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Abstract

We investigate the k-th order Hardy inequality (1.1) for functions satisfying rather
general boundary conditions (1.2), show which of these conditions are admissible
and derive sufficient, and necessary and sufficient, conditions (for 0 <q < ∞, p > 1)
on u, v for (1.1) to hold.

1 Introduction
We will consider the k-th order Hardy inequality

⎛
⎝ b∫

a

∣∣f (x)∣∣qu(x)dx
⎞
⎠

1
q

≤ C

⎛
⎝ b∫

a

∣∣∣f (k)(x)∣∣∣pv(x)dx
⎞
⎠

1
p

(1:1)

with k a positive integer, where -∞ <a <b < +∞, p and q are real parameters, p > 1,

q > 1, and u, v are weight functions, i.e., functions measurable and positive a.e. in

(a, b). For some early contributions concerning such inequalities see [1] and the refer-

ences given there. For some later results we refer to the book [2, Chapter 3] and the

PhD thesis by Nassyrova [3] and the references given there. In this article we assume

that the functions f Î Ck-1[a, b], f(k-1) Î AC(a, b) satisfy the “boundary conditions”

k∑
j=1

[
αijf

(j−1)(a) + βijf
(j−1)(b)

]
= 0 for i = 1, ..., k, (1:2)

with
{
αi,j

}k
i,j=1 and

{
βi,j

}k
i,j=1 given real numbers.

The conditions (1.2) are reasonable since they allow to exclude, e.g., polynomials of

order ≤ k-1, for which the right hand side in (1.1) vanishes while the left hand side can

be positive. On the other hand, not every choice of ai,j, bi,j is admissible, which can be

illustrated by the following simple example.

Example 1.1. We choose k = 1; then (1.2) has the form

αf (a) + βf (b) = 0. (1:3)

For a = -b ≠ 0, any non-zero constant function f satisfies (1.3), while the right hand

side in (1.1) (with k = 1!) equals zero. Hence, the choice a + b = 0 is not allowed.

Let us consider the boundary value problem (BVP) consisting of the ordinary differ-

ential equation

f (k)(x) = g(x) on (a, b) (1:4)

Kufner et al. Journal of Inequalities and Applications 2012, 2012:69
http://www.journalofinequalitiesandapplications.com/content/2012/1/69

© 2012 Kufner et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:Lars-Erik.Persson@ltu.se
mailto:Lars-Erik.Persson@ltu.se
http://creativecommons.org/licenses/by/2.0


and of the boundary conditions (1.2).

If we denote by G(x, y) the Green function of this BVP, then we have that

f (x) =

b∫
a

G(x, t)g(t)dt (1:5)

and we can rewrite (1.1) as the weighted norm inequality

⎛
⎜⎝

b∫
a

∣∣∣∣∣∣
b∫

a

G(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎟⎠

1
q

≤ C

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

1
p

. (1:6)

Consequently, we have to solve two problems:

Problem A. To find the Green function of the BVP (1.4) & (1.2), i.e., to determine

the values ai,j, bi,j for which this BVP is uniquely solvable, and to determine the form

of G(x, t).

Problem B. With G(x, t) given, to find conditions (sufficient or necessary and suffi-

cient) on the weight functions u, v, for which (1.6) holds for every function g.

2 Problem A: to find the Green function
The general solution of Equation (1.4) has the following form:

f (x) =
k∑

m=1

cmx
m−1 −

b∫
x

(x − t)k−1

(k − 1)!
g(t)dt (2:1)

with arbitrary coefficients c1, c2,..., ck. Then conditions (1.2) lead to the following sys-

tem of linear equations for the unknown ci’s:

k∑
m=1

cm

⎡
⎣ m∑

j=1

(m − 1)!
(m − j)!

[
αi,ja

m−j + βi,jb
m−j]

⎤
⎦ =

k∑
j=1

αi,j

b∫
a

(a − t)k−j

(k − j)!
g(t)dt (2:2)

for i = 1,..., k.

The determinant of this system has the following form:

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1,1 + β1,1 · · ·
m∑
j=1

(m − 1)!
(m − j)!

[
α1,jam−j + β1,jbm−j

] · · ·
k∑
j=1

(k − 1)!
(k − j)!

[
α1,jak−j + β1,jbk−j

]
↓ i

... · · · ... · · · ↓ i
...

αi,1 + βi,1 · · ·
m∑
j=1

(m − 1)!
(m − j)!

[
αi,jam−j + βi,jbm−j

] · · ·
k∑
j=1

(k − 1)!
(k − j)!

[
α1,jam−j + βi,jbk−j

]
↓ i

... · · · ... · · · ↓ i
...

αk,1 + βk,1 · · ·
m∑
j=1

(m − 1)!
(m − j)!

[
αk,jam−j + βk,jbm−j

] · · ·
k∑
j=1

(k − 1)!
(k − j)!

[
αk,jak−j + βk,jbk−j

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2:3)

The system (2.2) has a unique solution if and only if its determinant Δ is not equal

to zero, and hence, we have immediately the following result:

Theorem 2.1. The k-th order Hardy inequality (1.1) is meaningful for functions f

satisfying (1.2) if and only if Δ ≠ 0, where Δ is given by (2.3).

Example 2.2. Let us consider the case mentioned in Example 1.1, i.e., k = 1 and the

condition (1.3). Condition (1.3) is then condition (1.2) with a1,1 = a, b1,1 = b and we
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have Δ = a + b. Hence the Hardy inequality (1.1) (for k = 1!) is meaningful for func-

tions f satisfying (1.3) if and only if a ≠ -b.
Example 2.3. Some particular cases of the conditions (1.2) have been investigated

earlier. In the book [2], the k-th order Hardy inequality (1.1) was considered under the

boundary conditions

f (i)(a) = 0 for i ∈ M0,

f (j)(b) = 0 for j ∈ M1,
(2:4)

where M0, M1 are subsets of the set Nk = {0, 1,..., k - 1}. In [2, Chapter 4], it was

shown that the Hardy inequality (1.1) is meaningful if and only if the sets M0, M1

satisfy the so-called Pólya condition, i.e., that

r∑
i=0

(
e0,i + e1,i

) ≥ r + 1, r = 0, 1, ..., k − 1,

where

eα,i =
{
1 if i ∈ Mα

0 if i /∈ Mα.

Hence, the condition Δ ≠ 0 can be called the generalized Polya condition appropriate

for the general case (1.2).

Assuming that Δ ≠ 0 with Δ given by (2.3) and solving the system (2.2) we see that

the components of its solution [c1, c2,..., ck] are linear combinations of the integrals on

the right hand side of (2.2). Hence we have the solution f of our BVP due to (2.1) in

the form (1.5), i.e.,

f (x) =

b∫
a

G(x, t)g(t)dt,

where the Green function is given by the formula

G(x, t) =
k∑

n=1

Pn(x)tn−1 − (x − t)k−1

(k − 1)!
χ(x,b)(t), (2:5)

where Pn(x) =
∑k

m=1 an,mx
m−1, n = 1,...,k, are polynomials of order ≤ k - 1. More pre-

cisely,

G(x, t) =
{
G1(x, t) for a < t ≤ x < b,
G2(x, t) for a < x < t < b,

(2:6)

where

G1(x, t) =
k∑

n=1

Pn(x)tn−1

G2(x, t) =
k∑

n=1

Pn(x)tn−1 − (x − t)k−1

(k − 1)!
,

(2:7)
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i.e.,

G2(x, t) =
k∑

n=1

Qn(x)tn−1 (2:8)

with

Qn(x) = Pn(x) +
(−1)n

(k − 1)!

(
k − 1
n − 1

)
xk−n.

Consequently, the Green function is fully described and the problem A is solved.

3 Problem B: to characterize the corresponding higher order Hardy
inequality
In the sequel, we will suppose that Δ ≠ 0 with Δ defined by (2.3).

3.1 Sufficient conditions

Since, due to (2.6), we have that

b∫
a

G(x, t)g(t)dt =

x∫
a

G1(x, t)g(t)dt +

b∫
x

G2(x, t)g(t)dt,

it yields that

b∫
a

∣∣∣∣∣∣
b∫

a

G(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

≤ 2q−1

⎡
⎢⎣

b∫
a

∣∣∣∣∣∣
x∫

a

G1(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx+

b∫
a

∣∣∣∣∣∣
b∫

x

G2(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

⎤
⎥⎦ .

Hence: if we derive sufficient conditions for the two Hardy-type inequalities

⎛
⎝ b∫

a

∣∣∣∣∣∣
x∫

a

G1(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≤ C1

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

1
p

, (3:1)

⎛
⎜⎝

b∫
a

∣∣∣∣∣∣
b∫

x

G2(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎟⎠

1
q

≤ C2

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

1
p

, (3:2)

we obviously obtain also sufficient conditions for the inequality (1.6) to hold.

Let us first consider (3.1). Due to (2.7), inequality (3.1) will be satisfied if there will

be

b∫
a

∣∣∣∣∣∣
x∫

a

Pn(x)tn−1g(t)dt

∣∣∣∣∣∣
q

u(x)dx ≤ C1,n

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

q
p

(3:3)
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for n = 1, 2,..., k. If we denote h(t) = g(t)tn-1, we can rewrite (3.3) as

b∫
a

∣∣∣∣∣∣
x∫

a

h(t)dt

∣∣∣∣∣∣
q∣∣Pn(x)∣∣qu(x)dx ≤ C1,n

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

q
p

. (3:4)

But this is just the Hardy inequality for the function h with weight functions U(x) = |

Pn(x)|
q u(x), V(x) = x-(n-1)pv(x), and it is well-known that this inequality holds for 1 <p

≤ q < ∞ if and only if the function

AM,n(x) =

⎛
⎝ b∫

x

u(t)
∣∣Pn(t)∣∣qdt

⎞
⎠

1
q
⎛
⎝ x∫

a

v1−p′
(t)t(n−1)p′

dt

⎞
⎠

1
p′

(3:5)

is bounded, while for the case 1 <q <p < ∞, the necessary and sufficient condition

reads

BM,n =

⎛
⎜⎜⎝

b∫
a

⎛
⎝ b∫

x

u(t)
∣∣Pn(t)∣∣qdt

⎞
⎠

r
q
⎛
⎝ x∫

a

v1−p′
(t)t(n−1)p′

dt

⎞
⎠

r
q′

v1−p′
(x)x(n−1)p′

dx

⎞
⎟⎟⎠
1
r

< ∞; (3:6)

here and in the sequel p′ = p
p−1 and

1
r
=
1
q

− 1
p
(for details, see, e.g., [2].)

Now, let us consider (3.2). Analogously as in the foregoing case, (3.2) will be satis-

fied, if–due to (2.8)–the following Hardy-type inequality for the function h with weight

functions U(x) = |Qn(x)|
qu(x), V(x) = x-(n-1)pv(x) will be satisfied:

b∫
a

∣∣∣∣∣∣
b∫

x

h(t)dt

∣∣∣∣∣∣
q∣∣Qn(x)

∣∣qu(x)dx ≤ C2,n

⎛
⎝ b∫

a

∣∣h(x)∣∣px−(n−1)pv(x)dx

⎞
⎠

q
p

. (3:7)

In this case, it is well-known (see, e.g., [4]) that the boundedness of the function

ÃM,n(x) =

⎛
⎝ x∫

a

u(t)
∣∣Qn(t)

∣∣qdt
⎞
⎠

1
q
⎛
⎝ b∫

x

v1−p′
(t)t(n−1)p′

dt

⎞
⎠

1
p′

(3:8)

for 1 <p ≤ q < ∞ or the finiteness of the number

B̃M,n =

⎛
⎜⎜⎝

b∫
a

⎛
⎝ x∫

a

u(t)
∣∣Qn(t)

∣∣qdt
⎞
⎠

r
q
⎛
⎝ b∫

x

v1−p′
(t)t(n−1)p′

dt

⎞
⎠

r
q′

v1−p′
(x)x(n−1)p′

dx

⎞
⎟⎟⎠

1
r

(3:9)

for 1 <q <p < ∞ is necessary and sufficient for (3.7) to hold.

Consequently, we have found sufficient conditions of the validity of the k-th order

Hardy inequality (1.1):

Theorem 3.1. Let 1 <p, q < ∞ and for k Î N, let n = 1, 2,..., k. Let Pn(x) and Qn(x) be

the polynomials from (2.7) and (2.8), respectively. Let AM,n(x) and ÃM,n(x)be defined by

(3.5) and (3.8), respectively, and BM,n and B̃M,nby (3.6) and (3.9), respectively. Then the

k-th order Hardy inequality (1.1) holds for functions f satisfying the boundary conditions

(1.2) if the weight functions u, v satisfy for n = 1, 2,..., k the conditions
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sup
x∈(a,b)

AM,n(x) < ∞, sup
x∈(a,b)

ÃM,n(x) < ∞ (3:10)

in the case 1 <p ≤ q < ∞, and the conditions

BM,n < ∞, B̃M,n < ∞ (3:11)

in the case 1 <q <p < ∞.

3.2 Necessary and sufficient conditions

The Hardy inequality of higher order is, as we have seen, closely connected with the

weighted norm inequality (1.6). This inequality with rather general kernels K(x, t) was

investigated by many authors, see e.g. [2,5]. Here, we use the fact that K(x, t) is a

Green function and we assume that 1 <p < ∞, q > 0 and that

u, v1−p′ ∈ L1loc(a, b). (3:12)

Let us denote Δ1 and Δ2 the closed triangles {(x, t): a ≤ t ≤ x ≤ b} and {(x, t): a ≤ x ≤

t ≤ b}, respectively. Due to (2.6), (2.7), and (2.8), we have that

Gi ∈ C (�i) , i = 1, 2. (3:13)

Furthermore, suppose that

G1(x, a), G1(b, t), G2(a, t), G2(x, b)
do not vanish identically in (a,b).

}
(3:14)

Theorem 3.2. Let 1 <p < ∞, q > 0 and suppose that (3.12), (3.13) and (3.14) hold.

Then the Hardy-type inequality (1.6) holds if and only if

u, v1−p′ ∈ L1(a, b). (3:15)

Proof. Necessity: Suppose that (1.6) holds.

(i) Due to (3.14), there exists a point ta Î (a, b) such that G2(a, ta) ≠ 0. Conse-

quently, there exists ε > 0 such that |G(x, t)| = |G2(x, t)| ≥ Ca > 0 for all (x, t) Î (a, a

+ε) × (ta - ε, ta+ε). Here we suppose that [ta - ε, ta + ε] ⊂ (a, b). If we choose the test

function as f (t) = χ(ta−ε,ta+ε)(t)v1−p′
(t), we get from (1.6) that

C

⎛
⎝ ta+ε∫
ta−ε

v1−p′
(t)dt

⎞
⎠

1
p

= C

⎛
⎝ b∫

a

∣∣f (t)∣∣pv(t)dt
⎞
⎠

1
p

≥

⎛
⎜⎝

b∫
a

∣∣∣∣∣∣
b∫

a

G(x, t)f (t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎟⎠

1
q

=

⎛
⎝ b∫

a

∣∣∣∣∣∣
ta+ε∫

ta−ε

v1−p′
(t)G(x, t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≥
⎛
⎝ a+ε∫

a

∣∣∣∣∣∣
ta+ε∫

ta−ε

v1−p′
(t)G2(x, t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≥ Ca

⎛
⎝ a+ε∫

a

⎛
⎝ ta+ε∫
ta−ε

v1−p′
(t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q

= Ca

⎛
⎝ a+ε∫

a

u(x)dx

⎞
⎠

1
q ta+ε∫
ta−ε

v1−p′
(t)dt,
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i.e.,

⎛
⎝ a+ε∫

a

u(x)dx

⎞
⎠

1
q

≤ C
Ca

⎛
⎝ ta+ε∫
ta−ε

v1−p′
(t)dt

⎞
⎠

− 1
p′

< ∞

due to (3.12). Together with (3.12), the last inequality implies that
c∫

a

u(x)dx < ∞ for every c < b,

which means that

u ∈ L1loc
([
a, b

])
. (3:16)

(ii) Due to (3.14), there exists a point tb Î (a, b) such that G1(b, tb) ≠ 0 and |G(x, t)|

= |G2(x, t)| ≥ Cb > 0 for all (x, t) Î (b-ε, b)×(tb-ε, tb+ε). The choice

f (t) = v1−p′
(t)χ(tb−ε,tb+ε)(t) leads analogously as in (i) to the estimate

⎛
⎝ b∫
b−ε

u(x)dx

⎞
⎠

1
q

≤ C
Cb

⎛
⎝ tb+ε∫
tb−ε

v1−p′
(t)dt

⎞
⎠

− 1
p′

< ∞,

i.e.
b∫

d

u(x)dx < ∞ for every d > a

so that

u ∈ L1loc
([
a, b

])
.

This together with (3.16) and (3.12) gives that u Î L1(a, b).

(iii) Due to (3.14), there exists a point xa Î (a, b) such that G1(xa, a) ≠ 0 and∣∣G(x, t)∣∣ = ∣∣G1(x, t)
∣∣ ≥ Ĉa > 0 for all (x, t) Î (xa - ε, xa + ε) × (a, a + ε). Let us choose

a test function in (1.6) as

f (t) = χ(a+δ,a+ε)(t)v1−p′
(t),

where δ Î (0, ε) is a parameter. Then we get that

C

⎛
⎝ a+ε∫
a+δ

v1−p′
(t)dt

⎞
⎠

1
p

= C

⎛
⎝ b∫

a

∣∣f (t)∣∣pv(t)dt
⎞
⎠

1
p

≥

⎛
⎜⎝

b∫
a

∣∣∣∣∣∣
b∫

a

G(x, t)f (t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎟⎠

1
q

=

⎛
⎝ b∫

a

∣∣∣∣∣∣
a+ε∫

a−δ

v1−p′
(t)G(x, t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≥
⎛
⎝ xa+ε∫
xa−ε

∣∣∣∣∣∣
a+ε∫

a+δ

v1−p′
(t)G1(x, t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≥ Ĉa

⎛
⎝ xa+ε∫
xa−ε

⎛
⎝ a+ε∫
a+δ

v1−p′
(t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q

= Ĉa

⎛
⎝ xa+ε∫
xa−ε

u(x)dx

⎞
⎠

1
q a+ε∫
a+δ

v1−p′
(t)dt,
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i.e., that

⎛
⎝ xa+ε∫
xa−ε

u(x)dx

⎞
⎠

1
q
⎛
⎝ a+ε∫
a+δ

v1−p′
(t)dt

⎞
⎠

1
p′

<
C

Ĉa

.

This estimate holds for all δ Î (0, ε), and with δ tending to zero on the left hand side

of the estimate we obtain that

⎛
⎝ xa+ε∫
xa−ε

u(x)dx

⎞
⎠

1
q
⎛
⎝ a+ε∫

a

v1−p′
(t)dt

⎞
⎠

1
p′

≤ C

Ĉa

which implies that v1−p′ ∈ L1loc
([
a, b

])
.

(iv) Finally, we obtain analogously from G2(xb, b) ≠ 0 that v1−p′ ∈ L1loc
([
a, b

])
. Hence

v1−p′ ∈ L1(a, b) and the necessity is proved.

Sufficiency: Using the boundedness of the function G(x, t) (which follows from

(3.13)), Holder’s inequality and (3.15), we can estimate the left hand side of (1.6) as fol-

lows:

⎛
⎜⎝

b∫
a

∣∣∣∣∣∣
b∫

a

G(x, t)g(t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎟⎠

1
q

≤

⎛
⎜⎝

b∫
a

⎛
⎝ b∫

a

∣∣G(x, t) ∥∥g(t) ∣∣dt
⎞
⎠

q

u(x)dx

⎞
⎟⎠

1
q

≤ C1

⎛
⎜⎝

b∫
a

⎛
⎝ b∫

a

∣∣g(t)∣∣dt
⎞
⎠

q

u(x)dx

⎞
⎟⎠

1
q

= C1

⎛
⎝ b∫

a

u(x)dx

⎞
⎠

1
q b∫

a

∣∣g(t)∣∣dt

= C1

⎛
⎝ b∫

a

u(x)dx

⎞
⎠

1
q

⎛
⎝ b∫

a

∣∣g(t)∣∣ v1p (t)v− 1
p (t)dt

⎞
⎠

≤ C1

⎛
⎝ b∫

a

u(x)dx

⎞
⎠

1
q
⎛
⎝ b∫

a

v1−p′
(x)dx

⎞
⎠

1
p′ ⎛

⎝ b∫
a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

1
p

≤ C

⎛
⎝ b∫

a

∣∣g(x)∣∣pv(x)dx
⎞
⎠

1
p

.

The proof is complete.

Remark 3.3. We have considered the Hardy-type inequality (1.6) for the case that G

(x, t) was a Green function, i.e., Gi(x, t) have been polynomials. It is obvious that we

Kufner et al. Journal of Inequalities and Applications 2012, 2012:69
http://www.journalofinequalitiesandapplications.com/content/2012/1/69

Page 8 of 14



can repeat our approach for any function G(x, t), which satisfies (3.13) and (3.14).

Hence, our approach gives some new criteria for the validity of (1.6) for rather general

kernels G.

Example 3.4. In Example 1.1, the first order Hardy inequality with boundary condi-

tion (1.3) was considered. It can be easily shown that in this case the Green function

has the form

G(x, t) =

{
α

α+β
for a < t < x < b,

− β

α+β
for a < x ≤ t < b,

where a + b ≠ 0. If a ≠ 0 and b ≠ 0, and then the conditions (3.14) are satisfied and

we can use Theorem 3.2. According to this theorem, the Hardy inequality (1.6) holds

if and only if

u, v1−p′ ∈ L1(a, b).

Example 3.5. For simplicity let us assume for (a, b) the interval (0, 1) and consider

the second order Hardy inequality

⎛
⎝ 1∫

0

∣∣f (x)∣∣qu(x)dx
⎞
⎠

1
q

≤ C

⎛
⎝ 1∫

0

∣∣f ′′(x)
∣∣pv(x)dx

⎞
⎠

1
p

. (3:17)

Then boundary conditions (1.2) take the following form:

{
α1,1f (0) + α1,2f ′(0) + β1,1f (1) + β1,2f ′(1) = 0
α2,1f (0) + α2,2f ′(0) + β2,1f (1) + β2,2f ′(1) = 0.

(3:18)

This inequality was considered in [4] and the corresponding Green function has the

following form:

G(x, t) =
{ 1

�
(a + bx + ct + dxt) for 0 < t < x < 1;

1
�

(
a + (b − �)x + (c + �)t + dxt

)
for 0 < x ≤ t < 1,

where

� =

∣∣∣∣λ1μ1

λ2μ2

∣∣∣∣ , a =

∣∣∣∣μ1ν1
μ2ν2

∣∣∣∣ , b =

∣∣∣∣λ1α1,2

λ2α2,2

∣∣∣∣ , c =

∣∣∣∣μ1α1,1

μ2α2,1

∣∣∣∣ , d =

∣∣∣∣λ1β1,1

λ2β2,1

∣∣∣∣
with li := ai,1 + bi,1, μi := ai,1 + bi,1 + bi,2, νi := bi,1 + bi,2, i = 1, 2. Notice, that Δ is

the corresponding determinant from (2.3).

Let us use Theorem 3.2; for this aim we consider the polynomials:

G(x, 0) =
a + bx

�
, G(1, t) =

(a + b) + (c + d)t
�

,

G(x, 1) =
(a + c + �) + (b + d − �)x

�
, G(0, t) =

a + (c + �)t
�

.

These polynomials satisfy conditions (3.14) if and only if

|a| + |b| �= 0, |a + b| + |c + d| �= 0, |a + c + �| + |b + d − �| �= 0, |a| + |c + �| �= 0, (3:19)
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and these conditions imply that the second order Hardy inequality holds if and only

if u, v1−p′ ∈ L1(0, 1).

If the condition (3.14) is violated, then Theorem 3.2 cannot be used. Nevertheless, in

some cases, it is possible to use the following generalization:

Theorem 3.6. Suppose that 1 <p < ∞, q > 0 and the functions Gi(x, t) (i = 1, 2) are

not identically equal to zero.

(i) If the Hardy-type inequality (1.6) holds, then there exist polynomials Pi(x), Qi(t) (i

= 1, 2) on (a, b) such that

|Q1|p′
v1−p′

, |P2|qu ∈ L1loc
([
a, b

])
and |Q2|p′

v1−p′
, |P1|qu ∈ L1loc

([
a, b

])
, (3:20)

and that the corresponding Green function G(x, t) can be written as

Gi(x, t) = Pi(x)Qi(t)Ĝi(x, t), i = 1, 2, (3:21)

where the functions Ĝ1(x, t), Ĝ2(x, t)satisfy (3.14).

If, moreover, Ĝi(a, a) �= 0, Ĝi(b, b) �= 0, then

(i-1) for p ≤ q

sup
x∈(a,b)

Ai(a, b; x) < ∞, i = 1, 2, (3:22)

where

A1(a, b; x) :=

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

1
p′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

1
q

, (3:23)

A2(a, b; x) :=

⎛
⎝ b∫

x

|Q2|p′
v1−p′

dt

⎞
⎠

1
p′ ⎛

⎝ x∫
a

|P2|qudt
⎞
⎠

1
q

; (3:24)

(i-2) for q <p

Bi(a, b) < ∞, i = 1, 2, (3:25)

where

B1(a, b) :=

⎛
⎜⎜⎝

b∫
a

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛

⎝ b∫
x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

⎞
⎟⎟⎠

1
r

,(3:26)

B2(a, b) :=

⎛
⎜⎜⎝

b∫
a

⎛
⎝ b∫

x

|Q2|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛

⎝ x∫
a

|P2|qudt
⎞
⎠

r
q ∣∣Q2(x)

∣∣p′
v1−p′

(x)dx

⎞
⎟⎟⎠

1
r

.(3:27)

(ii) If there exist polynomials Pi(x), Qi(t) on (a, b) (i = 1, 2) such that (3.21) holds and

the conditions (3.22) (for p ≤ q), (3.25) (for q <p) are satisfied, then the Hardy-type

inequality (1.6) holds.
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Proof. (i) Let the Hardy-type inequality (1.6) hold, then the following inequality

⎛
⎝ a+ε∫

a

∣∣∣∣∣∣
a+ε∫
a

G(x, t)f (t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≤ C

⎛
⎝ a+ε∫

a

∣∣f (t)∣∣pv(t)dt
⎞
⎠

1
p

(3:28)

also holds for arbitrary function f Î Lp(v), which follows from (1.6) considered for

the function g(t) = f (t)χ(a,a+ε)(t) and then from the monotonicity of the outer integral

on the left hand side of (1.6).

(i.1) If G2(a, t) does not vanish identically on (a, b), then the proof of the existence

of the polynomial P1(t) follows from point (i) of the proof of Theorem 3.2, i.e., in this

case u ∈ L1loc
([
a, b

])
and the polynomial can be chosen as P2(x) ≡ 1.

(i.2) If G2(a, t) vanishes on (a, b), then there exists a positive integer a2 such that

G2(x, t)(x − a)α2 Ĝ2(x, t), where Ĝ2(a, t) does not vanish on (a, b). Choosing ε > 0 in

inequality (3.28) sufficiently small and repeating the calculations in point (i) of the

proof of Theorem 3.2 we obtain that

⎛
⎝ a+ε∫

a

(x − a)α2qu(x)dx

⎞
⎠

1
q

≤ C
Ca

⎛
⎝ ta+ε∫
ta−ε

v1−p′
(t)dt

⎞
⎠

− 1
p′

< ∞

which implies that (x − a)α2qu ∈ L1loc
[
a, b) and the polynomial can be chosen as

P2(x) ≡ (x − a)α2.

(i.3) Similarly, we can prove that there exist nonnegative integers a1, b1, b2 such

that

(b − x)β2qu ∈ L1loc
([
a, b

])
, (b − t)β1p′

v1−p′
(t) ∈ L1loc

([
a, b

]
,
)
, (t − a)α1p′ ∈ L1loc

([
a, b

])

and the polynomials can be chosen as

P1(x) ≡ (b − x)β1 , Q1(t) ≡ (t − a)α1 , Q2(t) ≡ (b − t)β2 .

Moreover, it can be easily shown that the weight functions with these polynomials

satisfy (3.20) and (3.21).

(i.4) Now we show that the conditions (3.22) and (3.25) are satisfied. Using (3.21) we

rewrite (3.28) in the form

⎛
⎝ a+ε∫

a

∣∣∣∣∣∣
x∫

a

P1(x)Q1(t)Ĝ1(x, t)f (t)dt +

a+ε∫
x

P2(x)Q2(t)Ĝ2(x, t)f (t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≤ C

⎛
⎝ a+ε∫

a

∣∣f (t)∣∣pv(t)dt
⎞
⎠

1
p

and taking into account that Ĝi(a, a) �= 0 (i = 1,2) we obtain the following equivalent

inequality
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⎛
⎝ a+ε∫

a

∣∣∣∣∣∣P1(x)Ĝ1(a, a)

x∫
a

Q1(t)f (t)dt + P2(x)Ĝ2(a, a) +

a+ε∫
x

Q2(t)f (t)dt

∣∣∣∣∣∣
q

u(x)dx

⎞
⎠

1
q

≤ C

⎛
⎝ a+ε∫

a

∣∣f (t)∣∣pv(t)dt
⎞
⎠

1
p

for all f Î Lp(v) and for sufficiently small ε > 0. Using Theorem 2.3 in [2] we obtain

the following equivalent conditions on the interval (a, a + ε)

(for p ≤ q)

sup
x∈(a,a+ε)

Ai(a, a + ε) < ∞, i = 1, 2; (3:29)

(for q <p)

Bi(a, a + ε) < ∞, i = 1, 2. (3:30)

Similarly, we obtain the following conditions on the interval (b - ε, b):

(for p ≤ q)

sup
x∈(a,a+ε)

Ai(b − ε, b) < ∞, i = 1, 2; (3:31)

(for q <p)

Bi(b − ε, b) < ∞, i = 1, 2. (3:32)

All these conditions together with (3.20) imply that conditions (3.22) and (3.25) are

satisfied:

Let us prove (i-1). Using (3.20) it is easy to show that the condition is satisfied if and

only if there exist the limits

lim sup
x→a+

Ai(a, b; x) and lim sup
x→b−

Ai(a, b; x) i = 1, 2.

Otherwise, the existence of these limits is equivalent to the existence of

lim sup
x→a+

Ai(a, a + ε; x) and lim sup
x→b−

Ai(b − ε, b; x) i = 1, 2.

For the proof of this assertion, we only show the following equality, since the others

can be proved analogously:

lim sup
x→a+

A1(a, b; x)

= lim sup
x→a+

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

1
p′ ⎛⎝ a+ε∫

x

|P1|qudt +
b∫

a+ε

|P1|qudt
⎞
⎠

1
q

= lim sup
x→a+

⎡
⎢⎢⎣[

A1 (a, a + εlx)
]q +

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

q
p′ b∫
a+ε

|P1|qudt

⎤
⎥⎥⎦

1
q

= lim sup
x→a+

A1(a, a + ε; x).
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The existence of the limits follows from (3.29) and (3.31) and (i-1) is obtained.

To prove (i-2) is enough to show B1(a, b) < ∞, since the case B2(a, b) < ∞ can be

proved analogously. First we rewrite B1(a, b) in the form

B1(a, b)r =

a+ε∫
a

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

+

b−ε∫
a+ε

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

+

b∫
b−ε

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

:= I1 + I2 + I3.

The boundedness of I2 follows from (3.20). Moreover, (3.20) together with (3.30)

implies that

I1 ≤ 2
r
q−1

⎡
⎢⎣

a+ε∫
a

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ a+ε∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

+

a+ε∫
a

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

a+ε

|P1|qudt
⎞
⎠
r

q ∣∣Q1(x)
∣∣p′
v1−p′

(x)dx

⎤
⎥⎥⎥⎦

= 2
r
p

⎡
⎢⎢⎣[B1 (a, a + ε)]r +

⎛
⎝ b∫
a+ε

|P1|qudt
⎞
⎠

r
q a+ε∫
a

⎛
⎝ x∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

⎤
⎥⎥⎦

= 2
r
p

⎡
⎢⎢⎣[

B1(a, a + ε)
]r + p′

r

⎛
⎝ b∫
a+ε

|P1|qudt
⎞
⎠

r
q
⎛
⎝ a+ε∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
p′

⎤
⎥⎥⎦ < ∞

and

I3 ≤
b∫

b−ε

⎛
⎝ x∫
b−ε

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

+

⎛
⎝ b−ε∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ b∫
b−ε

⎛
⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

≤ Cε

b∫
b−ε

⎛
⎝ x∫
b−ε

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

= Cε[B1 (a, a + ε)]r < ∞.
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To get the last estimate we used that

⎛
⎝ b−ε∫

a

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ b∫
b−ε

⎛
⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx

≤ Cε

b∫
b−ε

⎛
⎝ x∫
b−ε

|Q1|p′
v1−p′

dt

⎞
⎠

r
q′ ⎛⎝ b∫

x

|P1|qudt
⎞
⎠

r
q ∣∣Q1(x)

∣∣p′
v1−p′

(x)dx,

which follows from (3.20).

Finally, we obtain (ii) only using boundedness of the polynomials Ĝi (i = 1, 2) and [2,

Theorem 2.3]. The proof is, then, complete.

Example 3.7. Let us go back to Example 3.5. If, e.g., |a| + |b| = 0, then one of the

conditions (3.19) is violated. In this case we proceed according to Theorem 3.6 where

G1(x, t) = 1
�
t(c + dx) = t(c + dx)Ĝ1(x, t), Ĝ1(x, t) = 1

�
, and Ĝ1(0, 0) �= 0, Ĝ1(1, 1) �= 0; if,

moreover, c + Δ = 0, then G2(x, t) =
x(dt − �)

�
Ĝ2(x, t) where Ĝ2(x, t) ≡ 1

�
, and the

Hardy inequality (3.17) holds for functions satisfying (3.18) if and only if (3.22) (for p ≤

q) or (3.25) (for q <p) hold with P1(x) = c + dx, Q1(t) = t; P2(x) = x, Q2(t) = dt - Δ. The

other cases of violation of (3.19) can be considered analogously.
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