

Fakultet for Naturvitenskap og Teknologi Institutt for Geovitenskap

Struktur- og Intrusjonshistorie for pegmatittiske gangsvermer knyttet til den paleoproterozoiske Ersfjordgranitten, Vest-Troms

Grunnfjellskompleks

Ingvild Brynjulvsrud Bakke Masteroppgave i Geologi GEO-3900 Mars 2022

Struktur- og Intrusjonshistorie for pegmatittiske gangsvermer knyttet til den Palaeoproterozoiske Ersfjord Granitten, Vest-Troms Grunnfjellskompleks

Ingvild Brynjulvsrud Bakke

March 31, 2022

Sammendrag

Vest-Troms Grunnfjellkompleks er marginen og kontinuasjonen av det Fennoskandiske Skjold under de Kaledonske skyvedekkene. WTBC har utviklet seg gjennom flere fjellkjededannelser, dannelse av riftbassenger, høy- til lav-metamorf omvandling og flere episoder med bimodal magmatisme. Dette gjør at WTBC er et viktig studieområdet for å forstå jordas utvikling i Arkeikum og Paleoproterozoikum. Formålet med denne masteroppgaven var å teste hypotesen om intrusjonen av gangsvermer knyttet til den 1,8-1,79 Ga Ersfjordgranitten stammer fra delvis smelte fra omliggende TTG-gneiser under Svekofennisk D2 hendelse. Strukturell og bergrunnsgeologisk kartlegging viste at de pegmatittiske gangsvermene kunne deles inn i tre generasjoner. Hver generasjon viser forskjellig deformasjon og er trolig dannet syn/post D1, D2 og D3. Den første generasjonen viser strekningsdeformasjon "pølsestrukturer" tolket som skjærdeformasjon fra lavvinklet skjær- og skyveforkastninger (D1). Den andre generasjonen viser ingen strekningsdeformasjon, men er foldet sammen med S1-foliasjonen i storskala F2 folder. Den siste generasjonen er tilnærmet udeformert, men alle gangene har tilnærmet likt strøk og fall i hele studieområdet. Strøket og fallet er parallelt med F2 akseplan og D3 skjærsoner. Absolutte verdier for alderen til deformasjonen kunne ikke bestemmes da de radiometriske analysene ikke var robuste nok for de pegmatittiske gangsvermene. Isotopanalyse av migmatittiske porsjoner av TTG-gneisen viser at den delvis smeltet og krystalliserte samtidig som 1,8-1,79 Ga Ersfjordgranitten. Dette betyr at foliasjonen i TTG-gneisen er Svekofennisk.

Forord

Først så vil jeg takke alle som har, på et eller annet vis, hjulpet meg med denne oppgava - om så svare på et simpelt spørsmål i gangen på blåbrakka, kommet med tips og triks når det gjelder den evigvarende jakten på zirkon, og som har lagt ned timevis med arbeid sammen med meg i felt, på Emilbua eller labben. Tusen hjertelig takk!

Jeg vil spesielt takke hovedveilederen min Steffen Bergh (UiT), tusen takk for motiverende samtaler og for å få meg til å se alt i et større perspektiv når en knoter med pinsett og dobbeltsidig teip på labben. Tusen takk til biveileder Nolwenn Coint (NGU) for spennende og lærerike dager i felt. Stor takk til Trond Slagstad (NGU), for dateringsarbeidet du og dere gjorde for meg ved NGU. Harald Hansen (UiT), uten deg hadde jeg fremdeles stått ved vaskebordet på Emilbua, tusen takk for hjelpa. Sist men ikke minst, takk til "fellow" Eirik Bache Stokmo, felt-/lab-assistent og samboer, du har virkelig fått gjennomgå.

Tusen takk til Instituttet for geovitenskap, det har vært seks fantastiske år!

Innholdsfortegnelse

1	Intr	oduksjon	7						
	1.1	Ramme for studiet	7						
	1.2	Regionalgeologi	7						
		1.2.1 Det Fennoskandiske Skjold	7						
		1.2.2 Vest-Troms Grunnfjellskompleks	8						
		1.2.3 Svekofennisk tektonisk modell for WTBC	11						
	1.3	Tidligere arbeid	13						
	1.4	Studieområdet	15						
	1.5	Formål	15						
~			10						
2	Met	tode	16						
	2.1		10						
	2.2	Prøver	16						
	2.3	Tynnslip	17						
	2.4	LA-ICP-MS	18						
3	\mathbf{Res}	ultater	21						
	3.1	Strukturgeologisk oversikt	21						
	3.2	Otervika	21						
	3.3	Lakstind og Brattfjell	24						
4			95						
4			- อ อ - วะ						
	4.1	Strukturgeologisk diskusjon $\dots \dots \dots$	30 95						
		$4.1.1 D1 \; Strukturer \qquad \dots \qquad $	30 95						
		4.1.2 D2 Strukturer \dots	30 20						
	4.0	$4.1.3 D3 \text{ Strukturer} \dots \dots$	30						
	4.2	Geokronologisk diskusjon	30						
		4.2.1 TIG/matisk gneis \ldots	30						
		4.2.2 Granitt	37						
	4.0	4.2.3 Granittiske pegmatitter	37						
	4.3	Regionale implikasjoner	37						
		4.3.1 Strukturelt	37						
		4.3.2 Alder på deformasjon	38						
5	Konklusion 39								
3	5.1	Videre arbeid	39						
D	ofore	nsor	20						
- 1.1.5		11/3//1							

Figurliste

1.1	Geologisk kart over det Fennoskandiske Skjold, med arkeiske kratoner og generell alder for de ulike tektoniske episodene (merk at noen av aldrene varierer fra teksten, da det er vanskelig å definere start/slutt for en fjellkjededannelse). Skorpeskala strukturelle lineamenter er markert, samt svart firkant markerer Vest-Troms Grunnfjellskompleks (WTBC) (Koistinen et al., 2001; Bergh et al., 2015) 9
1.2	Geologisk-tektonisk kart over WTBC med profil (Bergh et al., 2007, 2010, 2021). Studieområdet er markert med rød firkant 10
1.3	Oppsummering av tektono-magmatiske utvikling av WTBC (Bergh et al., 2010)
1.4	Skjematisk geometrisk/kinematisk modell for utviklingen av Svekofen- niske strukturer observert i WTBC. A) Dannelse av NØ vergerende skydekker og lavvinklede mylonittisk foliasjon i grønnsteinsbeltene. B) Det ortogonale NØ-SV rettede kompresjonsregimet fortsetter og produserer oppreiste makro-folder med steile flanker. C) Sen-Svekofennisk tektonisme med NØ-SV ortogonal og/eller skrå kompresjon mot NV- SØ og oftest sinistrale laterale bevegelser langs steile foldeflanker (Bergh et al., 2010)
2.1	Flytskjema for tynnslip og U-Pb isotopanalyse
3.1	Strukturgeologisk data med ortofoto som bakgrunnskart over studieområdet. Tolket strøk og kontinuasjon av strøket er vist som stiplete linjer basert på S1 foliasjon av TTG og granittiske gneiser. Merk storskala antiform ved Brattfjell som komplimenterer og har trolig en kontinu- asjon til synformen ved Sommarøy (Thorstenen, 2011). Foldene ved Lakstind og Otervika stuper tilsynelatende i motsatt retning, men geometrien og akseplan er relativt like. Stereoplot viser gradient til poler (farget) og kalkulert foldeakse (hvit sirkel)
3.2	Bergrunns- og strukturgeologisk kartlegging av Oterneset. Stereonet A) Viser storsirkel og poler til S1 og grensen mellom foliasjonsparal- lelle pegmatitter. B) Storsirkel og poler til foliasjonskryssende peg- matitter. C) Gradient av poler av flanker til småskala folder med kalkulert foldeakse (hvit sirkel). Prøvelokaliteter er markert med svart firkant og prøvenr
	manu og prøvem

3.3	 Ulike foldetyper ved Otervika. A) Åpne, asymmetriske F2-folder som vergerer SV og stuper slakt NV. Viser også lokalitet til prøve IBB19. B) F3-fold med vertikalt akseplan, nær vertikalt stupende foldeakse. Merk lignende geometri som kartskala Brattfjell-Sommarøyfolden. C) Isoklinale F1-folder med foliasjonskryssende og foliasjonsparallelle pegmatitter. D) Isoklinale folder som viser dekstral bevegelse og peg- 	
	matitt som enten har intrudert i skjærsonen eller vært årsaken til	07
3.4	Kryssrelasjon mellom de ulike bergartene på Oterneset med geokro- nologiske data. Prøvene IBB02, IBB04, IBB05 og IBB06 ble tatt ved	27
3.5	denne lokaliteten	28
	brukt for datering)	29
3.6	Konkordiaplot (Terra-Wasserburg) med to sigma. A-C prøve IBB02 A) Håndstuff B) Polarisasjonsmikroskopisk bilde av tynnslip i XPL. C) Diskordialinje for arvede zirkoner og enkelt zirkoner med konkor-	
	dante aldre. Grønne sirkler markerer zirkonene brukt for datering	30
3.7	Konkordiaplot (Terra-Wasserburg) med to sigma. A-B prøve IBB04,	91
3.8 3.9	Kryssforhold og prøvelokalitet for IBB08 og IBB26	31 32
3.10	granittiske gneisen	33 34
11	Strukturell tellming or SV lige del er Krelgre og Nord Øst Sonie med	
4.1	storskala F2 og F3 folder. Generell retning og alder på granittiske pegmatitter. Modifisert fra Bergh et al. (2021).	36
4.2	Magmatisk og strukturell modell av SV-Kvaløya. D1: Delvis smelte i arkeiske TTG-gneiser produserer granittiske sills samtidig som lavvin- klede, SØ fallende skjærsoner og skyveforkastninger produserer ny foliasjon. D2: Oppreiste folder med steile foldeflanker blir intrudert langs foldeflankene og folder de tidligere intrusjoner og strukturer. D3 Endring av spenningsmønsteret fører til høyvinklete laterale skjær- soner som folder omliggende gneiser og magmatiske intrusjoner sam- tidig som yngre pegmatittiske smelter intruderer langs svakhetsoner parallelt med skjærsonene. Inspirert av Bergh et al. (2010, 2021)	38

Kapittel 1

Introduksjon

1.1 Ramme for studiet

Denne masteroppgaven inngår i prosjektet "Tektono-magmatisk utvikling av arkeiske og paleoproterozoiske vukanske og sedimentære bergarter i Vest-Troms Gneisregion og relaterte provinser i Nord-Norge". Hovedprosjektet har et tverrfaglig mål om å øke forståelsen av grønnsteinsbelter og den tektono-magmatiske utviklingen ved petrologiske-, strukturelle-, geokronologiske-, metamorfe- og malm-relaterte studier. Prosjektet er et samarbeid mellom UiT - Norges Arktiske Universitet og NGU -Norges Geologiske Undersøkelse.

1.2 Regionalgeologi

1.2.1 Det Fennoskandiske Skjold

Det Fennoskandiske Skjold omfatter flere skorpesegmenter som gjennom flere orogeneser, rifter, bassengdannelser og magmatiske episoder (ca.3,5-1,5 Ga) har dannet kontinentalskorpe som strekker seg fra Kola i NØ til Sør-Norge/Sverige i SV (Gaál and Gorbatschev, 1987; Gorbatschev and Bogdanova, 1993; Nironen, 1997; Lahtinen et al., 2008; Hölttä et al., 2008). Generelt sett blir alderen på bergarter og deformasjonen yngre mot SV da skorpesegmenter/mikrokontinenter påleiret eldre segmenter etter større orogoneser samt magmatiske episoder. De eldste orogenesene; Saamian (ca.3.1-2.9 Ga) og Lopiske (ca.2,9-2,6 Ga) antas å være en av de første større skorpedannende episodene i det Fennoskandiske Skjold og omfatter store områder av tonalittiske, trondhjemittiske og granodiorittiske gneiser (TTG) og grønnsteinsbelter i NØ (Goodwin, 1991). Videre ble skorpen omarbeidet under den sammensatte Svekokarelske orogenesen (ca.2,0-1,75 Ga) (Gaál and Gorbatschev, 1987), som i nyere tid har blitt delt inn i Lapland Kola- (ca.1,91-1-87 Ga) (Daly et al., 2006; Lahtinen and Huhma, 2019) og den Svekofenniske orogenese (1.92-1.76 Ga) (Korja and Heikkinen, 2005; Korja et al., 2006; Bergh et al., 2010). Selv om alderen tildels overlapper hverandre, er de respektive orogenesene separert geografisk (Fig.1.1).

Det Transskandinaviske Intrusivbeltet (TIB) er en rekke granitoide plutonske kropper samt mafiske intrusjoner som har både blitt tolket som pre- og syn-tektonisk (Gotisk) "Andes-type" magmatisme. Det er også blitt tolket som sen-/post-tektonisk (svekofennisk alder) ekstensjonrelatert magmatisme (Gorbatschev, 2004). Uansett dannelsetolkning, omfatter TIB en rekke forskjellige magmatiske bergarter som krystalliserte mellom 1,85 til 1,67 Ga siden ved den sørvestlige marginen av det svekofenniske domenet (Högdahl et al., 2004). Det Fennoskandiske skjold utviklet seg videre SV og den den Gotiske orogenesen (ca.1,71-1,5 Ga) produserte en mengde skorpe i SØ-Norge knyttet til subdukjsonsrelatert magmatisme, blant annet større granittiske kropper som Iddefjord Granitten (Graversen and Pedersen, 1999; Bingen et al., 2008). På Senja i Vest-Troms Grunnfjellkompleks (WTBC) har granittiske pegmatitter blitt datert til 1561 ± 3 (Bergh et al., 2015) og dermed kan den Gotiske magmatismen ha vært mer utbredt enn tidligere antatt, eller at den Svekofenniske deformasjonen og kollaps har utviklet seg senere ved den nordvestlige margin (Andrsson et al., 2002). Den siste store skorpedannede tektoniske hendelsen er den Svekonorvegiske fjellkjededannelsen (1150-900 Ga) (Bingen et al., 2020).

1.2.2 Vest-Troms Grunnfjellskompleks

WTBC er på mange måter et naturlig feltlaboratorium for å studere oppbygningen, deformasjonen og magmatisk utvikling av det Fennoskandiske Skjold. Da WTBC har komponenter fra alle de overnevnte tektoniske og magmatiske hendelser, foruten den Svekonorvegiske orogenesen. Komplekset er også geografisk lik resten av det Fennoskandiske Skjold, da de eldste bergartene befinner seg i NØ, på øyene Vanna og Ringvassøya og blir generelt sett yngre mot SV med øyene Kvaløya og Senja (Fig.1.2). WTBC er tolket til å være en kontinuasjon av det Fennoskandiske Skjold under de Kaledonske skyvedekkene (Bergh et al., 2010; Bergh, 2012; Henderson et al., 2016; Skyttä et al., 2019, 2020). En tektono-magmatisk utikling av WTBC er oppsummert i figur 1.3 samt av Bergh et al. (2010).

Vanna og Ringvassøya Øyene lengst NØ i WTBC består av neoarkeiske (2,9-2,6 Ga) tonalittiske, trondhjemittiske og granodiorittiske (TTG) gneiser og migmatitter (Bergh et al., 2010; Myhre et al., 2013; Laurent et al., 2019). Dåfjordgneisen på Ringvassøya er datert til 2849 \pm 3 Ma og TTG-gneisen på Vanna er datert til 2885 \pm 20 Ma (Zwaan and Tucker, 1996; Bergh et al., 2007). Disse ble trolig dannet og deformert under de nevnte Saamian/Lopiske orogenesene. Ringvassøya Grønnsteinsbelte har

Figure 1.1: Geologisk kart over det Fennoskandiske Skjold, med arkeiske kratoner og generell alder for de ulike tektoniske episodene (merk at noen av aldrene varierer fra teksten, da det er vanskelig å definere start/slutt for en fjellkjededannelse). Skorpeskala strukturelle lineamenter er markert, samt svart firkant markerer Vest-Troms Grunnfjellskompleks (WTBC) (Koistinen et al., 2001; Bergh et al., 2015)

Figure 1.2: Geologisk-tektonisk kart over WTBC med profil (Bergh et al., 2007, 2010, 2021). Studieområdet er markert med rød firkant.

en avsetningsalder på ca.2,8-2,7 Ga (Zwaan, 1989; Motuza, 2000) og ble trolig dannet av interkontinetal rifting og vulkanisme sent/etter de nevnte orogenesene. TTGgneisen er intrudert av 2,4 Ga mafiske gangsvermer (Kullerud et al., 2006) som initierte oppsprekning av den arkeiske skorpen og dannet flere interkontinentale sedimentbassenger (grønnsteinsbelter) slik som de 2,4-2,2 Ga gamle lav-metamorfe klastiske avsetningene på Vanna (Bergh et al., 2007). Senere deformasjon av grønnsteinsbeltene skjedde trolig i sen-Svekofennisk tid (Paulsen et al., 2021).

Kvaløya og Senja Kvalsund-skjærsonen markerer grensen mellom de neoarkeiske TTG-gneisene på Ringvassøya og de noe mer mafiske tonalittiske gneisene og migmatittene på Kvaløya. Kvalsundgneisen er en båndet migmatittisk gneis med alder på ca. 2710-2700 Ma (Myhre et al., 2013). Gråtindmigmatitten opptrer i kjernen av en storskala F2-fold med Mjelde-Skorelvatn- og Steinskartind grønnsteinsbelte langs hver foldeflanke (Fig.1.2). Disse grønnsteinbeltene har en avsetningsalder på ca. 2,4-1,9 Ga (Bergh et al., 2015). Bakkejordioritten og Kattfjord gneiskompleks har en magmatisk alder på ca. 2,75-2,69 Ga, og en omarbeiding og migmatittisering ved ca. 2,7-2,67 Ga (Corfu et al., 2003; Myhre et al., 2013; Zozulya et al., 2009).

Torsnes grønnsteinsbelte har en minimim avsetningsalder på 1,9 Ga og representerer den geografiske grensen til en større "skorpeskala" skjærsone (Senja skjærsone) som trolig kan følges under Kaledonidene til det tektoniske vindu ved Mauken og videre inn i sverige (Bjerkegård et al., 2015). Store deler av Senja består av neoarkeisk til paleoproterozoiske kvarts-dioritt og paleoproterozoiske grønnsteinsbelter. Både Kvaløya og Senja er intrudert av ca.1,8 Ga gamle granitoide og mafiske plutoner (Landmark, 1973; Andresen, 1979; Corfu et al., 2003; Kullerud et al., 2006a; Bergh et al., 2010; Laurent et al., 2019; Hansen, 2009). Blant disse finner vi Ersfjordgranitten og Hamngabbroen (Fig.1.2), lignende bergarter finner vi i Lofoten og Vesterålen (Corfu, 2004). Denne 1,8 Ga gamle bimodale øybue-relatert magmatiske episoden er tolket til å være starten av den ca. 1,77-1,63 Ga Svekofenniske kompresjonen i WTBC (Corfu et al., 2003; Bergh et al., 2010; Laurent et al., 2019). Oppsummering av den tektono-magmatiske utvikling av WTBC er vist i figur 1.3.

1.2.3 Svekofennisk tektonisk modell for WTBC

De viktigste Svekofenniske deformasjonstrukturene for WTBC kan forenklet bli beskrevet med tre deformasjonshendelser (D1-D3), fra Bergh et al. (2010), deformasjonsaldre og tolkninger som knytter geokronologiske dateringer med deformasjonsfasene er hentet fra Corfu et al. (2003); Armitage and Bergh (2005); Bergh et al. (2010, 2015); Myhre et al. (2013); Laurent et al. (2019).

AGE (Ga)	COMPONENTS & EVENTS
2.89-2.56 Ga	Archean magmatism and metamorphism: Tonalite (and anorthosite), granite and granodiorite (Dâfjord & Kvalsund gneiss, Bakkejord diorite and Grâtind migmatite)
2.85-2.83 Ga	Initial volcanism and sedimentation: Parts of the Ringvassøya greenstone belt
2.69-2.56 Ga?	 Neoarchaean deformation Main gneiss foliation (initially flat-lying, now N-S striking and variable dip), intrafolial ductile shear zones, tight folds and dip-slip stretching lineation (NE-SW) Medium grade (locally high grade) metamorphism and migmatization Crustal contraction and thickening by accretion and/or underplating
2.40 Ga	Crustal extension and intrusion of Ringvassøya mafic dyke swarm
2.4-2.2 Ga	Deposition of Vanna group and Skipsfjord nappe clastic sediments
2.22 Ga	Intrusion of Vanna diorite sill
1.98 Ga	Deposition and magmatism of Mjelde-Skorelvvatn and Torsnes (possibly also Astridal and Steinskardtind) belts
1.993 Ga	Intrusion/volcnism in the Mjelde-Skorelvvatn belt
1.80 Ga	Intrusion of granites and Hamn Norite in Senja
1.79 Ga	Intrusion of Ersfjord Granite in Kvaløya
1.8 Ga?	Svecofennian deformation: Early: -Main mylonitic foliation in metasupracrustal rocks, initially flat-lying. tight to isoclinal intrafolial folds with NW-SE trend and moderately plunging folds, NE-directed ductile shear zones (thrusts) with a dip-slip stretching lineation. Prograde medium (locally high) grade metamorphism.
Unknown	 NE-SW orthogonal shortening, NE-directed thrusting and arc-related accretion/collision Mid: -Regional NW-SE trending open to tight upright folding of the mylonitic Foliation; flat hinges and steep limbs. Medium/low grade metamorphism. Continued NE-SW orthogonal crustal shortening
1.77 Ga	Late: -Regional and meso-scale steeply N-plunging sinistral folds and conjugate NNW-SSE and NW-SE striking, steep ductile shear zones (strike-slip) in the Senja Shear Belt, Mjelde-Skorelvvatn belt and Ringvassøya greenstone belt. Retrogressive low grade metamorphism.
1.75 Ga?	Latest: -NE-SW trending upright folds of the <i>Vanna group</i> and SE-directed thrust (in <i>Skipsfjord nappe</i>), steep NE-SW and ESE-WNW striking semi-ductile strike-slip shear zones. Retrogressive low grade metamorphism. Orogen-parallel contraction (foreland fold-thrust belt development) and strike-slip shearing
1.57 Ga	Intrusion of felsic pegmatites and continued retrogression of strike-slip shear zones

Figure 1.3: Oppsummering av tektono-magmatiske utvikling av WTBC (Bergh et al., 2010)

D1 (ca. 1800-1780 Ma) - Første deformasjonshendelse er karakterisert av lavvinklet SV fallende skyveforkastninger og duktile skjærsoner, som stedvis produserer mylonittisk tekstur i meta-sedimenter (grønnsteinsbelter) og intrafolierte isoklinale folder lokalt under amfibolitt- til granulittfacies forhold. Den Svekofenniske foliasjonen med NV-SØ-lig strøk overskriver den tidligere arkeiske foliasjonen.

D2 (ca. 1777-1769 Ma) - Den etterfølgende deformasjonshendelsen fulgte en noe tilsvarende deformasjon som i D1, her karakterisert ved storskala opprette folder, foldeakser med NV-SØ-lig strøk - parallelt med den tidligere foliasjonen. Metamorfosegraden her var ved amfibolittfacies. D1 og D2 er mest sannsynlig et resultat av konvergerende platetektonikk i møte med en eldre kontinentalskorpe i NØ og følgende påleiring.

D3 (ca. 1751-1745 Ma) - Neste deformasjonshendelse innebar strøkforskyvende skjærbevegelser i NV-SØ-lig retning, de allerede NV-SØ dominerte strukturene som grønnsteinsbelter, Svekofenniske skjærsoner, foliasjon, foldeakser og flanker ble deformert av denne skjærbevegelsen, med hovedsakelig sinistral forskyvning. Meta-morfosegraden for D3 er estimert til nedre amfibolitt- til grønnskiferfacies. Denne tredje deformasjonshendelsen markerer en endring fra den konvergerende platetektonikken som foregikk under D1 og D2, til å få en skrå konvergens eller transpressiv tektonisk setting. Denne transpressive bevegelsen kan ha forårsaket økt magmatisme i form av pegmatittiske gangsvermer og plutoner.

1.3 Tidligere arbeid

Ersfjordgranitten er beskrevet som en stor granittisk pluton som dekker store deler av Kvaløya, WTBC (Landmark, 1973; Andresen, 1979; Laurent et al., 2019), og alderen er veldokumentert og dateringsarbeid har også blitt utført ved Otervika, Kvaløya og Senja. Geokronologisk arbeid har tydlig vist at granitten er paleoproterozoisk; Rb-Sr 1706±15 Ma (Andresen, 1979), 1779±17 Ma (Romer et al., 1992), U-Pb 1792±5 Ma (Corfu et al., 2003), 1798-1784 Ma Laurent et al. (2019). Nylige strukturelle studier av Ersfjordgranitten og omliggende gneiser har ført til at den plutonske modellen må vurderes på nytt (Haaland, 2018; Bergh et al., 2021). Ersfjordgranitten kan ha blitt dannet av delvis smelte av de omliggende gneisene eller ved injeksjon som sills langs strukturelle plan, da de er tydelig påvirket av deformasjon. Deformasjonen av de granittiske gangene er tolket som Svekofennisk.

Figure 1.4: Skjematisk geometrisk/kinematisk modell for utviklingen av Svekofenniske strukturer observert i WTBC. A) Dannelse av NØ vergerende skydekker og lavvinklede mylonittisk foliasjon i grønnsteinsbeltene. B) Det ortogonale NØ-SV rettede kompresjonsregimet fortsetter og produserer oppreiste makro-folder med steile flanker. C) Sen-Svekofennisk tektonisme med NØ-SV ortogonal og/eller skrå kompresjon mot NV-SØ og oftest sinistrale laterale bevegelser langs steile foldeflanker (Bergh et al., 2010).

1.4 Studieområdet

Studieområdet ligger på den sørvestlige delen av Kvaløya, Troms (Fig1.2). I utgangspunktet skulle området Oterneset, kysten og veiskjæringen på fylkesvei 862 mellom Otervika og Sandviksletta være feltområdet. Senere ble området Lakstind og Brattfjell naturlig inkludert for å forstå strukturgeologien, samt at de nevte fjelltoppene nylig har fått veitilgang grunnet vindmøllebygging.

1.5 Formål

Hovedmålet med arbeidet er å teste hypotesen om intrusjonen av gangsvermer fra Ersfjordgranitten stammer fra delvis smeltede porsjoner av den omgivende TTGgneisen skjedde under Svekofennisk D2-hendelse. Dette kan løses ved relativ og absolutt datering av gangene relatert til strukturer fra sen-Svekofennisk deformasjon i området. Dette gjøres ved å kartlegge nettverket av pegmatitter og utføre radiometriske dateringer av de granittiske pegmatittene. I tillegg skal det testes og analyseres om den nye smelten (laukosom) fra vertsbergarten, migmatittisk TTGgneis, korresponderer med alderne for Ersfjordgranitten og gangsvermene. Om så, er deformasjonsmønsteret til TTG-gneisen ved Otervika fra Svekofennisk deformasjon og ikke neoarkeisk. Disse målene kan oppnås ved en kombinasjon av detaljert strukturell datainnsamling, prøvetagning av de pegmatittiske gangsvermene og leukosom fra den migmatittiske TTG-gneisen, mikroskopistudier, og U-Pb zirkon-datering.

Kapittel 2

Metode

I dette kapittelet er de ulike metodene som har blitt benyttet i arbeidet kort introdusert og forklart. Første oppgave var å kartlegge området for å få en større forståelse av de ulike geologiske enhetene og deres forhold til hverandre, samt samle inn prøver til tynnslip og geokronologi. Arbeid relatert til prøvene, bortsett fra selve U-Pb-dateringen, ble utført ved Instituttet for Geovitenskap i Tromsø av forfatter og av ansatte tilknyttet laboratoriet.

2.1 Feltarbeid

Det ble tilbrakt 50 dager ute i felt ved Otervika mellom juli og november 2020 samt et par dager sommeren 2019 og 2021. Feltarbeidet ble gjort manuelt på kartblad i 1:500 hentet fra Norgeibilder (norgeibilder.no), digitale hjelpemidler som GPS ble også benyttet for å angi korrekt lokalisering ute i felt. Strukturelle målinger ble registrert ved hjelp av et Silva-kompass og bruk av høyrehåndsregelen, notert ned på kartblad og/eller i feltdagbok.

2.2 Prøver

Det ble samlet totalt 26 prøver fra feltområdet under feltsesongen i 2020. Prøvene ble markert i kartblad og med eget GPS-punkt ute i felt, disse ble beskrevet utfyllende i feltdagboka med tilhørende skisser av lokaliteten og fotografier. Det ble tatt betraktelig større prøver av pegmatittene (25-40kg), for å forsikre at det skulle være zirkon i disse for datering.

2.3 Tynnslip

På grovlaboratoriet ('Emilbua') ved Instituttet for Geovitenskap i Tromsø, ble 16 av 26 prøver saget til tynnslip. Klossene ble så sendt til laboratoriet tilknyttet instituttet for ferdigstilling. Det ble åtte tynnslip av gneis og migmatitter (leucosom/melanosom) fra feltområdet, fem tynnslip av ulike granitter og tre tynnslip av mafiske intrusjoner. Disse ble videre analysert i mikroskop og fotografert ved Instituttet for Geovitenskap i Tromsø.

Prøvepreparering Alle prøvene skulle prepareres for datering, bortsett fra de mafiske intrusjonene, en total på 23 prøver. Hele prepareringen, forklart nedenfor, forgikk på Emilbua. Prøvene ble hamret i stykker til ca. 10 cm størrelse, hvor én del av prøven ble satt til sides som referanse. Prøvene ble så behandlet gjennom en kjeftknuser hvor kornstørrelsen ble minsket til omlag fin grus. Dette materialet ble så kjørt gjennom en mølle. Både knusing og kverning ble etterfulgt av nøye rengjøring, for å minske risiko for kontaminering. Da alle prøvene var blitt kvernet, ble de så sendt på et vaskebord for mineralseparasjon. Prinsippet er at det tyngste materialet/mineralene blir transportert lengst, og det lettere materialet blir tidlig vasket ut. De ulike fraksjonene ble samlet i hver sin bøtte, i denne sammenheng var den tyngste fraksjonen (tetthet til Zirkon ca. 4,6-4,7 g/m³) av interesse, og ble dermed tatt vare på og satt inn i tørkeskap. Siden det ble tatt store prøver, spesielt av pegmatittene, var den tyngste fraksjonen for stor for videre arbeid, dette måtte da vaskes på nytt, med en brattere helning på vaskebordet. I tillegg ble det benyttet en håndmagnet for å fjerne magnetitt, etter at prøven var blitt tørr. Magnetitten ble også tatt vare på.

Laboratoriearbeid De tyngste fraksjonene av prøvene ble tatt med til laboratoriet hvor enkelte prøver først ble send gjennom en magnetisk separator (Frantz), for å fjerne ytterligere materiale, her sterkt eller svakt magnetiske mineraler slik som amfibol, granat og biotitt. Fraksjonene ble så behandlet med tungvæske. Den høye tettheten hos tungvæsken medfører at de tyngste mineralene synker ned i kolben og kan dreneres ut fra de lettere mineralene som vil bli flytende øverst i væsken. Det ble først benyttet litium heteropolytungstates (LST), denne væsken ville fjernet blant annet kvarts fra prøven, men denne prosessen ble utelatt siden prøvene var små nok i volum til å sendes til neste steg. Den neste tungvæsken som ble benyttet var diiodometan (DIM), denne væsken har svært høy tetthet og vil sortere ut de tyngste mineralene som pyritt og zirkon. Etter denne mineralseparasjonen ble enkelte prøver kjørt gjennom Frantz for å fjerne ennå ytterligere materiale, slik at plukkingen av zirkon skulle bli enklere. Neste steg var å montere zirkon ved hjelp av mikroskop, dobbeltsidig teip og pinsett. Det ble montert zirkon fra 22 prøver, disse ble så støpt inn i epoxy og ferdigstilt av laboratoriet ved Institutt for Geovitenskap i Tromsø.

Isotopanalyse og prosessering Etter monteringen av zirkon ble det tatt fotografier med elektronmikroskop (SEM) og katodeluminisens (CL). SEM-EDS analysen ble utført ved "Advance Microscope Core Facility" ved UiT. En Zeiss Merlin Compact VP med vinkel selektiv tilbakespredning (backscatter) ble benyttet for å identifisere zirkon og deres sonering. Fredrik Sahlström utførte analysen. Det ble også sammenstilt oversiktskart av klossene ved hjelp av disse fotografiene. Prøvene ble så sendt til laboratoriet til NGU i Trondheim for analyse. Hos NGU ble isotopforholdet mellom uran og bly målt med massespektrometri (LA-ICP-MS). Fra analysene ved NGU ble resultatene levert i en Excel-fil, hvor tilleggsprogrammet IsoplotR ble benyttet for å utarbeide konkordiadiagram. Alder på de ulike bergartene ble så fastsatt. Flytskjema av prøvepreparering og analyser er vist i figur 2.1.

2.4 LA-ICP-MS

Teori Nedbrytningsprosessene av uran (U) og thorium (Th) til stabile isotoper av bly (Pb) er grunnlaget for flere teknikker for å datere bergarter. Uran og thorium har lignende kjemiske egenskaper og begge er inkompatible elementer som gjør at de lettere konsentrerer seg i skorpen og i silikatrike mineraler (Faure and Mensing, 2005).

Selve desintegreringen skjer ved at ustabile uran-isotoper avgir alfa- og betapartikler i flere ledd og ender opp som stabile bly-isotoper. Nærmere spesifikt blir 238U til 206Pb og 235U til 207Pb, med de respektive halveringstidene 4468 millioner år og 407 millioner år (Steiger and Jäger, 1977). Denne sekvensen av nedbrytning er i kjemisk likevekt slik at man kan anse at produktet av et isotop og dens halveringstid er lik gjennom hele rekken noe som gjør at man kan tenke seg at uran og thorium direkte nedbrytes til bly (Schoene, 2014). Dette gjør det mulig å regne seg tilbake til når visse mineraler ble dannet. Dette gjøres ved å måle det kvantitative forholdet mellom disse isotopene i mineraler som er motstandsdyktige for forvitring, høy krystalliseringstemperatur og evnen til holde på uran og bly. Et slikt mineral er zirkon (ZrSiO4) som også har blitt brukt i denne studien.

Målinger Grunnet Covid-19 restriksjoner var det ikke mulig å overvære selve dateringsanalysen hos NGU i Trondheim. Beskrivelsen av metoden er oversatt fra engelsk tekst fra Trond Slagstad og det er forsøkt å endre minst mulig på ordlydene og teksten.

Figure 2.1: Flytskjema for tynnslip og U-Pb isotopanalyse

Analysene ble utført av Trond Slagstad og Graham Hagen-Peter ved laboratoriet til NGU i Trondheim.

"Prøvene ble abladert med "Teledyne-Cetac Analyte Excite 193 nm excimer laser" og ablasjonen ble utført i en "HelEx II" to volum celle med helium. Aerosolene ble transportert til en "Nu Plasma 3 MC-ICP-MS" med helium. Argon ble tilsatt til helium miksturen i en glassbeholder ca. halve distansen til plasma flammen. Det ble enten brukt 12- eller 15 μm -diameter sirkulær stråleåpning ("punkt analyse"), med 4 eller 5 Hz repitisjonshastighet. De samme laserparameterne ble brukt for alle standarer og prøver. 22 sekunder ablasjoner (88 skudd ved 4 Hz eller 110 skudd ved 5 Hz) ble etterfulgt av 15-s grunnlinje og 5-s utvaskning. Kvikksølv-202, ²⁰³(Pb + Hg), og ²⁰⁸Pb ble målt ved sekundære elektronmultiplikator; ²⁰⁶Pb og ²⁰⁷Pb ble målt med Daly detektorer; ²³²Th og ²³⁸U ble målt med Faraday-kopp med 10¹¹ – Ω motstand."

Datareduksjon og usikkerhet Rådataene ble redusert ved hjelp av "U-Pb Geochronology" reduksjonskjemaet i Iolite v.4. "On-peak gas-blank" basislinjer ble tilpasset med en automatisert "spline" og fjernet fra hver kanal. Ca. 1,5 og 1 s ble trimmet fra henholdsvis start og slutt fra hver prøve. Dette resulterte i ca. 19,5 s med brukbare data fra hver prøve. Det ble brukt to lokale zirkon-standarer og en internasjonal standard. Basert på usikkerhetsanalyse og resultat fra standarder ble det anbefalt å sette den nederste grensen for usikkerhet til 1,3

Visualisering, prøvelokaliteter og data IsoplotR (Vermeesch, 2018) i excel ble brukt for å visualisere og beregne aldrene for de ulike prøvene. Terra-Wasserburg ble brukt som concordia type med 2s. Selve figurene er hentet fra IsoplotR Online (Vermeesch, 2018), da de var visuelt bedre.

Prøvelokalitetene er vist i figur 3.2, 3.4 og koordinater oppgis i (vedlegg I).

Korrigerte analysedata for U-Pb dateringene finnes i (vedlegg II) og kalkulerte aldre i (vedlegg III).

Kapittel 3

Resultater

3.1 Strukturgeologisk oversikt

Store deler av studieområdet; Otervika, Lakstind, Brattfjell og veiskjæringen på fylkesvei 862 mellom Oterneset og Sandviksletta består av sterkt deformert gneis med tydelig foliasjon. Pølsestrukturer av mafiske intrusjoner/melanosomer, foliasjonsparallelle granittiske linser er både massive med lite til ingen tydelig foliasjon - til granittisk gneis som er tydelig foldet sammen med TTG og har stedvis godt utviklet magmatisk foliasjon. Granittiske pegmatitter opptrer som "boudins" lagparallelt med foliasjon og som "sills" og "dykes".

Foliasjonen i området bærer preg av makro- til mesoskala folder med akseplanstrøk N-S og NV-SØ. Brattfjell-Sommarøy foldene opprer i kartbildet som åpne, symmetriske og med sør-stupende akse (Fig. 3.1). Folden i mesoskala ved Lakstind stuper mot SØ og er en tett fold. SØ-flanken av samme fold bærer preg av åpen folding med lik geometri slik som Brattfjell.

Videre i dette kapittelet vil de tre delområdene; Otervika, Lakstind og Brattfjell bli beskrevet i mer detalj. Det vil bli lagt vekt på foliasjon (S1) til TTG og den granittiske gneisen, mesoskala strukturer observert i felt, geometri, kontaktforhold og opptreden av magmatiske kropper som pegmattitter, granittiske sills og dykes. U-Pb resultater vil komplimentere de kryssrelaterte forhold som har blitt observert i felt. De radiometriske resultatene vil bli presentert både for seg selv og sammen med de strukturelle observasjonene.

3.2 Otervika

Otervika består av mafiske gneiser (Kattfjord gneiskompleks) med godt utviklet foliasjon. Gneisen er mest utbredt på Oterneset samt som slirer og linser i den granittiske gneisen langs fylkesveien. Gneisen er stedvis migmatittisk. Mafiske linser og

granittiske kropper opptrer i felt parallelt med TTG-foliasjonen som pølsestruktrer. Granittiske pegmatitter opptrer både som parallelle og kryssende ganger i forhold til foliasjonen (Fig.3.2), de har relativt lik mineralogisk komposisjon (kvarts, feltspat, biotitt og magnetitt), men mektighet, korstørrelse og deformasjon varier noe mer. Stranden ved Oterneset definerer grensen mellom TTG og en større granittisk kropp/megalinse/sill. Kontakten er parallell med foliasjonen observert på Oterneset og kontakten kan følges SV for Oterneset langs med kysten og i veiskjæringen (Fig.3.2).

Strukturer Foliasjonen (S1) er svært konstant med strøk ca. 340-160 og nært vertikalt fall (Fig.3.2). Foliasjonen blir kuttet av flere pegmatittiske "dykes" med strøk ca. 110 og steilt til vertikalt fall mot SV. Gneisen har i kontakt med den kuttende pegmatitten blitt svakt foldet og det er tydelig fortrengt og flyttet med dekstral forflytning (Fig.3.4). Overflaten av foliasjonsplanet har tydelige lineasjoner, men det er vanskelig å skille strekningslineasjoner med yngre forkastnings-lineasjoner (slickensides) og dermed blitt utelukket fra dette studiet.

Det er observert tre typer folder ved Otervika; (F1) Isoklinale, intrafolierte folder med varierende stupende foldeakse og foliasjonsparallelle akseplan, (F2) Åpne, asymmetriske folder som vergerer SV og stuper slakt mot NV, (F3) Tette, asymmetriske folder med vertikale akseplan som stryker SØ-NV og steilt stupende foldeakser (Fig.3.3). Det er ikke observert folderelasjoner mellom F2 og F3 folder og inndelingen er basert på tidligere studier av foldegeometri i området (Bergh et al., 2010; Haaland, 2018; Bergh et al., 2021). Mindre skjærsoner er observert langs de krysskuttende pegmatittene og disse viser en generell dekstral forflyting av gneisen og en NV-SØ-lig retning. Større N-S diskontinuiteter er tolket som yngre sprø/duktile forkastninger som har hatt en dekstral komponent (Fig.3.2).

Kryssforhold og relativ alder Basert på opptredenen i felt, geometri, kryssforhold og mineralogi er det kartlagt totalt seks ulike bergarter på Oterneset (Fig.3.2.) Følgende bergarter blir listet opp fra eldst til yngst basert på tolket relativ alder.

- 1. Det blir antatt på bakgrunn av tidligere studier og feltopptredenen at den mafiske gneisen (også nevt som TTG) er den eldste bergarten på Otervika
- 2. Foliasjonsparallelle mafiske og pegmatittiske kropper har utviklet pølsestrukturer (boudins) med største strekningsakse vertikalt på strøket. De følger også den svakt undulerende S1-foliasjonen. Pegmatitten består for det meste av hvit feltspat og kvarts.
- 3. Foliasjonsparallelle granittiske "sills", lag eller slirer. Granitten på Oterneset er lite til svakt foliert, og følger også den svakt undulerende foliasjonen. Det er ikke observert at granitten er "boudinert". Granitten på Oterneset er

mineralogisk homogen og er relativt finkornet. Det er en viss forskjell mellom de granittiske lagene på Oterneset og det større granittiske laget ved veiskjæringen; Oterneset granitten er mørkere og inneholder noe mer mafiske mineraler (hornblende og biotitt). Granitten ved veiskjæringen er mer fanerittisk (grovkornet) og inneholder mer K- og Na-feltspater som er tydelig på den rød/rosa fargen. Det er ikke mulig å skille disse i relativ alder i felt.

- 4. Foliasjonsparallelle granittiske pegmatitter. Disse pegmatittene har ikke utviklet pølsestrukturer og inneholder større mengder biotitt og magnetitt, samt kvarts og feltspat.
- 5. Foliasjonskryssende granittiske pegmatitter. Disse pegmatittene krysser alle de nevnte bergartene nesten vinkelrett, de er mineralogisk svært like de foliasjonsparallelle pegmatittene.

Typiske kryssrelasjoner mellom de ulike bergartene på Oterneset er vist i figur 3.4.

Geokronologi Det ble utført radiometriske analyser av alle de nevnte magmatiske bergartene ved Otervika, bortsett fra de mafiske linsene, da de mest sannsynlig ikke inneholder zirkon.

Den mafiske gneisen "IBB06" fra Oterneset (Fig.3.4) viste to klynger med konkordante zirkoner på 2791 \pm 4 Ma og 2695 \pm Ma (Fig3.5). En leukosom tilhørende den migmatittiske gneisen "IBB12" ved veiskjæringen viste en relativt god diskordant linje med øvre krysningspunkt på 1799 \pm 13 Ma (Fig3.5). Den samme prøven inneholdt også arvet zirkon med diskordant øvre krysningspunkt på 2737 \pm 55 Ma. Den granittiske prøven "IBB02" ga en alder på 1793 \pm 7 Ma (Fig.3.6) og hadde to arvede zirkoner som lå konkordant på 2806 \pm 5 Ma og 2675 \pm 5 Ma.

De granittiske pegmatittene fra Oterneset ga ingen robuste resultater (Fig.3.7). Lokalitet for IBB08 og IBB26 er vist i figur 3.8.

3.3 Lakstind og Brattfjell

De to områdene inndelt som Lakstind og Brattfjell viser høyere grad av deformasjon enn Otervika. Granittene opptrer i høyere grad som granittiske gneiser og de mafiske gneisene er i stor grad skjærforkastet (Fig.3.9). Kartleggingen av pegmatitter i dette studieområdet viser de samme forholdene som ved Otervika. De krysskuttende pegmatittene har relativt konstant strøk og fall (110/60). De resterende magmatiske bergartene er parallelle med foliasjonen til den mafiske gneisen (Fig.3.1). Større folder i veiskæringen viser motsatt vergens enn de mindre skjærsonene og folder alle bergarter utenom de krysskuttende pegmatittene (Fig.3.10), det er også observert smeltestrukturerer i hengselsonen.

Granitten på Lakstindtoppen (Fig3.1) ble datert til 1798 \pm 8 Ma (prøve IBB01). Granitten ved veiskjæringen "IBB10" ble datert til 1803 \pm 4 Ma. Leukosom fra den migmatittiske gneisen i veiskjæringen ga en alder på 1800 \pm 16 Ma.

Figure 3.2: folder med kalkulert foldeakse (hvit sirkel). Prøvelokaliteter er markert med svart firkant og prøvenr. foliasjonsparallelle pegmatitter. B) Storsirkel og poler til foliasjonskryssende pegmatitter. C) Gradient av poler av flanker til småskala Bergrunns- og strukturgeologisk kartlegging av Oterneset. Stereonet A) Viser storsirkel og poler til S1 og grensen mellom

Figure 3.3: Ulike foldetyper ved Otervika. A) Åpne, asymmetriske F2-folder som vergerer SV og stuper slakt NV. Viser også lokalitet til prøve IBB19. B) F3-fold med vertikalt akseplan, nær vertikalt stupende foldeakse. Merk lignende geometri som kartskala Brattfjell-Sommarøyfolden. C) Isoklinale F1-folder med foliasjon-skryssende og foliasjonsparallelle pegmatitter. D) Isoklinale folder som viser dekstral bevegelse og pegmatitt som enten har intrudert i skjærsonen eller vært årsaken til skjærbevegelsen.

ble tatt ved denne lokaliteten. Figure 3.4: Kryssrelasjon mellom de ulike bergartene på Oterneset med geokronologiske data. Prøvene IBB02, IBB04, IBB05 og IBB06

Figure 3.5: Konkordiaplot (Terra-Wasserburg) med to sigma. A-D prøve IBB12 A) Håndstuff B) Polarisasjonsmikroskopisk bilde av tynnslip i XPL. C) Diskordialinje for arvede zirkoner. D) Diskordialinje og enkeltzirkon for leukosomen. E-H: Prøve IBB06. E) Håndstuff som viser sterkt foliert gneis nært mylonittisk. F) Seritisering av plagioklas G-H) To konkordante klynger av zirkoner (grønne sirkler markerer zirkonene brukt for datering)

Figure 3.6: Konkordiaplot (Terra-Wasserburg) med to sigma. A-C prøve IBB02 A) Håndstuff B) Polarisasjonsmikroskopisk bilde av tynnslip i XPL. C) Diskordialinje for arvede zirkoner og enkelt zirkoner med konkordante aldre. Grønne sirkler markerer zirkonene brukt for datering.

Figure 3.7: Konkordiaplot (Terra-Wasserburg) med to sigma. A-B prøve IBB04, C-D prøve IBB08, E-F prøve IBB05 og G-H prøve IBB26

Figure 3.8: Kryssforhold og prøvelokalitet for IBB08 og IBB26

Figure 3.9: A og C) Granittisk gneis og granitt foldet sammen, mindre skjærsoner forplanter seg fra hengselsonen og er akseplanparallelle. Dette er blitt kartlagt som kontakten mellom gneis og granitt ved Lakstind-Brattfjell B) Foldet "boudinert" mafisk kropp inni en relativt massiv og homogen granitt ved Lakstind. D) Skjærsonen i den mafiske gneisen er parallell med foliasjonen og kontakten med den overliggende granittiske gneisen.

Figure 3.10: Kryssforhold og deformasjon av de ulike bergartene ved veiskjæringen. Asymmetrisk F2 fold vergerer mot NV duktile og magmatiske strukturer ble observert.

Kapittel 4

Diskusjon

4.1 Strukturgeologisk diskusjon

De strukturgeologiske dataene og tolkningene passer godt med den etablerte tektoniske modellen for WTBC (Bergh et al., 2010, 2021).

4.1.1 D1 Strukturer

Den mest utbredte og markante D1-strukturen er foliasjonen som er observert i den mafiske-, granittiske- og migmatittiske gneisen (S1). Strøket og fallet til S1foliasjonen varier på grunn av senere folding og deformasjon, med et generelt NV-SØ- og NØ-SV-lig strøk. Isoklinale F1-folder med S1 foliasjonsparallelle akseplan er observert i den mafiske gneisen men ikke i den granittiske gneisen. Dette kan tyde på at de granittiske "sills" intruderte i D1 svakhetsoner som foliasjon og skjærsoner. Det kan også skyldes relativt stor kompetanseforskjell mellom de myke amfibol- og biotittrike gneisene og granittene. Foruten de isoklinale foldene i granitten, tolkes det som at de overnevte bergartene ble deformert samtidig under D1.

4.1.2 D2 Strukturer

Mesoskala åpne til tette asymmetriske folder med slake og steile flanker har blitt observert og tolket som F2-folder. De folder tydelig alle bergartene i studieområdet, foruten de granittiske pegmatittene som krysser lagdelingen. Større F2 folder er utledet fra endring i strøk og fall til S1-foliasjonen (Fig.3.1). Den steile foliasjonen på Oterneset er tolket til å være den steile flanken av en mesoskala F2 synform (Otervika-folden). Denne folden er åpen asymmetrisk og stuper mot NV. Lakstind-antiform er tolket som kontinuasjonen av Otervika-folden, men pga. yngre forkastinger eller skjærsoner er den rotert og stuper mot SØ.

Figure 4.1: Strukturell tolkning av SV-lige del av Kvaløya og Nord-Øst Senja med storskala F2 og F3 folder. Generell retning og alder på granittiske pegmatitter. Modifisert fra Bergh et al. (2021).

4.1.3 D3 Strukturer

Mindre vertikale til steile SV-fallende skjærsoner med både sinistral og dekstral beveglseskomponent er tolket som D3 strukturer (S3). Asymmetriske skjærfolder med vertikalt til steilt stupende foldeakse er tolket som F3-folder. Storskala Brattfjellantiformen har generelt akseplanstrøk N-S og er tolket som kontinuasjonen av Sommarøysynform (Fig.3.1) (Thorstenen, 2011). Det antas at foldingen oppstod på grunn av distal kompresjon fra Torsnes/Senja skjærsone og en skrå tektonisk NV-SØ komponent (Bergh et al., 2010).

4.2 Geokronologisk diskusjon

4.2.1 TTG/mafisk gneis

Både U-Pb isotopanalysene og relativ alder i felt tilsier at gneisen er den eldste bergarten i studieområdet. Isotopanalysene ga relativt robuste (Spencer et al., 2016) aldre 2791 ± 4 Ma og 2695 ± 6 Ma. Det at det befinner seg to klynger med konkordante zirkoner tyder på at noen av zirkonene er blitt "nullstilt" ved omarbeiding og dannelse av migmatitt i perioden ca. 2,7 Ga. Dette er også beskrevet av Laurent et al. (2019). Alle granittene som ble datert ligger innenfor 1,8-1,79 Ga interval, disse aldrene sammenfaller godt med tidligere dateringer av Ersfjordgranitten (Corfu et al., 2003; Kullerud et al., 2006a; Bergh et al., 2010; Laurent et al., 2019).

4.2.2 Granitt

Prøve "IBB02", granitt fra Otervika, inneholdt to zirkoner som ga konkordante aldre på henholdsvis 2806 ± 5 Ma og 2676 ± 5 Ma som er svært lik alderen til gneisen. Dette kan skyldes at den granittiske smelten har inkorporert sidebergarten under intrusjonen og at zirkonene kommer derifra, eller at granitten ble dannet av delvis smelte fra den omliggende gneisen. En antatt leukosom fra gneisen "IBB12" viste også arvede aldre 2737 ± 55 Ma, samt krystallisasjonsalder på 1799 ± 13 Ma som igjen kan støtte hypotesen om at de felsiske magmatiske bergartene ble dannet av delvis smelte. Prøve IBB07, granitt fra Oterneset, ga en alder på 1791 ± 7 Ma.

4.2.3 Granittiske pegmatitter

Ingen av pegmatittene ga robuste dateringer da de faller vekk fra konkordialinjen, som betyr at de har opplevd blytap. Blytapet kan skyldes Neoproterozoisk eller Kaledonsk deformasjon, det kan også tenkes at pegmatittene har vært åpne systemer og dermed opplevd "nylig" blytap. Allikevel er prøvene IBB26 og IBB04 interessante. IBB26 viser diskordialinje med øvre krysningspunkt på 1815±23 Ma (merk 11 MSWD) og IBB04 viser 1766±29 Ma. Selv om resultatene er usikre kan dette styrke muligheten for at det er hvertfall to generasjoner av lagparallelle pegmatitter på Oternset. Hvis dette er tilfellet vil det da med gode resultater være mulig å gi relativt god indikasjon på alderen til D1. Da IBB26 var tydelig boudinert og deformert i felt (D1), mens IBB04 var kun svakt deformert (D2).

Dataene fra pegmatittene bør heller brukes til å forstå åpne zirkon-systemer og blytap-prosesser da resultatene er lite robuste.

4.3 Regionale implikasjoner

4.3.1 Strukturelt

Den strukturgeologiske kartleggingen styrker den allerede veletablerte tektoniske modellen til Bergh et al. (2010). F2 foldene ved Otervika og Lakstind er allerede beskrevet av Bergh et al. (2021). Brattfjell-antiformen som er tolket som en storskala F3 fold kan tyde på at de større skjærsonene (Senja-Torsnes) har hatt større påvirkning på de magmatiske og metamorfe bergartene enn tidligere antatt (Fig.??). Kartlegging av de granittiske pegmatittene viser at generasjonen som kutter foliasjonen har

Figure 4.2: Magmatisk og strukturell modell av SV-Kvaløya. D1: Delvis smelte i arkeiske TTG-gneiser produserer granittiske sills samtidig som lavvinklede, SØ fallende skjærsoner og skyveforkastninger produserer ny foliasjon. D2: Oppreiste folder med steile foldeflanker blir intrudert langs foldeflankene og folder de tidligere intrusjoner og strukturer. D3 Endring av spenningsmønsteret fører til høyvinklete laterale skjærsoner som folder omliggende gneiser og magmatiske intrusjoner samtidig som yngre pegmatittiske smelter intruderer langs svakhetsoner parallelt med skjærsonene. Inspirert av Bergh et al. (2010, 2021)

tilnærmet konstant strøk og fall gjennom hele studieområdet. De ligger både parallelt med storskala F2 akseplan og storskala D3 skjærsoner. Dette kan tyde på at D2 og D3 utviklet seg progressivt samtidig som krystalliseringen av de magmatiske kroppene.

4.3.2 Alder på deformasjon

De radiometriske dateringene gir ikke en direkte alder på deformasjonen. Allikevel kan det med relativ trygghet, fastslås at gneisfoliasjonen er Svekofennisk, som igjen betyr at D1/S1 har en maksimum alder på 1,8 Ga. Hvis vi velger å bruke dateringene fra pegmatittene vil D2-D3 ha en maksimum alder på ca. 1,76 Ga og siste registrerte magmatiske hendelse ca. 1561 \pm 3 Ma (Bergh et al., 2015).

Kapittel 5

Konklusjon

Hovvedformålet med denne studien var å kartlegge og datere granittiske og pegmatittiske intrusjoner ved Otervika og nærliggende områder. Utføre en strukturgeologisk kartlegging av gneisfoliasjon og se på sammenhengen mellom deformasjonog intrusjonshistorie.

Kattfjord gneiskompleks (2.80-2.69 Ga) i studieområdet har godt utviklet foliasjon og har opplevd delvis smelting ca. 1.8 Ga år siden. Dette tyder på at foliasjonen er Svekofennisk D1.

Det ble kartlagt flere granittiske lagparallelle intrusjoner. Mineralogiske forskjeller i granittene ble forklart med at delvis smelting eller kontaminering av intruderte gneiser påvirket intrusjonen. Aldrene på granittene samsvarer godt med tidligere studier av Ersfjordgranitten (1,80-1,79 Ga). Granittene er foldet under Svekofennisk D2, noe som avgrenser alderen på D1.

Det ble kartlagt minimum tre generasjoner av granittiske pegmatitter basert på mineralogi, deformasjon, kryssrelasjon og radiometriske dateringer. Pegmatittene er tolket til å representere hver deformasjonsfase under den Svekofenniske Orogenese 1,8-1,76 Ga.

5.1 Videre arbeid

Det er fortsatt mye igjen å gjøre med de radiometriske dataene fra Otervika, da det kun ble "skrapt på overflaten" i denne studien. Det er også mulighet for å utføre analyse på de ferdigstilte zirkonmontasjene som ikke ble analysert (12/22 prøver ble analysert). For å undersøke relasjon mellom de granittiske intrusjonene og TTG-gneisen kan geokjemiske analyser komme nærmere et svar.

Referanser

- Andresen, A., 1979. The age of the precambrian basement in western troms, norway. Geologiska Föreningens i Stockholm Förhandlingar 101, 291–298.
- Andrsson, U., Neymark, L., Billström, K., 2002. Petrogenesis of mesoproterozoic (subjotnian) rapakivi complexes of central sweden: Implications from u-pb zircon ages, nd, sr and pb isotopes. Earth Science 92, 201–228.
- Armitage, P.E., Bergh, S.G., 2005. Structural development of the Mjelde-Skorelvvatn Zone on Kvaløya, Troms: a metasupracrustal shear belt in the Precambrian West Troms Basement Complex, North Norway. Norwegian Journal of Geology 85, 117–132.
- Bergh, S., 2012. Was the Precambrian Basement of Western Troms and Lofoten-Vesterålen in Northern Norway Linked to the Lewisian of Scotland? A Comparison of Crustal Components, Tectonic Evolution and Amalgamation History, in: Sharkov, E. (Ed.), Tectonics. InTech, Rijeka. chapter 11. doi:10.5772/48257.
- Bergh, S., Corfu, F., Priyatkina, N., Kullerud, K., Myhre, P., 2015. Multiple post-Svecofennian 1750–1560 Ma pegmatite dykes in Archaean-Palaeoproterozoic rocks of the West Troms Basement Complex, North Norway: Geological significance and regional implications. Precambrian Research 266, 425 – 439. doi:https: //doi.org/10.1016/j.precamres.2015.05.035.
- Bergh, S., Haaland, L., Arbaret, L., Coint, N., Forien, M., 2021. 1.8-1.77 Ga and 1.74 Ga granite suites in the West Troms Basement Complex, northern Norway: Palaeoproterozoic magma emplecement during accretionary orogeny, from field observations. Manuscript Draft.
- Bergh, S.G., Kullerud, K., Armitage, P.E., Zwaan, K.B., Corfu, F., Ravna, E.J., Myhre, P.I., 2010. Neoarchaean to Svecofennian tectono-magmatic evolution of the West Troms Basement Complex, North Norway. Norwegian Journal of Geology 90, 21–48.
- Bergh, S.G., Kullerud, K., Corfu, F., Armitage, P.E., Davidsen, B., Johansen, H.W., Pettersen, T., Knudsen, S., 2007. Low-grade sedimentary rocks on Vanna, North Norway: a new occurrence of a Palaeoproterozoic (2.4-2.2 Ga) cover succession in northern Fennoscandia. Norwegian Journal of Geology 87, 301–318.
- Bingen, B., Andersson, J., Soderlund, U., Moller, C., 2008. The Mesoproterozoic in the Nordic Countries. Episodes 31, 29–34.

- Bingen, B., Viola, G., Möller, C., Auwara, J., Laurent, A., Yi, K., 2020. The sveconorwegian orogeny. Gondwana Research 90, 273–313.
- Bjerkegård, T., Slagstad, T., Henderson, H., J.S., S., Schönenberger, J., 2015. Geology and gold mineralisation in the emauken precambrian basement window, målselv, troms, northern norway. Norwegian Journal of Geology 95, 423–443.
- Corfu, F., 2004. U-Pb Age, Setting and Tectonic Significance of the Anorthosite-Mangerite-Charnockite-Granite Suite, Lofoten-Vesteralen, Norway. Journal of Petrology 45, 1799–1819. doi:10.1093/petrology/egh034.
- Corfu, F., Hanchar, J.M., Hoskin, P.W., Kinny, P., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469–500. doi:10.2113/0530469.
- Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere, in: Gee, D.G., Stephenson, R.A. (Eds.), European Lithosphere Dynamics. Geological Society of London. volume 32 of *Memoirs*, pp. 579–598. doi:10.1144/gsl.mem.2006.032.01.35.
- Faure, G., Mensing, T., 2005. Isotopes: principles and applications. Wiley-Blackwell.
- Gaál, G., Gorbatschev, R., 1987. An outline of the precambrian evolution of the baltic shield. Precambrian Research 35, 15–52. doi:10.1016/0301-9268(87) 90044-1.
- Goodwin, A., 1991. Evolution of the continental crust, in: Goodwin, A. (Ed.), Precambrian Geology. Elsevier. Developments in Precambrian Geology. chapter 6, pp. 582–584. doi:ISBN:9781483288550.
- Gorbatschev, R., 2004. The transscandinavian igneous belt -introduction and backround, in: Högdahl, Karin. Andersson, U., Eklund, O. (Eds.), The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Special paper - Geological Survey of Finland. chapter 1, pp. 9–13. doi:ISBN-10: 9516908896.
- Gorbatschev, R., Bogdanova, S., 1993. Frontiers in the Baltic Shield. Precambrian Research 64, 3–21.
- Graversen, O., Pedersen, S., 1999. Timing of gothian structural evolution in se norway: A rb-sr whole-rock age study. Norsk Geologisk Tidsskrift , 47–56.
- Haaland, L., 2018. Geometry and kinematic evolution of ductile shear zones in the ersfjord granite (1.79), west troms basement complex: A svecofennian eccretionary thrust system. UiT - The Arctic University of Norway, Masters Thesis , 1–79.
- Hansen, H., 2009. The Hamn nickel project- Annual report 2008. Internal report. Store Norske Gull.
- Henderson, I.H., Viola, G., Nasuti, A., 2016. A new tectonic model for the palaeoproterozoic kautokeino greenstone belt, northern norway, based on high-resolution airborne magnetic data and field structural analysis and implications for mineral potential. Norwegian Journal of Geology doi:10.17850/njg95-3-05.

- Högdahl, K., Andersson, U., Eklund, O., 2004. in: Högdahl, Karin. Andersson, U., Eklund, O. (Eds.), The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Special paper - Geological Survey of Finland, p. 125. doi:ISBN-10:9516908896.
- Hölttä, P., Balagansky, V., Garde, A.A., Mertanen, S., Peltonen, P., Slabunov, A., Sorjonen-Ward, P., Whitehouse, M., 2008. Archean of Greenland and Fennoscandia. Episodes 31, 13–19.
- Koistinen, T., Stephens, M, B., Bogatchev, V., Nordgulen, , Wennerström, M., Korhonen, J., 2001. Geological map of the Fennoscandian Shield, Scale 1:2 000 000. Geological Survey Finland; Geological Survey Norway; Geological Survey Sweden; Ministry of Natural Resources of Russia .
- Korja, A., Heikkinen, P., 2005. The accretionary svecofennian orogen—insight from the BABEL profiles. Precambrian Research 136, 241–268. doi:10.1016/ j.precamres.2004.10.007.
- Korja, A., Lahtinen, R., Nironen, M., 2006. The Svecofennian orogen: a collage of microcontinents and island arcs, in: Gee, D.G., Stephenson, R.A. (Eds.), European Lithosphere Dynamics. Geological Society of London. volume 32 of *Memoirs*, pp. 561–578. doi:10.1144/gsl.mem.2006.032.01.34.
- Kullerud, K., Corfu, F., Bergh, S., Davidsen, B., Ravna, E., 2006a. U-pb constraints on the archaean and early proterozoic evolution of the west troms basement complex, north norway. Bulletin of the Geological Society of Finland Abstract -Special Issue I, 79.
- Kullerud, K., Skjerlie, K.P., Corfu, F., de la Rosa, J.D., 2006. The 2.40 Ga Ringvassøy mafic dykes, West Troms Basement Complex, Norway: The concluding act of early Palaeoproterozoic continental breakup. Precambrian Research 150, 183-200. doi:https://doi.org/10.1016/j.precamres.2006.08.003.
- Lahtinen, R., Garde, A.A., Melezhik, V.A., 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31, 20–28.
- Lahtinen, R., Huhma, H., 2019. A revised geodynamic model for the lapland-kola orogen. Precambrian Research 330, 1–19. doi:10.1016/j.precamres.2019.04. 022.
- Landmark, K., 1973. Beskrivelse til de geologiske kart "Tromsø" og "Målselv": et snitt gjennom fjellkjeden i Midt Troms. Tromsø Museum.
- Laurent, O., Auwera, J.V., Bingen, B., Bolle, O., Gerdes, A., 2019. Building up the first continents: Mesoarchean to Paleoproterozoic crustal evolution in West Troms, Norway, inferred from granitoid petrology, geochemistry and zircon U-Pb/Lu-Hf isotopes. Precambrian Research 321, 303–327. doi:10.1016/j. precamres.2018.12.020.
- Motuza, G., 2000. Description to the geological map of the central part of the Ringvassøya Grennstone Belt, Troms County, northern Norway. Technical Report. Vilnius University, Geological survey of Norway. Internal report, 68 pp.

- Myhre, P.I., Corfu, F., Bergh, S.G., Kullerud, K., 2013. U–Pb geochronology along an Archaean geotransect in the West Troms Basement Complex, North Norway. Norwegian Journal of Geology 93, 1–24.
- Nironen, M., 1997. The svecofennian orogen: a tectonic model. Precambrian Research 86, 21–44. doi:10.1016/s0301-9268(97)00039-9.
- Paulsen, H., Bergh, S., Palinkas, S., Karlsen, S., Kolsum, S., Rønningen, I., Armitage, E., Nasuti, A., 2021. Palaeoproterozoic foreland fold-thrust belt structures and lateral faults in the west troms basement complex, northern norway, and their relation to inverted metasedimentary sequences. Precambrian Research 362, 1–23.
- Romer, R., Kjøsnes, B., Lindahl, I., Skyseth, T., Stendal, M., Sundvoll, B., 1992. The Archean-Proterozoic boundary beneath the Caledonides of northern Norway and Sweden: U-Pb, Rb-Sr and isotope data from the Rombak-Tysfjord area. Rapport 91. Norges geologiske undersøkelse.
- Schoene, B., 2014. U-th-pb geochronology. Treatise on geochemistry 4, 341–378.
- Skyttä, P., Määttä, M., Kara, J., Käpyaho, A., Heilimo, E., O'Brian, H., 2020. Constraints over the age of magmatism and subsequent deformation for the neoarchean kukkola gneiss complex, northern fennoscandia. Bull. Geological Society Finland 92, 19–38.
- Skyttä, P., Piippo, S., Kloppenburg, A., Corti, G., 2019. 2.45 Ga break-up of the Archaean continent in Northern Fennoscandia: Rifting dynamics and the role of inherited structures within the Archaean basement. Precambrian Research 324, 303–323. doi:10.1016/j.precamres.2019.02.004.
- Spencer, J., Krikland, C., Taylor, R., 2016. Strategies towards statistically robust interpretations of in situ u-pb zircon geochronology. Geoscience Frontiers 7, 581– 589.
- Steiger, R.G., Jäger, E., 1977. Subcommission on geochronology: conventrion on the use of decay constants in geo- and cosmochronology.
- Thorstenen, L., 2011. Land-sokkel korrelasjon av tektoniske elementer i ytre del av senja og kvaløya i troms. Universitetet i Tromsø Masteroppgave , 1–117.
- Vermeesch, P., 2018. Isoplotr: A free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–1493.
- Zozulya, D., Kullerud, K., Ravna, E.J., Corfu, F., Savchenko, Y., 2009. Geology, age and geochemical constraints on the origin of the Late Archaean Mikkelvik alkaline stock, West Troms Basement Complex in Northern Norway. Norwegian Journal of Geology 89, 327–340.
- Zwaan, K., Tucker, R., 1996. Absolute and relative age relationships in the precambrian west troms basement complex, northern norway. Geological Survey Finland 22nd Nordic Geological Winter Meeting, Åbo, 237.

Zwaan, K.B., 1989. Berggrunnsgeologisk kartlegging av det prekambriske grønnsteinsbelte på Ringvassøya, Troms. NGU-rapport 89.101. Norges Geologiske Undersøkelser.

Vedlegg I

Prøvenr.:	GPS:	Sted:	Bergart:	Latitude	Longitude
012020IBB	128	Lakstind	Granitt	69.616259	18.146572
022020IBB	130	Oterneset	Granitt	69.633677	18.152024
032020IBB	130	Oterneset	Mafisk	69.633677	18.152024
042020IBB	130	Oterneset	Pegmatitt (foliasjonsparallell)	69.633677	18.152024
052020IBB	130	Oterneset	Pegmatitt (foliasjonskryssende)	69.633677	18.152024
062020IBB	130	Oterneset	TTG	69.633677	18.152024
072020IBB	131	Oterneset	Granitt	69.633497	18.152957
082020IBB	131	Oterneset	Pegmatitt (foliasjonskryssende)	69.633497	18.152957
092020IBB	131	Oterneset	Lecosome (TTG)	69.633497	18.152957
102020IBB	132	Vegskjæring	Granitt	69.625767	18.142883
112020IBB	133	Vegskjæring	Lecosome (TTG)	69.625893	18.143441
122020IBB	134	Vegskjæring	Lecosome og TTG	69.626006	18.143729
132020IBB	134	Vegskjæring	Pegmatitt (foliasjonskryssende)	69.626006	18.143729
142020IBB	135	Vegskjæring	Granitt	69.622345	18.130181
152020IBB	136	Vegskjæring	Lecosome (TTG)	69.623667	18.133793
162020IBB	137	Vegskjæring	Pegmatitt (foliasjonskryssende)	69.6248	18.137382
172020IBB	137	Vegskjæring	Pegmatitt (foliasjonskryssende)	69.6248	18.137382
182020IBB	138	Vegskjæring	Pegmatitt (foliasjonskryssende)	69.628757	18.150591
192020IBB	138	Vegskjæring	Tonalitt (TTG)?	69.628757	18.150591
202020IBB	138	Vegskjæring	Lecosome (TTG)	69.628757	18.150591
212020IBB	138	Vegskjæring	TTG	69.628757	18.150591
222020IBB	139	Oterneset	Mafisk	69.632754	18.155442
232020IBB	210	Oterneset	Kvartsittisk gneis(?)	69.63392	18.156147
242020IBB	456	Oterneset	Pegmatitt (foliasjonsparallell)	69.632764	18.155759
252020IBB	457	Oterneset	Pegmatitt (foliasjonsparallell)	69.632862	18.155143
262020IBB	458	Oterneset	Pegmatitt (foliasjonsparallell)	69.633078	18.154316

Vedlegg II

Prøve	U238/Pb206_mean	U238/Pb206_2SE(int)	Pb207/Pb206_mean	Pb207/Pb206_2SE(int)
IBB01				
IBB01-01	3.353428035	0.03140831	0.109623309	0.000691223
IBB01-02	4.732808298	0.117021414	0.107511185	0.000904533
IBB01-03	3.564938417	0.117393614	0.112570356	0.001045556
IBB01-04	3.086038797	0.034121512	0.109260938	0.000835474
IBB01-05	2.987985724	0.038629519	0.110024908	0.000735732
IBB01-06	3.117575594	0.027184405	0.109912479	0.000714788
IBB01-07	4.000190333	0.034718407	0.109259664	0.000685408
IBB01-08	3.438602004	0.030388876	0.109534753	0.000701192
IBB01-09	3.298944841	0.071099152	0.150926273	0.001360855
IBB01-10	3.180179185	0.035329197	0.110791512	0.000740791
IBB01-11	3.704207409	0.0372998	0.108454348	0.000679536
IBB01-12r	5.795952532	0.0759123	0.09863616	0.000683332
IBB01-13c	3.289271426	0.037969033	0.110651593	0.000757742
IBB01-14	3.275890749	0.033334188	0.110596663	0.000716599
IBB01-15	3.02525249	0.027321003	0.112715672	0.000754334
IBB01-16	3.786293635	0.033750969	0.10999798	0.000725685
IBB01-17	3.530932538	0.037952588	0.109377969	0.000793523
IBB01-18	3.10481624	0.048266869	0.173840918	0.003969988
IBB01-19	3.561444233	0.038371107	0.108465276	0.000701489
IBB01-20	2.897100534	0.031209574	0.109962005	0.000739632
IBB01-21	4.886580457	0.053815462	0.102710482	0.000640011
IBB01-22	3.247150147	0.034448832	0.109777711	0.000745105
IBB01-23	3.481099253	0.039230396	0.10893026	0.000701964
IBB01-24	5.898381473	0.079076569	0.105001155	0.000692111
IBB02				
IBB02-01	4.315397896	0.079881716	0.10645758	0.00080558
IBB02-02	1.823246246	0.027465943	0.197532338	0.001222122
IBB02-03	3.430883933	0.077669686	0.110074222	0.000817338
IBB02-04	3.082224295	0.045674591	0.110613733	0.000743664
IBB02-05	1.929763498	0.030760783	0.182434184	0.001204039
IBB02-06	3.240790879	0.042110904	0.109458205	0.000709327
IBB02-07	9.252137584	0.126432683	0.085642161	0.000651016
IBB02-08	8.399003279	0.121716934	0.090356355	0.00059146
IBB02-09	3.446431036	0.043878477	0.107385948	0.000688509
IBB02-10	3.705316595	0.048529654	0.107879842	0.000679488
IBB02-11	3.105065862	0.03746036	0.110264545	0.000718925
IBB02-12	3.94930468	0.053475305	0.105964533	0.000662618
IBB02-13	4.434458922	0.07859297	0.104972714	0.000696926
IBB02-14	3.371669256	0.057121868	0.108356467	0.000714813
IBB02-15	3.443288542	0.044477247	0.107784971	0.000697715
IBB02-16	8.409140009	0.173888201	0.089586001	0.000645618
IBB02-17	3.070775339	0.039767295	0.109654076	0.000719996
IBB02-18	3.166419008	0.038783395	0.109487199	0.000704463
IBB02-19	3.77621857	0.064588027	0.107850128	0.000737687
IBB02-20	3.342894268	0.043102855	0.108899727	0.000682521
IBB02-21	3.040385618	0.036721533	0.10883822	0.00071094

IBB02-22	3.79247528	0.04775198	0.107990539	0.000676037
IBB02-23	3.362024488	0.042540739	0.107344772	0.00068442
IBB02-24	3.639032821	0.066459827	0.108574853	0.000706646
IBB02-25	8.587927766	0.211058582	0.081779811	0.000589575
IBB04				
IBB04-01	8.593298806	0.139544661	0.08527148	0.000537856
IBB04-02	8.80206999	0.132283864	0.086888905	0.000557239
IBB04-03	5.717997012	0.170187768	0.096760708	0.000768381
IBB04-04	6.561426755	0.08915353	0.097331488	0.000618026
IBB04-05	8.146317927	0.120816648	0.08992484	0.000581382
IBB04-06	9.090285843	0.183654109	0.085287953	0.000608041
IBB04-07	6.415796624	0.135925474	0.095535607	0.000668289
IBB04-09	7.270867672	0.09833396	0.091989115	0.000586765
IBB04-10	7.562875582	0.121859376	0.094830048	0.000620836
IBB04-11	5.940592061	0.083404884	0.097333659	0.000622301
IBB04-13	7.316667541	0.0939256	0.092942495	0.00059138
IBB04-14	8.368647462	0.119295005	0.090942122	0.00071401
IBB04-16	9.772596771	0.158390141	0.085509115	0.000565109
IBB04-17	8.907878277	0.126852939	0.089996256	0.000563729
IBB04-18	7.325303623	0.114923697	0.093355675	0.000801397
IBB04-19	8.77332325	0.118552223	0.087269724	0.000547731
IBB04-20	9.351351284	0.138151052	0.084175536	0.000539491
IBB04-21	8.203292325	0.177954255	0.090638107	0.00060406
IBB04-22	7.224388453	0.138302924	0.095363113	0.000853473
IBB04-24	7.179031747	0.08816239	0.094976273	0.000636531
IBB04-25	7.765089022	0.097113033	0.090149823	0.000622155
IBB04-26	7.934207491	0.105604591	0.089945274	0.000582904
IBB04-27	7.442381431	0.104527241	0.089933507	0.000572649
IBB04-23	6.30962647	0.08031372	0.101511028	0.00062961
IBB04-12	8.737254334	0.131775385	0.102685547	0.00066451
IBB04-15	5.693427582	0.070739189	0.109232265	0.000681449
IBB04-08	6.790648648	0.105327794	0.102242571	0.000920085
IBB05				
IBB05-01	7.294122456	0.099418406	0.09807189	0.000830896
IBB05-03	7.362634609	0.131793887	0.096366256	0.000619386
IBB05-04	5.891712401	0.088238043	0.102710934	0.000809939
IBB05-05	7.354678113	0.134576538	0.098349509	0.000721299
IBB05-06	8.130918713	0.101586174	0.089962044	0.000580634
IBB05-07	7.727862824	0.105271492	0.095867929	0.000758457
IBB05-08	8.267176108	0.127681482	0.086250062	0.000676509
IBB05-09	7.524475291	0.103423346	0.099589077	0.000941317
IBB05-10	10.68155326	0.167612321	0.082436881	0.00062904
IBB05-11	13.59401161	0.320694806	0.08712145	0.000583533
IBB05-12	7.84052641	0.106808081	0.100004922	0.001422552
IBB05-13r	9.481524813	0.156307388	0.090659349	0.00080863
IBB05-14c	4.196153976	0.052817205	0.105977927	0.00068126
IBB05-15	11.57892313	0.271814858	0.085485149	0.00067867
IBB05-16	8.939113406	0.109282809	0.084001094	0.000606083

IBB05-17	7.544568931	0.114570473	0.101510739	0.000657851
IBB05-19	6.947030855	0.117100438	0.104321526	0.000710829
IBB05-20	9.326774392	0.150911774	0.074423333	0.000483397
IBB05-21	8.157234773	0.140511102	0.085559092	0.000546998
IBB05-22	7.522562623	0.141727554	0.086047175	0.000554917
IBB05-23	7.354959253	0.147146342	0.091740987	0.00095585
IBB05-24	8.791270613	0.124206051	0.094019254	0.000621668
IBB05-26	8.335410807	0.115195079	0.092634332	0.000803056
IBB05-27	7.454560569	0.092664531	0.093191922	0.000775112
IBB05-28	9.360905432	0.186086968	0.079653239	0.001091232
IBB05-02	18.19404828	0.551121643	0.099257968	0.000923491
IBB05-18	7.238679779	0.143369895	0.118949908	0.001349594
IBB06				
IBB06-18r	2.417643538	0.029342698	0.177128568	0.001137724
IBB06-04c	2.240598274	0.028239388	0.173517603	0.001125044
IBB06-14	2.071574266	0.029997582	0.188614062	0.001159136
IBB06-21	2.115187072	0.034689052	0.181986619	0.001134192
IBB06-20	2.073171108	0.039618075	0.188265745	0.001366022
IBB06-16	2.100919418	0.032534397	0.179299261	0.001126873
IBB06-02	1.976830557	0.025802243	0.193296177	0.001206318
IBB06-11	1.982181991	0.029871767	0.188456669	0.001303417
IBB06-22r	2.059383174	0.025669223	0.178678528	0.001133945
IBB06-19c	1.965877262	0.026779364	0.187998109	0.001199117
IBB06-17	2.010232508	0.023407434	0.181517118	0.001179452
IBB06-08	1.933465342	0.02399387	0.19125252	0.001191572
IBB06-03	1.89329578	0.028008092	0.194744793	0.00152875
IBB06-15	1.90498207	0.022258433	0.191695757	0.001225906
IBB06-07	1.857272348	0.021016036	0.198448101	0.001242452
IBB06-06	1.924380254	0.029457187	0.189632316	0.001247859
IBB06-24	1.947357132	0.022606895	0.185419539	0.001185962
IBB06-23c	1.846141845	0.021135368	0.197519697	0.001236235
IBB06-09	1.943331274	0.024872793	0.183912903	0.001166966
IBB06-13	1.860989515	0.022753617	0.194543225	0.001282399
IBB06-10	1.8712165	0.024544213	0.193331157	0.001287043
IBB06-12	1.920237847	0.024790705	0.185889947	0.001240631
IBB06-01	1.843784385	0.02672051	0.196021723	0.001402586
IBB06-05r	1.882873716	0.027761459	0.182423144	0.001226907
IBB12				
IBB12-13r	11.5979566	0.114089985	0.086591973	0.000591815
IBB12-09	7.915194993	0.109012138	0.088282521	0.000593501
IBB12-11r	8.827784345	0.090603808	0.089476217	0.000599066
IBB12-21	8.144168773	0.065240617	0.091502621	0.000582174
IBB12-22	8.834696103	0.093981312	0.095615413	0.000795089
IBB12-07	6.515780604	0.102125845	0.096633497	0.00065369
IBB12-16r	6.701431466	0.08562105	0.096716752	0.000628063
IBB12-03	6.303464771	0.069482205	0.097036795	0.000647663
IBB12-14	6.865156398	0.072306364	0.097386384	0.000620686
IBB12-02	7.58462942	0.097656848	0.097436729	0.000672814

IBB12-24	5.092883487	0.056073945	0.102169989	0.000653733
IBB12-18	4.895141759	0.052137806	0.102301931	0.000665656
IBB12-05	5.97185578	0.086502958	0.106551217	0.000764202
IBB12-06	6.751603298	0.061179037	0.107849619	0.000687229
IBB12-10c	3.393131112	0.028682571	0.108601425	0.000750485
IBB12-17	3.110569221	0.033128473	0.110561742	0.000851382
IBB12-12c	2.919439904	0.031202039	0.122385531	0.000780649
IBB12-20	7.998007069	0.143220681	0.128443542	0.00199322
IBB12-25	2.609636492	0.027416783	0.170660333	0.001054563
IBB12-01	2.84884008	0.025902566	0.170723273	0.001050536
IBB12-15c	2.390864078	0.024491478	0.178863852	0.001130774
IBB12-04	2.040209649	0.024341933	0.185233321	0.001245776
IBB12-23c	2.056171175	0.023682848	0.187052923	0.001201447
IBB12-08	2.43584253	0.028492298	0.194663162	0.001350603
IBB12-19	1.855018745	0.024602987	0.20610355	0.001333974
IBB19				
IBB19-01	8.150969274	0.103156649	0.091988284	0.000600821
IBB19-02	4.546982489	0.047817135	0.104682989	0.000652279
IBB19-03	5.408882201	0.051942257	0.099844568	0.000639036
IBB19-04	9.401454475	0.110811573	0.093427458	0.000662563
IBB19-05	5.055272685	0.059175391	0.105078522	0.000696163
IBB19-06	10.25589426	0.154034065	0.087292634	0.000618443
IBB19-07c	6.21229354	0.079644546	0.100905191	0.000629676
IBB19-08r	4.66540691	0.050381122	0.10577034	0.00066838
IBB19-09	7.925851128	0.118266234	0.10578315	0.000693656
IBB19-10	7.26236398	0.08754835	0.096880349	0.000645859
IBB19-11	2.968337239	0.036277662	0.110223069	0.000740178
IBB19-12	4.383318906	0.051300194	0.107756409	0.000712049
IBB19-13	5.632717532	0.058425959	0.10463818	0.000663393
IBB19-14	5.051699688	0.062432434	0.105838672	0.000697136
IBB19-15	6.484685751	0.085506463	0.107147552	0.000771119
IBB19-16	5.345346528	0.043897436	0.102951309	0.000651802
IBB19-17	4.33803431	0.041760511	0.106759638	0.00067476
IBB19-18	5.77937444	0.199298095	0.099591635	0.000846209
IBB19-19	5.629947137	0.074413436	0.103331594	0.000667135
IBB19-20	7.977919908	0.121394764	0.096668729	0.000609661
IBB19-21	6.51176889	0.061932481	0.103265375	0.000650442
IBB19-22	6.048639989	0.115959775	0.101885303	0.000669867
IBB19-23	6.926589982	0.073051463	0.0958938	0.000604372
IBB19-24	7.256481788	0.22077989	0.103155274	0.001533506
IBB19-25	5.319361677	0.061691953	0.100849066	0.000638694
IBB26				
IBB26-01	9.943754239	0.101248236	0.121778438	0.001032886
IBB26-02	7.50237486	0.070774431	0.096484345	0.00061531
IBB26-03	6.997009472	0.078430781	0.097000399	0.000616612
IBB26-04	5.294473551	0.106014588	0.101038147	0.000774881
IBB26-05	9.659735074	0.091832585	0.087736187	0.000614193
IBB26-06	6.647066156	0.219991502	0.092353649	0.000981908

IBB26-07	8.958792117	0.079759167	0.088262764	0.000558231
IBB26-08	6.127704276	0.074357086	0.104702921	0.000686371
IBB26-09	9.066692472	0.082489998	0.082820366	0.000532593
IBB26-10	7.222050837	0.066868556	0.093695781	0.000631145
IBB26-11	7.376975024	0.129136788	0.094570602	0.000729562
IBB26-12	7.439637065	0.101902145	0.094053056	0.000629127
IBB26-13	9.244943896	0.096582027	0.090615767	0.000587393
IBB26-14	9.161898601	0.188765737	0.081275982	0.000711094
IBB26-15	8.584226013	0.081410937	0.085996887	0.000562125
IBB26-16	8.137270996	0.103831064	0.079223663	0.000537368
IBB26-17	10.26797562	0.131015533	0.080879471	0.000657047
IBB26-18	7.025732739	0.129156472	0.097703937	0.00068789
IBB26-19	7.896011681	0.099459268	0.089087303	0.000561253
IBB26-20	10.18886981	0.123534348	0.073804067	0.000462464
IBB26-21	4.047641349	0.054206953	0.109181027	0.000711716
IBB26-22	10.11816253	0.158612522	0.081430812	0.000528159
IBB26-23	3.973826686	0.054118888	0.105529139	0.000663177
IBB26-24	7.860100555	0.08704939	0.091797363	0.000573693
IBB26-25	8.898958858	0.108751773	0.0947802	0.000705545
IBB07				
IBB07-01	3.412103282	0.024628676	0.108691755	0.000700845
IBB07-02	4.498965472	0.065/16888	0.105256614	0.000/25514
IBB07-03	3.380437242	0.026/2/808	0.109212029	0.00076484
IBB07-04	3.1983/2869	0.030801/0/	0.108689739	0.000/25/43
IBB07-05	3.056401036	0.035626658	0.109021965	0.000904789
IBB07-06	3.130337089	0.024151293	0.109330102	0.000/35181
IBB07-07	3.479392845	0.0408/0419	0.108033184	0.00072558
IBB07-08	3.035288189	0.045754046	0.109631596	0.000866778
IBB07-09	3.18/09/628	0.028795971	0.109581985	0.000706548
IBB07-10	3.291012483	0.040840529	0.11015652	0.000/9365/
IBB07-11	3.662361611	0.025398751	0.108687367	0.000669815
IBB07-12C	3.395413583	0.027338185	0.108451344	0.000704701
IBB07-13r	3.160148263	0.024461439	0.107152919	0.000732722
IBB07-14	3.14303753	0.022922451	0.109053124	0.000733869
IBB07-15	3.378158766	0.024390522	0.108//8159	0.000683329
IBB07-16	4.294896197	0.039518069	0.10484871	0.000680031
IBB07-17	3.024248150	0.030174801	0.108251581	0.000718808
IBB07-18C	3.320939232	0.031900142	0.112091503	0.000907071
IBB07-19	3.291194978	0.029705571	0.10954047	0.000784179
	5.713841029	0.030384929	0.108410947	0.000678603
IBB07-21	0.22033152	0.050545957	0.096968204	0.000641451
IBB07-22	3.20811191	0.020703804	0.109081122	0.000737239
	3.24034/4/2 2.120112C22	0.022024978	0.1102/4153	0.000099132
IBBU/-24	3.128113632	U.U3132433b	0.109292012	0.00084081
IBB08				
IBB08-01	5.472245585	0.046988177	0.110615423	0.000724463
IBB08-02	17.22996352	0.658620845	0.079238496	0.000527377

IBB08-03	9.658688299	0.080077953	0.074402827	0.000497858
IBB08-04	10.96770431	0.09932287	0.072697575	0.000483352
IBB08-05	10.17101783	0.179695268	0.108807269	0.000933993
IBB08-06	11.52733303	0.12055593	0.075551977	0.000551738
IBB08-07	4.974604823	0.04094842	0.100072081	0.000624218
IBB08-08	9.380772203	0.075197075	0.074667138	0.000632223
IBB08-09	8.394936994	0.07734233	0.085385026	0.000559763
IBB08-10	9.079767729	0.174470393	0.154599037	0.00111236
IBB08-11	6.587322849	0.059376721	0.091501217	0.000579681
IBB08-12	5.633994715	0.049060019	0.115253204	0.000735594
IBB08-13	6.654602705	0.051175064	0.094927862	0.000598291
IBB08-14	7.535160098	0.085646188	0.132226843	0.000861505
IBB08-15	7.895662796	0.080280613	0.084783435	0.000565181
IBB08-16	10.85674294	0.097082947	0.075757828	0.000498741
IBB08-17	9.152008412	0.079795843	0.07965723	0.000558641
IBB08-19	11.36326754	0.088501565	0.096227733	0.000683089
IBB08-20	9.217387033	0.076322086	0.082974712	0.0007812
IBB08-21	9.942129574	0.112369581	0.079854386	0.000796744
IBB08-22	9.941326403	0.122760329	0.087866821	0.000732502
IBB08-24	8.187740685	0.089559437	0.088862964	0.000742742
IBB08-25	9.383622768	0.183148919	0.092345459	0.000934946
IBB08-26	9.985875427	0.123770983	0.091704173	0.000689558
IBB08-27	8.471516946	0.110951423	0.083864726	0.00058383
IBB08-28	7.071115491	0.112799793	0.098398812	0.000670526
IBBU8-20	5.967865315	0.091608273	0.107038909	0.000682054
10000-20				
10000-20				
IBB09				
IBB09 IBB09-01r	4.227216835	0.03113409	0.105709031	0.00066058
IBB09 IBB09-01r IBB09-02c	4.227216835 3.127239954	0.03113409 0.027500966	0.105709031 0.109788261	0.00066058 0.000790332
IBB09-01r IBB09-02c IBB09-03r	4.227216835 3.127239954 4.908473613	0.03113409 0.027500966 0.04182559	0.105709031 0.109788261 0.10316171	0.00066058 0.000790332 0.000649395
IBB09 IBB09-01r IBB09-02c IBB09-03r IBB09-04c	4.227216835 3.127239954 4.908473613 3.285545088	0.03113409 0.027500966 0.04182559 0.029619342	0.105709031 0.109788261 0.10316171 0.109506439	0.00066058 0.000790332 0.000649395 0.000761144
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787
IBB09 -01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421
IBB09 -01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026
IBB09 -01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.108217175	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212
IBB09 -01r IBB09-02c IBB09-03r IBB09-04c IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.108217175 0.109872143	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c IBB09-11r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.10611325 0.096677837 0.10554837 0.10554837 0.108217175 0.109872143 0.105172942	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911 0.000668143
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c IBB09-11r IBB09-12	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911 0.000668143 0.00057242
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -05r IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12 IBB09 -13r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.0006695911 0.000668143 0.00057242 0.000662106
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c IBB09-11r IBB09-12 IBB09-13r IBB09-14r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.100611325 0.096677837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.000661917 0.000662110 0.000662106 0.000655296
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c IBB09-11r IBB09-12 IBB09-13r IBB09-14r IBB09-15c	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.000661917 0.000662911 0.000668143 0.000655296 0.00072029
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -05r IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12 IBB09 -13r IBB09 -14r IBB09 -15c IBB09 -16r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.10611325 0.096677837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000665911 0.000668143 0.00057242 0.000662106 0.000655296 0.00072029 0.00069114
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -04c IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12 IBB09 -13r IBB09 -14r IBB09 -15c IBB09 -16r IBB09 -17r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.10611325 0.096677837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911 0.000668143 0.000655296 0.000655296 0.00072029 0.00069114 0.000670442
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -05r IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12 IBB09 -13r IBB09 -14r IBB09 -15c IBB09 -16r IBB09 -18r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913 7.35068292	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713 0.054168554	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.10554837 0.10554837 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211 0.090245118	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.000661917 0.000665911 0.000668143 0.000655296 0.000655296 0.000655296 0.000655296 0.000670442 0.000670442
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12 IBB09 -13r IBB09 -14r IBB09 -15c IBB09 -16r IBB09 -18r IBB09 -19c	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913 7.35068292 3.209321439	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713 0.054168554 0.032045574	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.10611325 0.096677837 0.10554837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211 0.090245118 0.108465754	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.000661917 0.000695911 0.000668143 0.000655296 0.000655296 0.000655296 0.000655296 0.00069114 0.000670442 0.000577134 0.00072956
IBB09 -01r IBB09 -02c IBB09 -03r IBB09 -04c IBB09 -04c IBB09 -05r IBB09 -06c IBB09 -07r IBB09 -08r IBB09 -09 IBB09 -10c IBB09 -11r IBB09 -12r IBB09 -13r IBB09 -14r IBB09 -14r IBB09 -16r IBB09 -17r IBB09 -18r IBB09 -19c IBB09 -20	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913 7.35068292 3.209321439 5.163246502	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713 0.054168554 0.032045574 0.133398638	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.10554837 0.10554837 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211 0.090245118 0.108465754 0.102212861	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.000661917 0.000662106 0.000655296 0.000655296 0.00072029 0.00069114 0.000670442 0.000577134 0.00072956 0.000703659
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-09 IBB09-10c IBB09-11r IBB09-12 IBB09-13r IBB09-14r IBB09-15c IBB09-16r IBB09-17r IBB09-18r IBB09-19c IBB09-20 IBB09-21r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913 7.35068292 3.209321439 5.163246502 4.552802084	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713 0.054168554 0.032045574 0.133398638 0.034729892	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.10611325 0.096677837 0.10554837 0.10554837 0.108217175 0.109872143 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211 0.090245118 0.108465754 0.102212861 0.1024412725	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911 0.000668143 0.00057242 0.000662106 0.00065296 0.00072029 0.00065114 0.00072956 0.000703659 0.000651137
IBB09-01r IBB09-02c IBB09-03r IBB09-04c IBB09-04c IBB09-05r IBB09-06c IBB09-07r IBB09-08r IBB09-10c IBB09-11r IBB09-11r IBB09-13r IBB09-13r IBB09-14r IBB09-16r IBB09-16r IBB09-18r IBB09-19c IBB09-20 IBB09-21r IBB09-21r	4.227216835 3.127239954 4.908473613 3.285545088 4.531201015 3.231612844 6.21669816 4.306292424 3.748513684 3.293123415 4.240066234 9.328796574 3.913491804 5.291637426 3.185498034 3.394515722 4.879947913 7.35068292 3.209321439 5.163246502 4.552802084 7.40390126	0.03113409 0.027500966 0.04182559 0.029619342 0.036786093 0.025711497 0.068024538 0.031993596 0.036567337 0.02605954 0.036567337 0.02605954 0.051890441 0.07603518 0.049821466 0.082521198 0.02524747 0.0258901 0.088792713 0.054168554 0.032045574 0.133398638 0.034729892 0.078357031	0.105709031 0.109788261 0.10316171 0.109506439 0.104163457 0.110611325 0.096677837 0.10554837 0.10554837 0.105172942 0.083869788 0.106836534 0.100781399 0.110228477 0.106131482 0.102989211 0.090245118 0.108465754 0.102212861 0.104412725 0.091743226	0.00066058 0.000790332 0.000649395 0.000761144 0.000659787 0.000719421 0.00063026 0.000661917 0.00081212 0.000695911 0.000662106 0.000655296 0.000757242 0.000655296 0.00072029 0.000651137 0.000651137 0.000679143

IBB09-24c	3.245876612	0.028772139	0.10967592	0.000739262
IBB09-25r	6.254060125	0.067395913	0.096682611	0.000673962
IBB09-26c	3.238856963	0.030418035	0.109449566	0.00071222
IBB09-27r	6.585679022	0.051614376	0.093451165	0.000608929
IBB09-28r	3.66877925	0.027672162	0.109435495	0.000684562
IBB09-29r	4.236441341	0.044348911	0.10573302	0.00065611
IBB09-30r	5.422244032	0.040015841	0.100240146	0.000625396
IBB10				
IBB10-01c	3.091494261	0.040712288	0.109614791	0.000918795
IBB10-02r	7.790519934	0.063169601	0.098641472	0.000976442
IBB10-03	9.511619355	0.074247094	0.082659597	0.000677929
IBB10-04	8.451070359	0.080548659	0.081602724	0.000516639
IBB10-05	3.831425294	0.033305332	0.105936882	0.000671596
IBB10-06c	3.83623202	0.043380649	0.111239474	0.00075094
IBB10-07r	9.556681408	0.077418565	0.086377071	0.000750796
IBB10-08c	3.412586466	0.033474763	0.110379121	0.00078811
IBB10-09c	3.017256136	0.045488786	0.113031191	0.001132006
IBB10-10r	3.617370016	0.027537345	0.108175155	0.000680852
IBB10-11	3.077865484	0.040884399	0.110595964	0.000952854
IBB10-12r	8.801145559	0.073082829	0.185677201	0.005116986
IBB10-13c	3.059171416	0.03040031	0.110579955	0.000806608
IBB10-14r	7.195925689	0.07402337	0.089771699	0.000615161
IBB10-15c	3.630374987	0.049971905	0.110628891	0.000993525
IBB10-16r	10.19542032	0.11220539	0.08319185	0.000590987
IBB10-17c	3.133822277	0.02599858	0.110897311	0.000751764
IBB10-18	3.063316296	0.031062918	0.110437667	0.000851887
IBB10-19r	8.949010836	0.099043325	0.085613201	0.000587951
IBB10-20r	8.067421751	0.07401108	0.086121433	0.000558785
IBB10-21c	3.15671385	0.027570885	0.110124352	0.000726462
IBB10-22r	10.05251608	0.136130356	0.161049968	0.006666963
IBB10-23	4.537150269	0.049803402	0.107204527	0.000721907
IBB10-24	9.190974971	0.078467644	0.086407136	0.000581347
IBB10-25	4.298949896	0.032661483	0.106769806	0.000665143
IBB10-26	28.0514892	0.377642266	0.11249432	0.000796122

Vedlegg III

Prøve	206Pb/238U alder	propogated 2 SE	207Pb/206Pb alder	propogated 2 SE
IBB01				
IBB01-01	1682.388217	13.98485701	1793.159047	11.52581914
IBB01-02	1235.692301	28.44538693	1757.656345	15.46699872
IBB01-03	1593.929053	47.90745215	1841.3209	16.90875387
IBB01-04	1809.428948	17.61480112	1787.127817	13.99932503
IBB01-05	1860.994571	21.13705564	1799.814726	12.21603784
IBB01-06	1793.44977	13.75686638	1797.954442	11.88180777
IBB01-07	1438.414408	11.27759883	1787.106568	11.4752444
IBB01-08	1645.604953	12.93671602	1791.687384	11.70430765
IBB01-09	1706.797322	32.9456243	2356.447203	15.48367647
IBB01-10	1762.556456	17.30112009	1812.437482	12.19597083
IBB01-11	1540.615571	13.92416483	1773.61468	11.48052678
IBB01-12r	1026.058885	12.57642576	1598.497316	12.98526622
IBB01-13c	1711.205792	17.52735202	1810.141577	12.49558368
IBB01-14	1717.341669	15.48005077	1809.239286	11.82162216
IBB01-15	1841.051304	14.57836615	1843.655776	12.16050196
IBB01-16	1510.837922	12.10240659	1799.369381	12.05216072
IBB01-17	1607.515007	15.44029906	1789.078331	13.27574934
IBB01-18	1799.880389	24.75187864	2594.969789	38.59830444
IBB01-19	1595.314392	15.37377564	1773.798594	11.85141618
IBB01-20	1911.506223	17.9886549	1798.774199	12.28968861
IBB01-21	1200.209481	12.1830511	1673.671447	11.56178808
IBB01-22	1730.671849	16.25463023	1795.721471	12.40655155
IBB01-23	1627.850212	16.37609216	1781.602661	11.79723471
IBB01-24	1009.565372	12.68587156	1714.334906	12.16993821
IBB02				
IBB02-01	1343.550938	22.83253469	1739.624826	13.93540207
IBB02-02	2818.815858	34.82868111	2805.915367	10.15222915
IBB02-03	1648.871318	33.61130612	1800.629955	13.56974131
IBB02-04	1811.381145	23.70919066	1809.519731	12.26763125
IBB02-05	2691.534226	35.54345258	2675.12415	10.96432421
IBB02-06	1733.649518	19.98121425	1790.414124	11.85081357
IBB02-07	661.6058896	8.7056946	1330.118413	14.78179179
IBB02-08	725.1610505	10.07766502	1433.072798	12.54027438
IBB02-09	1642.304895	18.6691406	1755.524406	11.77539029
IBB02-10	1540.205344	18.15620826	1763.914405	11.55500677
IBB02-11	1799.754136	19.1480855	1803.772069	11.90401353
IBB02-12	1455.004448	17.85360092	1731.111276	11.51862972
IBB02-13	1310.906396	21.36737289	1713.836743	12.25906781
IBB02-14	1674.372068	25.36264018	1771.966469	12.09237972
IBB02-15	1643.627904	18.95770633	1762.306451	11.87907089
IBB02-16	724.3342313	14.45022667	1416.719037	13.84297923
IBB02-17	1817.266071	20.74345532	1793.66999	12.00338575
IBB02-18	1769.254581	19.15752745	1790.896523	11.76540552
IBB02-19	1514.430354	23.44398015	1763.410973	12.55314784
IBB02-20	1687.052563	19.36003752	1781.091473	11.47316678
IBB02-21	1833.075146	19.47639641	1780.06115	11.96111928

IBB02-22	1508.642216	17.12982118	1765.788389	11.48158205
IBB02-23	1678.600889	18.91156167	1754.822791	11.71071798
IBB02-24	1565.111767	25.79880177	1775.641372	11.92407165
IBB02-25	710.0552059	16.91783297	1240.248557	14.19553734
IBB04				
IBB04-01	709.6349575	11.08256982	1321.719431	12.26982311
IBB04-02	693.6771435	10.02677106	1358.032161	12.41294726
IBB04-03	1038.978083	29.36943128	1562.586245	14.96420058
IBB04-04	914.4356109	11.73277873	1573.606622	11.93620843
IBB04-05	746.4003151	10.60154999	1423.933967	12.40059691
IBB04-06	672.7916824	13.16007961	1322.093653	13.87478966
IBB04-07	933.7581443	18.78786785	1538.656423	13.21573375
IBB04-09	830.7093471	10.67673265	1467.161249	12.16214182
IBB04-10	800.54524	12.31715209	1524.70023	12.38813672
IBB04-11	1002.922033	13.21231547	1573.648391	12.01876219
IBB04-13	825.8286434	10.07190056	1486.716064	12.09999229
IBB04-14	727.6484141	9.942800935	1445.390848	15.02828724
IBB04-16	628.0312819	9.851006879	1327.10914	12.84843904
IBB04-17	685.8607019	9.392396694	1425.45027	12.0104872
IBB04-18	824.91476	12.32974719	1495.112819	16.32896209
IBB04-19	695.8316723	9.028713967	1366.457278	12.13262217
IBB04-20	654.9312801	9.331478826	1296.612994	12.51240112
IBB04-21	741.5033342	15.5130563	1439.010251	12.75822764
IBB04-22	835.7218658	15.28004923	1535.256364	16.9368269
IBB04-24	840.672074	9.791975088	1527.603255	12.67811387
IBB04-25	780.9105804	9.307757934	1428.705641	13.23217165
IBB04-26	765.2149792	9.725972705	1424.367964	12.42961816
IBB04-27	812.7222977	10.8679469	1424.118072	12.2120848
IBB04-23	948.368707	11.36030265	1651.929665	11.54017155
IBB04-12	698.5540122	10.12977208	1673.222673	12.00975679
IBB04-15	1043.1177	12.10536435	1786.649551	11.4122258
IBB04-08	885.5932717	13.02346516	1665.22744	16.74426464
IBB05				
IBB05-01	828.2239825	10.73099769	1587.782678	15.91789566
IBB05-03	820.9875275	14.03488008	1554.922895	12.11264997
IBB05-04	1010.623064	14.20627541	1673.679589	14.64652133
IBB05-05	821.8214106	14.36582353	1593.063802	13.7599516
IBB05-06	747.735022	8.92602666	1424.724073	12.37808259
IBB05-07	784.4524441	10.19236719	1545.185339	14.94252644
IBB05-08	736.0884295	10.90269734	1343.792884	15.22551031
IBB05-09	804.3860912	10.53049757	1616.419995	17.70320109
IBB05-10	576.9069707	8.791476978	1255.915562	14.99537927
IBB05-11	457.5787779	10.66342548	1363.182457	12.9570402
IBB05-12	773.8304418	10.06275352	1624.174708	26.69549331
IBB05-13r	646.3756142	10.3007122	1439.456937	17.09830495
IBB05-14c	1377.923263	15.79534818	1731.343202	11.84213191
IBB05-15	533.996274	12.30783681	1326.566453	15.44904311
IBB05-16	683.5868457	8.022316229	1292.578367	14.10142209

IBB05-17	802.3717057	11.62305914	1651.924399	12.05994637
IBB05-19	866.9397477	13.89272651	1702.385319	12.60127176
IBB05-20	656.5721017	10.25850643	1052.969666	13.14104204
IBB05-21	745.4569975	12.32685497	1328.240236	12.42571284
IBB05-22	804.578364	14.50801525	1339.242662	12.51522355
IBB05-23	821.7919167	15.7322119	1462.03011	19.93069267
IBB05-24	694.484974	9.428275035	1508.501247	12.53930759
IBB05-26	730.3914987	9.669627	1480.422958	16.52371421
IBB05-27	811.4746564	9.590205913	1491.790574	15.82553661
IBB05-28	654.2956321	12.60707213	1188.415298	27.29374681
IBB05-02	344.9200486	10.48275176	1610.216667	17.43834878
IBB05-18	834.1741904	15.79120044	1940.510108	20.4361293
IBB06				
IBB06-18r	2231.477637	23.13252281	2626.167027	10.7195446
IBB06-04c	2378.823842	25.34187772	2591.864842	10.85693259
IBB06-14	2539.122561	30.76387557	2730.114356	10.15444068
IBB06-21	2495.703123	34.41117817	2671.058291	10.35544565
IBB06-20	2537.505827	40.73768642	2727.070556	12.00008717
IBB06-16	2509.741092	32.61669506	2646.399492	10.46764554
IBB06-02	2638.93202	28.57557959	2770.411822	10.27408065
IBB06-11	2633.082937	32.99015856	2728.73977	11.43449724
IBB06-22r	2551.534638	26.54073002	2640.642893	10.57611968
IBB06-19c	2650.986441	29.94721127	2724.727384	10.54580078
IBB06-17	2602.848864	25.18047207	2666.780712	10.80257777
IBB06-08	2687.320083	27.55471157	2752.96247	10.27334435
IBB06-03	2733.776963	33.36864429	2782.65252	12.92090235
IBB06-15	2720.094257	26.18186206	2756.765122	10.54222758
IBB06-07	2776.847791	25.77007751	2813.475507	10.26689202
IBB06-06	2697.686442	34.17687069	2738.975449	10.86679031
IBB06-24	2671.624464	25.63823229	2701.952761	10.59778019
IBB06-23c	2790.435883	26.17730881	2805.810719	10.27065139
IBB06-09	2676.153904	28.33325356	2688.475888	10.52645944
IBB06-13	2772.339763	27.83000976	2780.955568	10.84376983
IBB06-10	2760.013237	29.77201897	2770.708649	10.96196171
IBB06-12	2702.440035	28.80755798	2706.134677	11.05570076
IBB06-01	2793.331214	33.24877331	2793.356016	11.76112472
IBB06-05r	2746.097873	33.37643248	2675.023988	11.17417017
IBB12				
IBB12-13r	533.1551897	5.081668091	1351.430357	13.24411035
IBB12-09	766.9479106	10.08982368	1388.639384	12.95942476
IBB12-11r	691.7611728	6.798431146	1414.374024	12.86056522
IBB12-21	746.5863037	5.690449685	1457.084414	12.14757579
IBB12-22	691.2479844	7.043921697	1540.226907	15.71992185
IBB12-07	920.4052911	13.64314662	1560.119075	12.74210247
IBB12-16r	896.5999101	10.82379599	1561.734211	12.22734677
IBB12-03	949.2307227	9.83028485	1567.926901	12.55851744
IBB12-14	876.6066123	8.718497052	1574.66228	11.97934455
IBB12-02	798.3856424	9.787310928	1575.629778	12.98137555

IBB12-24	1155.695588	11.76804846	1663.913342	11.88821478
IBB12-18	1198.293928	11.76157897	1666.301299	12.08654564
IBB12-05	998.0577716	13.57597025	1741.236201	13.20209942
IBB12-06	890.3767724	7.600105373	1763.402343	11.69119029
IBB12-10c	1665.038409	12.49761616	1776.087885	12.66315801
IBB12-17	1796.975193	16.86009076	1808.665376	14.06110979
IBB12-12c	1898.836279	17.74378948	1991.291892	11.38619748
IBB12-20	759.4567076	13.04979155	2076.779165	27.58225593
IBB12-25	2091.191852	18.93390098	2564.129482	10.37331694
IBB12-01	1939.467546	15.35015213	2564.746236	10.32912065
IBB12-15c	2252.570119	19.64616316	2642.36399	10.53373223
IBB12-04	2571.306397	25.5532806	2700.293901	11.14733991
IBB12-23c	2554.825348	24.53125703	2716.42131	10.62818231
IBB12-08	2217.369662	22.16798481	2781.965533	11.41469114
IBB12-19	2779.588124	30.27798802	2875.151883	10.55655458
IBB19				
IBB19-01	745.9981031	9.023322734	1467.144103	12.45484411
IBB19-02	1281.484355	12.3394922	1708.752649	11.5099542
IBB19-03	1093.585288	9.745668515	1621.189155	11.95724497
IBB19-04	651.6115458	7.387791081	1496.566859	13.47442847
IBB19-05	1163.562392	12.5970934	1715.689168	12.23033707
IBB19-06	599.7700924	8.726892459	1366.962655	13.7014323
IBB19-07c	962.1714633	11.59743709	1640.826862	11.62755782
IBB19-08r	1251.917254	12.40974071	1727.744717	11.64553401
IBB19-09	765.9756696	10.93060926	1727.967022	12.08591413
IBB19-10	831.6219165	9.513287259	1564.902927	12.5486768
IBB19-11	1871.685619	20.06780949	1803.087887	12.263035
IBB19-12	1324.731039	14.16509676	1761.822015	12.12807141
IBB19-13	1053.489708	10.17887902	1707.964779	11.71303515
IBB19-14	1164.315321	13.3157526	1728.930202	12.13891811
IBB19-15	924.5168373	11.49825463	1751.457701	13.23072584
IBB19-16	1105.529988	8.406674137	1677.998966	11.74149627
IBB19-17	1337.219384	11.72777391	1744.816629	11.62283289
IBB19-18	1028.779267	33.87272131	1616.467829	15.90449877
IBB19-19	1053.96795	13.01054171	1684.807039	11.96400571
IBB19-20	761.2603067	11.08507087	1560.802784	11.87503903
IBB19-21	920.9336843	8.235089762	1683.623779	11.67274513
IBB19-22	986.309346	17.85121763	1658.747877	12.22507115
IBB19-23	869.3331331	8.66271521	1545.692424	11.89083262
IBB19-24	832.2543366	24.45407646	1681.654314	27.7040309
IBB19-25	1110.490843	11.95851703	1639.79411	11.80289105
IBB26				
IBB26-01	617.7229009	6.056610105	1982.444715	15.17534672
IBB26-02	806.613385	7.216537601	1557.221195	12.01417946
IBB26-03	861.1430543	9.131720581	1567.223938	11.95963098
IBB26-04	1115.284345	20.89210002	1643.270524	14.29830735
IBB26-05	635.0191348	5.801715347	1376.71393	13.51943901
IBB26-06	903.4423045	28.79027132	1474.66813	20.3061633

IBB26-07	682.1620069	5.812068022	1388.209762	12.18964891
IBB26-08	974.4981674	11.09995857	1709.10297	12.1111244
IBB26-09	674.4539458	5.876993187	1264.985617	12.61130276
IBB26-10	835.9755648	7.32305996	1501.989673	12.78656276
IBB26-11	819.4888472	13.69654489	1519.53563	14.618397
IBB26-12	813.0039635	10.59884818	1509.180069	12.68466384
IBB26-13	662.0951439	6.639539043	1438.540313	12.40861998
IBB26-14	667.7960794	13.33132373	1228.125773	17.27483679
IBB26-15	710.3451338	6.436715844	1338.112729	12.68792113
IBB26-16	747.1838674	9.112141894	1177.728626	13.47382934
IBB26-17	599.096198	7.389897379	1218.517267	16.05589385
IBB26-18	857.8466245	15.02484261	1580.754389	13.2281865
IBB26-19	768.7043938	9.237497057	1406.037358	12.1122266
IBB26-20	603.5364245	7.067297518	1036.114859	12.70791398
IBB26-21	1423.282811	17.31230362	1785.794501	11.92801848
IBB26-22	607.5613595	9.227245703	1231.861415	12.78074167
IBB26-23	1446.961931	17.86983912	1723.552618	11.58715251
IBB26-24	772.014274	8.142906333	1463.197469	11.9214511
IBB26-25	686.5128	8.051831419	1523.709318	14.09563581
IBB07				
IBB07-01	1656.874205	10.61402189	1777.604821	11.81015174
IBB07-02	1293.875928	17.35431234	1718.801893	12.72153631
IBB07-03	1670.546228	11.71774079	1786.311905	12.81771715
IBB07-04	1753.778153	14.91362232	1777.570973	12.23172809
IBB07-05	1824.709392	18.71559009	1783.136982	15.20764247
IBB07-06	1787.064163	12.12375657	1788.280855	12.30225558
IBB07-07	1628.555699	17.08286558	1766.5097	12.3205155
IBB07-08	1835.754045	24.40323217	1793.296687	14.46603971
IBB07-09	1759.207965	14.02202792	1792.472492	11.78782292
IBB07-10	1710.41065	18.8498688	1801.989457	13.16275235
IBB07-11	1556.254086	9.648519866	1777.531167	11.28583063
IBB07-12c	1664.051926	11.89338968	1773.564126	11.90778275
IBB07-13r	1772.324052	12.07679944	1751.549388	12.56835843
IBB07-14	1780.75438	11.42102284	1783.657949	12.31857371
IBB07-15	1671.538731	10.69927355	1779.054377	11.50258759
IBB07-16	1349.337554	11.29633957	1711.662843	11.978182
IBB07-17	1570.777987	11.6933943	1770.198258	12.17473776
IBB07-18c	1696.858336	14.48378197	1843.267684	14.63876939
IBB07-19	1710.327348	13.66788775	1791.782437	13.09480765
IBB07-20	1537.059711	13.51642377	1772.884078	11.47035216
IBB07-21	960.1559528	8.170649039	1566.601835	12.44856124
IBB07-22	1749.115201	12.87463132	1794.119013	12.28832248
IBB07-23	1730.953605	10.64454706	1803.93052	11.57375391
IBB07-24	1788.173444	15.77630326	1787.695977	14.0837602
	1001 027000	9 620670591	1000 547406	11 04027454
10-00001	1001.37/020	0.UZUU/UJ01 14 02002292	1170 000000	12 21002074
10000-02	503.0851204	14.03903283	ΤΤΙΟ.ΟΆΟΟΖ	12.51305011

IBB08-03	635.0846745	5.054225772	1052.414487	13.54079226
IBB08-04	562.4930325	4.920689709	1005.534388	13.55028037
IBB08-05	604.5475842	10.37026254	1779.542415	15.73925245
IBB08-06	536.2894376	5.436283202	1083.223528	14.71560592
IBB08-07	1180.802722	8.949026437	1625.423339	11.64585681
IBB08-08	652.9778197	5.016228244	1059.555335	17.13589618
IBB08-09	725.493255	6.37718474	1324.297114	12.74998669
IBB08-10	673.5317185	12.51754826	2397.428395	12.28993417
IBB08-11	911.0832352	7.723410171	1457.055221	12.09560132
IBB08-12	1053.269379	8.530319925	1883.846154	11.53887003
IBB08-13	902.4875188	6.52326124	1526.642767	11.92107067
IBB08-14	803.3136812	8.677493593	2127.748098	11.45142478
IBB08-15	768.7364133	7.439602372	1310.590075	12.99071627
IBB08-16	567.9959655	4.903791647	1088.678138	13.2488882
IBB08-17	668.4815809	5.582711917	1188.51424	13.91114512
IBB08-19	543.7148987	4.091575031	1552.222407	13.38804667
IBB08-20	663.9760504	5.265679343	1268.621019	18.48959066
IBB08-21	617.819158	6.731245628	1193.393818	19.81535991
IBB08-22	617.8667549	7.362243661	1379.573971	16.10698501
IBB08-24	742.8336118	7.754826568	1401.207566	16.10108988
IBB08-25	652.7891704	12.34660361	1474.499877	19.33090661
IBB08-26	615.2377655	7.360118859	1461.267336	14.3589909
IBB08-27	719.2876053	9.025926913	1289.416899	13.60964731
IBB08-28	852.6894703	12.9346012	1593.999747	12.77924319
IBB08-29	998.6760065	14.4067821	1749.600723	11.71118826
IBB09				
IBB09-01r	1368.800417	9.143906363	1726.680281	11.51733724
IBB09-02c	1788.609701	13.84251295	1795.896392	13.16140851
IBB09-03r	1195.323164	9.369995345	1681.769506	11.66839711
IBB09-04c	1712.910116	13.66949634	1791.216551	12.71335173
IBB09-05r	1285.530666	9.532090064	1699.592315	11.71482658
IBB09-06c	1737.965268	12.2061374	1809.48018	11.86642526
IBB09-07r	961.5381555	9.8748645	1560.979469	12.27646692
IBB09-08r	1346.114802	9.086969607	1723.887281	11.56245189
IBB09-09	1524.398066	13.35986434	1769.617781	13.76790852
IBB09-10c	1709.447582	11.96604988	1797.28647	11.57200574
IBB09-11r	1365.062034	15.22407688	1717.340258	11.72311986
IBB09-12	656.4367846	5.126712812	1289.534366	13.34145796
IBB09-13r	1466.912688	16.8956596	1746.135433	11.39390666
IBB09-14r	1115.833222	16.21100019	1638.548037	12.12105152
IBB09-15c	1759.981022	12.29286935	1803.177119	11.93148624
IBB09-16r	1664.439841	11.26441543	1733.999469	11.99310869
IBB09-17r	1201.69771	20.28608769	1678.678892	12.07311849
IBB09-18r	822.2407681	5.728422402	1430.722238	12.25436491
IBB09-19c	1748.537832	15.42763865	1773.806632	12.32757024
IBB09-20	1141.261045	27.68040659	1664.68967	12.79335519
IBB09-21r	1279.998674	8.917761431	1703.994383	11.52650763
IBB09-22r	816.6896062	8.199721513	1462.076488	14.13350345
10000.00	1202 270605	12 02078288	1700 211285	11 79711966

IBB09-24c	1731.267346	13.56440762	1794.032657	12.32289572
IBB09-25r	956.1995585	9.673601106	1561.072094	13.13062514
IBB09-26c	1734.557101	14.40196005	1790.270346	11.90050556
IBB09-27r	911.2953047	6.709419833	1497.046772	12.37523546
IBB09-28r	1553.835021	10.48506825	1790.036157	11.43838414
IBB09-29r	1366.114577	13.01055253	1727.096857	11.43590795
IBB09-30r	1091.106118	7.458474066	1628.54349	11.64357748
IBB10				
IBB10-01c	1806.644285	20.99149213	1793.017559	15.3415491
IBB10-02r	778.5093257	5.992103609	1598.597827	18.58850629
IBB10-03	644.4293913	4.822969094	1261.189727	16.11102977
IBB10-04	720.9340696	6.560274233	1235.998559	12.46695381
IBB10-05	1494.953377	11.68945342	1730.632385	11.67908272
IBB10-06c	1493.281349	15.22748771	1819.764216	12.30270757
IBB10-07r	641.5370478	4.98532411	1346.634435	16.87503617
IBB10-08c	1656.66733	14.45615801	1805.660457	13.03798171
IBB10-09c	1845.294196	24.51614232	1848.712786	18.22393153
IBB10-10r	1573.42811	10.70066779	1768.908531	11.53939876
IBB10-11	1813.617107	21.24638077	1809.227802	15.73988817
IBB10-12r	693.7462204	5.50495042	2704.244882	46.22218799
IBB10-13c	1823.270058	15.92047376	1808.964714	13.31562148
IBB10-14r	838.8214296	8.169919955	1420.677384	13.15254732
IBB10-15c	1568.424886	19.40181299	1809.768736	16.4094322
IBB10-16r	603.1662428	6.404374934	1273.720798	13.92020119
IBB10-17c	1785.32819	13.03228586	1814.171165	12.36289086
IBB10-18	1821.120876	16.23182893	1806.624461	14.08889956
IBB10-19r	682.8694775	7.247324181	1329.463895	13.3493267
IBB10-20r	753.2893919	6.579264737	1340.909646	12.58896301
IBB10-21c	1774.009712	13.65002632	1801.458214	12.04812763
IBB10-22r	611.3466056	8.001824983	2466.713557	71.66384421
IBB10-23	1284.002293	12.90822054	1752.430634	12.37473125
IBB10-24	665.7888843	5.444672699	1347.306294	13.04430351
IBB10-25	1348.189431	9.306803445	1744.99107	11.4552009
IBB10-26	225.8051498	3.027323879	1840.097711	12.86801653

Young rocks communicate in plain prose, which makes them easy to read, but they typically have only one thing to talk about. The oldest rocks tend to be more allusive, even cryptic, speaking in metamorphic metaphor.

-Marcia Bjornerud

