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Abstract
In industry 4.0 manufacturing, sensors provide information about the state,
behavior, and performance of processes. Therefore, one of the main goals of
Industry 4.0 is to collect high-quality data to realize its business goal, namely
zero-defect manufacturing, and high-quality products. However, hardware sen-
sors cannot always gather quality data due to several factors. First, industrial
4.0 deploys sensors in harsh environments. Consequently, measurements are
likely to be corrupted by errors such as outliers, noise, or missing values. Sen-
sors can, over time, be subject to faults such as bias, drifting, complete failure,
and precision degradation. Moreover, direct sensing of a process variable can
be unavailable due to environmental constraints such as surface temperature
being beyond the range of the physical sensor.
A virtual sensor is a tools to solve these problems by allowing for online estima-
tion of process variables when the physical sensor is unreliable or unavailable.
Deep learning method is effective in developing virtual sensors; however, it
assumes that the data used for training and deployment are independent and
identical (i. i. d). Therefore, deep learning in high-risk environments, such as
industry 4.0, is challenging because if i.i.d assumptions fail to hold, the model
may make errors that lead to disastrous consequences, such as financial losses,
reputational damage, or even death. We can prevent model mistakes only if
the model estimates the uncertainty of its predictions. Unfortunately, current
deep learning-based virtual sensors are created using frequentist models, mak-
ing them unable to capture uncertainty accurately. In this thesis, we explore
the possibility of Bayesian convolutional neural networks (BCNN) to generate
uncertainty-aware virtual sensors for Industry 4.0.
We use two publicly available realistic industrial datasets to generate virtual
sensors and conduct experiments. CNC Mill Tool Wear data (CNC) from CNC
milling machine provided by the University of Michigan, and Tennessee East-
man Process data (TEP) provided by Eastman Chemical Company for process
monitoring and control studies. The root-mean-square error (RMSE), mean
absolute percentage error (MAPE), and R-squared (R2) is used to evaluate
the predictive capability of the generated virtual sensor. The performance is
compared to that of the standard neural network-based virtual sensor, namely
convolutional neural network (CNN) and long short-term memory (LSTM).
We demonstrated Bayesian neural networks’ ability to quantify uncertainty
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by computing the coverage probability of the uncertainty. Additionally, we
tested whether the estimated uncertainty could detect changes in input data
distribution using the fault injection method.
Our BCNN virtual sensor had the best R-squared scores, with R2 = 0.99 on
CNC and R2 = 0.98 on TEP data. The result of the coverage probability score
indicates a reasonably good uncertainty estimate. However, despite predictive
uncertainty detecting faults in input datasets, its accuracy declined as fault
length increased.
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1
Introduction
1.1 Motivation

The Fourth Industrial Revolution (or Industry 4.0) (Lasi et al., 2014) refers to
the ongoing innovative use of technology to automate traditional manufactur-
ing and industrial processes. Large-scale machine-to-machine communication
(M2M) and the internet of things (IoT) are integrated for increased automation,
improved communication and self-monitoring, and production of intelligent
machines that can analyze and diagnose issues without the need for human
intervention. Observing the manufacturing process with sensors and collecting
high-quality data to improve product quality and the overall process is one of
the main objectives of Industry 4.0.

High-quality data should not only reflect the actual real-world states of the
manufacturing process but should also help realize the business goal of Indus-
try 4.0, which is zero-defect manufacturing (Wang, 2013) and higher quality
products.

A typical Industry 4.0 manufacturing process has several inputs such as the 3D
model of the part to be manufactured either via additive (Wong and Hernandez,
2012) (e.g. 3D printing) or subtractive manufacturing (Ehmann et al., 1997)
(e.g. milling, grinding, laser cutting), the material for the part, feed-rate of the
cutting tool, and clamping pressure on the part.

Sensors provide information about the behavior of a process and information
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2 chapter 1 introduction

about its performance. For example, during the manufacturing process, nu-
merous sensors on the machining instrument can measure time-varying data
with sub-microsecond sampling frequencies such as accelerations, velocity, and
positions of the part and the tool (e.g., spindle) and its internal currents and
voltages. In addition, we may install novel sensors close to the tooltip, such as
acoustic sensors and accelerometers, to obtain fine-grained information at the
interface between the tool and the part’s material.

Machine learning or AI models typically use these data to perform predictive
and preventive maintenance. However, predictive and preventive maintenance
can help improve product quality and reduce waste and malfunction rates only
if the sensor data are high quality and reliable.

Quality data from hardware sensors may become unavailable because of differ-
ent factors. First, industry 4.0 manufacturing deploys physical sensors in harsh
conditions. As a result, measurements are likely to be corrupted by errors such
as outliers, noise, and missing values. In addition, due to limitations such as
life span, battery power, and bandwidth. physical sensors can over time be
subject to faults such as bias, drifting, complete failure, precision degradation
Moreover, direct sensing of a process variable can be unavailable due to en-
vironmental constraints such as surface temperature being beyond the range
of physical sensor (Kadlec et al., 2009). Even when collecting data through a
physical sensor is possible, mounting a plethora of sensors is impractical in a
cost-sensitive industry 4.0.

A virtual sensor, also known as a soft sensor, is one of the tools available for
industry 4.0 to solve these problems by allowing for online estimation of process
variables when the physical sensor is unreliable or unavailable. In general, two
approaches to establishing virtual sensor models can be distinguished, namely
model-based and data-driven methods (Kadlec et al., 2009). When the process
mechanism is known, the model-based approach can work well. However, when
it isn’t known, it cannot be used, especially in complex industry 4.0 processes.
Furthermore, model-driven models are computationally expensive. As a result,
data-driven methods are the mainstream virtual sensor method (Sun and
Ge, 2021). Data-driven methods rely only on historical data obtained from the
industrial processes and therefore do not require knowledge of phenomenology.

For modeling data-driven virtual sensors, traditional techniques include statisti-
cal inference and machine learning, such as principal component analysis(PCA)
(Ge et al., 2014), partial least square(PLS) (Zheng and Song, 2018), support vec-
tor machines (SVM) (Herceg et al., 2019) and artificial neural network (ANN)
(Fan et al., 2019).

However, even though those methods have many applications, some of their
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drawbacks include heavy workloads caused by hand-crafted feature engineer-
ing or performance issues when dealing with large datasets (Sun and Ge,
2021). Therefore, Deep learning methods have contributed to the growing de-
velopment of virtual sensors in recent years. Furthermore, due to its powerful
learning ability, deep learning can enhance the performance of virtual sensors
performance compared to conventional methods.

Deep learning models assume that the training, testing, and deployment data
is independent and identically distributed (i.i.d.) (Lakara et al., 2021). Unfortu-
nately, this assumption doesn’t generally hold in a real-world setting. Hardware
sensors are subject to failures like drift, bias, and freezing in the context of
industry 4.0, resulting in data shifts. Suppose the shift in deployment data
is significant compared to training data. In that case, there is a likelihood
the model will make a mistake that may lead to unforeseeable, potentially
disastrous results like financial or reputation losses or even death. Conversely,
present deep learning-based virtual sensors are created based on frequentist
models that represent weights as deterministic values, so they cannot capture
uncertainty appropriately in their outputs. Moreover, most of the current per-
formance evaluation techniques for deep learning models depend on ground
truth unavailable during most virtual sensor deployment. Therefore, If the
model doesn’t produce uncertainty estimates, we can’t prevent the model’s
mistakes. These factors pose a threat to the reliability of virtual sensors.

Bayesian probabilistic methods offer a mathematically grounded way of gain-
ing insight into data and capturing accurate uncertainties in model predictions
(Droguett and Mosleh, 2008). There have been many advances in Bayesian
deep learning communities for developing better and more efficient approxi-
mate methods for extending Bayesian deep learning to probabilistic Bayesian
methods in recent years (Graves, 2011; Blundell et al., 2015; Srivastava et al.,
2014; Kingma and Welling, 2013; Wen et al., 2018). By combining deep learning
with Bayesian networks, Bayesian neural networks can appropriately quantify
uncertainty thanks to their robustness and stochasticity. Compared to frequen-
tist methods, Bayesian neural network methods are less often overconfident
(Kristiadi et al., 2020) and their uncertainty estimate is more consistent with
the observed errors (Ovadia et al., 2019). Another advantage of Bayesian neural
network method is that it allow to distinguish between the model uncertainty
(epistemic) and inherent data randomness(aleatoric) (Der Kiureghian and
Ditlevsen, 2009). Because we can distinguish between these two sources of
uncertainty, we can reduce model uncertainty and accept the randomness in
our datasets.
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1.2 Research Aims

Bayesian neural networks are a relatively new field of research, and there
are no implementations of them for virtual sensors to our knowledge. This
thesis will use a Bayesian convolutional neural network (BCNN) to create
an uncertainty-aware virtual sensor. We will then test how well uncertainty
estimated by BCNN can detect changes in the virtual sensor input dataset.

Specifically, we would like to investigate the following research questions (RQ).

RQ1 How can we build and validate uncertainty-aware virtual sensors
using a Bayesian neural network?

RQ2 How can we evaluate the accuracy of the uncertainty estimated by
the Bayesian neural network?

RQ3 How well is uncertainty estimation able to detect single sensor
faults?

a) Faults due to drift

b) Faults due to bias

c) Faults due to freezing

d) Faults due to precision degradation

The primary contributions of our work are summarized as follows:

1. Adapting the newly developed estimation approach called Flipout (Wen
et al., 2018),we propose an end-to-endprobabilistic virtual sensor pipeline
based on Bayesian convolutional neural networks (BCNNs).

2. We employ a simple and user-friendly approach of selecting inputs based
on information generated by an open-source Python program called
Pandas profiling (Brugman, 2020).

3. Through experiments, we demonstrate that the proposed methods can
generate predictive uncertainty, allowing for detecting faults in input
sensors.

4. We use Data Version Control (DVC) Kuprieiev et al. (2021) to manage the
workflow of the generated virtual sensor, that is, tracking the different
stages of preparing the data, different model hyperparameters, and the
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model itself.

1.3 Thesis Outline

Chapter 2 discusses the relevant theory and demonstrates its relation to our
work. First, we will briefly discuss the manufacturing process since we will
use a dataset from the manufacturing domain. Next, we will discuss physical
and virtual sensors, including faults in sensors, since sensing devices are essen-
tial components of manufacturing process monitoring systems and a primary
data source for virtual sensor development. We will also cover the theoretical
background of deep learning methods used to generate virtual sensors and
review some published deep learning-based virtual sensors. In addition, we will
discuss types of model uncertainty and how they can be estimated. Finally, we
will also describe the theoretical aspect Bayesian neural network, representing
our method of creating virtual sensors.

Chapter 3 describes the development and evaluation of virtual sensors in detail.
We will first describe the techniques for data feature engineering. Following
that, we will explain the virtual sensor generation method, including architec-
ture, explanations of training, and evaluation strategies for the virtual sensor.

In Chapter 4 we present our experiments and results. We will start by describing
the datasets used to conduct experiments. Then we will explain how different
choices are made during the data feature engineering and training stages. We
provide statistical data and discussion to support our conclusions. In this way,
we provide an answer to our research questions.

The final chapter 5 concludes with some concluding remarks, and discusses
various future directions.

1.4 Nomenclature

In this thesis, we use different abbreviations, symbols, and expressions from
different fields. We summarize their definitions and explanations in Table 1.1.
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Table 1.1: The nomenclature used in the thesis. The notations are separated into
categories.

Acronyms
EU Epistemic uncertainty
AU A Aleatoric uncertainty
PU Predictive uncertainty
RMSE Root-mean-square error
MAPE Mean absolute percentage error
R2 R-squared
CNN Convolutional neural network
BCNN Bayesian convolutional neural network
TCN Temporal convolutional network
RNN Recurrent neural network
MCMC Markov Chain Monte Carlo

Data Sets
𝑿 Feature set containing 𝑁 samples {𝑥1, 𝑥2, .., 𝑥𝑁 }
𝒚 Target(label) set containing 𝑁 samples {𝑦1, 𝑦2, .., 𝑦𝑁 }
𝑥 (𝑖) 𝑖-th example (sample) from data set X
𝑦 (𝑖) Target (label) associated with 𝒙 (𝑖)

D Set containing the complete training data

Statistical notations
𝜇 (The greek letter "mu") is used to denote the mean
𝜎 (The greek letter "sigma") is used to denote the standard deviation
𝜃 (The greek letter "theta") is used to denote a prameter of a function

𝜖
(The greek letter "epsilon") is used to denote

a noise/sample from standard gaussian distribution

𝑝 (𝑤 |𝐷) True Probability distribution of weights 𝑤 given dataset 𝑑
𝑝 (𝐷) The marginal distribution of dataset D

𝑞(w;𝜃 ) Estimated Probability
distribution of weights 𝑤 parametirized by parameter 𝜃

𝐾𝐿(𝑞 | |𝑝) Kullback–Leibler divergence between probability distributions 𝑝 and q
𝐸𝑞 Expectation with respect to 𝑞
log logarithm
i.i.d independant and identical distribution



2
Background
This chapter will present and connect essential concepts relevant to our work.
We begin with an introduction to industrial manufacturing in §2.1 since we
use datasets from industrial manufacturing processes. Next, sensing devices
are the critical building blocks of manufacturing process monitoring systems
and the primary data source for virtual sensor development, so we will discuss
them in §2.2. We will also discuss sensor faults and virtual sensors in the same
section. We will use sensor faults described here to create artificial faults to test
whether the virtual sensor we generate can detect changes in the input dataset
effectively. Since deep learning methods are currently the mainstream virtual
sensor methods, we will briefly introduce the theoretical concepts behind deep
learning and review some deep learning-based virtual sensors. In section§2.4,
we introduces uncertainty in machine learning models. Since this thesis aims to
explore the potential of the Bayesian neural network to generate uncertainty-
aware virtual sensors for Industry 4.0, we will cover the theoretical concepts
behind Bayesian neural networks in the last section of this chapter §2.5.

2.1 Industry 4.0 Manufacturing

2.1.1 Additive Manufacturing

A key component of industry 4.0-based smart factories is an additive manu-
facturing(AM), also known as 3D printing (Gibson et al., 2014). AM creates

7



8 chapter 2 background

complex and straightforward geometries by combining layers of often powder
or liquid into 3D models by building them up slowly (layer by layer). By uti-
lizing this technology, manufacturing companies can produce parts with high
creative-design freedom, mass customization, and minimal cost. AM methods
fall into the following seven categories.

1. Vat PhotoPolymerization(VPP).

2. Powder Bed Fusion(PBF).

3. Material Extrusion(MEX).

4. Material jetting(MJT).

5. Binder Jetting(BJT).

6. Sheet Lamination(SHL).

7. Directed Energy Deposition(DED).

2.1.2 Subtractive Manufacturing

Subtractive manufacturing (SM), also known as machining, is used to remove
material selectively and controllably from raw materials to obtain the desired
object (Youssef and El-Hofy, 2008). It is possible to perform the procedure
manually, but computer numerical control (CNC) (Thyer, 2014) is today’s most
popular method. A CNC system consists of a machine tool and computer that
controls the machine. The machine allows the user to pre-program the tool’s
speed and position through installed software. This software acts like a robot,
operating without human intervention. CNC machining techniques include
milling, drilling, boring, turning, and reaming. There are also multi-mode CNC
machines that combine various operations into one system to handle complex
objects (Moriwaki, 2008).

In summary, AM and SM manufacturing methods produce products in various
ways. Most SM processes entail heavy milling, drilling, boring, and turning,
taking multiple steps and routes (Ehmann et al., 1997). In AM, some processes
use liquid material cured by some form of energy, whereas others use powders
or wires melted by a laser or electron beam. Other processes use a print head
to spray binder into powdered material (Wong and Hernandez, 2012). Process
parameters in both SM and AM are sensitive to environmental variations and
affect one another. Product quality and machine health are directly related to
those parameters. There are also other factors affecting the quality of products,
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including void formation (Eiliat and Urbanic, 2018), anisotropic behaviours
(Kok et al., 2018).

2.2 Physical Sensors

According to (Tönshoff and Inasaki, 2001), a physical sensor is a device that
receives input signals or energy (such as heat, light, sound, pressure,magnetism,
or particular motions) and converts those signals or energies to an output signal
or energy. Six general categories of sensor output signals exist:

• mechanical.

• thermal.

• electrical.

• magnetic.

• radiant.

• chemical.

.

A mechanical sensor measures mechanical phenomena. Position, velocity, accel-
eration, force, pressure, stress, strain, mass, density, momentum, torque, shape,
roughness, and orientation are among the different measurands targeted by
mechanical sensors (Pasquale, 2003). Mechanical sensors are a big deal in
manufacturing because most measuring elements are essential in most man-
ufacturing processes. Temperature is one of the most critical parameters to
measure, and control in manufacturing environments (Lu and Wang, 2018;
Childs et al., 2000). Hence, thermal sensors are crucial to a smart factory. A
magnetic sensor measures the magnitude of a magnetic field generated by an
electric current or a magnet. They are excellent for measuring non-magnetic
signals like angular velocity and acceleration (Yaghobi, 2016) or proximity
detection, and This makes them ideal for use in complex manufacturing en-
vironments. The electrical sensors measure parameters like charge (Li et al.,
1996), current (Li et al., 2000), permittivity (Pérez and Hadfield, 2011), and
electric field (Lin et al., 2011). The major purpose of electrical sensors in man-
ufacturing is to measure how a product behaves. Chemical sensors provide
information about the chemical structure of their environments. Among other
things, they measure liquid, gas, and concentration. Such devices are valuable
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for monitoring manufacturing processes.

2.2.1 Sensor Faults

A sensor fault means that all or part of the sensor’s functionality is lost. Several
factors can cause sensors to malfunction, including aging, low batteries, harsh
working environments, improper calibration, and hardware failure. Currently,
there is no full consensus on a list of all types of sensor faults. For example,
(Isermann, 2005) distinguishes between two kinds of sensor faults based on
how they occur: abrupt (step-wise) and incipient (drift-wise). By contrast, (Liu
et al., 2011) categorized sensor faults as follows according to the shape of
deviation:

1. Drift.

2. Bias.

3. Precision degradation.

4. Freezing.

The last categorization has appeared repeatedly in different literary works.
Therefore, we will follow this classification.
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Figure 2.1: The four most common types of sensor faults are (a) bias, (b) drifting,
(c) complete failure (freezing), and (d) precision degradation. Circle dots
represent actual measurements, while filled dots indicate faulty sensor
readings. Adapted from (Sharma et al., 2010).

Using these four fault types,we will create artificial sensor faults to test whether
uncertainty can effectively detect changes in the input dataset. Therefore, we
will summarize and provide mathematical formulas for each fault type based
primarily on (Jan et al., 2021).

Suppose that 𝑦 (𝑡) = 𝑥 (𝑡) + 𝜖 is the expected output of a normally behaving
sensor. With 𝑥 (𝑡) being the input to the sensor at time 𝑡 and 𝜖 ∼ N(0, 𝜎2

𝜖 )
being the noise with 0 mean and 𝜎𝜖 standard deviation.

Drift Sensor is said to be drifted when its output increases continuously at a
constant rate due to factors such as material corrosion, damage due to extreme
environment condition. Mathematically sensor drift can be represented as:

𝑦 (𝑡) = 𝑥 (𝑡) + 𝜖 + 𝑑 (𝑡) (2.1)

Where 𝑑 (𝑡) = 𝑑 (𝑡 −1) +𝐶 is a linearly increasing drift error and𝐶 is a constant.

Bias Sensor bias is one of the most common faults in sensors. Bias is an offset
that shift normal sensor output by a constant value. We may mathematically
express it as:

𝑦 (𝑡) = 𝑥 (𝑡) + 𝜖 +𝐶, where 𝐶 is a constant. (2.2)
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Freezing A sensor is freezing when the output is a constant for a large
number of successive samples. The constant output value is either very high or
very low compared to normal sensor reading, and uncorrelated to underlying
physical phenomena (Sharma et al., 2010). Mathematically:

𝑦 (𝑡) = 𝐶, where 𝐶 is a constant. (2.3)

Precision Degradation Precision degradation occur when the variance of
sensor reading increases for a number of successive samples. It is mathemati-
cally modelled as:

𝑦 (𝑡) = 𝑥 (𝑡) + 𝜖 + 𝛾 (2.4)

Where 𝛾 ∼ N(0, 𝜎2
𝛾 ) is a normally distributed noisy with standard deviation

𝜎𝛾 ≫ 𝜎𝜖 .

2.3 Virtual Sensors

Virtual sensor is a term used to describe model/data driven systems for solving
problems created by unavailability or limitation of physical sensors (Kadlec
et al., 2009). They can be used independently as a low-cost alternative to
expensive hardware sensors or in parallel with hardware sensors), thus allow-
ing the realization of more reliable processes. The tasks fulfilled by virtual
sensors is broad, but the most dominant application area is in the prediction
manufacturing process parameters, which are often related to the quality of
products Fortuna et al. (2007); Kadlec et al. (2009); Fortuna et al. (2005).

2.3.1 Neural Networks and Deep Learning

During the past few years, deep learning methods have significantly accelerated
the development of virtual sensors in industrial fields. Therefore, we will first
briefly introduce the theoretical concepts behind standard neural networks in
this section.

Machine learning is a computing system that can learn by itself without having
to be explicitly programmed by a human (Jordan and Mitchell, 2015). Neural
networks, or artificial neural networks more specifically, are a class of machine
learning that mimic the learning processes of the neural networks found in
animal brains Goodfellow et al. (2016). The basic structure of a neural network
consists of an input layer, hidden layers, and an output layer. In deep neural
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networks, "deep" refers to the number of layers.

A neural network can learn in three different ways: supervised (Caruana
and Niculescu-Mizil, 2006), unsupervised (Barlow, 1989) and reinforcement
learning (Sutton and Barto, 2018). Supervised learning involves assigning
labels to each training example x with ground-truth/label 𝑦. Deep learning
or machine learning aims to find a mapping between x and 𝑦. Unsupervised
learning occurs when there is no label for the training sample x. Learning
models are designed to uncover knowledge hidden in training examples x.
Data is not predefined in reinforcement learning. Instead, there are agent and
environment. The agent gains knowledge by discovering its environment.

It’s possible to classify neural networks based on the type of problem they
address or dataset they use. The three main types of neural networks used in
deep learning are:

• Feed-forward neural network.

• Recurrent neural network.

• Convolutional neural network.

Feed-forwardNeuralNetwork A feed-forward neural network is a neural
network that associates input signal to output signal. Each layer consists of
neurons, and the connections between layers do not form a loop (Svozil et al.,
1997). Thus, signals can only travel one way, i.e., from input to output. Pattern
recognition is a typical application of feed-forward neural networks.

Recurrent Neural Network The opposite of a feed-forward neural net-
work is a recurrent neural network (RNN) (Mikolov et al., 2010). In a feed-
forward neural network, all the inputs and outputs are independent.

In RNN, connections between neurons can form a loop. As such, signals are
allowed to travel through time, i.e., RNN remembers each previous output of a
layer. RNN deals with sequential data where one input follows another in time,
such as time series. It achieves state of art performance on important tasks
such as language modelling (Salovey and Mayer, 1990), speech recognition
(Shannon et al., 1995),and machine translation (Bahdanau et al., 2014).

As with most machine learning models, RNN trains by computing gradients
at each layer, that is, by using backpropagation learning. Since we need to
learn dependencies over time, we compute gradients by back-propagating
through layers and by back-propagating through time (Werbos, 1990). An RNN
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is typically hard to train because gradients vanish or explode (Pascanu et al.,
2013). Multiplications of long matrix variables in gradient computation are
responsible for exploding gradients. The vanishing gradient problem is the
reverse; the gradients decrease in magnitude in the long chain.

Long-short term memory (LSTM)s (Greff et al., 2016) are RNNs that deal
with vanishing/exploding gradient problems. LSTM maintains and regulates
information flow over time using a cell state (𝑐𝑡 ) and three gates.Cell states
store long-term information, and gates decide which information should be
written,read and erased to/from the cell state.

For a given input 𝑥 (𝑡) at a given time t: Input gate (𝑖𝑡 ) determines what parts
of the new data should be written to The cell. The Forget Gate(𝑓𝑡 ) determines
what information will be forgotten from time 𝑡−1 TheOutput gate(𝑜𝑡 ) decides
which information in the cell should be written to the hidden state. Equation
(2.5) shows a formula for these three gates, cell state 𝑐𝑡 , and hidden state ℎ𝑡 .
𝑊 is a set of trainable parameters related to hidden states ℎ, and 𝑈 is a set of
trainable parameters related to input 𝑥 .

𝑓𝑡 = 𝜎

(
𝑊𝑓 ℎ𝑡−1 +𝑈𝑓 𝑥𝑡 + 𝑏 𝑓

)
𝑖𝑡 = 𝜎

(
𝑊𝑖ℎ𝑡−1 +𝑈𝑖𝑥𝑡 + 𝑏𝑖

)
(2.5)

𝑜𝑖 = 𝜎

(
𝑊𝑜ℎ𝑡−1 +𝑈0𝑥 (𝑡) + 𝑏𝑜

)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑐ℎ𝑡−1 +𝑈𝑐𝑥𝑡 )
ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡 )

Convolutional Neural Network Another type of deep learning is the
convolutional neural network (CNN), which processes data with a grid-like
pattern, like images, videos, sound clips, and time series (Albawi et al., 2017).
CNN’s designed to handle 2D data such as images and videos are commonly
known as 2D CNNs. CNN’s designed to handle sequential data such as time
series are called 1D CNN (Kiranyaz et al., 2021) or temporal convolutional
network(TCN) (Lea et al., 2017). A key aspect of CNN is convolution, which is
a linear mathematical operation between matrices (Dumoulin and Visin, 2016)

The convolution operation takes two functions 𝑓 and 𝑔 as inputs and returns
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𝑓 ∗𝑔 as the output, which can be expressed as an equation in integral form(2.6).

(𝑥 ∗𝑤) (𝑡) =
∫ ∞

−∞
𝑥 (𝑡)𝑤 (𝑡 − 𝜏)𝑑𝜏 (2.6)

In 2D CNN, (2.6) is a dot product between matrices, while in 1D CNN, it is a
dot product between vectors. The following equation describes convolution as
a matrix product(2.7).

Let 𝑥 (𝑡) =
𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

, and 𝑤 (𝑡) = 𝑤11 𝑤12
𝑤21 𝑤22

be two matrices, the convolution operation between them is

(𝑥 ∗𝑤) (𝑡) =
𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33

∗ 𝑤11 𝑤12
𝑤21 𝑤22

=
𝑎11 𝑎12
𝑎21 𝑎22

(2.7)

𝑎11 = 𝑥11𝑤11 + 𝑥12𝑤12 + 𝑥21𝑤21 + 𝑥22𝑤22

𝑎12 = 𝑥12𝑤11 + 𝑥13𝑤12 + 𝑥22𝑤21 + 𝑥23𝑤22

𝑎21 = 𝑥21𝑤11 + 𝑥22𝑤12 + 𝑥31𝑤21 + 𝑥32𝑤22

𝑎22 = 𝑥22𝑤11 + 𝑥23𝑤12 + 𝑥32𝑤21 + 𝑥22𝑤33

CNN uses the term "convolutional layer" for the layer that implements convo-
lution. As an example, x(𝑡) represents input data(e.g. images) or the output
of other layers, whereas w𝑡 is a learnable parameter kernel.

During the forward pass, the kernel slides across the height and width of the
input matrix to produce a latent representation of the original data strides is
the sliding size. The output shape of a 𝑁 × 𝑁 input and a 𝐹 × 𝐹 kernel with
stride 𝑆 is defined as follows:

Output shape =
𝑁 − 𝐹
𝑆

+ 1

When we add P amount of padding, the output shape becomes:

Output shape =
𝑁 − 𝐹 + 2𝑃

𝑆
+ 1

Besides convolutional layers, people often use pooling layers as well (Sun et al.,
2017). The pooling layer is a downsampling layer used to control the overfitting
and location sensitivity of convolutional layers outputs. Pooling layers enable
us to summarize the characteristics detected in the input by the convolutional
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layer. A slight change in the feature’s location in the input detected by the
convolutional layer will result in a pooled feature map with the feature in
the same place. The pooling process allows the learned representations to be
invariant to small translations. Invariance to translation simply means that
most of the pooled outputs remain the same if we translate the input by a small
amount.

Two common pooling layers are Average pooling and Max pooling.
Max pooling refers to selecting the maximum element from the feature map
region covered by the pooling filter, as shown in figure 2.2.
The average pooling method computes the average of the elements present
within the region of a feature map that is covered by the pooling filter, as
illustrated in Figure 2.3.

Figure 2.2: Example of 2D max-pooling: max-Pooling calculates maximum values for
a region of a feature map.
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Figure 2.3: An example of 2D average-pooling: average-Pooling calculates the average
value for a region of a feature map. pooling.

A temporal convolutional network (TCN) is a 1D version of the 2D CNN special-
ized for sequential data (Lea et al., 2017) . With TCNs, you get the advantages of
both CNNs and RNNs. Like CNN, it can learn and recognize repeating patterns
within input data. They can also process input sequences to produce output
sequences similar to RNNs.

Two main principles distinguish TCN (Bai et al., 2018):

1. There is no information leakage between the future and the past as the
convolutions are casual.

2. Any sequence can be mapped to a sequence of the same length by the
architecture.

As a first principle, TCN applies casual convolutions, where output at a given
time is convolved only with elements from that time frame and earlier layers.
TCN uses a 1D fully-convolutional network (FCN) to accomplish the second
principle. TCNs are thus a combination of causal convolution and FCNs. Simple
casual convolutions have the disadvantage that they only look back on history,
with the size linearly increasing as the depth of the network grows. In other
words, their response field is increasing linearly as the number of layers in-
creases. As a result, applying causal convolution to sequential tasks is difficult,
especially when the history of the task is long. TCN uses dilated convolution
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to solve this problem, which creates an exponentially large receptive field.

Autoencoders and Variational autoencoders In addition to the three
main types of neural networks described above, autoencoders and variational
autoencoders are commonly used to develop virtual sensors.
An autoencoder is a neural network that we can train without ground truth.
We assume that for input 𝑥 ∈ 𝑅 ∗ 𝑁 , there is an unobserved latent variable
𝑧 ∈ 𝑅 ∗ 𝑑 (d ** N) such that the mutual information between the input and
the latent representation is maximum. Autoencoders rely on the Encoder and
Decoder networks to map between input and latent representation. Encoder
transforms input data 𝑥𝑖𝑛𝑅 ∗ 𝑁 into latent representations 𝑧𝑖𝑛𝑅 ∗ 𝑑, while
Decoder transforms latent space into input data. To train the autoencoder,
we minimize the reconstruction loss of the Decoder, i.e., make the output as
similar to the input as possible.

Autoencoders that learn the probability distribution of data instead of mapping
functions are called variational autoencoders (Kingma and Welling, 2013).
Variational autoencoders assume the input data has a probability distribution
(Gaussian) and then determine its parameters.

2.3.2 Review of Deep Learning Virtual Sensors

In industry 4.0 sensors, missing data is one of the most common problems.
Therefore, in the spring semester of 2021,we developed variational autoencoder-
based virtual sensors that estimate the missing value of physical sensors based
on the information provided by the other physical sensors within the same
process (Gutama, 2021).

The authors of (Guo et al., 2020) also used Variational autoencoder (VAE)
to address missing data. Using variational autoencoders, they convert high-
dimensional input sensors into relevant information and then estimate missing
data based on the extracted data. First, variables are weighted by their corre-
lation coefficient during VAE training. Then, to identify similarities between
historical and deployment data, they use Kullback-Leibler symmetry. Then,
they estimate the missing values by using EM algorithms.

One more VAE-based virtual sensor aimed at dealing with missing data is
discussed in Xie et al. (2019). The virtual sensor framework is based on two
VAE submodels. To begin, supervised deep variational autoencoders (SDVAE)
learn latent distributions. Then, with the latent distribution learned from
the first submodel, they construct a second submodel known as a modified
deep variational autoencoder (MDVAE). Finally, The virtual sensor combines a
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decoder from MDVAE with an encoder from SDVAE.

A virtual sensor called Dual Attention-Based Encoder-Decoder is proposed in
(Feng et al., 2020). This virtual sensor uses Long Short-Term Memory (LSTM)
networks and attention mechanisms to predict hard-to-measure process vari-
ables based on measurable variables. In particular, LSTM and attention can
consider the spatiotemporal correlation between sensors.

The virtual sensor proposed in (Li et al., 2020) combines an LSTM network
with normalized mutual information selection (NMIFS). LSTM is used in this
model for handling highly non-linear dynamics of industrial time series. NMIFS
is used to select the input variables for LSTM.

Jiang and Ge (2021) presents an augmented multidimensional convolutional
neural network (CNN) virtual sensor that addresses unbalanced sampling,
inaccurate matching, and partial missing industrial process data. The coarse-
grained data is first generated by stitching process variables to fully retain
industrial process information. Then, based on coarse-grained data, a CNN
regression model is constructed.

Each of the virtual sensors approaches presented achieves high accuracy com-
pared to different baseline models. However, They are poor at representing
uncertainty. They are uninterpretable black-boxes, lacking in transparency,
difficult to trust if they encounter an unexpected situation in input data.

2.4 Model Uncertainty

In machine learning, performance degradation most often results from a mis-
match between training and deployment data (Chen et al., 2020). We use
terms like Out-of-Distribution (OoD) samples, data shift, and distribution shift
to describe mismatches between the training and deployment samples. The
reasons behind Out-of-Distribution data are many. However, this thesis focuses
on one type of such cause, sensor faults presented in previous section.

2.4.1 Types of Uncertainty

In machine learning, predictions will become uncertain when a model’s input
data differs during training and deployment. By uncertainty, we mean the
confusion regarding the outcome of a decision. It is possible to distinguish
between two kinds of uncertainty in deep learning models based on their
sources- aleatoric and epistemic (Hüllermeier and Waegeman, 2021).
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Aleatoric Uncertainty Aleatoric uncertainty (AU) from the Greek word
"alea" meaning "to roll a dice" refers to the variability in the output of a model
due to the stochasticity of input data (Tagasovska and Lopez-Paz, 2019). It
measures the variance of the conditional distribution of the target variable
based on input variables. Hidden variables or measurement errors cause this
uncertainty, and collecting more data cannot reduce it.

Epistemic Uncertainty Epistemic uncertainty (EU) from the Greek word
episteme,meaning "knowledge," describes errors caused by a lack of experience
in our model at a particular region of feature space Tagasovska and Lopez-Paz
(2019). The epistemic uncertainty is inversely proportional to the density of
training examples and might be reduced by gathering data in low-density
areas.

2.4.2 Estimation of Uncertainty

In machine learning, out-of-distribution samples will have high epistemic uncer-
tainty, and more noisy samples will have high aleatoric uncertainty. Therefore
the total model uncertainty, also called predictive uncertainty (PU) in predic-
tive models, is equal to the sum of EU and AU.

Ensemble learning is a popular method for dealing with neural network models’
uncertainties (Zhou et al., 2002). Ensemble learning involves building a series
of independently trained models, as shown in Figure 2.4. These models have
the same architecture, and the only difference between them is their weights.
Each model contributes to the ensemble prediction, which is the average of all
the models. The standard deviation of ensemble predictions is used to calculate
the predictive uncertainty of models. Besides providing uncertainty estimates,
ensemble learning improves model prediction accuracy. Moreover, ensemble
learning has been shown to work well in evaluating predictive uncertainty,
especially under dataset shifts (Ovadia et al., 2019).

However, this method has disadvantages. Ensemble learning ignores local
uncertainty since its based on averaging different models (Fort et al., 2019).
Therefore, the ensemble method may lead to overconfident decisions. In ad-
dition, Since deep neural networks have millions or billions of parameters,
training and testing ensemble learning means processing and storing several
data samples and models (Souza et al., 2016).
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Figure 2.4: The assembly methods: Combine several models to achieve one optimal
prediction model and uncertainty in the model.

Bayesian neural networks are an alternative to ensemble learning to estimate
uncertainty. Bayesian neural networks combine deep learning with Bayesian
probabilistic for proper uncertainty quantification. Probabilistic modeling offers
a general framework for building systems that learn from data (Droguett and
Mosleh, 2008).

Among the advantages of Bayesian neural networks are (Jospin et al., 2020):

• It is mathematically grounded and gives a better estimate of uncertainty.

• Preventing overfitting of the model. A Bayesian neural network is charac-
terized by its weights expressed in the form of a probability distribution
rather than as a deterministic value.

• It is capable of handling all types of uncertainty. The posterior distribution
of weights can be learned by assuming a prior distribution for the network
parameters. We can capture the epistemic uncertainty (uncertainty due
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to model fitness) based on this distribution. By letting the model’s output
be a distribution, aleatoric uncertainty (the uncertainty due to noisy
observations) can be captured.

• Having a single Bayesian neural network correspond to having infinitely
many ensemble models.

The disadvantage of the Bayesian neural network is that it is more complex to
implement, more expensive to compute, and more challenging to train than
a standard neural network (Hernández-Lobato and Adams, 2015). Therefore,
much of the current research directed at Bayesian neural networks is focused
on determining techniques to make the training process easier.

2.5 Bayesian Neural Network

This thesis aims to explore the potential of the Bayesian neural network to
generate uncertainty-aware virtual sensors for Industry 4.0. Therefore, we will
cover the theoretical concepts behind standard Bayesian neural networks in
this section.

Bayesian neural network (BNN) represents a probabilistic version of the stan-
dard neural network i.e., the weight and output of the neural network is
considered random variables from a prior probability distribution, see Figure
2.5.

Figure 2.5: The Bayesian Network provides distributions of weights and outputs and
explains the uncertainties associated with the model.
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In formal terms, a Bayesian neural network (BNN) is a stochastic neural network
trained using Bayesian inference (Jospin et al., 2020).

The Bayesian inference method uses Bayes’ theorem to convert an existing
prior belief into a posterior probability when more evidence or information
becomes available. (Box and Tiao, 2011). Equation (2.8) and (2.9) gives Bayes’
rule expressed differently.

Posterior =
Likelihood × Prior

Evidence
(2.8)

𝑝 (hypothesis|data) = 𝑝 (data|hypothesis)𝑝 (hypothesis)
𝑝 (data) (2.9)

2.5.1 Approximating Parameters

A Bayesian neural network combines Bayesian inference with neural networks
to derive the probability distribution of network weights,w. Given the training
data D = {(x1, 𝑦1), ...(x𝑁 , 𝑦𝑁 )}. Direct application of (2.9), yields the posterior
𝑝 (w|D):

𝑝 (w|D) = 𝑃 (D|w)𝑝 (w)
𝑝 (D) (2.10)

In the numerator, 𝑝 (D|w) represents the likelihood of the training data given
a particular weight vector w. The second term, 𝑝 (w), represents the prior
distribution over the weights. It indicates our beliefs regarding weights before
any evidence becomes available. The most commonly selected priors are Gaus-
sians or uniform distributions. When each training data point is independent,
𝑝 (D|w) becomes the product of the likelihood for each training point, as shown
in (2.11).

𝑝 (D|w) =
𝑁∏
𝑖=1

𝑝 (𝑦𝑖 |w, x𝑖) (2.11)

In the denominator of (2.10), 𝑝 (D) represents the distribution of the evidence
(marginal distribution) and can be expressed as in (2.12)

𝑝 (D) =
∫

𝑝 (D|𝑤)𝑝 (w) 𝑑𝑤 (2.12)
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In neural networks, the large number of weight parameters makes it compu-
tationally prohibitive to precisely calculate equation (2.12). Therefore, in most
cases, the posterior functions 𝑝 ([𝑤]) in equation (2.10) are intractable. To
speed up and make the calculation more feasible, we should approximate the
true posterior. There are two families of approaches to consider:

1. Sampling methods.

2. Variational inference.

Approximating Posterior Distribution of Parameters by Sampling
Methods Markov Chain Monte Carlo (MCMC) is the most common sam-
pling technique. Three most popular MCMC sampling methods are Metropolis-
Hastings Algorithm (Chib and Greenberg, 1995), Hamiltonian Monte Carlo
(Betancourt, 2017) and No-U-Turn Sampler (NUTS) Hoffman and Gelman
(2014).

While sampling-based methods are guaranteed to find an asymptotically opti-
mal solution, they have several crucial limitations (Blei et al., 2017).

1. They are computationally more expensive than variational inference
when dealing with large datasets.

2. It is difficult to tell how close their solutions are to the actual distribution
given a finite amount of time.

3. Samplingmethods require selecting appropriate sampling techniques(e.g.,
proposal density in Metropolis-Hastings), so choosing sampling tech-
niques represents a separate issue.

Variational inference is preferred for Bayesian neural network inference due to
the shortcomings of MCMC.

Approximating Posterior Distribution Parameters by Variational
Inference Variational inference approximates the intractable posterior by
presenting the inference problem as an optimization problem (Hinton and
Van Camp, 1993; Graves, 2011). To approximate the intractable posterior dis-
tribution, 𝑝 (w|D) as close as possible, a simpler and tractable variational dis-
tribution is introduced, 𝑞(w;𝜃 ), parameterized by 𝜃 . The Kullback-Leibler di-
vergence (KL) between p and q can be used to measure the closeness between
p and q with respect to q (Van Erven and Harremos, 2014). The mathematical
definition of KL divergence between 𝑝 and 𝑞 is given in (2.13).
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𝐾𝐿(𝑞 | |𝑝) = 𝐸𝑞
[

log
𝑞(w;𝜃 )
𝑝 (w|D)

]
Where 𝐸𝑞 is expectation with respect to q

(2.13)

By applying the rule of conditional probability and logarithm, we can simplify
equation (2.13) as equation (2.14).

𝐾𝐿(𝑞 | |𝑝) =

ELBO︷                                         ︸︸                                         ︷
(𝐸𝑞 [log𝑝 (w,D)] − 𝐸𝑞 [log𝑞(w;𝜃 )]) +

Constant wrt 𝐸𝑞︷   ︸︸   ︷
log𝑝 (D) (2.14)

The objective is tomake the variational distribution𝑞(w;𝜃 ) as close to the target
posterior distribution 𝑝 (w|D) as possible by minimizing the KL divergence
in equation (2.14). However, look at the last term of the equation (2.14). It
is log𝑝 (D). The reason we are using variational inference is that we were
unable to solve the intractable marginal of evidence, 𝑝 (D), which is given in
equation (2.12). We are in the same situation again, and we cannot compute
KL divergence directly. It turns out that KL divergence has two properties that
work around this issue this time:

1. 𝐾𝐿(𝑞 | |𝑝) > 0, ∀ 𝑞, 𝑝

2. 𝐾𝐿(𝑞 | |𝑝) = 0 if and only if 𝑞 = 𝑝

Moreover, we see that 𝑝 (D) is constant with respect to variational probability
𝑞(w;𝜃 ) even if it’s intractable. Rearranging equation (2.14) and using KL
divergence properties, we obtain:

log𝑝 (D) =

ELBO︷                                      ︸︸                                      ︷
(𝐸𝑞 [log𝑝 (w,D)] − 𝐸𝑞 [log(w;𝜃 ]) −

KL divergence︷    ︸︸    ︷
𝐾𝐿(𝑞 | |𝑝)

≥

ELBO︷                                 ︸︸                                 ︷
(𝐸𝑞 [log𝑝 (w,D)] − 𝐸𝑞 [log𝑞]) (2.15)

Minimizing the KL-divergence in equations (2.14) is equivalent to maximizing
equations (2.15) also referred to as evidence lower bounds (ELBO).
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2.5.2 Loss Function

In the same way as traditional neural networks, Bayesian neural networks are
trained through stochastic gradient descent and backpropagation, that is, by
selecting a loss function and optimizing weights. Equation (2.17), which is a
rewrite of ELBO in (2.16), gives Bayesian neural networks’ cost function :

J (D,w) = −𝐸𝐿𝐵𝑂 = 𝐸𝑞 [log𝑞(w;𝜃 )] − 𝐸𝑞 [log𝑝 (w,D)] (2.16)

This cost function is composed of two parts: First, 𝐾𝐿(𝑞([𝑤]𝜃 )𝑝 (𝑤)), which
refers to as a prior dependent part, or the complexity loss. Its objective is
to make the variational distribution diffuse (Mullachery et al., 2018). The
second, 𝐸𝑞 (w |𝜃 ) [log𝑝 (D) |w], is a data dependant part, also referred to as the
likelihood cost.

J (D,w) = 𝐾𝐿(𝑞(w|𝜃 ) | |𝑝 (𝑤)) − 𝐸𝑞 (w |𝜃 ) [log𝑝 (D) |w] (2.17)

2.5.3 Backpropagation

It is computationally difficult to minimize the cost of (2.17). Thus, approxi-
mations are often made. Two general categories of the approximate method
include:

1. Variational methods (Graves, 2011; Hinton and Van Camp, 1993).

2. Monte Carlo methods (Blundell et al., 2015).

Bayes-by-backprop (Blundell et al., 2015) is a popular method for getting a
Monte Carlo estimate of a cost function in (2.16) using the usual backpropaga-
tion algorithm (Hecht-Nielsen, 1992). Essentially, the Bayesian neural network
weights are random variables from the posterior distribution, 𝑝 (wD). Unfor-
tunately, backpropagation does not function with random nodes. Bayes by
Backprop uses the local reparameterization trick (Kingma et al., 2015) to re-
solve this problem. The key is to make the random variable input into our
model, rather than something embedded inside it, so we never need to back-
propagate through a random node. To accomplish this, we write the network
weights in the following way.

w = 𝜇 + 𝜎 ∗ 𝜖, where 𝜖 ∼ N(0, 1) . (2.18)

In equation (2.18), 𝜃 = (𝜇, 𝜎) is variation parameter for posterior distribution of
weights. We use (𝜇, 𝜎) because variational distribution 𝑞(w|𝜃 ) is often chosen
to be gaussian. 𝜖 is a sample from standard gaussian distribution given to the
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model as input.

Flipout Using this reparameterization method has the disadvantage that the
sampled weight is the same for all training data because 𝜖 is sampled only
once per batch for the sake of computational efficiency. This practice results in
high variance of the gradient descent estimate and slows the convergence of
the Bayes-by-Backprop method. There are several works proposed as variance
reduction (Miller et al., 2017), but we are going to use the most recent work
called Flipout (Wen et al., 2018). For this reason, we provide a brief description
of the Flipout method in one paragraph.

Flipout is a general method of estimating gradients using weight perturbation.
Therefore, It can be used with any method that utilizes weight perturbation.
Using this method, it is possible to reduce the variance of gradient estimates
by de-correlating the gradients between different training samples in the
mini-batch. Let Δ̂w represent the gradient estimates resulting from Bayes-by-
Backprop, and let Δ̂w be correlated within the mini-batch. First, Flipout utilizes
a standard Gaussian distribution as its base noise. Randomly generated sign
matrices are then multiplied by this base noise. For example, if 𝑟𝑛 and 𝑠𝑛 are
two randomly drawn sign vectors, then the Flipout method can be written as
follows:

ΔW𝑛 = Δ̂w ◦ (r 𝑛s𝑇𝑛 ) (2.19)

Here, 𝑛 stands for a training example of the mini-batch. It has been shown
that matrix multiplications with sign matrices decorrelate gradient estimates
and decrease variance. These results contribute to an earlier convergence to
optimal variational parameter values. Flipout achieves ideal linear variance
reduction for fully connected, convolutional and recurrent neural network.

As a result, the Bayesian neural network weight can be expressed as the com-
bination of mean weight w plus the Flipout perturbation Δw. Mathematically:

w = w + Δw (2.20)





3
Methodology
This chapter describes methods and procedures for creating and evaluating
uncertainty-aware virtual sensors. Section §3.1 will first provide an overview
of our virtual sensor pipeline workflow and describe the tools used to manage
it. Next, we will present different data transformation strategies to get data
ready for use in section §3.2. We will then describe implementations and
training methods for the virtual sensor in section §3.3. Next, in section §3.4 we
will describe how we obtain an estimate of process variable and estimate of
uncertainty from trained models. Finally, in section §3.5, we describe methods
used to evaluate the predictive performance of the virtual sensor and the
accuracy of uncertainty estimates made by the virtual sensor.

3.1 Workflow for building uncertainty-aware
virtual sensors

We refer to the concept of uncertainty-aware virtual sensors as a model that
estimates a process variable based on available hardware sensor measurements
while also measuring its uncertainty.

The development of a virtual sensor begins with transforming raw data into a
form suitable for modeling the relationship between the input and target. Next
step is to develop a predictive model, train it, and evaluate it. In figure 3.1, we
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visually represent our virtual sensor pipeline.

Figure 3.1: An overview of the workflow of the uncertainty-aware virtual sensor
pipeline.

Initially, the raw dataset is preprocessed and made ready for use. The steps
include selecting features, scaling, and splitting training and testing data. The
"feature" is the term we use to describe a single sensor or dataset column. Thus,
feature selection refers to the process of selecting sensors that provide the best
estimates of the target variable. Scaling refers to the process of bringing all
features to the same magnitude/range. Training test split is the process of
splitting data into train and test to train the model on train data and test it on
unseen test data. A detailed description of each feature engineering method
will be presented in section §3.2.

Following feature engineering comes model development. During this phase,
we will develop the virtual sensor models. During this step, the model’s archi-
tecture is configured, the data is fed to the model in a certain way, training
for a certain number of iterations, tuning the hyperparameters, and retraining
again until a satisfactory result is achieved. We will describe this step in section
§3.3.

Once a satisfactory result is obtained, we have a virtual sensor aware of un-
certainty. In other words, the model that gives us an estimated distribution
of the target variable, i.e., a predictive distribution, and an estimate of the
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uncertainties in the prediction, i.e., a predictive uncertainty. The details of
the predictive uncertainty and predictive distributions are explained in section
§3.4.

Our final step of virtual sensor development is to evaluate the model against
an unseen dataset. We will describe all methods of model evaluation in §3.5.

Programming languages and supporting software

Python We conduct all experiments and computations in Python (Van Rossum
and Drake, 2009) in this thesis because:

• Python is an easy-to-learn, easy-to-use language that has straightforward
syntax and code.

• Python is platform-independent, it can run on Windows, Linux, and
macOS.

• Python is a highly stable, flexible language with many great tools.

The most popular deep learning tools in Python include:

• Pandas:Wes McKinney (2010) an advanced data structure and analysis
tool.

• Tensorflow (Abadi et al., 2015), PyTorch (Paszke et al., 2019), Keras (Chol-
let et al., 2015),MXNet (Chen et al., 2015),and many more for building,
training, evaluating, and deploying deep learning models.

Tensorflow We chose TensorFlow among all the available frameworks to
build our model. Tensorflow is one of the leading deep learning models and
modeling techniques developed by the Google Brain Team. TensorFlow’s Ten-
sorFlow probability (Dillon et al., 2017) is one of the main reasons we chose
TensorFlow. With TensorFlow probability, neural networks can make probabilis-
tic decisions and perform statistical analysis. Using the TensorFlow probability
library, we can build, train, and evaluate Bayesian neural networks similar to
a standard neural network.

Data version control To develop a well-performing virtual sensor,wemust
construct multiple models with varying configurations, features, iterations, and
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hyperparameter tuning until a satisfactory outcome is obtained. Additionally,
we handle a large volume of data that goes through several preprocessing
stages. We must track and measure all the changes we make in such a scenario
to understand what has worked and what has not. Furthermore, it is necessary
to go back to a specific version and view past results. We handle all of that with
Data version control (DVC) (Kuprieiev et al., 2021). DVC allows us to track the
different prepossessing stages of data, model hyper-parameter, and the model
itself. DVC is an open-source command-line tool for managing datasets and
machine learning models changes. DVC works alongside the Git repository and
focuses on reproducible machine learning models.

The pipeline was developed for SINTEF Digital and in collaboration with them.
We contributed to their pipeline called Erroneous data repair for Industry 4.0.
It can be viewed under the bayesian branch here: https://github.com/SINTEF-
9012/Erdre/tree/bayesian.

3.2 Data Feature Engineering

Feature engineeringTurner et al. (1999) is a data prepossessing technique to
transform the raw data into some meaningful and understandable format to
produce accurate prediction using a machine learning model.

3.2.1 Feature Selection

The data from Industry 4.0 processes contains a variety of variables. The
previous section described two datasets, each consisting of over 47 variables.
Not all variables will be helpful when generating virtual sensors for a given
target variable based on other process variables. Certain variables are highly
correlated with the target variable, while others are unimportant. Therefore,
selecting the appropriate variables should be done carefully.

The issue of input selection in virtual sensor development has been widely
explored, and several surveys on the topic have been conducted Curreri et al.
(2020); May et al. (2011); Hira and Gillies (2015); Vergara and Estévez (2014).
This study employs a simple and user-friendly approach of selecting inputs
based on information generated by an open-source Python program called
pandas. Pandas library offers a broad range of functionalities. The Pandas
profiling function is one such function.

The Pandas profiling tool provides users with a descriptive statistical overview
of all the features of the dataset and several features for generating reports.

https://github.com/SINTEF-9012/Erdre/tree/bayesian
https://github.com/SINTEF-9012/Erdre/tree/bayesian
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These statistics are broken down into five categories to make them more
understandable.

1. Overview The first category consists of three columns: Overview, Warn-
ings, and Reproduction. The Overview column contains general information
regarding variables, observations, missing cells, duplicate raws, duplicate raw
percentages, total size, and different categories of variables (numerical, cate-
gorical). You will find warnings under the Warning column concerning missing
values, correlation, and skewness of the variables. Finally, the reproduction
column contains information related to report generation, such as the time
taken to generate the report, when analysis began and ended, and the software
version of pandas-profiling and the download option.

2. Variables The second category is variables, which presents a detailed
analysis of each variable found in the dataset. These statistics include min-
imum and maximum values, percentiles, medians, ranges, and interquartile
ranges. Also included in this category are descriptive statistics such as standard
deviation, coefficient of variance, mean, skewness, and variance. A histogram
that illustrates the frequency of variables is also provided.

3. Correlation Third, we have Correlation, which provides information re-
garding the degree to which variables are correlated using five different corre-
lation coefficients. The correlation coefficients are Pearsons’s r, Spearman’s𝜌,
Kendall’s 𝜏 , Phik (𝜙 k) and Creamer’s V.

4. Missing value The fourth category gives a visual representation of the
missing values in the dataset.

4. Samples The last pandas profiling category is Sample, which displays the
first and last ten rows from the dataset.

One of the most significant advantages of Panda’s profiling report is that it is
simple to use and easily integratedwith other programs. We can save this report
in JSON format, a standard data interchange format based on JavaScriptPezoa
et al. (2016). JSON files are accessible for humans to read and write, and
they are also accessible for machines to generate. Python comes with a built-
in package called json that can automatically process datasets using pandas
information.

We use Pearson’s r, described in the pandas profiling report under category
three, to determine the optimal input sensor. Pearson’s coefficient Benesty et al.
(2009) measures the statistical relationship between two random variables. Its
value is between +1 and −1, where +1 indicates a positive relationship, −1
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indicates a negative relationship, and 0 indicates no relationship. Pearson’s
correlation coefficient is independent of a unit of measurement; for example,
if one variable is measured in kilometers and another in seconds, Pearson’s cor-
relation coefficient will not change. Moreover, Pearson’s correlation coefficient
is symmetric, meaning that the correlation between 𝑋1 and 𝑋2 or 𝑋2 and 𝑋1
is the same. We utilize Python scripts that return the correlation coefficients
between our target variable and other variables from the pandas profiling
report automatically.

3.2.2 Feature Scaling

A crucial part of data preprocessing is feature scaling. (Bhanja and Das, 2018).
Scaling is a method to normalize the range of input features or target variable
to a similar range. The effectiveness of any learning algorithm depends largely
on the scaling method employed. Most deep learning models algorithms values
features based on their similarity. This similarity is computed using what is
called euclidean distance. The algorithm only takes in the magnitude of the
features neglecting units. So For for example using a temperature value of
32 °C or 305 K have different effect. the feature with high magnitudes weight
alot in the similarly calculation than features with low magnitude. Therefore
we need to bring all features to the same level of magnitude to avoid these
effects.

In our experiment,we use two popular scalermethods from scikit-learn, namely
the Min-max Scaler and the Standard Scaler (Pedregosa et al., 2011) .

Min-Max Scaler A Min-Max Scaler is a scaling technique that shifts values
between a given minimum and maximum value, often between 0 and 1. Equa-
tion (3.1) provides an expression for [0,1] scaling.

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(3.1)

The letter 𝑋 represents a dataset feature, and the strings 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥

represent that feature’s minimum and maximum values, respectively.

Standard Scaler Standard scalers center values around the mean with
a unit standard deviation. If 𝜇 = 𝐸 [𝑋 ], 𝜎2 = 𝑉𝑎𝑟 (𝑋 ),then the formula for
standard scaler becomes:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝜇
𝜎

(3.2)
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𝐸 [𝑋 ] and 𝑉𝑎𝑟 (𝑋 ) describe the mean and variance of the feature 𝑋 . We apply
the Min-Max scaling method to the input features and the Standard scaling
method to the target variables.

3.2.3 Data Split

Data splitting is a technique used to evaluate the performance of a machine
learning algorithm. Data can either be divided into train-test data or train-
validation-test data. A machine learning model is fitted based on training data
and evaluated using test data. As the learning process proceeds, validation
data validate the model. Figure 3.2 shows two methods for splitting data for
a machine learning model. Pictured at the top is the train-test split. Seventy-
five percent are used for training and 25 percent for testing. By splitting the
data this way, one can specify how much of the 75 percent should be used for
validation during training. For instance, if we have eight-hour time series data,
we will use 6 for training + validation and 2 for testing. Alternatively, we can
split data into training tests, and we can explicitly feed validation during this
stage (see bottom Figure in 3.2) and validation data into the model during
training. We use the train-test split for our experiments since the TensorFlow
library takes validation data from training data, so we only need to specify the
validation percentage.

Figure 3.2: The different ways of splitting data for the purpose of training and evalu-
ating models. Adapted from (Gutama, 2021).
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3.3 Developing virtual sensors

Firstly, before defining the structure of our model, we offer a brief description
of the task of building virtual sensors.

Sequence Modeling Most sensors deliver data as time series, which is
sequential. We, therefore, need to use sequence modeling. Suppose we have
S = 𝑠1, 𝑠2, ...𝑠𝑁 an array of sensors observing the same process parameters.
Where N represents the total number of sensors. In each sensor, there is a
sequence of time series of 𝑠𝑖 = 𝑥1, 𝑥2, ..., 𝑥𝑇 . Basically, the objective of virtual
sensors is to predict some sensor output 𝑠 𝑗 = 𝑦1, 𝑦2, ..., 𝑦𝑇 from S.

For long, recurrent neural networks (RNNs) have been the preferred method
for modeling sequences. Our uncertainty-aware virtual sensors are developed
using a convolutional neural network (1D CNN) more specifically Bayesian
Temporal convolutional neural network. Here are the reasons why we chose
1D CNN rather than RNN, which has traditionally been used for sequence
modeling.

Traditionally, recurrent neural network (RNN) is the default choice for sequence
modelling. However, We develop Bayesian deep neural network using 1D con-
volutional neural network (1D CNN) implemented using tensorflow-probability
library of tensorflow (Abadi et al., 2015). The reason we choose 1D CNN net-
work rather than RNN which traditionally is the default choice for sequence
modeling are:

1. RNNs learn only temporal feature dependencies, whereas 1D CNNs can
extract both spatial and temporal feature dependencies.

2. Models of 1D CNN exhibit longer memory than LSTMs because they do
not use the gating mechanism as RNNs, especially when applied to very
long sequences.

3. The 1D CNN models do not have recurrent connections and are faster to
train than RNN models (Oord et al., 2016).

4. Recently, a comparison of 1D CNN and RNN models demonstrated the
superior performance of the 1D CNN model across a variety of sequence
modeling tasks (Bai et al., 2018).
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3.3.1 Architectural Configuration

Our model is implemented using tensorflow-probability library of tensorflow.
Model architecture is illustrated in 3.3. We use Conv1D/Convolution1D in-
terchangeably with 1D CNN because TensorFlow commonly refers to it as
Conv1D/Convolution1D.

Figure 3.3: The Bayesian Temporal Convolutional Neural Network-based Virtual Sen-
sor Model. Inside the parenthesis are the filter size of the convolutional
layer and the number of nodes for the fully connected layer.

The model receives 3D input data in the input layer. The first dimension
represents the number of batches, which is the number of sample processed
before the model is updated, and the second represents the window size,
which indicates how much history is to be used to predict the next target’s
distribution. The final dimension is the feature size, representing the number
of input sensors. This 3D input goes through two Bayesian Conv1D layers, each
with a Flipout estimate (as explained in §2.5.3). Two fully connected layers
follow the two Conv1D layers. The final fully connected layers represent the
mean and standard deviation of the predictive distribution. A "layer" in deep
learning is a container that receives a weighted input, transforms it with a
transformation function, and passes the result on to the next layer. Neural
networks are made up of layers.

3.3.2 Training Iterations

Training refers to the process whereby themodel gradually learns to accomplish
the task to which it is assigned, which in our case is to learn to estimate
unavailable process variables based on available sensor measurements.
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Training iterations consist of a forward pass and a backward pass, which use
Bayes-by-Backprop§2.5.3 and Flipout§2.5.3 to estimate the gradient. Based on
a set of training data 𝐷 = {x𝑖, 𝑦𝑖}𝑁𝑖=1, the objective is to determine the mini-
mum loss function. The loss function J (.) we minimize is the ELBO function
described in detail in Section §2.5.2 and given by equation (2.17). The Monte
Carlo method is used to approximate this cost function, as discussed in §2.5.3.
Flipout is utilized to generate Monte Carlo samples, avoiding backpropagation
through random nodes, as well as reducing variance.

In practice, thanks to Tensorflow, we don’t need to make any mathematical
calculations or approximations. So rather than dealing with mathematical
details of implementation,we focus on tuning parameters and hyperparameters.
Model parameters refer to configuration variables that can be estimated from
data and are internal to the model. On the other hand, hyperparameters are
configuration variables external to the model, and we cannot estimate their
values from data. In our case, the only parameters are weights in the network;
we explained how they are assessed in the background chapter. There are many
types of hyperparameters, and here is a list of parameters we can adjust to
training our model.

1D CNN Related Hyperparameters

Kernel Size Kernel Size is a number that determines the size of the kernel
or the array of weights in a 1D convolutional neural network. For example,
with a kernel size of 5, you will get a weight array of 5 values.

Filter Size Filter size determine the how many kernels to be used. One
kernel learns specific feature in dataset.

Pooling Size Pooling size determines the region of feature space that will
be covered by a pooling filter.

Optimization Related Hyperparameters

Loss function In training, we must calculate the difference between the
predictions and the ground truth, called the model’s loss. Consequently, we
must choose a suitable loss function. The goal is to minimize losses.
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Optimizer algorithms We also need to choose an optimizer algorithm
that applies the gradient to the models’ weights such that it leads to the
minimization of the loss function. Again, TensorFlow has many algorithms
available to choose from, including Adam, Stochastic gradient descent, and
Adagrad.

Learning rate One can think of loss function as a curved surface and
optimization problem as walking around that surface to find the lowest point.
The learning rate determines the step size for each iteration to find the lowest
point. Too big step size leads to local minima, which means the model can’t find
the lowest point in the loss surface. On the other hand, too small learning-rate
will slow down the learning process. Therefore it is vital to choose the learning
rate correctly.

Batch size Batch size is a hyperparameter that specifies how many data
samples to compute before the loss is calculated. It is typically between 1 and
the size of the training data.

Epoch Epoch hyperparameters specify how many times the learning algo-
rithm will run through a set of training data.

When all hyperparameters are set, themodel is ready for training. The following
steps summarize the training step:

Step 1: Training data (features and ground truth label) is fed into the model.

Step 2: Every batch will be iterated over in a single epoch.

Step 3: The model predicts and compares it with the ground truth label, then
calculates and reports the loss.

Step 4: The model uses the optimization algorithm to update the models’ param-
eters(weights).

Step 5: Then repeat the steps for all epochs and report the final loss.

If we are not satisfied with the result of the trained model, we change some of
the hyperparameters and retain them until we are happy.
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3.4 Developed Virtual Sensors

Once the model has been trained and satisfiedwith the performance on training
datasets, the next step is to predict an unseen dataset. We also use our model
to estimate the prediction uncertainty since our model is uncertainty-aware.
As our model is probabilistic, we call it the predictive distribution and the
predictive uncertainty. The following paragraphs will describe how we get
predictive distributions and uncertainty.

3.4.1 Predictive Distribution

Our models’ output is not a single prediction of the ground-truth label; instead,
it is a prediction/estimate of the probability distribution of the ground truth
label. The mean of this distribution should approximately be the same as
our ground truth sample. Therefore we obtain the prediction/estimate of the
process variable by taking a sample from this distribution.

3.4.2 Predictive Uncertainty

A Bayesian neural network has the advantage of estimating uncertainty in
a simple way and managing all kinds of uncertainties. Our model output is
based on the Gaussian distribution. Accordingly, the N(𝜇, 𝜎) is the predictive
distribution for ourmodel. 𝜇 is a model’s mean prediction, and𝜎 may be viewed
as an estimate of aleatoric uncertainty. We can calculate epistemic uncertainty
by averaging the results of 𝑁 forward passes of the Bayesian neural network.
Instead of taking a single 𝜎 as an estimate of aleatoric uncertainty, we compute
the aleatoric uncertainty (AU) and epistemic uncertainty (EP) simultaneously
by averaging the output of the models. Let (𝜇𝑖, 𝜎𝑖)𝑁𝑖=1 be models’ output at
forward-pass 𝑖.

EU =

√√√
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝜇𝑖 − 𝜇)2 where 𝜇 =
1
𝑛

𝑁∑︁
𝑖=1

𝜇𝑖 (3.3)

The formula (3.3) may seem complected, but it is straightforward. We take
many samples from ourmodel distribution and compute the standard deviation
for these samples. This method is similar to ensemble ways of computing
uncertainty. The only difference is we are using only a single model in contrast
to ensemble methods. Using this approach would be equivalent to using an
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ensemble of an uncountable infinite number of neural networks (Blundell et al.,
2015). We compute aleatoric uncertainty by simply averaging overall 𝜎 ’s.

AU =
1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖 (3.4)

The total predictive uncertainty (PU) can be accurately predicted by the super-
position of these to uncertainties:

PU = 𝐸𝑈 +𝐴𝑈 (3.5)

3.5 Model Evaluation

The final step in developing an uncertainty-aware virtual sensor model is to
evaluate and validate the predictive distribution and predictive uncertainty
accuracy. To validate the generated virtual sensor, we will perform a residual
analysis. For evaluation of predictive model performance, we use three different
metrics, namely root mean square error (RMSE), mean absolute percentage
error (MAPE), and R-squared (R2). These are all standard metrics in statistics
and machine learning. Considering that sensor data (time series data) exhibit
a variety of cycle, trend, and seasonal characteristics, we utilize three metrics.
Different metrics may be appropriate for different behaviors. We believe that
three metrics taken together can provide a comprehensive picture of the
quality of a model. Therefore, we use all three metrics. Finally, we measure
coverage probability to assess the accuracy of our prediction uncertainties. In
the following paragraphs, we describe residual analysis, three performance
evaluation metrics, and coverage probabilities.

3.5.1 Residual Analysis

A residual is simply the difference between the ground truth labels and the
predicted values (Cook and Weisberg, 1982). Analysis of residuals plays a key
role in validating a predictive model since it provides information about its
quality. A residual with an expected value that is not near zero implies that
the model is asymptotically biased. In situations where the residual contains
patterns, the model is inconsistent, i.e., it does not explain some of the data
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relationships. Whenever the residual variance is not constant, it indicates
that a particular part of the model has a different predictive power. A good
predictive model should therefore possess the following characteristics (Verran
and Ferketich, 1984):

• The expected value of the residual should be zero.

• The variance of the residual should be constant.

• Residuals should not be auto-correlated.

• Residuals should be normally distributed.

3.5.2 Root Mean Squared Error

The root mean square error (RMSE) is defined as the square root of the mean
square error (MSE), as shown in the equation (3.6). In the case of unbiased and
normally distributed errors, RMSE is more appropriate than MSE (Chai and
Draxler, 2014). The other advantage of RMSE over MSE is that RMSE does not
use absolute values, which are often undesirable in mathematical calculations.
The disadvantage of RMSE is that it is sensitive to outliers. The RMSE tends
to become larger than MSE with 𝑛

1
2 as distribution error magnitudes become

more variable (Willmott and Matsuura, 2005).

𝑅𝑀𝑆𝐸 (𝑦,𝑦) =
√︂∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑛
(3.6)

3.5.3 Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) is the difference between actual
value and model prediction, divided by the absolute true value and summed for
each prediction point as shown in equation (3.7)). It has become increasingly
popular due to its intuitive interpretation of relative error (De Myttenaere et al.,
2016). Additionally, it is sensitive to relative error and does not change when
actual values are scaled. It does, however, have a few disadvantages, including:

• An actual value of𝑦 with a single zero value will lead to a division-by-zero
problem. A standard solution to this problem is to add a small but strictly
positive number 𝜖 to the numerator to avoid undefined results when 𝑦 is
zero (Pedregosa et al., 2011).
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MAPE expression becomes
∑𝑛

𝑖=1
|𝑦𝑖−𝑦𝑖 |

max(𝜖,|𝑦𝑖 |
)

𝑛
.

• TheMAPE has no upper limit, i.e.,MAPE can exceed 100 percent. Unfortu-
nately, many people misunderstand this concept (Tayman and Swanson,
1999).

𝑀𝐴𝑃𝐸 (𝑦,𝑦) =
∑𝑛

𝑖=1
|𝑦𝑖−𝑦𝑖 |
|𝑦𝑖 |

𝑛
(3.7)

3.5.4 R-squared

R-squared (R2) is defined as one minus the sum of squares residual divided by
the total sum of squares in statistical analysis (Figueiredo Filho et al., 2011).
This measure represents the percentage of variance explained by independent
variables with respect to the dependent variable. The equation (3.8) expresses
R2 mathematically. In cases where the model predictions 𝑦 exactly match the
true value𝑦, then𝑅2 = 1 since the sum of squares of residuals

∑𝑛
𝑖=1(𝑦𝑖−𝑦𝑖)2 = 0.

𝑅2 = 0 if the model predictions 𝑦 match the mean of values 𝑦 = 1
𝑛

∑𝑛
𝑖=1𝑦𝑖

exactly, since
∑𝑛

𝑖=1 (𝑦𝑖−𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖−𝑦𝑖 )2 = 1. In the case where the model predictions 𝑦 are

worse than 𝑦, then 𝑅2 will have a negative value.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2 (3.8)

Where 𝑦 = 1
𝑛

∑𝑛
𝑖=1𝑦𝑖

3.5.5 Coverage Probability

The coverage probability measures the accuracy of a confidence/prediction
interval. In theory, future observations 𝑦∗ are expected to lie within a given
confidence interval with a prescribed probability(100(1−𝛼)%) (Khosravi et al.,
2010). The 𝛼 represents a significance level (Salkind, 2006). Generally, cover-
age probability for prediction intervals approaches a nominal confidence level.
Thus, if our uncertainty estimates are accurate, we would expect precisely 95%
of our test data to fall within the predictive distribution’s inner 95% confi-
dence/prediction interval. The coverage probability could either be less than
or greater than the nominal confidence level if the uncertainty estimate is not
perfect. An interval with a greater coverage probability than the nominal confi-
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dence level is considered conservative, while one with less than the prediction
interval is deemed to be anti-conservative (Olive, 2007). Conservative intervals
are under-confident of their prediction, while anti-conservative intervals are
overconfident.

We determine the coverage probability of our uncertainty interval using the
simulation method. This method involves the following three steps:

Step 1: We simulate 𝑛 samples based on the predictive distribution. For instance,
𝑛 = 1000.

Step 2: Based on a given confidence level, we compute the lower and upper
percentiles.

Step 3: We compute the proportion of ground truth labels that fall within the
interval between the lower and upper percentiles of samples.



4
Experiments and Results
This thesis’s predefined objective is to investigate the following research ques-
tions.

RQ1 How can we build and validate uncertainty-aware virtual sensors
using a Bayesian neural network?

RQ2 How can we evaluate the accuracy of the uncertainty estimated by
the Bayesian neural network?

RQ3 How well is uncertainty estimation able to detect single sensor
faults?

a) Faults due to drift?

b) Faults due to bias?

c) Faults due to freezing?

d) Faults due to precision degradation?

Creating a robust and uncertainty-aware virtual sensor is the first step toward
answering these equations. Identifying the input and target variables, train-
ing the Bayesian convolutional neural network, and evaluating the model’s
performance is part of this step. The second step involves estimating model un-

45
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certainty and measuring accuracy of the method used to estimate uncertainty.
An experiment based on fault injection analysis is the final step toward address-
ing the research questions. Therefore, in this chapter ,first we describe dataset
we use to d to generate virtual sensors and conduct experiments §4.1, then we
will, we will experimentally perform the three mentioned steps, present results,
provide statistical data and discussion to support our results in §4.2 and §4.3.
In section §4.4, we will provide a comprehensive summary of all results.

4.1 Dataset Description

This thesis uses two distinct datasets from the industrial manufacturing process.
First, we have the CNC Mill Tool Wear dataset from the Manufacturing and
Automation Research Testbed at Michigan. Second, we have the Tennessee
Eastman Process Simulation Dataset, the Eastman Chemical Company’s realistic
industrial process data. The following sections provide a summary of them.

4.1.1 CNC Mill Tool Wear Dataset

The CNC Mill Tool Wear Data (CNC) is a series of time-series data obtained
from CNC milling machines installed at the Systems-level Manufacturing and
Automation Research Testbed (SMART) at the University of Michigan. This
dataset is currently available on Kaggle (Sun, 2021). This dataset consists
of experiments using two-by-two-by-five-inch wax blocks with varying tool
conditions, feed rates, and clamping pressures. In each experiment, a wax part
was made with an S-shaped top face, as shown in Figure 4.1. Each experiment’s
metadata is summarized in Table4.1.The feed rate variable indicates the relative
velocity of the cutting tool. The clamping_pressure refers to the force used to
hold the workpiece in a vice. Machining_finalized indicates whether machining
was completed without removing the workpiece from the pneumatic vise. The
dataset contains 48 different sensors. Adopted from (Sehee_Lee, 2021), Table
4.2 shows list of sensors in this dataset, and their description and unit of
measurement.
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Figure 4.1: A wax block that has an S-shaped curve to it. The wax block is a part of
the CNC Mill Tool Wear dataset.Sun (2021)

Table 4.1: Overview of the metadata collected for the eighteen CNC mill tool wear
experiments.

Experiment
number

Number of
row

feedrate
(mm/s)

clamp
_pressure
(bar)

tool
_condition

machining
_finalized

1 1056 6 4 unworn yes
2 1669 20 4 unworn yes
3 1522 6 3 unworn yes
4 533 6 2.5 unworn no
5 463 20 3 unworn no
6 1297 6 4 worn yes
7 566 20 4 worn no
8 606 20 4 worn yes
9 741 15 4 worn yes
10 1302 12 4 worn yes
11 2315 3 4 unworn yes
12 2276 3 3 unworn yes
13 2234 3 3 worn yes
14 2333 3 3 worn yes
15 1382 6 3 worn yes
16 603 20 3 worn no
17 2151 3 2.5 unworn yes
18 2254 3 2.5 worn yes
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Table 4.2: Available variables of CNC tool wear dataset, their definitions and unit of
measurements

Variables Definition Unit
X1_ActualPosition actual x position of part mm
X1_ActualVelocity actual x velocity of part mm/s

X1_ActualAcceleration actual x acceleration of part mm/s2

X1_CommandPosition reference x position of part mm
X1_CommandVelocity reference x velocity of part mm/s

X1_CommandAcceleration reference x acceleration of part mm/s2

X1_CurrentFeedback current A
X1_DCBusVoltage voltage V
X1_OutputCurrent current A
X1_OutputVoltage Voltage V
X1_OutputPower Power kW

Y1_ActualPosition actual y position of part mm
Y1_ActualVelocity actual y velocity of part mm/s

Y1_ActualAcceleration actual y acceleration of part mm/s2

Y1_CommandPosition reference y position of part mm
Y1_CommandVelocity reference y velocity of part mm/s

Y1_CommandAcceleration reference y acceleration of part mm/s2

Y1_CurrentFeedback current A
Y1_DCBusVoltage voltage V
Y1_OutputCurrent current A
Y1_OutputVoltage voltage V
Y1_OutputPower power kW

Z1_ActualPosition actual z position of part mm
Z1_ActualVelocity actual z velocity of part mm/s

Z1_ActualAcceleration actual z acceleration of part mm/s2

Z1_CommandPosition reference z position of part mm
Z1_CommandVelocity reference z velocity of part mm/s

Z1_CommandAcceleration reference z acceleration of part mm/s2

S1_ActualPosition a actual position of spindle mm
S1_ActualVelocity actual velocity of spindle mm/s

S1_ActualAcceleration actual acceleration of spindle mm/s2

S1_CommandPosition reference position of spindle mm
S1_CommandVelocity reference velocity of spindle mm/s

S1_CommandAcceleration reference acceleration of spindle mm/s2

S1_CurrentFeedback spindle current A
S1_DCBusVoltage spindle voltage V
S1_OutputCurrent spindle output current A
S1_OutputVoltage spindle output voltage V
S1_OutputPower spindle power A

S1_SystemIntertia torque intertia kgm2

M1_CURRENT_PROGRAM_NUMBER
Number the program is
listed under on the CNC float64

M1_Sequence_number Line of G-code being executed float64
M1_CURRENT_FEEDRATE instantaneous feed reate of spindle float64

Machining_Process

The current machining stage
being performed. Including preparation,

tracing up and down the "S" curve
involving different layers

object
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4.1.2 Tennessee Eastman Process Simulation Dataset

Tennessee Eastman Process Simulation Dataset (TEP) is a well-known public
dataset based on realistic industrial processes provided by Eastman Chemical
Company for process monitoring and control studies Downs and Vogel (1993).

This process creates two liquid products from four gaseous components: A,
C, D, and E, as well as an inert B and byproduct F Reinartz et al. (2021).
Chemical reactions occur in five different units (reactor, condenser, compressor,
separator, and stripper). In the reactor, gaseous components (A, C, D, and
E) are transformed into liquid products (G and H). Condensers cool gaseous
products coming out of reactors. Separators separate gas and liquid components
of products. Compressors recirculate gas streams into the reactor. It is the
stripper’s responsibility to separate the two products (G and H) from any
unrelated feed components. Figure 4.2 shows a high-level view of the process.

Data is collected using over 40 sensors to monitor flow rates, pressure, temper-
ature, mole fractions, compressor power, etc. Moreover, operators manipulate
more than ten quality variables to ensure that the chemical process runs
smoothly. In the dataset which is available at Rieth et al. (2017) are 52 vari-
ables, of which 41 are sensor measurements(XMEAS_1 - XMEAS_41) and 11
are manipulated quality variables(XMV_1 - XMV_11). A description for manip-
ulated variables are provided by Table 4.3

Figure 4.2: Tenessee Eastman (TE) process flow-sheet. Adopted from Chen (2019)
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Table 4.3: Manipulated variables

Variable Description
XMV_1 D Feed flow(stream 2)
XMV_2 E Feed flow (stream 3)
XMV_3 A Feed flow (stream 1)
XMV_4 A and C Feed flow (stream 4)
XMV_5 Compressor recycle valves
XMV_6 Purge valve (stream 9)
XMV_7 Seperator pot liquid flow (stream 10)
XMV_8 Stripper liquid product Flow
XMV_9 Stripper Steam Valve
XMV_10 Reactor cooling water flow
XMV_11 Condenser cooling water flow

4.2 Experiment 1: Building Uncertainty-aware
Virtual Sensors

This section provides an answer to our first and second research questions:
RQ1: How can we build uncertainty-aware virtual sensors?
RQ2: How can we evaluate the accuracy of the uncertainty estimated by
the Bayesian neural network?

We answer RQ1 thought through three experimental steps, which we will
present its result in the following three subsections of this section. We answer
RQ2 by experimentally evaluating predictive uncertainty. We will present the
result of our experiment in the fourth subsection of this section.

4.2.1 Input selecting

As described in §4.1, we use CNC and TEP data to generate virtual sensors. The
first step and a critical issue in virtual sensor building concern selecting input
variables among those available in a dataset.

Although we have trained models with different target data, we will only
present one target variable per data since we have only performed fault injec-
tion analysis using these particular target variables. In CNC data, we use the
X1_ActualPosition variable as the target variable, as it is the first variable in the
dataset and contains many correlated variables. We use the method described
in §3.2.1 to determine the most correlated features. The threshold of absolute
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Pearson’s coefficient was set at 0.5, which indicates that for a correlation be-
tween the target variable and other variables to be accepted, the correlation
should be > 0.5 or < −0.5. Fourteen variables met this requirement for the
target variable X1_ActualPosition, as shown in Figure 4.3

Figure 4.3: Distributions of selected input features for the CNC dataset. All of these
features meet our requirement of at least 50 percent correlation to target
variables.

For TEP data, we chose 𝑋𝑀𝑉 _9 as our target variable. It is not a sensor
measurement but rather a manipulated quality variable corresponding to the
Steam Valve of the Stripper. Only four sensors met the requirement of a
correlation coefficient of at least 0.5 for this target variable, as shown in Figure
4.4
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Figure 4.4: Distribution of selected input features based on correlation to target data
for TEP dataset. All of these features have a correlation to target data
above 50%.

4.2.2 Model Training

For our virtual sensor, we divided the dataset into train and test. Five of the CNC
dataset’s 18 experimental datasets are considered test datasets. The remaining
thirteen are divided into 75 percent training and 25 percent validation datasets.
Validation data is used after each training epoch, whereas test data is used
only once after the final models have been developed.

In total, the TEP dataset contains 124999 individual data-points. For training
and validation, we use around 87500, and for the test, 37499. The training-
validation ratio is similar to the CNC dataset.

Hyperparameters such as learning rate, history size of the input dataset, batch
size of mini-batch, and kernel size represent the weight in a convolutional
neural network that influences the network’s learning ability. In this regard,
selecting the hyperparameters of a model is a critical step.

We train themodel using the ADAM optimizerwithmini-batch gradient descent.
We found the optimum batch size to be between 30 and 50. A smaller batch
size is computationally slower, while a larger one is quicker, resulting in less
accurate models. Furthermore, through trial and error, we discovered that 0.001
is a reasonable learning rate. This parameter determines how fast the model
will learn. We can evaluate how much-apportioned error is included in the
model’s weights when they are updated by controlling this parameter. The
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model learns faster with a high learning rate but results in suboptimal weights.
The model may learn more optimal weights or even globally optimal weights
with a slower learning rate, but training will be significantly longer.

Loss functions are more challenging hyperparameters in Bayesian neural net-
works because we have to write custom losses. In §3.3.2, we discussed that we
have two types of loss functions: a data-dependent loss and a prior-dependent
loss. As the prior dependent loss, we use Kullback-Leibler divergence. Using
this loss function, we seek to regularize the difference between prior weight
beliefs and estimated weight posteriors. Since this loss is not dependent on the
data, we evaluate it per layer. Even with mini-batch training, we found that
this loss must be scaled by a factor of 1/size of training data. A learning process
may become unstable if not scaled this way due to the significant variance in
weight. We use the Negative Log-Likelihood as the data-dependent loss func-
tion, which minimizes the difference between the ground truth distribution
and the predicted distribution. Because this loss is dependent on the data, it is
evaluated after each forward pass. All hidden layers use ReLU, and the output
layer uses linear activation. We used a kernel size of 5 for all convolutional
layers.

4.2.3 Evaluating Predictive Distribution

To evaluate the goodness-of-fit of our Bayesian convolutional neural network-
based virtual sensor, we want to use different evaluation metrics.

Firstly, we evaluated the accuracy of our Bayesian CNN model using R-Squared,
RMSE, and MAPE. In addition to the Bayesian CNN model, we also trained
the non-Bayesian CNN model and the LSTM network to compare our model
with non-Bayesian models. Non-Bayesian models have the same parameters as
Bayesian models.

Compared to non-Bayesian models, the Bayesian convolutional neural network-
based virtual sensor produces reasonably accurate and reasonable results. Table
4.4 presents the complete comparison between Bayesian and non-Bayesian
performance. As a reminder, R2 scores range from zero to one, one being the
best and zero being the worst, whereas the other two matrices are inverse,
zero being the best and one being the worst.

All models achieve R2 values greater than 0.90 in both datasets. The Bayesian
model has the highest R2 score among all the models, with R2 = 0.99 for CNC
data and R2 = 0.98 for TEP data. On CNC data, the LSTMmodel has the lowest
R2 of 0.90. Bayesian models have the worst RMSE, with RMSE = 0.40 on CNC
data and RMSE = 0.33 on TEP data. Both non-Bayesian models achieve a good
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RMSE score on CNC data but worse on TEP data. MAPE scores for all models
are similar and small. We can see that relying on a single metric may lead to
an inaccurate assessment of reality.

Table 4.4: The predictive performance of virtual sensors based on Bayesian convolu-
tional neural networks and virtual sensors based on non-Bayesian convolu-
tional neural networks.

Network Dataset R2 RMSE MAPE

Bayesian CNN CNC data 0.9992 0.40 0.0017
TEP Data 0.9839 0.33 0.005

CNN CNC data 0.961 0.0027 0.03
TEP Data 97.3 0.426 0.0073

LSTM CNC data 0.99 0.0016 0.05
TEP Data 0.901 0.52 0.0144

To understand why the performance on evaluation matrices is so different, we
should plot and visualize the ground-truth value against the predictive distri-
bution. To reduce the number of visualizations, we only provide visualization
for Bayesian models. We first draw a sample from the predictive distribution
and plot it with the distribution of the ground truth label.

Figure 4.5: The distribution of ground truth labels vs. mean predicted values for a
model trained on TEP dataset
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The Figure 4.5 presents the distribution of predictive values on TEP data in
conjunction with ground truth values. We can see that the distributions are
close to identical; however, the predicted distribution has a bit more variance.

Figure 4.6: The distribution of ground truth labels vs. mean predicted values for a
model trained on CNC dataset

In Figure 4.6, we can see predictive distribution on CNC data together with the
ground-truth label distribution. Although the distributions appear similar, the
variance in the predictions is more evident in this instance. To some extent,
this Figure can explain why the RMSE score on this dataset is much higher
than the RMSE score on the TEP dataset.

Lastly, we evaluated the model using residual analysis. Recall that the residual
of a good model has the following characteristics:

• The expected value of the residual should be zero.

• The variance of the residual should be constant.

• Residuals should not be auto-correlated.

• Residuals should be normally distributed.

Figure 4.7 a shows the residual of the model trained on TEP data. In this
residual, we observe that all four characteristics are present. The Figure 4.8
shows the residual for the model trained on CNC data. We can see that the
residual is normally distributed,with zero expected value; however, the residual
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variance is not constant, indicating that a particular segment of the model has
a different predictive capability. This residual may help explain the high RMSE
score.

Figure 4.7: The residual plot for residual vs predicted values using the TEP dataset.

Figure 4.8: The residual plot for residual vs predicted values using the TEP dataset.

Based on the different evaluation matrices we have used, we conclude that
the Bayesian neural network is not perfect but it performs at least as well as
non-Bayesian neural networks for prediction.
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4.2.4 Evaluating Predictive Uncertainty

Figure 4.9: A visualization of ninety-five percent prediction interval for amodel trained
TEP dataset.

Figure 4.10: A visualization of ninety-five percent prediction interval for a model
trained CNC dataset.

The Bayesian neural network has the advantage that we can quantify its predic-
tive uncertainty using a relatively simple method. Our method for quantifying
uncertainty can be found in §3.4.2. By making a confidence interval, we visual-
ize the uncertainty. In 4.9, the models prediction and ground truth are shown
along with ninety-five percent confidence region on TEP dataset, while 4.10
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shows a similar plot on CNC dataset. The interval grows as the predicted value
deviates from the ground truth, especially with CNC data.

We computed the coverage probability to demonstrate the effectiveness of
Bayesian neural networks in quantifying uncertainty. Generally, a good un-
certainty estimation method has equal coverage probability and confidence
level, as described in §3.5.5. However, we can expect approximately equal
outcomes even if we cannot expect equal coverage and confidence levels. To
obtain the coverage probability, we collected one thousand samples from the
predictive distribution and then computed the probability using three steps
described in §3.5.5. Table 4.5 summarizes the coverage probability for four
typical confidence levels for both TEP and CNC data. These results indicate
that coverage probability is not significantly different from confidence levels.
Most of them display a slight conservatism, which means low confidence in
their predictions. Moreover, we observe that coverage probability is more con-
servative on CNC data than TEP data; This makes sense if we recall our model
performance evaluation. CNC had a higher RMSE score, and residual analysis
showed non-constant variance. From the industry’s perspective, it’s better to
overestimate the uncertainty than underestimate it. A slight underconfidence
in a model that is not perfect is, therefore, intuitively a good quality.

Dataset Confidence level % Coverage probability %

TEP data

90.0 91.42
95.0 95.65
97.0 97.49
99.0 99.11

CNC data

90.0 93.66
95.0 96.51
97.0 97.31
99.0 98.47

Table 4.5: Coverage probability for different confidence levels using two different
datasets.

4.3 Experiment 2: Fault injection analysis

The experiment in this section answers our third research question. To begin
with, we will describe our experimental method and experimental setup, and
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then we will present the results of our experiment.

RQ3 How well is uncertainty estimation able to detect single sensor
faults?

a) Faults due to drift

b) Faults due to bias

c) Faults due to freezing

d) Faults due to precision degradation

A fault injection test is an experiment-based approach used primarily in soft-
ware and hardware engineering to verify that a system performs as intended
(Hsueh et al., 1997). Faults are deliberately introduced during fault injection
to test the system’s robustness and error handling capabilities. The objective
of fault injection is to generate more faults in a system and then collect and
evaluate statistical data relating to their effects. We use this methodology to
test the Bayesian neural network-based virtual sensor’s fault detection capa-
bility. To compare and evaluate the collected statistics, we use box plots to
visualize and interpret data distribution. Therefore, the following paragraphs
will describe fault injection analysis and box plots.

We simulate four artificial faults described in §2.2.1 using their mathematical
formulas. These faults are injected into our test dataset at varying lengths. The
length varies between 5% and 25% of the length of the test data set. Each
experiment generates one thousand experimental data points for each fault
type. A fault injection test consists of the following steps.

Step 1: We copy the test dataset and inject a randomly chosen length of artificially
generated fault into the data..

Step 2: We store results in a experimental data list

Step 3: We repeat the above steps one thousand times.

For each dataset in experimental data list.

Step 1: First, we compute a prediction of corresponding ground truth using the
model trained on training data

Step 2: Then, we compute predictive uncertainty for each prediction point.
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Step 3: Then, we compute the mean of predictive uncertainty.

Step 4: Finally, we compare the distribution of computed uncertainties for differ-
ent lengths of injected fault.

Box plots (Williamson et al., 1989) are a standardized method for visualizing
and interpreting the distribution of data. Box plots provide a high-level sum-
mary of data and are well suited to comparing distributions between groups. A
box plot provides the following information. Refer to Figure 4.11 for an example
of a box plot for a normal distribution.

• Minimum 𝑄1 − 1.5𝐼𝑄𝑅.

• First quartile The first quartile (Q1) is the number that lies in the middle
between the smallest (not minimum) and the median. It is also known
as (25th percentile).

• Median The median is the middle value of the data and may also be
referred to as the second quantile (Q2).

• Third quartile The Third Quartile (Q3) is the number in the middle
between the medians and the highest values. It is also known as 75th
percentile.

• Boxes Boxes, also known as interquartile ranges (IQR), show the area
between Q1 and Q3. It identifies the range of central 50% of the data,
with the central line representing the median.

• Maximum 𝑄3 + 1.5𝐼𝑄𝑅.

• The whiskers The whisker is a line that extends from the minimum to
the maximum, extending from the box.

• Outliers Outliers are lines that are outside the whiskers; they are often
represented by dots.
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Figure 4.11: Box plot for a normal distribution Adopted from (Olano et al., 2018).

We interpret boxes as follows when comparing the distribution of uncertainties
for different fault lengths. For example, please refer to Figure 4.11, where each
box represents the predictive uncertainty of a given fault length. For example,
the first box could indicate predictive uncertainty when 5 percent of the data
is faulty, the second 10 percent of the data, and so on. Among the numerous
box-plot statistics, we consider the median value and the spread of the box to
be most important.

• Median The median of box plots is used to compare the uncertainties
for different fault lengths. For example, in Figure 4.11 box 1 and 2 would
be interpreted as equal because they represent equal have same Median
value. While box 3 will be interpreted as higher than box 2 because it
has a higher median value. Similarly, box 4 is higher than all other three
boxes.

• The box and The whiskers A relatively short box indicates that uncer-
tainty estimates derived from different experiments are highly similar
(see box 1 and 4 in Figure 4.12). A relatively tall box indicates that uncer-
tainty estimates derived from different experiments do not have a high
degree of similarity (see box 2 in Figure 4.12). If uncertainty varies from
iteration to iteration, then its accuracy is questionable.
The whiskers are interpreted similarly to boxes. Having tall whiskers
indicates poor accuracy of uncertainty, while having short whiskers indi-
cates good accuracy of uncertainty.
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Figure 4.12: Various shapes of box plots for illustration purposes.

4.3.1 Experimental setup

We used the fault injection method described above to conduct four sets of
experiments to see howwell uncertainty estimated by Bayesian neural network-
based virtual sensor can detect changes in data due to sensor drift, bias, freezing,
and performance degradation. We used two datasets with four input sensors
in one dataset and fourteen input sensors in the other dataset, thus 18 input
sensors. We mutated each sensor 1000 times, resulting in 72000 data muta-
tions in total. Each time, we randomly selected the percentage of faults from
[5%, 10%, 15%, 20%, 25%]: We also used data with 0% fault as a baseline for
comparison.

In the following sections, we will present and discuss the results of these
experiments.

4.3.2 Faults due to drift ?

We simulated artificial drift faults according to its mathematical formula in
equation (2.1). We defined the Range of the drift is set to 2 times the Range
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of the data. Our concept of range refers to a numerical representation of the
observation span, that is, the distance between the maximum and minimum
values. We varied the percentage of injected fault between 5% and 25% of the
total test dataset.

Figure 4.13: An illustration of drift faults injected into different sensors. For this
example, the percentage faults have been chosen at random.

In our analysis, we found that the ability of predictive uncertainty to detect
faults caused by drift depends both on the input sensor values and the degree
of drift. Even the same drift fault can have different effects on different sensors
of the input system. Figure 4.14 illustrates how predictive uncertainties can
arise when two different sensors are injected with the same type of drift fault.
We used green and blue colors to distinguish the TEP and CNC datasets.
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Figure 4.14: Comparison of the predictive uncertainty for different drift levels injected.
Different levels of injected drift are represented on the x-axis, while
predictive uncertainty is shown on the y-axis. Xmeas_18 is a variable in
the TEP dataset, and here it shows the variable or sensor injected with
the drift fault.

In the Figure 4.14 illustrated in green, the median predictive uncertainty in-
creases linearly between 0 and 18 as the fault percentages increase from 0 to 25
percent. In contrast, in the blue Figure, the range only lies between 0 and 0.04.
In green and blue cases, the boxes tend to increase in size, suggesting that the
uncertainty estimation varies more with increasing drift faults. Additionally,
we can see that sometimes we get many outliers, as in the blue Figure. For
example, uncertainty for 15 percent drift is higher than uncertainty for 20 and
25 percent drift. By presenting higher uncertainty than is appropriate, these
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outliers can lead to false alarms.

Our research has discovered more extreme results where the degree of uncer-
tainty doesn’t seem to increase with the percentage of faults within a system.
Here is an example provided by Figure 4.15. In this illustration, the median
predictive uncertainty does not appear to increase as the fault percentage
increases. On the other hand, the range outlier (represented by dots) seems
to grow linearly as the drift percentage increases.

Figure 4.15: Comparison of the predictive uncertainty for different drift levels injected.
Different levels of injected drift are represented on the x-axis, while
predictive uncertainty is shown on the y-axis. S1_OutputVoltage is a
variable in the CNC dataset, and here it shows the variable or sensor
injected with the drift fault.

In reality, Fault detection is based more on visualizing predictive uncertainty
than analyzing box plots. Thus, we visualized predictive uncertainty as confi-
dence intervals to see howwell it could detect drift fault. For example, in Figure
4.16, we have the confidence interval for a prediction when the S1_OutputPower
sensor is drifted by 5 and 10 percent. S1_OutputPower is the same sensor as
in Figure 4.15, which shows its result using the fault injection analysis. Even
though it was difficult to see the increase in predictive uncertainty on box plots,
it is evident from the visualizations that the uncertainty increases, and the drift
fault can be detected.
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Figure 4.16: Confidence interval for a prediction when S1_OutputVoltage(spindle volt-
age) is injected with 5(top) and 10(bottom) drift. Ninety-five percent
confidence intervals correspond to plus/minus two times the estimated
uncertainty.

4.3.3 Faults due to bias?

A bias is when a measurement suffers a constant shift. We simulated artificial
bias faults using equation(2.2) in the background section. An illustration of bias
faults injected into different sensors is shown in Figure 4.17. All experiments
used the same bias constant 𝐶 = 100. Following this, we performed fault
injection analysis similar to drift fault analysis.
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Figure 4.17: An illustration of bias faults injected into different sensors. For this
example, the percentage faults have been chosen at random.

Our results showed that estimates of uncertainty were able to detect data bias.
As with drift, different sensors exhibit different effects of bias. Figure 4.18 and
4.19 provides a visual representation of these results. The size of boxes and
whiskers increase as the fault percentage increases, indicating a decreasing
degree of accuracy in uncertainty.

Figure 4.18: Comparison of the predictive uncertainty for different levels of bias in-
jected. Different levels of injected drift are represented on the x-axis,
while predictive uncertainty is shown on the y-axis. Xmeas_18 is variable
in the TEP C dataset, and here they show the variables or sensors injected
with the drift fault.
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Figure 4.19: Comparison of the predictive uncertainty for different levels of bias in-
jected. Different levels of injected drift are represented on the x-axis,
while predictive uncertainty is shown on the y-axis. S1_OutputVoltage is
variables in the CNC dataset, and here they show the variables or sensors
injected with the drift fault.

Figure 4.20: The visualization of predictive uncertainty when a bias is present in the
input sensor. It shows the prediction with a ninety-five percent confidence
intervals correspond to plus/minus two times the estimated uncertainty.

Visualizing the uncertainty interval on a prediction makes it more evident how
the uncertainty’s accuracy decreases. For example, see Figure 4.20, where we
plot a prediction with a ninety-five percent confidence interval. The Figure
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illustrates that the model gave an incorrect prediction for the observation be-
tween 300 and 400. But we cannot determine this without having a ground
truth label since uncertainty does not increase. Figure 4.21 shows the uncer-
tainty associated with the same prediction. Here, we see that the uncertainty
increased in that area, but only a single spike.

Figure 4.21: The visualization of predictive uncertainty when a bias is present in the
input sensor.

4.3.4 Faults due to freezing?

Sensor freezing is the third type of faultwe performed fault injection analysis on.
An example of a freezing fault is a sensor that produces completely abnormal
results. According to the equation(2.3) formula, freezing is generated by using
a constant value 𝐶 = 999 to represent an abnormal reading. Please refer to
Figure 4.22 for an example of injected freezing faults into different parts of
sensors in the CNC dataset.

Our fault injection analysis results show also a linear increase in uncertainty
as the proportion of freezing faults increases. We present the results of our
analysis in Figure 4.23 and 4.24
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Figure 4.22: Various input sensors were injected with freezing faults in the experi-
mental test dataset. The fault length in this figure is randomly generated
since it is an illustration.

Figure 4.23: This figure compares the predictive uncertainty for different input sensors
and different levels of freezing faults injected on TEP data.
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Figure 4.24: This figure compares the predictive uncertainty for different input sensors
and different levels of freezing faults injected on CNC data.

Figure 4.25: An example of how predictive uncertainty can be used to detect changes
freezing faults in input dataset. It shows the prediction with a ninety-
five percent confidence interval. Ninety-five percent confidence intervals
correspond to plus/minus two times the estimated uncertainty.

We can visually change in prediction, as in Figure 4.25 and 4.26. However, As
the uncertainty estimates became more inaccurate, the confidence interval
visualization sometimes provided unexpected results when the input sensors
were frozen. Figure 4.26 displays predictive uncertainty as a ninety-five percent
confidence interval; In this Figure, we see an intuitive visualization. However, if
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Figure 4.26: An example of how predictive uncertainty can be used to detect changes
freezing faults in input dataset. It shows the prediction with a ninety-
five percent confidence interval. Ninety-five percent confidence intervals
correspond to plus/minus two times the estimated uncertainty.

we see another similar visualization in 4.26, we see that the ninety-five percent
interval is not intuitive.

4.3.5 Faults due to performance degradation?

For the final analysis, we simulated performance degradation using (2.4 and
analyzed it using fault injection analysis. Figure 4.27 illustrates an example of
a degraded sensor that we injected into different sensors of our experimental
data.

Experimental results reported a linear increase in predictive uncertainty with
increasing percentages of degradation fault. This is similar to the other three
fault types. In Figure 4.28 and 4.29 you can see the results of analyzing
performance degradation faults.

However, similar to all three other results, the accuracy of uncertainty decreases
as the fault due to performance degradation increase. In fact, as we can
see from Figures 4.28 and 4.29, the size of the boxes and whiskers increase
more(compared to the other results) as the percentage of faults increases.

Performance degradation in the model input leads to a noisy prediction and
noisy prediction uncertainty. Figures 4.30 illustrate how uncertainty can be
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visualized in terms of confidence interval.

Figure 4.27: An illustration of a noisy/performance degraded sensor injected into our
experimental test dataset.

Figure 4.28: Comparing the predictive uncertainty for different input sensors and
different levels of performance degradation faults injected on TEP data.
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Figure 4.29: Comparing the predictive uncertainty for different input sensors and
different levels of performance degradation faults injected on CNC data.

Figure 4.30: An example of how predictive uncertainty can be used to detect changes
degradation faults in input dataset. It shows the prediction with a ninety-
five percent confidence interval. Ninety-five percent confidence intervals
correspond to plus/minus two times the estimated uncertainty.

4.4 Result Summary

In the first section of this chapter, we addressed the research questions RQ1 and
RQ2: How can we build and validate uncertainty-aware virtual sensors
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using a Bayesian neural network, and How can we evaluate the accuracy
of the uncertainty estimated by the Bayesian neural network?

In the first step , we build uncertainty-aware virtual sensors using two indus-
trial manufacturing datasets based on Bayesian convolutional neural networks.
We chose input sensors based on the Pearson correlation coefficients provided
by Pandas’ profiling report. We then trained the model by tuning its hyperpa-
rameters according to the trial-and-error method.

Then, we evaluate the predictive performance of the virtual sensor using the
R2, RMSE, and MAPE scores. We compare our results to non-Bayesian CNNs
and LSTM based virtual sensors. Our Bayesian-based virtual sensor had the
best R2 and MAPE scores, with R2 = 0.99 on CNC data and R2 = 0.98 on TEP
data, and MAPE = 0.0017 on CNC and MAPE = 0.005 on TEP data. Our model
had the worst RMSE value of 0.40, CNN and LSTM models had RMSE values
of 0.0027 and 0.0016, respectively, on CNC data. that

To investigate the performance of our virtual sensor further, we used residual
analysis. We found that residual variance for models trained on CNC data is
not constant, indicating that a given segment has a different predictive ability.
We concluded that the high RMSE score in our model may be due to this
non-constant variance.

We assessed the accuracy of the estimated uncertainty by comparing the
coverage probability and confidence levels. The coverage probability is almost
identical to the confidence level, with a small sign of conservatively, indicating
a reasonable uncertainty estimate.

The second chapter discussed our last research question RQ3: How well is
uncertainty estimation able to detect single sensor faults due to drift, due
to bias,due to freezing, and due to performance degradation? According
to our findings, the uncertainty increased in each of the four cases as the fault
percentage increased, indicating the uncertainty can detect changes in data
distribution. However the accuracy of the uncertainty in all four experiments
declined as fault length increased. In addition, we found that the ability of
predictive uncertainty to detect faults in input data depends both on the input
sensor values and the degree of faults. Even the same fault can have different
effects on different sensors of the input system.





5
Conclusion and Future
work

This chapter will discuss future work and conclude with a few closing remarks.

5.1 Conclusion

In this thesis, we explored the potential of the Bayesian convolutional neural
network as an uncertainty-aware virtual sensor for Industry 4.0.

We have created an uncertainty-aware virtual sensor by utilizing the most
recent Bayesian method for estimating distribution over the weight parameter.
In order to evaluate models’ predictive performance, we used four different
metrics, including root mean square error (RMSE), mean absolute percentage
error(MAPE), and R-squared (R2) and Residual analysis. These are all standard
metrics in statistics and machine learning. In addition, we calculated coverage
probability to assess the method’s capability of estimating uncertainty. Finally,
we also tested how estimated uncertainty can detect changes in the input
dataset by performing fault injection analysis.

Based on our results, Bayesian convolutional neural network-based uncertainty-
aware virtual sensors perform as well as any deep learningmodel when it comes

77
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to prediction accuracy. We found that our BCNN virtual sensor had the highest
R-squared scores, with R2 = 0.99 on CNC and R2 = 0.98 on TEP data. While
the RMSE for our model was 0.40, CNN and LSTM models had RMSE values
of 0.0027 and 0.0016, respectively, on CNC data. The result of the coverage
probability score indicates a reasonably good uncertainty estimate.

Our result of fault injection analysis showed that the uncertainty increased
in each of the four cases as the fault percentage increased, indicating the
uncertainty can detect changes in data distribution. However the accuracy of
the uncertainty in all four experiments declined as fault length increased. In
addition, we found that the ability of predictive uncertainty to detect faults in
input data depends both on the input sensor values and the degree of faults.
Even the same fault can have different effects on different sensors of the input
system.

We can conclude that the Bayesian neural network can be used as a uncertainty-
aware virtual sensor, However, more research is needed to find out why the
accuracy of the uncertainty estimate decreased as the length of the fault
increased.

5.2 Future Work

Further experimentation with fault injection We analyzed only four
faults in the fault injection analysis: drift, bias, freezing, and performance
degradation. However, there may be other sensor faults such as calibration
errors, scaling errors, etc. In addition, we only considered a single sensor fault,
whereas it is likely that multiple sensors would fail simultaneously, either with
the same fault or with different faults. Moreover, we have not been able to
determine why the accuracy of the uncertainty decreased with fault length.
Therefore, further experiments with fault injection could have benefited this
thesis.

Explainable Artificial Intelligence Visualization uncertainty can alert
us when a model mistake has occurred, but it does not tell us the cause of
the mistake, what kind of change in the dataset has occurred, or what input
has been changed. Thus, it is also essential to identify the type of fault in
the dataset and which sensor/feature variables are most helpful in identifying
faults. Is explainable artificial intelligence useful in identifying faults and input
features that lead to faults accurately and timely? Several model-agnostic
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explanations of AI are available here (Molnar, 2020): The two most popular
are LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017)]. Most of
them, however, work with frequentist models. There is a Bayesian extension
of LIME called Baylime (Zhao et al., 2021) that currently does not support 3D
input. Therefore, we can not conduct any experiments with explainable AI and
leave it to future research.

Prior in BayesianNeuralNetwork Themain focus of the Bayesian neural
network (Fortuin, 2021)has been estimating the posterior distribution of param-
eters and identifying properties of predictive uncertainty; however, choosing
the prior is one of the most critical and crucial parts. A standard Gaussian prior
over the parameters is often considered sufficient (Wilson and Izmailov, 2020).
This is supported by the central limit theorem (Dudley, 2014), in which samples
taken from data will asymptotically approach a normal distribution regardless
of their underlying distribution. Recent evidence, however, has questioned the
validity of Gaussian priors in Bayesian neural network (Wenzel et al., 2020).
Since the objective of our thesis was to validate an existing Bayesian neural net-
work in the context of virtual sensors, for this project, we also used a standard
Gaussian prior. Further research is necessary to replace the standard Gaussian
prior.
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