lympho-

cytic infiltration) as good outcome and IC10 tumors (character-

ized as primarily basalL tumors by Curtis et al.) as poor outcome

(both p < 0.0001).

Our attempts to develop prognostic classifiers for refinements

of the hybrid subtypes that include IC subtypes were limited by

the fact that IC subtypes are currently only available within the

Curtis et al. data set (Curtis et al., 2012). Notably, when we

trained prognostic classifiers for each of the 10 IC subtypes

alone, their performance did not achieve statistical significance

in the validation portion of their data set.

There were also surprisingly many CIT-’’lumC’’ tumors within

the ER+/basalL hybrid subtype (Table S2; p < 0.0001) that

were systematically predicted as good outcome (Table S8; p <

0.001). This is surprising, since ‘‘lumC’’ is characterized as a

highly proliferative subtype with relatively poor prognosis (Guedj

et al., 2012). This suggests that the restrictive ER+/basalL sub-

type still contains latent confounding due to the expression of

proliferation genes.

A Trade-Off between Systematic Misprediction and
Performance
The hybrid scheme identifies a partitioning of IBC that reduces as

best possible the systematic misprediction of patient outcome.

Somewhat counterintuitively, however, the ablation of system-

atic misprediction may appear to hinder our ability to predict

survival times. The removal of confounding variables and subse-

quent increased homogeneity of the hybrid subtypes should

allow classification based on actually biological processes that

associate with patient outcome. We plotted the improvements

and deteriorations between the hybrid, clinical and intrinsic

schemes (Figure 4A). Here, each patient is first subtyped by

each of the three schemes, and then outcome is predicted via

a classifier specific for each of the assigned subtypes (Supple-

mental Experimental Procedures, 2.7). All classifiers were

developed with the same methodology. Indeed, the overall per-

formance of the hybrid scheme is only slightly better than previ-

ous subtyping schemes (Figure S2D for survival; +3% product of

accuracy). The performance within the ER+/lumA subtype is

inferior but increases in the ER+/lumB, ER+/basalL, and ER+/

her2E hybrid subtypes.

The Inherent Complexity of Tumors
The performance of the SigC classifiers across the hybrid sub-

types is plotted in Figure 5A (see also Figures S3C–S3E). In every

hybrid subtype, we observe a set of patients who are correctly
Figure 5. The Prognostic Capacity of Each Classifier from SigC across

(A) Colors are proportional to the rank of the signature within the specific patient c

of significance of the classifier in the cohort (log-rank test, 0.05, 0.01, 0.001). Leftm

contains a hierarchical clustering of the hybrid subtypes. Major signatures of inte

(B) Rows correspond to genes that appear as members of at least three SigC sig

(C) Rows correspond to signatures from MSigDB that have surprisingly large ove

molecular function.
predicted to have good outcome by almost every SigC classifier

and likewise a set of patients consistently correctly predicted as

bad outcome (Figure 4B). We term these patients ‘‘inherently

easy.’’ Given the diversity of biology that the different classifiers

poll to make predictions, this agreement suggests that many

distinct biological processes expressed in these tumors have

prognostic capacity. In contrast, we also observe patients that

appear to be systematically misclassified by almost every

member of SigC. The outcome of these patients appears to be

‘‘inherently difficult’’ to predict. The black vertical bars delimit

the inherently easy/difficult good/poor outcome patients based

uponour denovo statistic usedquantify thedifficulty of predicting

outcome (Supplemental Experimental Procedures, 2.6.2). The

difficulty score for each patient is a function of how many of the

SigC signatures incorrectly predict its outcome, but weighting

the contribution of each signature by its overall performance.

The existence of inherently easy and difficult patients was also

witnessed in analyses without stratification and with alternative

subtyping schemes; however, these inherent classes were found

to be the result of confounding due to underlying clinicopatho-

logical variables (Table S8). Here with the hybrid scheme,

there is minimal systematic misprediction with known variables,

implying that the inherent easy and difficult classes remain unex-

plained. We verified that the inherent ease and difficulty was not

caused by technical reasons such as the choice of classifier

method; partition of ExpC into training, testing, and validation;

cellularity of samples (Table S6; e.g., fibroblasts); and other vari-

ables (Supplemental Experimental Procedures, 2.14).

The Inherent Complexity of ER�/HER2� Tumors Is
Reflected at the DNA Level
To investigate whether the inherent complexity of tumors

observed in RNA profiles was conserved at the DNA level, we

selected three ER�/HER2� samples from patients determined

as easy good, difficult good, and difficult poor outcome in the

MGGQ data set. The tumors were subjected to massively paral-

lel exome sequencing (Nextera; Supplemental Experimental

Procedures, 2.8). In total, 232,000,000 read pairs were uniquely

aligned to the human genome (NCBI, hg19) with an average

sequencing depth of 400–600 reads per exonic site. CoNIFER

(Krumm et al., 2012) was used to identify regions of deletions

and amplification in each sample while excluding regions poly-

morphic in normal, healthy samples (Supplemental Experimental

Procedures, 2.8). In total, 118 loci contained 280 distinct genes

with differing copy number in at least one of the three individuals

were identified (Figure 6). A correlation of 0.8 with respect

to the copy number for these loci was observed between

the inherently easy good-outcome and the inherently difficult

poor-outcome individuals (Spearman, p < 10�15). In contrast,

no significant correlation was observed between the inherently
the Hybrid Subtypes

ohort, with red representing the highest performance. Ticks represent the level

ost column is the percentage of SigC significant at p < 0.05. Rightmost column

rest have been highlighted.

natures.

rlap with at signatures in SigC (Fisher’s exact test, p < 0.01). Rows grouped by
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Figure 6. AComparison of Exonic Differences

between Three Samples that Differ in

Outcome and Difficulty of Prediction

Columns correspond to an inherently easy, good-

outcome patient (left); an inherently difficult, poor-

outcome patient (middle); and an inherently easy,

poor-outcome patient (right). Each row represents a

contiguous series of exons that had significantly

different DNA copy number labeled by genes con-

tained in the regions. Yellow represents increased

copy number in comparison to blue (Z transformed).
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easy and difficult poor-outcome samples (Spearman correla-

tions < 0.2, p = 0.06).

DISCUSSION

Subtyping Reshapes the Landscape of Prognosis
Signatures reported to have prognostic capacity in IBC were

systematically compared across a large compendium of expres-

sion profiles. When all IBCs are considered, or when liberal

subtypes defined only by ER or HER2 status are used,most clas-

sifiers had statistically significant ability to predict patient

outcome. This ubiquity, which has been reported previously

(Sotiriou and Pusztai, 2009; Venet et al., 2011; Weigelt et al.,

2010), is difficult to comprehend given the great diversity of bio-

logical processes that are polled by the individual signatures.

Using our de novo SMP test, we are able to explain such

behavior by quantitatively identifying clinicopathological vari-

ables that confuse the prediction of outcome. In unstratified

analysis, the classifiers only predict ER status. Since there are

differential rates of poor outcome between ER+ and ER� tumors

(Parl et al., 1984), the classifiers have a prognostic capacity pro-

portional to this differential. For variables such as ER status, the

molecular differences between ER+ and ER� subtypes are so

large that almost any gene or gene set is likely to exhibit differen-

tial expression between the subtypes (Gruvberger et al., 2001),

implying the magnitude of the transcriptional fingerprint of ER

is more predominant than signals directly associated with

patient prognosis. The confusion between prognostic and clas-

sification markers explains the apparition that ‘‘almost every-

thing’’ is prognostic in breast cancer.

The Insufficiency of the Clinical Scheme
The clinical subtypes do not remove all systematic misprediction

of prognosis. For example, in the ER+/HER2� cohort, the clas-

sifiers predicted nearly all lumA and normL tumors to have

good outcome, while basalL and her2E were assigned poor

outcome. This is due possibly to the fact that pathologic determi-

nation of ER positivity in the clinic is intentionally permissive

ranging from few (1%) to many (10%) ER+ cells (Iwamoto

et al., 2012), since all such patients may benefit from anties-

trogen therapies (Harbeck and Rody, 2012). In cases where

few ER+ cells are present in the tumor bed, the molecular signal

related to ER may be weak in the expression profile and tools

such as PAM50 for intrinsic subtyping may identify more sub-

stantive her2E or basalL signals, as observed by others (Deyar-

min et al., 2013). The ER+/HER2� cohort is heterogeneous

(Aparicio and Caldas, 2013), and our results establish that this

heterogeneity impairs the prediction of outcome.

The Insufficiency of the Intrinsic Scheme
With respect to the intrinsic scheme, there are notable issues

surrounding the her2E, normL, and basalL subtypes. In all three

cases, these intrinsic subtypes have a significant number of both

ER+ and ER� tumors (ER+: her2E 58.7%, basalL 26.3%, normL

79.5%). For her2E, the two ER-defined subcohorts show signif-

icant differences in disease-free survival, and prognosis is pre-

dicted by a distinct set of classifiers. Surprisingly, no signature

was observed to be significant for both ER+ and ER� HER2-
related cohorts, with few immune-related exceptions that

appear to be prognostic in most subtypes (not necessarily

HER2 related). The paucity of HER2-specific signatures is sur-

prising given that some (e.g., Khoury-2010, Staff-2010, and

Liu-2012) were built explicitly for this purpose. Although HER2

amplification is a good predictive marker for response to anti-

HER2 therapy across all IBCs, these results establish that it

does not function as prognostic marker within the HER2

subcohort.

For basalL, the classifiers most significant for ER+/basalL

differ from those significant for ER�/basalL. Several signatures

significant for ER�/basalL patients were not significant within

ER+/basalL patients, including several immune-related signa-

tures (Galon-2006 and Rody-2011) and the APP pathway.

The Hybrid Subtyping Scheme
In order to ablate misprediction and confusion, we considered all

possible subtyping schemes that can arise from combining the

clinical and intrinsic subtypes. The focus was placed on these

two schemes since they are the most clinically feasible (Harbeck

et al., 2014). This produced the decision tree of Figure 4A.

For ER� tumors, the search identified only HER2 status as sig-

nificant, which is a surprising lack of refinement given the atten-

tion subtyping within ER� tumors has received. The ER�/lumA

and ER�/lumB subtypes studied by Prat et al. (Prat et al.,

2013) were too infrequent in the ExpC (n = 23, one poor outcome;

n = 20, seven poor outcome, respectively) for deeper statistical

evaluation. We compared classifiers for ER�/HER2� tumors

with the more restricted cohort of ER�/HER2�/basalL but failed

to identify a difference in survival characteristics, standard of

care, or significant SigC classifiers, suggesting that basalL is

not a proper subset of ER�/HER2� tumors.

ER�/HER2�/claudin-low (CL) tumors have significantly better

prognosis than non-CL counterparts and were systematically

mispredicted as good outcome by ER�/HER2� classifiers. We

were, however, unable to identify markers of prognosis between

good- and poor-outcome ER�/HER2�/CL patients. Together,

this suggests that although the ER�/HER2�/CL subtype has

interesting molecular and pathological properties (Prat et al.,

2010), they do not assist in the prediction of outcome. IC4 of

IntClusters is highly enriched in ER�/HER2� tumors, and the

patient overlap between IC4 and CL is extremely high, suggest-

ing near equivalence.

The hybrid scheme recommends the partitioning of ER+

tumors by intrinsic subtype. In particular, ER+ and ER� HER2+

tumors are segregated for prognostic treatment. The distinctive-

ness of ER+/her2E is in agreement with randomized clinical trials

that have found benefit in dual targeted treatment combining

endocrine and anti-HER2 treatment (Montemurro et al., 2013).

In the ExpC, the ER+/basalL patients appear to have been

treated solely as ER+ tumors receiving tamoxifen but were less

likely to have received chemotherapy in comparison to ER�/

basalL, especially for LN+ patients. This is likely due to the fact

that intrinsic subtyping is not clinically available. Although ER+

tumors may be more resistant to chemotherapy than ER�
tumors (Rouzier et al., 2005), ER+/basalL cases may represent

candidates that stand to benefit from broader use of chemo-

therapy. Consideration of a novel treatment strategy for the
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ER+/basalL hybrid subtype may have clinical relevance, since

they have the highest rate of recurrence within ER+ tumors, at

double the frequency of poor-outcome cases as lumB.

The Prognostic Axis across All Signatures
The clustering in Figure 5A highlights the relationships between

the members of the SigC and the hybrid subtypes. At one

end of the axis (‘‘ER-SigC’’), the signatures have prognostic

capacity almost exclusively within ER�-related cohorts and

poll aspects of the immune response. At the other end of the

axis (‘‘ER+SigC’’), the signatures have the most capacity in

ER+ tumors and poll processes such as proliferation, cell cycle,

and regulation of transcription. Some ER�-related signatures

have some prognostic capacity within ER+ cohorts, including

two of the highest-performing signatures across all hybrid sub-

types (Finak-2008 and Ursini-Siegel-2010). Neither of these sig-

natures was originally learnt in gene expression profiles from

bulk (epithelial enriched) clinical samples of IBC but instead

from stroma-microdissected clinical samples and transgenic

mousemodels of the disease, respectively. Both have significant

adaptive immune and microenvironmental components. This

leads to a hypothesis that gene signatures built in contexts

where ER-related signaling is ablated or irrelevant tend to be

the most universal across IBC.

The Inherent Difficulty of Some Tumors
Although the degree to which a biological process can predict

outcome varies according to subtype, the existence of the inher-

ently difficult and easy classes of tumors (Figure 4B) does sug-

gest that almost every biological process has some degree of

prognostic ability in every subtype. This would suggest that the

molecular profile of, for example, an inherently easy individual

contains a clear and universal signal of prognosis that is

‘‘encoded’’ in almost every biological process, regardless of

tumor grade, stage, LN status, age, subtype, or any other

patient/tumor property. In essence, for good-outcome individ-

uals, standard of care was sufficient for the individual given their

exposures, lifestyle choices, genotypic polymorphisms, tumor

colony structure, and other variables.

For poor-outcome inherently easy individuals, this implies that

at time of diagnosis before treatment the molecular profile con-

tained a ubiquitous signal that the tumor was likely to progress

under standard of care. Factors such as low-penetrant resis-

tance subcolonies and intratumoral complexity do not play

a role.

Almost no genes or pathways are differentially expressed be-

tween inherently difficult, good-outcome and inherently easy,

poor-outcome individuals. There are many possible reasons

why two individuals who have essentially identical transcrip-

tomes may have differing outcome, such as lifestyle, exposures

(Poole et al., 2013), genotypic variation (Landmark-Høyvik et al.,

2013), and other variables largely ignored to date in genomic

studies. It is possible that an epigenetic mark, posttranslational

modification, expressed microRNA, or other genomic features

not measured in transcriptional studies could distinguish these

individuals. However, we comment that such an alternative

mark would have to have had no feedback on transcriptional

levels. For example, the hypothetical epigenetic mark must not
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have disrupted the expression of transcripts; otherwise, its

fingerprint would be detected in these studies. Polymorphisms

or other genomic features may exist in these individuals who

do not exert changes in the transcriptome until the tumor is chal-

lenged with therapy. Alternatively, changes at the transcriptional

level may be too small to detect, especially when the signal orig-

inates from only a marginal population of cells within the tumor

(progenitor cells or a low penetrant colony). This suggests the

need for greater integration of physiologic, epidemiological,

and environment data into genomic studies and underscores

the need for tumor progression studies.

Lastly, the inherently difficult, poor-outcome individuals corre-

spond to patients for whom almost every classifier predicts

incorrectly as good outcome. One of the possible explanations

for the inherent difficulty is the existence of low-penetrant sub-

colonies or rare populations of atypical progenitor cells capable

of forming resistance to standard of care. Likely undetectable in

bulk profiling, these classifiers would not be able to differentiate

such tumors. If tumor heterogeneity is the primary cause of resis-

tance to therapy and subsequent poor outcome, it is these indi-

viduals who aremost likely to harbor the intratumoral complexity.

A preliminary study examining a series of ER�/HER2� tumors

from patients determined as easy good, difficult good, and diffi-

cult bad prognosis by exomic deep sequencing (400–600

average depth) suggests that the chromosomal aberrations of

the inherently difficult poor-outcome sample is structurally

most similar to the inherently easy, good-outcome sample. At

least in this pilot study, the inherent complexity of patients is

conserved at the DNA level, although all three tumors harbor

both distinct and shared mutations.
Conclusions
Given the limited nature of genomic studies in breast cancer to

date, no prognostic classifier should achieve a perfect success

rate at time of diagnosis, since this would imply that lifestyle, ex-

posures, tumor heterogeneity, and genotype do not play a role in

determining disease course. Our findings suggest that markers

of patient outcome at time of diagnosis exist, although they are

subtype specific, relatively rare, and imperfect.

We identified 20% of IBCs whose prognosis appears inher-

ently difficult to predict, with approximately one-third of these

patients of poor outcome. This latter cohort should be the priority

for studies via massively deep sequencing, since it is only these

patients who likely harbor clinically relevant intratumoral hetero-

geneity affecting disease progression.

Our approach and website provide the community with a

resource to cross-compare findings in the continual stream of

new data sets, subtyping schemes, and signatures for breast

cancer. This will make more precise the true nature of a pro-

posed biomarker after detangling the effects of confounding

factors, a problem that has plagued breast cancer informatics

to date.
EXPERIMENTAL PROCEDURES

Expression Data

We compiled publicly available gene expression profiles of IBC (n =�10K) and

evaluated each data set according to criteria including quality and technical



disparities of the microarray/sequencing technology, availability of clinical and

histopathological information, nonoverlap of patients, and overall size. We

harmonized as much as possible differences in follow-up time and defined

poor outcome as an observed distant metastasis within 5 years of diagnosis

(Supplemental Experimental Procedures, 2.1). The procedure produced a

compendium of 4,952 patients (ExpC) with expression measured with seven

distinct technologies including several microarray and RNA-seq platforms

(Table S1). Approval for the de novo MGGQ dataset was received from the

McGill ethical review board (#A10-M92-10A).

Subtyping Schemes

We used ER status as measured by IHC reported and HER2 status measured

by fluorescence in situ hybridization or immunohistochemistry where avail-

able. When unavailable, HER2 status was determined using gene expression

ofmembers of the HER2 amplicon as previously done (Staaf et al., 2010). Since

many of the data sets lacked information on the PR status, we used only ER

and HER2 status either in isolation or in combination to define eight possible

cohorts (ER+, ER�, HER2+, HER2�, and the four clinical subtypes using

ER/HER2). All ExpC samples were labeled according to four additional subtyp-

ing schemes from the literature: IntClusters (Curtis et al., 2012), CIT (Guedj

et al., 2012), TNBC (Lehmann et al., 2011), and intrinsic subtypes via PAM50

(Parker et al., 2009) (Figure 1A; Table S7).

Previously Reported Prognostic Signatures

Our goal was a systematic cross-comparison of all signatures (sets of genes)

reported to have prognostic capacity for IBC in the literature. In total, the signa-

ture collection (SigC) contains n = 106 gene sets ranging in size from three to

886 (Table S3).

Construction of Prognostic Classifiers

A unique classifier was built for each signature in SigCwithin each stratification

defined by clinical variables (e.g., ER+, HER2�) and intrinsic subtypes (lumA,

lumB, normL, her2E, and basalL). Combinations of the clinical and intrinsic

subtyping schemes (e.g., ER+/basalL) were also considered. The naive Bayes’

classifier (NBC) was trained under leave-one-out cross-validation (1) for each

signature, (2) for each patient cohort, and (3) within each individual data set of

the ExpC, for which there were sufficient numbers of event (distant metastasis

within 5 years; poor-outcome) and event-free (good-outcome) individuals (Fig-

ure 1A; Supplemental Experimental Procedures, 2.7). NBCs were chosen as

they provide a simple, transparent, and uniform technique to cross-evaluate

the signatures, although some signatures were originally developed using

other techniques (detailed in Table S3). In addition to the gene signatures of

the SigC, the prognostic capacity of clinical attributes including grade, stage,

LN status, and age were considered. A small number of signatures in SigC

have been further developed into tools to aid during treatment decisionmaking

(e.g., Oncotype DX and MammaPrint). Here, we classify patients according

to the output from NBCs and not according to the methods of those tools.

Lastly, the prognostic capacity of each gene was evaluated across each

data set of the ExpC with respect to every possible subtype (Supplemental

Experimental Procedures, 2.2 and 2.9).

Construction of De Novo Prognostic Classifiers per Subtype

In addition to existing prognostic signatures, we also constructed de novo

prognostic signatures for each subtype (Figure S2). For some subtypes, such

as the hybrid ER+/basalL, these represent the only available classifiers. To-

ward this end, the ExpC was tripartitioned into learning (n = 897; van Vliet

et al., 2008), training (n = 819), and validation (n = 2,412) data sets (Tables S1

and S7). The training and validation data sets were chosen so that each

underlying technology (microarray or sequencing platform) was present. Using

the learning data set, our approach samples a set of k genes from the n most

prognostic genes in univariate analysis (absolute value of Cox-PH coefficient).

This sampling is repeated m times and each such sample is used to construct

an NBC in each data set of the learning partition. We experimented with

parameterizations of this approach and found that k = 25, n = 100, and

m = 25K provided small but high-performing classifiers (Figure S2F). Only the

classifier that achieves the maximum observed performance across the m =

25K samples in the learning and training data sets is tested in the validation
data set. This procedure is repeated for each of the target subtypes. A wide

range of measures were used to evaluate performance on the validation data

sets including the log-rank test, Cox proportional hazard, area under the curve,

Matthews correlation coefficient, Fisher’s exact test, and de novo permutation

tests (Supplemental Experimental Procedures, 2.7; Figures S2G and S2H).

Further analyses are available at http://www.bci.mcgill.ca/bresect.
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