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Abstract: Electric failures are a problem for customers and grid operators. Identifying causes and
localizing the source of failures in the grid is critical. Here, we focus on a specific power grid in the
Arctic region of Northern Norway. First, we collected data pertaining to the grid topology, the topogra-
phy of the area, the historical meteorological data, and the historical energy consumption/production
data. Then, we exploited statistical and machine-learning techniques to predict the occurrence of
failures. The classification models achieve good performance, meaning that there is a significant
relationship between the collected variables and fault occurrence. Thus, we interpreted the variables
that mostly explain the classification results to be the main driving factors of power interruption.
Wind speed of gust and local industry activity are found to be the main controlling parameters in
explaining the power failure occurrences. The result could provide important information to the
distribution system operator for implementing strategies to prevent and mitigate incoming failures.

Keywords: energy analytics; machine learning; anomaly detection; power interruptions;
unbalanced classification

1. Introduction

Failures in electricity supply from producers to customers affect anyone connected to
the distribution grid [1–4]. In the case of the distribution system operator (DSO), power
interruptions are considered as a breach of the contractual obligations with the consumers
and result in financial penalties [5].

Electric failures alone can turn into serious losses whose estimates range from $22
to $135 billion annually [6–8]. Moreover, failures might have complex and adverse socio-
economic consequences in communities heavily reliant on the electricity supply [9,10].

This study focuses on a specific grid in the Arctic region of North Norway. In this
context, the expansion of local industries connected to the power grid is driven by the
processing and exporting of fish to the worldwide market. An important requirement is
that these production lines operate at full capacity during the high season. These industries
adopt several automated components that are critically dependent on reliable power
quality. Even minor electrical disturbances lasting only a few seconds could stop the entire
production line for a significant amount of time. In particular, for every short-term power
interruption that occurs, 40 min to 1 h might pass before resuming production.

In most communities, multiple sources could provide backup electricity supply if one
line is interrupted [11]. However, the power grid considered in our study has a radial
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distribution system where customers connected to the grid do not have any sources to
provide backup power in case of a failure. Therefore, it is fundamentally important to
increase the reliability of the power grid.

One way to deal with this situation is to build a new power grid and design it to
handle the current power requirements.

However, building a new power grid has an enormous environmental impact, requires
large investment costs, and is a time-consuming process. Moreover, this does not fit in with
the vision of making better use of today’s power grid [12,13]. In addition, if the industries
that are currently connected to the grid will stop their activities, the power company will
end up with an over-dimensioned power grid. Rather than investing in a new power grid,
it is possible to reduce the number of failures in the current power grid. However, this
implies that the factors that cause the power failures must be identified.

The identification of such factors, and their location in the grid, has proven to be a
major challenge for the DSO [14].

So far, the DSO has accepted the numerous failures in the power grid and has operated
the grid in the best possible way given the failures that occur. However, new regulations
have made it more expensive for the DSO to tolerate failures in the power distribution net-
work and, at the same time, the more automated industries have much higher requirements
for high power quality than before.

Therefore, there is a huge motivation for the DSO to identify in detail the factors
triggering power interruptions to be able to operate the grid in a better way.

The increased availability of energy-related data by the DSOs makes it now possible
to exploit data science techniques to develop strategies to improve the reliability of the
power grid [15]. Some effort has been put in this direction where the performance of the
proposed solutions has been applied on benchmark power systems [16,17]. Results indicate
that extreme weather conditions are often the major cause of failures in the power grid.
Indeed, resent research investigate the relationships between weather variables and power
failures with the use of machine learning (ML) [6]. However, it is likely that besides weather
conditions, human activity also plays a key role.

In this work, in close collaboration with the DSO, we construct a dataset considering a
wider spectrum of explanatory variables that could explain the onset of a power failure.
In particular, rather than assuming that harsh weather conditions are the only source of
failures, we also consider measurements of electricity-related variables. Once the dataset is
constructed, we exploit ML classification techniques to find the relationship between the
failure and non-failure (i.e., normal condition) classes. In the end, we discover the variables
that contribute the most to the power failure occurrence by interpreting the decision process
of the ML classifiers.

The work is structured as follows. In Section 2, we review relevant related work. In
Section 3, the specific power grid analyzed here is presented together with the report of
failures from the local DSO. In Section 4, we present the methodology for building the
dataset used in the statistical analysis. In Section 5, the different ML techniques used for
classification and failure detection are presented. In Section 6, the features are analyzed,
and we investigate the quality of the models in relation to the identification of the cause of
failures. Conclusions are given in Section 7.

2. Related Works
2.1. Detecting Failures Caused by Weather Conditions

While prior studies on this topic are limited, harsh weather conditions are believed to
be an important source of failures, and several studies have been conducted to address the
impact of weather events on power quality.

A power system with high power quality is characterized by few power interruptions,
a steady voltage, a steady frequency (close to 50 Hz in Europe), and a smooth sinusoidal
voltage curve.
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In the study by Owerko et al., power failures in New York City were predicted
based on weather conditions [6]. The authors deployed a Graph Neural Network (GNN)
to adequately process weather measurements close to the power grid to determine the
likelihood of power failure. The results showed a 1.04% error in the prediction.

Perera et al. analyzed the impact of extreme weather events on the reliability of power
systems in 30 cities in Sweden [18]. The authors developed an optimization method to
consider both extreme and less extreme weather events, and the results indicated that in
periods with extreme weather, the power supply reliability dropped by 16%.

The authors in [17] provide a framework for quantifying and modeling the resilience
of power systems that addresses the challenge of high wind incidences. In this work, they
accounted for all possible routes from power generators to loads by proposing a matrix-
based approach. Here, the load importance before and after a failure event was considered.
The effectiveness of the approach was tested on the IEEE 14-Bus system.

In the work by Trakas et al., the impact of frequent extreme weather events on the
power grid supply reliability was addressed [16]. Here, a spatial risk analysis methodology
was proposed. This analysis tool could provide a warning when there is an evolving risk
for failure for a system placed in regions that is more exposed to extreme weather events.
In addition, a Severity Risk Index (SRI) was used to monitor the power system in real time.
The SRI considered both the spatial and temporal evolution of the extreme event, the system
performance, and the system operating conditions during the extreme weather event.

Reference [19] reviews existing methodologies where they assess the impact of weather
on power system resilience. Critical infrastructure and plans for improving resilience in
cases of extreme weather events are also provided.

The authors in [20] together with the Italian Transmission System Operator (TSO)
proposed an approach to improve grid resilience in natural disastrous events. The approach
deploys flexibility tools that combine the flexibility margins of the networks to those of
generation and load. The authors propose a flexibility tool to improve the resilience of the
power system in case of severe weather conditions.

Common for all studies that have been presented here is that most studies test their
proposed approach on benchmark datasets rather than on real-world problems. In addition,
the studies only consider severe weather events and disregard factors such as failures
caused by human activities.

2.2. Alternative Approaches for Failure Detection

In Hoffmann et al. [21], a methodology to predict incoming power failures was pro-
posed. In this work, the authors analyzed high-resolution data from Power Quality Ana-
lyzers (PQAs) and Phasor Measurement Units (PMUs). The main aim of the work was to
predict power interruptions, voltage drops, and earth failures by analyzing measurements
from nine real-world PQA nodes in the Norwegian power grid. In conclusion, the authors
reported that the incipient power interruptions were easiest to predict, while voltage dips
and earth failures were more challenging to predict.

The long-lasting challenge for the DSO of detecting earth failures has been recently
addressed [22], which shows that by integrating advanced metering infrastructure with a
distribution management system, failures can be detected. However, the proposed solution
can only be used if the DSOs have access and know how to use the OpenDSS software.

The challenge of the increasing strain on the power grid with increasing electrification
has also been investigated [23]. Here, the challenge with the implementation of renew-
able energy technologies with intermittent power production is discussed. The authors
proposed possible monitoring solutions and failure-predicting methodologies by using
statistics and field measurements from the Norwegian power grid. While ML approaches
were identified as candidates, the authors did not use any. No time resolution and/or
duration was considered either in terms of developing a robust failure detection and
prediction methodology.
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In this section, relevant works on predicting power failures have been reviewed. All
the former works have either only considered power-related measures or weather variables.
The goal of this work is to consider both weather variables and power-related measures at
the same time to provide a better overview of the potential variables that could result in
power failures.

Here, the DSO that operates the grid that is analyzed has provided insight about the
potentially relevant variables that could explain power failures.

In addition, none of the former work has proposed a technique to interpret the decision
process of the machine learning (ML) models, which allows identifying the main important
features that cause failures in the power grid.

3. Case Study
3.1. The SVAN22LY1 Power Grid

The power grid analyzed is a distribution system with a radial design, where the
power flows from the south toward the north. The DSO of this power grid is the Arva
Power Company, which has named this specific grid that is analyzed as SVAN22LY1.
Figure 1 shows the whole power grid indicated by green dots.

The power line of the SVAN22LY1 power grid is supported by 978 utility poles with
different geographical positions. The power grid spans 60 km from south to north. In
Figure 1, the black boxes are the electrical transformers, while the red lines are the power
grid with an operating voltage of 66 kilo Volt (kV). The blue lines and the SVAN22LY1
power grid covered in green dots have an operating voltage of 22 kV [14].

The largest customers connected to the SVAN22LY1 grid are located at the end of the
northernmost point of the radial (69.546◦ N, 17.657◦ E). The total energy demand in the
community is a combination of load profiles from two sectors: households and industry.
Being a rural community, the industry accounts for more than 50% of the total energy
consumption [24]. The industry has electrical machines that are sensitive to stable power
quality, and minor power interruptions could bring the production line to a halt.

The SVAN22LY1 grid has one electrical transformer in the southern part of the grid
(referred to as “Transformer south” in the following). This electrical transformer station
provides information about the energy consumption for all customers connected to it and
also for customers that are not directly connected to the SVAN22LY1 grid. Therefore, this
electrical transformation station could provide insight into whether other types of energy
consumption patterns than the local industry could affect the power quality.

There is a hydropower station connected directly to the SVAN22LY grid that generates
electricity to support the grid. This hydropower plant is important to consider when
analyzing the power supply reliability for SVAN22LY1. For instance, in periods when the
hydropower plant operates at low capacity (or is shut down), electricity must be imported
from other supply sources farther away from the power grid. This will result in feeder
losses, i.e., losses of energy when being transported on the power line. The longer the
distance of a power line, the larger the feeder losses. Therefore, if the local hydropower
station does not generate electricity, the feeder losses would create voltage drop and have a
negative impact on the local power quality.

In addition, if electricity must be imported from other sources, neighboring parts of
the power grid could be overloaded and in the worst case result in failure [25]. The location
of the key devices connected to the grid is described in Section 4.1.

In addition to the different consumption and production devices that could affect the
power quality, the SVAN22LY1 power grid is in an area characterized by typical Arctic
conditions with cold, long winters and is heavily exposed to harsh weather throughout the
whole year. Harsh weather can cause voltage drops and power interruption, in addition
to the increased power demand from end customers. For example, strong wind gusts can
make the power lines between the utility poles collide, which can cause short-term (up to
1 min) interruptions in the power supply [26].
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3.2. Reported Failures in the SVAN22LY1 Power Grid

Every failure in the power system is logged as an incident in the Norwegian reporting
system FASIT (Failure-and interruption statistics within the national power grid) [27]. Each
DSO company in Norway is required to have a FASIT reporting system. The purpose of FA-
SIT is to provide information about the delivery reliability of the Norwegian power system.
The report provides both information about historical delivery reliability and information
for estimating future expected delivery reliability. To be able to obtain information on the
delivery reliability, the report should contain information on:

• Operational disturbances;
• Planned disconnections that have led to power interruptions (both planned notified

disconnection and planned unannounced disconnection).

The operational disturbances should cover information about each failure, on which
grid the failure occurs and, if known, the reason for the failure. The operational disturbances



Energies 2022, 15, 305 6 of 21

should also cover an end-user focus by reporting the duration of the interrupted power.
In addition, the amount of not-delivered power and the compensation for not-delivered
power are reported [27]. The FASIT system also holds information about short-term power
interruptions that typically are less than one minute.

In this study, the FASIT report for the SVAN22LY1 grid is provided by the Arva Power
Company [14]. In 2020 (January to the end of November), the FASIT system reported
54 incidents distributed over 44 different hours (several failures can occur within one hour).
Figure 2 shows the reported failures in 2020. The distribution of failures during the year is
not uniform, and most failures were reported in September month followed by January and
July. In June, no failures were reported. Despite there being higher energy consumption
from customers and more harsh weather conditions in the winter, there are more failures
during the summer. The reason is that the local hydropower plant connected to the grid
(more information about this hydropower plant in Section 4.1.3) operates with a reduced
capacity compared to the rest of the year and, from time to time, it is completely shut down.
This allows saving water, which can be used in winter when there is a larger need for
electricity. This makes the power grid more vulnerable during the summer and exposed
to power faults caused by a sudden demand for power from the industrial customers
connected to the grid.
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Figure 2. Distribution of failures in 2020 in the SVAN22LY1 power grid, logged in the FASIT report
of Troms Kraft.

In this study, the period from the first of January 2020 to the end of November 2020
is investigated.

Since the FASIT only reports that a fault occurred somewhere in the grid, it is chal-
lenging to identify what caused the fault and on which part of the grid the fault occurred.

4. Method

In Figure 3, a flow chart of the methodology is provided. The flow chart provides
an overview of the different steps from first obtaining the dataset that is used to detect
the failures with machine learning techniques to the final step where the main important
variables for causing failures are identified.
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4.1. Construction of the Dataset

To detect the potential contributing factors for failures, all potential variables of interest
are collected. The candidate variables are divided into two groups: weather-related failures
and energy-related (consumption-and production) failures.

4.1.1. Localizing Weather-Exposed Areas in SVAN22LY1

As the SVAN22LY1 grid spans over a large area, the weather conditions can change
significantly in different parts of the grid. To detect the regions that are more likely exposed
to weather-related failures, some assumptions are required. One is to assume that higher
elevation increases the probability of being exposed to harsh weather conditions, such as
strong wind. Indeed, utility poles at high altitudes are often in mountainous areas where
there is no vegetation that can protect from the wind.

The altitude map for the area of interest is obtained from the Norwegian Mapping
Authority [28]. The altitude of each pole is obtained by checking its coordinates on a digital
surface model (DSM) with a spatial resolution of 1 m [28,29]. The poles at the lowest
altitude are at sea level (0 MASL (Meters Above Sea Level)), whereas the utility pole at the
largest elevation is at 485 MASL. We group the altitudes into 5 groups: 1 (0–100 MASL),
2 (100–200 MASL), 3 (200–300 MASL), 4 (300–400 MASL), and 5 (400–485 MASL). We
assume that the most exposed areas (EA) belong to group 4 and 5 (300 to 485 MASL).

The second information that is useful to consider is the distance between the utility
poles. We assume that the longer the length between two poles, the higher the likelihood
that the cables will collide under harsh weather conditions, resulting in power interruptions.
The distance between adjacent utility poles is found by calculating the geodesic distance
between the Lat–Long coordinates of each utility pole.

Based on the altitude and distances between poles, we selected 3 exposed areas (EAs).
While there is no guarantee that these are the only areas that might trigger weather-related
failures, this allows us to significantly narrow down the candidate regions. The utility poles
in EAs are highlighted in Figure 4, and additional details are given in Table 1.
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Table 1. Properties of selected weather-exposed areas in the SVAN22LY1 power grid.

EA1 EA2 EA3

Coordinate (deg.) 69.523 N, 17.779 E 69.520 N, 17.726 E 69.321 N, 17.729 E
Elevation (MASL) 300 360 485
Longest distance

between poles (m) 122 136 121

4.1.2. Exposed Areas and Weather Variables from AROME-Arctic

The selected EAs are located kilometers apart (see Figure 3), and there is no weather
station located in the proximity of each region. Therefore, to collect relevant weather
data in the specific regions, we use the AROME-Arctic weather model developed by the
metrological institute of Norway (MET). This is a reanalysis model that has run since
November 2015 and has a spatial resolution of 2.5 km. AROME-Arctic accounts for weather
conditions that are unique in Arctic regions, such as polar lows and icin [30]. The model
covers the latitudes from 66 N to 88 N and longitudes from −18 E to 80 E.

From AROME-Arctic, the following variables in the EAs were collected: wind di-
rection, wind strength, precipitation, relative humidity, temperature, and pressure. The
variables were chosen based on the experiences from the DSO and the local customers,
which reported the failures to be more likely in the presence of certain weather conditions.
In particular, the weather variables were collected due to the following reason:

- Wind speed of gust and wind direction were selected as relevant variables as they
could cause collisions of the power lines. A collision of power lines will result in
power failures.

- The humidity variable was selected because the components installed along the power
distribution network are more vulnerable if there is a high degree of humidity.

- Air pressure was chosen as a relevant variable since the electrical components in-
stalled on the distribution network could be more prone to faults in certain air
pressure conditions.

- Precipitation was selected as it is closely related to the humidity variable, and it is of
interest to investigate if moist conditions could affect the power supply reliability.

- The temperature variable was selected as it can have an impact on the power lines. For
instance, if there are high temperatures (for instance during a warm summer day), the
power lines will become longer due to the dilation of the materials. In some extreme
cases, they will become so long that they could touch the vegetation beneath. This will
create power failures. On the other hand, cold temperatures (which are much more
frequent in the arctic environment where our study is conducted) could create icing
on the power lines. This is a well-known problem for the DSO. The ice will put heavy
weight on the power lines and make them more vulnerable to failures.

The AROME data are in hourly resolution and gives 8002 samples from 1 January
2020 to 30 November 2020. One could collect the weather variables for each EA for a total
of 18 weather variables (6 for each location). However, closer investigation shows that
the weather variables are very similar in each EAs. Therefore, we chose to average the
variables from all EAs, resulting in a total of 6 weather variables.

4.1.3. Detecting Non-Weather-Related Failures

In our analysis, we want to consider the possibility that some failures are not caused
by weather phenomena. To model these effects, the energy consumption data from the
largest industry connected to SVAN22LY1 are also collected. The energy consumption data
are considered as a relevant variable since the industry has a high consumption compared
to what the power grid is dimensioned for. Therefore, in some periods when there is a
very high activity in the industry, the consumption can exceed the capacity of what the
current grid can tackle. Consequently, power failures occur. In addition, when there is a
very activity at the industry, there is a lot of amperes that flow through the lines. When
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there is a lot of amperes, the temperature within the power line increases, and consequently,
the power lines will become longer due to the dilation of the materials. When the power
line is becoming longer, it increases the probability that the power lines could collide and
result in power failures.

Two variables related to the industry activities are included: The average consumption
over one hour and the difference in minimum and maximum power during this hour.
The minimum/maximum power is logged every 30 s. The energy data available from the
DSO have different temporal resolutions and, to perform analyses, all variables must be
transformed to the same resolution. Since the meteorological data from AROME-Arctic
have hourly resolution, all variables are down sampled to match the hourly resolution. To
transform the minimum/maximum power data into hourly resolution, we compute the
largest difference in minimum/maximum power during each hour. A large difference in
minimum/maximum power consumption corresponds to a high level of activity in the
local industries. In addition, energy consumption data from the Transformer south, and
energy generation data from the local hydropower station is collected.

We also include variables that could affect the power quality, even if they are not
coming from measurements collected in SVAN22LY1. In particular, we include the con-
sumption data from an external industry, which is located 30 km away from the electrical
transformer located in the south (Transformer south). This industry is the largest customer
in the entire power grid of the DSO and puts a heavy strain on the grid, which could affect
the power quality [14].

Two measurements are collected from this external industry: reactive power and active
power. The reactive power is measured at two different electric transformer stations, T1
and T2.

The location of the source of all variables used in our analysis is visualized in Figure 5.
The final dataset has 8002 samples with hourly resolution data from 1 January 2020 to

30 November 2020. The variables analyzed are summarized in Table 2:

Table 2. Variables analyzed to detect failures in the SVAN22LY1 power grid.

Feature Weather Variables

1 Wind direction
2 Wind speed of gust
3 Temperature
4 Air pressure
5 Relative humidity
6 Precipitations

Feature Non-Weather Variables

7 Local industry: Energy consumption
8 Local industry: Difference minimum/maximum power consumption
9 Hydropower production
10 External industry: Reactive power (T1)
11 External industry: Reactive power (T2)
12 External industry: Energy consumption
13 Transformer south

The methodology for constructing the dataset with the relevant variables could be
applied in any other power grids that experience issues with power supply reliability
dependent on factors beyond merely power-dependent ones. When such factors are
weather-related, weather data can be collected from weather simulation models created for
the specific region, while the collection of power variables relies on a strong collaboration
with the grid operator of the specific grid.

Once the dataset with all variables is constructed, a data point y is assigned as a binary
variable where y = 1 indicates that a power failure occurred, and y = 0 indicates that no
failure happens (i.e., the power grid operates as it should). The binary variable divides the
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dataset into two classes: a minority class (a total of 44 samples with failures) and a majority
class (a total of 7958 samples with non-failures, i.e., normal conditions).
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Figure 5. The SVAN22LY1 grid with locations for all the variables included for statistical analyses.
The figure shows the SVAN22LY power grid marked by the green dots that represent the positions
of the utility poles. Each of the EAs are highlighted. EA1 and EA2 are in the northern part of the
grid, and EA3 is in the southern part. The electrical transformer station in the south is located
approximately 30 km away from the external industry. The hydropower station is in the middle of the
power grid and supports the communities with electricity. The hydropower plant has a capacity of
5.3 MW and has an average yearly electricity generation of 28.1 GWh. The largest industry connected
to SVAN22LY1 is in the northernmost part of the grid.

5. Classification and Outlier Detection with Machine Learning

We analyze the capability of identifying the failures in the SVAN22LY1 grid by using
different machine-learning (ML) models that process the weather and energy-related
features. We consider as covariates X = {x1, x2, . . . x13} the 13 weather and electricity
variables and y as the binary label that indicates a fault or not. The goals are as follows:

• Determine if the collected variables are informative to detect a fault. This is done
by training a classifier to predict a fault given the values of the input variables. A
successful classification performance indicates a significant relationship between the
state of the variables and the occurrence of the faults.
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• Identify which are the most important variables among the one selected. Given that
the classification worked well, we interpret the decision rules of the classifier to find
the variables that explain the failures the most.

We note that this is a completely data-driven tool for diagnostics. Several statistical
and ML methods can be used. In this work, we focus on well-known ML techniques rather
than new and more complex algorithms, which could make the interpretation of the results
is more difficult.

We consider both linear and non-linear classifiers as well as methods for one-class
classification. The latter are used to perform anomaly detection and can naturally deal with
class imbalance, which is very strong in our dataset. On the other hand, to handle class im-
balance with standard linear and non-linear classifiers, we resort to two different techniques.

The first is to train the models by weighting the classification errors on the under-
represented class (failures, y = 1) more than errors on the larger class (nominal condition, y = 0).

The second is to artificially augment the dataset by resampling many times the minor-
ity class. The details are described in the following. In this work, we apply the Synthetic
Minority Oversampling Technique (SMOTE) [31]. The SMOTE method is summarized
as follows: (1) Over-sample the minority class to balance the dataset. (2) The sampling
is concentrated on the boundary area between the two classes. (3) The minority class is
expanded where there are fewer majority classes. As a result, the learned decision boundary
can be closer to the ideal boundary between the minority and majority classes [31].

Linear classifiers. Three linear classification models are used: The Ridge regression [32],
Logistic regression [32], and the Linear Support Vector Classification (LinearSVC) [33]. The
linear models are employed due to their advantage in constructing a decision boundary
directly into the input space. This allows for the interpretation of the decision process of
the classifier (Eikeland, Holmstrand, Bakkejord, Chiesa, and Bianchi, 2021). The higher
the weight of the feature, the more the value of the feature impacts the result. Therefore,
analyzing the magnitude of the weights allows estimating the feature importance.

Non-linear classifiers. Among the non-linear models, two different classifiers are
considered. The first is a Support Vector Machine (SVC) with a radial basis function kernel
(RBFSVC), and the second is a Multi-Layer Perceptron (MLP) [34].

One-class classifiers. The one-class models are commonly used for classification tasks
with an imbalanced class distribution and have shown to be effective when there are very
few examples of the minority class [35]. We use four different one-class classifiers.

The One-class SVM algorithm extends the original support vector algorithm to the case
of unlabeled data [36]. The One-Class SVM is an unsupervised learning algorithm that is
trained on the majority class, which represents the “normality” condition. The algorithm
learns the boundaries of the points belonging to the “normal class” and then classifies the
points that are outside the boundaries as “outliers” or “anomalies”.

The main objective of the Isolation Forest model is to explicitly isolate the outliers by
creating a tree structure [37]. As a result of their susceptibility to isolation, the anomalies
are isolated closer to the root of the tree, whereas normal points are isolated at the deeper
end of the tree [37].

The Elliptic envelope, or the Minimum Covariance Determinant (MCD), was devel-
oped by the authors in [38]. This method is an estimator of multivariate location scatter
and works efficiently if the input variables have a Gaussian distribution. If the dataset
has two (or more) input variables that are normally distributed, then the feature space
forms a multi-dimensional Gaussian. Values far from these Gaussian distributions will be
identified as outliers [38].

The local outlier factor (LOF) is a methodology to detect outliers by assigning to each
object a degree of being an outlier [39]. Each object is assigned with a degree that depends
on how isolated the object is with respect to the surrounding neighborhood.
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5.1. Model Selection and Performance Evaluation

In this work, the input X is normalized feature-wise before training the models. When
training the models and evaluating their performances, the data are first shuffled before
a stratified k-fold (k = 5) is performed. The dataset is divided into a training (80%) and
test (20%) set. The training set is further subdivided, where 80% of the training set is used
to fit the coefficients, and 20% of the training set is used as validation to find the optimal
hyperparameter configuration. The overall classification performance of the models is
the average of the five folds. The scikit-learn library [40] is used for the python imple-
mentation of the linear models and the RBFSVC, while Tensorflow [41] is used for the
MLP implementation.

5.2. Measuring Classification Performance

As the dataset is very imbalanced, accuracy is not the best metric to use for evaluating
the performance. Indeed, very high accuracy can be obtained by always assigning the
majority class to all samples.

Therefore, the F1 score is used to measure the performance on the test set (1200 samples).
The F1 score is interpreted as the weighted average of the precision and recall and assumes
values between 0 and 1 [40]. The F1 score is defined as

F1 = 2 ∗ precision ∗ recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

. (1)

Here, TP is the number of true positives, FP is the number of false positives, and FN
is the number of false negatives. The positive in this study is the failure class, while the
negative is the non-failure class. Due to the strong class imbalance in this classification task,
the weighted F1 score is computed. Here, this performance score is weighted by weighting
the F1 score for each class by the number of samples from this specific class. Finally, the
average weighed F1 score is computed.

In addition to reporting the weighted F1 score, the sensitivity and specificity scores
are provided. The sensitivity and specificity score are defined as

TPR =
TP
P

(Sensitivity) (2)

TNR =
TN
N

, (Specificity) (3)

where N and P are the total number of negatives and positives, respectively.

6. Results
6.1. Preliminary Analysis

To gain an insight of the distribution of the values in each variable across the different
classes, we use a Kernel Density Estimation (KDE) to estimate the distribution for each
variable [40], as shown in Figure 6.

If the estimated density functions show significant differences between the failure
class (red) and the normality class (blue), this indicates that a specific feature behaves
differently in the two classes and can be used to discriminate among them. Looking at the
distributions might help to assess which features are more important to identify the failures
in the power grid. On the other hand, less important features have a similar distribution in
both classes and are arguably less useful to discriminate among them.

It is clear from the density plots that it is very difficult to discriminate the minority
from the majority class considering each feature individually, as the distributions are similar.
From the density plots, it seems that wind speed is the most discriminating feature, since
the distributions are different in the two classes.
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To quantify the separation between the distributions numerically, we computed the
Kullback–Leibler (KL) divergence. If the KL divergence is high, there is a large discrepancy
between the two distributions [42]. The value of the KL divergence is given in Table 3.

Table 3. KL divergence for each variable.

Variable KL Divergence

Wind dir. 2.28
Wind speed 3.87

Temp. 2.21
Air pres. 1.61

Rel. Hum. 2.35
Precip. 0.82

Local industry: Energy consumption 3.83
Local industry: Diff. min/max power. 2.03

Energy production, hydropower 1.62
External industry: Reactive Power (T1) 3.58
External industry: Reactive Power (T2) 1.67
External Industry: Energy consumption 2.69

Consumption, Transformer south 3.83

The KL divergences confirm that wind speed is the most discriminating feature, as
indicated from the distribution plots in Figure 5. However, from this analysis, it is difficult
to verify that wind is the only feature causing failures in the SVAN22LY1 grid.

Visualization of Majority Class and Minority Class

Here, in addition to computing the KDE distribution (Figure 6) and the KL divergence
(Table 3), the features are visualized as a scatter plot. The scatter plot provides an overview
of how the two (minority and majority) classes are distributed for each feature. The scatter
plot is given in Figure 7.

Figure 7 shows the two major challenges: class imbalance and non-trivial separation
among classes.

The minority class (failures) is mixed with the majority class (normal conditions)
repeatedly. However, the scatterplot of wind speed of gust shows that some failures are well
separated from the rest. This indicates that the SVAN22LY1 power grid might experience
more failures when there is a high wind speed of gust (above 25 m/s).
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In summary, the difficulty in separating the two classes by using simple thresholds on
the individual variables motivates the use of more advanced ML techniques.

6.2. Classification Performances

Here, the classification performances obtained by the different methods are compared.
In Table 4, the performances of the different models are compared across the five folds in
terms of the average number of TN, FP, FN, TP, and the weighted F1 score.

The results show that the non-linear SVC classifier (RBFSVC) with class weighting
achieved top performance with a weighted F1 score of 0.879, which was followed by the
MLP and the LinearSVC. The RBFSVC correctly classified eight out of the nine failures,
resulting in a sensitivity score of 8/9 = 0.88 or 88%. Compared to use of class-specific
weights, balancing the dataset with SMOTE results in a lower classification score for all
models, and therefore, it is not a suitable method for this particular failure detection task.
Interestingly, all the one-class models perform worse, as they find too many FP. A model
that reports several FP (i.e., false alarms) is not useful in practice.

Finally, it is important to notice that the linear models achieve relatively good perfor-
mance, which suggests that several data samples from the two classes are linearly separable.
Therefore, a feature selection procedure is provided in Section 6.4.
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Table 4. Average classification performance for different models obtained across five different folds.

Classifier TN FP FN TP Weighted F1
Score

Class-specific weights

Linear
Logistic

Regression 1256 328 3 6 0.712

Ridge
Classifier 1280 304 3 6 0.717

LinearSVC 1221 363 2 7 0.775
Non-linear

RBFSVC 1375 209 1 8 0.879
MLP 1301 283 1 8 0.860

SMOTE

Linear
Logistic

Regression 1552 31 5 3 0.453

Ridge
Classifier 1557 25 5 4 0.587

LinearSVC 1554 29 5 3 0.574
Non-linear

RBFSVC 1564 20 5 4 0.610
MLP 1543 40 5 4 0.605

One-class

One-class
SVM 15 1568 1 7 0.576

Elliptic 14 1569 2 6 0.534
LOF 15 1568 1 8 0.615

6.3. Analysis of the Results

Here, a fixed train/validation/test split is generated and used. This ensures that
the solution obtained by each model could be analyzed in detail. Since the RBBSVC
classifier obtained the highest classification performance, the classification score for a fixed
train/validation/test split was computed for this model. For this specific split, it is nine
failures and 1398 non-failures in the test set. Here, the RBFSVC identified nine failures
correctly while failing to classify three of the total amount of failures correctly.

To detect the possible causes for the nine failures in the test set, a closer investigation
of the specific failures was performed in collaboration with the DSO. By investigating each
failure individually, it was found that wind speed seems to be an important factor, as there
were several days with failures where the wind was above 25 m per second. This is in
line with the pre-analysis from the distribution plots and the KL divergence in Section 6.1,
which shows that wind speed could be an important factor.

For one of the nine failures, no specific causes were identified. However, the official
FASIT report for the specific incident shows that this failure was reported to be an earth
failure [22].

Interestingly, the earth failure is one of the three false negatives. However, since it is
independent of the weather and electricity load measure considered as input variables, it is
correct that the SVM assigns it to the non-failure class and should not be considered as a
true error.

In the end, out of nine failures in the test set, six failures were correctly detected with
the ML model. Among the three false negatives, one failure was identified as earth failure,
and for the two remaining failures wrongly classified, the cause remains unknown.

As the individual investigations of the nine failures showed that the magnitude of
wind speed seems to be a causing variable, it would be of interest to categorize the different
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variables in terms of importance. This will provide knowledge regarding how the DSO
could act in advance based on variables that are given as important and which variables
are interpreted as less important.

6.4. Identification of Important and Non-Important Features

To gain knowledge of which variables are the most relevant for causing failures in
the power grid, it is possible to rank the different variables in terms of how much they
contribute to explaining the classification results obtained by the ML models. As discussed
in Section 5, looking at the magnitude of the weights attributed by the linear models to the
input features allows us to identify the features that contribute the most to determining
the correct class. In return, this can give insights about which variables mostly explain the
occurrence of failures in the power grid. Figure 8 reports the magnitude of the weights
assigned to each feature after each linear model is trained. In addition, the average weight
of all linear models is reported for each feature. The higher the magnitude weight of a
given feature is, the more such a feature is important in predicting the class.
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Figure 8. Coefficient magnitude assigned to each feature by the different linear models. In addition,
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From Figure 8, the wind speed of gust and energy consumption and the industries is
given the highest weights, indicating that these features are the most important variables
in discriminating between the failure and non-failure class. This confirms the pre-analysis
from the Gaussian KDE distributions and KL divergences in Section 6.1. This is also in
line with experiences from the DSO and local knowledge, which states that they often
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experience failures when the magnitude of wind is large, and there is a high activity at the
industries with associated large strain on the power grid.

7. Conclusions

Failures have critical consequences for customers connected to the power grid, es-
pecially industries that are heavily dependent on having a stable power supply to avoid
potential financial losses related to a power failure.

In this work, the problem of detecting such failures was addressed by using machine
learning techniques. In collaboration with the local DSO, a dataset consisting of a wide
spectrum of variables that could potentially explain power failures was constructed. The
dataset consists of different power data and meteorological variables. Once the dataset was
constructed, different machine learning classifiers were trained to detect power failures
based on the value of the different variables in the constructed dataset.

The classification performance was compared in terms of the F1 score, and the RBFSVC
classifier achieved the top performance with an F1 score of 0.879, where eight of nine
failures in the test set were correctly detected. Among the linear models, the LinearSVC
obtained the best result, with an F1 score of 0.775, and it correctly detected seven of the
total nine failures. The good classification results obtained by the linear models motivated
the interpretation of the decision process. Interpreting the decision process of a linear
model is a valuable tool to identify the variables that mostly explain the power failure
occurrence. The result of this interpretation technique shows that wind speed of gust and
energy consumption at the local industry are the most important variables in explaining
the power failures.

This interpretability technique allows us to gain deeper insight into the underlying
causes of failures, and this type of knowledge is fundamental for the DSO that is operating
the grid in our study. The DSO has so far not employed strategies to detect and interpret
failures and has accepted the numerous failures that occur due to the fact that the causes
remain elusive. Based on the findings in this work, the DSO can now develop better
strategies for improving the power supply reliability.

Some examples of measures to enhance the power supply reliability are as follows:
(i) changing the grid topology and making the grid more robust in areas where there is a
higher likelihood that the grid could experience problems, (ii) introducing more electricity
generation locally by installing renewable energy sources such as wind or solar energy,
and (iii) developing a flexible market where the power loads in the grid can be controlled
to ensure that the strain on the power grid is never too high. These strategies are being
implemented by the DSO that operates the grid with the aim of reducing incoming failures.
In addition, the DSO has recently connected a new battery system to the power grid. To
improve the power supply reliability, this battery aims to be activated right before a power
failure is expected to occur; thus, being able to predict these occurrences is important.
Therefore, the findings in this study can be used by the DSO to better understand which
variable should be monitored to detect an incoming power failure.

Limitations and Suggested Future Research

The interpretation technique identified the wind speed of gust as the most important
feature in explaining the failure occurrence. The weather variables were collected from
different regions in the power grid, and the AROME-Arctic model used to collect the
data has a spatial resolution of 2.5 × 2.5 km. Therefore, the exact location of where the
weather-related power failure might occur remains unknown. Suggested future work is
to further narrow down the potential area where the weather most likely contributes to
power failures. As the AROME-Arctic model has a coarse spatial resolution, a potential
solution could be to install weather measurement stations in locations that are expected to
be more exposed to weather-related failures. This will enable the possibility to have better
and higher-resolution data available.
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This interpretation technique allows us to find the main driving factors that, on
average, contribute to power failures. However, while our interpretability is global, each
individual fault occurrence might be caused by a different combination of parameters. We
foresee future work aimed at developing a methodology that allows finding the causes of
each individual failure, which will provide additional knowledge to the DSO.
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