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Abstract

Small rodents are some of the most important elements of boreal and
arctic food webs in which they play essential functional roles. Their popula-
tion dynamics are characterized by large amplitude multi-annual cycles reg-
ulated by direct and delayed density-dependence. These drastic variations
in abundance have deep cascading effects into the whole ecosystem. Hence,
the study boreal rodent population processes and drivers is important if
seeking to understand and predict future states of northern ecosystems.

To monitor animal populations, it is important to obtain reliable of
estimates of population size, which involves accounting for errors in the
observation process. For small rodents, a common way of doing so is through
the capture-recapture methodology, which collects information on both the
number of observed animals and on their detectability, allowing to infer the
number of non-observed individuals. Time series of abundance corrected for
the observation process can then be used to model population processes of
interest. Capture-recapture, although being optimal, is resource-intensive
and limited to favorable field conditions, restricting the spatial and temporal
resolution of the abundance data. This can be particularly limiting when
studying populations of multivoltine rodents, with fast-changing population
dynamics subject to strong effects of seasonality. New methods based on
camera traps allow to increase spatial and temporal resolution of rodent data
(together with other species which are otherwise not monitored). However,
as they cannot provide measures of detectability if the animals cannot be
identified individually, they require species-specific calibration studies.

This thesis works on advancing the observation process of boreal ro-
dents to study characteristic population processes: density-dependence and
spatial synchrony. For this purpose, three specific research goals were
defined. (1) Develop a statistical framework to account for different sources
of sampling error (i.e., capture heterogeneity) when estimating direct and
delayed density-dependence in rodent population processes. In addition,
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assess estimation biases for different process parameters through a compre-
hensive simulation study. (2) Assess the adequacy of tunnel-based camera
trap activity data as an index for abundance, calibrated against estimates
obtained from capture-recapture in two different small rodent species, with
differential space use and trappabilities. (3) Devise a protocol to estim-
ate spatial synchrony in populations subject to geographical- and seasonal-
specific density-dependence, allowing to separate those deterministic effects
from the stochastic (i.e., weather) effects in driving the observed population
synchrony.
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CHAPTER 1

Introduction

1.1 State of the Arctic

The Arctic is changing. This statement hardly surprises anyone, as we are
constantly reminded of it through the media, documentaries and political
figures. Climate change has brought the entire world under severe stress,
but no other region has been subjected to more challenges (Corell, 2006).
The Arctic region, composed of tundra and transitional boreal forest hab-
itat (Sirois, 1992), has picked the interest of scientists for centuries. It is an
environment of extremes, in terms of its climate, its range of habitats, as
well as the life cycles which both fauna and flora have had to develop in or-
der to thrive. The Arctic has always impressed due to its resilience, with its
tight communities evolving together to withstand the environmental vari-
ability and unpredictability over eons (Bliss, 1991). But, more than any
other, Arctic ecosystems are most vulnerable to disturbance. Adding to
the already extensive direct anthropogenic disturbances, climate change has
brought new tests which might simply prove too difficult for Arctic com-
munities to overcome (Malhi et al., 2020). The amplified temperature rise
is having numerous repercussions such as thawing permafrost, changes in
snow conditions, reduced sea ice extent, intensification of the hydrological
cycles, northwards migration of the tree line, mismatches in phenology and
other worrying large-scale ecosystem impacts (Serreze and Barry, 2011; Box
et al., 2019). To understand what might be done to mitigate this problem,
we must first comprehend the current state to potentially predict what lies
ahead.

1.2 The COAT Project

To help solve the Arctic state conundrum, the Climate ecological Observat-
ory for the Arctic Tundra (COAT) was established in Norway. COAT is
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Chapter 1 – Introduction

a long-term, ecosystem-based research scheme which intends to clarify the
current state of the arctic ecosystems, specifically the arctic tundra, as well
as predict future effects of climate change (Ims et al., 2013b). COAT in-
tends to provide a framework which goes all the way from ecological theory,
passing through data collection, statistical analysis, outputting the research
content to both the general public, as well as managers and decision-makers
(e.g., Henden et al., 2020). This methodological framework is further linked
to the COAT Tools project, funded by UiT, which specifically focuses on de-
veloping methods for efficient analysis of the ecological data collected within
COAT.

Figure 1.1. Illustrative example of simplified food web of
Arctic tundra ecosystems, based on Ims et al. (2013b) and
Mossberg et al. (2012). Created with BioRender.com

2
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1.2 – The COAT Project

COAT is built on a food-web approach, monitoring the different com-
ponents of the ecosystem chain from the bottom up (see Fig. 1.1 for a
simplified version of the tundra food web). This approach is strongly foun-
ded on ecological theory, linking the different chains of the ecosystem to the
climate and focusing on deriving prediction models. There are seven differ-
ent modules contained within COAT, based on the food web: tundra-forest
ecotone, tall shrub, small rodent, ungulate, ptarmigan, goose and arctic fox.
This thesis will focus specifically on the small rodents module.

1.2.1 Ecological role of small rodents
Small rodents are one of the most abundant groups of mammals on the
planet, which play particularly relevant functions in northern ecosystems
(Ims and Fuglei, 2005). In addition to being linked to most elements of
the food web, their ecological role is amplified due to their deeply marked
population cycles. These abundance fluctuations are characterized by very
high abundance peaks followed by large crashes, which have important and
cascading effects into the ecosystem. Due to their high abundances, small
rodents consume a larger amount of plant material than all the remaining
herbivores in the tundra, with a key effect for the vegetation communities
(Batzli et al., 1980). This impact on the vegetation directly affects nutrient
turnover and species composition (Dahlgren et al., 2009). In addition, small
rodents constitute prey for both specialist (e.g, owls and mustelids) and gen-
eralist predators (e.g, red fox), and so their fluctuations in abundance have
a direct effect on their predators. Moreover, in peak years, the abundance
of small rodents allows for other species, such as ground-nesting birds, to
suffer from less predation by generalist predators, resulting in higher re-
productive success (Ims et al., 2013a). In contrast, low rodent abundance
years are associated with high predation for other species. In fact, it has
been postulated that small rodent cycles may have played a role in shaping
migration strategies of tundra-nesting birds (Gilg and Yoccoz, 2010). These
aspects make rodent populations very good system predictors, as predicting
change in rodent populations can shed a light on the degree of global change
of the complete ecosystem (Ims et al., 2013a).

The rodent communities of northern Norway are dominated, in most
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years, by gray-sided voles Myodes rufocanus. This corresponds to the mi-
crotine species with the largest amount of available data. This species has
a boreal and low-Arctic distribution, ranging from Fennoscandia, through
Siberia, all the way to Northeast Asia. They occupy a variety of habitats,
in particular birch forests and dwarf-birch tundra (Kaneko et al., 1998; Ims
et al., 2013b). In the winter, they highly favor the presence of bilberry
to feed on (Dahlgren et al., 2007). Gray-sided voles are a short-lived mul-
tivoltine species, meaning they mature and reproduce fast, with 2-4 litters
per season, being able to reproduce in the season in which they are born
(Kaneko et al., 1998). The reproduction of this species happens essentially
during the snow-free months, being typically between May and October in
northern Norway. The breeding is influenced by population density, cycle
phase, food conditions, as well as social hierarchy, in which age and size
play a relevant role (Nakata, 1984). Another key component of arctic ro-
dent communities is the Norwegian lemming Lemmus lemmus. This species
has a more alpine distribution, whereas the gray-side vole dominates the
northern sub-arctic/artic ecotone (Henttonen et al., 1992) which this thesis
focuses on. In addition, due to its unpredictability and difficulty in trapping,
the lemming is not here addressed.

1.3 Aims of the Thesis

This project is a part of COAT Tools, at the heart of statistical ecology.
The general focus is improving statistical methods to better monitor and
comprehend the population ecology of small rodent communities, linked to
the tundra. It is important to note that most data which will be used in
this thesis is not from actual tundra habitat, but rather collected in the sub-
arctic boreal forest and tundra-forest transition area of northern Norway.
This habitat, which corresponds to the largest vegetation transition on the
planet, has a close relationship to the tundra and has been moving north-
wards with recent climatic warming (Hofgaard et al., 2012). In addition,
the vole species, dynamics and monitoring methods are virtually identical
to those of the actual tundra, but with the added benefit of the data being
more practical to collect.
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1.4 – Outline

The specific aims of this thesis are described below.
(1) Evaluate the importance of explicitly incorporating capture het-

erogeneity when estimating density-dependence parameters, which
regulate the population processes of small rodents. In addition,
evaluate biases in parameter estimation, as well as the conditions
affecting it.

(2) Develop a framework where both observed and unobserved hetero-
geneity from the capture process may be efficiently included in the
estimation of abundance.

(3) Establish a bridge between current gold standard monitoring meth-
ods and new data collection techniques. In particular, compare
abundance metrics from the newly developed tunnel-based camera
traps to those obtained from resource-intensive capture-recapture.

(4) Devise a protocol to study spatial population synchrony in animal
populations subjected to strong seasonal effects. This includes es-
timating the scale and strength of synchrony, partialing out the
effects of the density-dependence structure and investigating pos-
sible meteorological drivers.

1.4 Outline

The research developed in this project is presented in this document which
constitutes my thesis. This thesis is article-based, which means that it
seeks to provide the relevant theory, summary of research and an over-
arching discussion of the research detailed in the manuscripts. The ma-
nuscripts, which have been either published or submitted to peer-reviewed
field-relevant journals, and are appended at the end of this document. The
chapters composing this thesis follow the structure outlined below.

The statistical and ecological theory which serves as the basis to under-
stand the research is introduced in the chapters 2–3. Chapter 2 summarizes
the two main field methodologies used to collect small rodent population
data. The first methodology is capture-recapture, a well-known technique
which provides information regarding the observation process error. The
second is the recently developed tunnel-based camera trap method, tailored
for the monitoring of small mammals using natural corridors. Both methods
are introduced with respective features and challenges. Chapter 3 describes
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the general topic of population dynamics of boreal rodents, focusing on two
key aspects: density-dependent processes (with a focus on the importance of
seasonality) and population synchrony. Chapter 4 summarizes and discusses
the scientific research presented in the three individual manuscripts, com-
plemented by three figures/schemes serving as graphical abstracts. Chapter
5 discusses and integrates the research outputs, contextualizing them into a
bigger picture and the COAT project. Finally, chapter 6 provides a future
outlook in the field, highlighting emerging lines of research and containing
some final considerations, followed by the Bibliography and the appended
papers.
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CHAPTER 2

Monitoring Methods for Small Rodents

To monitor population dynamics of animals, it is important to obtain ac-
curate estimates of abundance, which involves both collecting information
on the number of animals (state of the populations), as well as information
of the detectability of the animals (observation process). Due to being so
elusive, monitoring small rodents typically requires actual trapping, either
in the form of snap-trapping or capture-recapture. Snap-trapping results in
the killing of animals for the single purpose of monitoring, which is highly
unethical. Moreover, it does not provide much information on the observa-
tion process, i.e., regarding which animals are more likely to be captured
(Kleiven et al., 2018). Therefore, traditional capture-recapture (often re-
ferred to as capture-mark-recapture; CMR) has become the most popular
method to estimate the abundance of small mammals, considered to be the
gold standard (Seber, 1986; Jareño et al., 2014). Nonetheless, a recent effort
has been put into improving and optimizing other methods, such as camera
traps. These allow for automated data collection in continuous time and
already see widespread use in many groups of animals (Trolliet et al., 2014).

2.1 Capture-recapture

The traditional capture-recapture (CR) method for small rodents consists of
setting up baited traps (with or without pre-baiting in preceding days), and
re-checking the traps the following day(s) for any trapped animals. Trapped
animals are then marked and released into the general population, which
is subsequently re-sampled for as many days as the trapping experiment
takes. The proportion of recaptured animals can then be used to estimate
the population size (abundance). The longer the duration of the trapping
experiment, the more precise the abundance estimation. More complex
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Chapter 2 – Monitoring Methods for Small Rodents

methods, such as spatially explicit capture-recapture, allow further estima-
tion of densities by making use of the animal locations in specialized grids
(Efford, 2004; Romairone et al., 2018). Nevertheless, capture-recapture
methods do not come without limitations, which include the unwanted an-
imal mortality in the traps (Stephens and Anderson, 2014), trap saturation
(Krebs et al., 2011), as well as providing low temporal resolution of the
abundance estimates.

2.1.1 Closed populations
An important assumption when estimating population size and capture
probabilities, is whether we are dealing with closed or open populations.
In theory, most natural populations are open, subject to mortality/nat-
ality and dispersal/immigration. In practice, however, if we define short
temporal intervals in a population, we may consider those effects to be neg-
ligible and we may assume closed populations. This assumption offers a
number of practical advantages, such as being simpler, easier to implement,
and requiring less resource-intensive data to estimate population paramet-
ers (Young and Young, 1998; Chao, 2001). Due to the relatively short life
cycles of small rodents and the difficulties of long-term monitoring, monit-
oring methods are often short in time (2–3 trapping days for the data used
in this thesis). This makes the populations fairly constant at the time of
sampling, with (assumed) negligible losses in terms of survival and dispersal,
as well as no additions in terms of births and immigration. With these as-
pects in mind, the closed population assumption becomes reasonable.

2.1.2 Discrete-time capture-recapture models
To monitor populations, we typically resort to a measure of the population
state, abundance, which we want to estimate. Given a population of N

independent individuals, indexed by i = 1, . . . , N , we perform a capture-
recapture experiment with τ sampling events. We can define the presence
and absence of each individual with {0, 1}, and the capture histories can be
expressed in a matrix with dimension N × τ , where each row corresponds
to the capture history of a single individual. The number of rows with only
zeros corresponds to the number of individuals which are never captured.
A simplistic model may assume that all animals have equal probability of
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2.1 – Capture-recapture

being trapped, which remains constant over the τ sampling events. How-
ever, dependence among samples may arise from two main sources: local
dependence within each animal, i.e, a previous capture event may impact the
probability of a following capture event, provoking trap-happy and trap-shy
effects; and heterogeneous capture probabilities between different animals
(Chao, 2001). This dependency among samples leads to significant bias of
estimators assuming independence, such as the well-known and intuitive
Lincoln-Peterson (LP) estimator (see Fig. 2.1). In this case, if the recap-
ture rate increases after the first marking session, the LP-estimator will
underestimate the number of animals present, and vice-versa.

Random sample (n2) 
from population 

(marked + unmarked)

Population 
(N)

Unmarked

Marked (n1)
Previously 

marked 
(m2)

Figure 2.1. Logic behind the Lincoln-Peterson estimator.
We mark a part of the initial population, which becomes
composed by marked and unmarked individuals. The pro-
portion of marked individuals is here n1/N . By random
sampling from that population, we estimate the total num-
ber of individuals using the proportion of marked ones in
the new sample (m2/n2). The Lincoln-Peterson estimator
is then defined by N̂P = n1n2/m2. Inspired by Powell and
Gale (2015).
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A variety of models have been proposed to overcome sample-dependency,
with the famous model framework proposed by Otis et al. (1978) having
taken central stage in literature (Huggins and Hwang, 2011; King and Mc-
Crea, 2019). Otis et al. (1978) addressed three main sources of variation in
the capture probabilities:

(1) temporal heterogeneity, in which probabilities can change with
time, as a consequence of natural changes between different trap-
ping events, such as weather or disturbance (Model Mt);

(2) behavioral heterogeneity, in which the previous trapping of an in-
dividual can alter its future behavior, and therefore change its cap-
ture probability (Model Mb);

(3) individual heterogeneity, in which different individuals have dif-
ferent probabilities of being captured, possibly affected by other
variables (Model Mh).

These three main factors constitute the basic foundation of variation in cap-
turability, and each can be combined with each other to obtain the models
denoted by Mtb, Mth, Mbh and Mtbh. The model which assumes constant
probabilities is referred to as M0. Many different models and frameworks
have been developed over the years to model capture heterogeneity, and
there is extensive literature on how to handle it. For a comprehensive re-
view of multistate, random-effect and finite-mixture capture-recapture mod-
els, see Gimenez et al. (2017). Huggins and Hwang (2011) provided a review
on the conditional likelihood framework to model capture heterogeneity in
closed populations, which this thesis makes use of, particularizing on the
cases where heterogeneity can be modeled from covariates.

The general conditional likelihood problem can be summarized as fol-
lows. Assume a closed population with N individuals, for which a capture-
recapture experiment is conducted over τ capture sessions. Let y′

i = (yi1, . . .

, yiτ ) denote the capture history for each individual i = 1, . . . , n. Here,
yij ∼ Bernoulli(pij), for individual i and capture session j = 1, . . . , τ , where
1 denotes a capture and 0 denotes an absence. This implies that 2τ −1 pos-
sible capture histories can be observed for the captured individuals. All the
i = n+ 1, . . . , N individuals with capture history y0 = (0, . . . , 0) are never
observed. If we assume independence between individuals, the complete
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likelihood is

L(N, {pij} | {yij}) =
N∏
i=1

τ∏
j=1

p
yij
ij (1− pij)

1−yij

=

{ n∏
i=1

τ∏
j=1

p
yij
ij (1− pij)

1−yij

}{ N∏
i=n+1

τ∏
j=1

(1− pij)

}
(2.1)

The computation of this likelihood is analytically intractable as it depends
on the unknown population size N (Huggins and Hwang, 2011; Yee et al.,
2015). A conditional likelihood can however be obtained and maximized,
based on the individuals captured at least once. It is then possible to es-
timate the set of capture probabilities {pij} by making some assumptions
regarding the observation process. As an example, I will particularize on
the case of a capture history over τ = 2 capture days, for the case where the
capture process can be described using model Mth. This implies that each
individual is assumed to have an independent probability of being captured
on day 1 (p1) and day 2 (p2), according to Table 1.

Table 1. Capture history probabilities according to tem-
poral heterogeneity model Mth.

Capture History Day 1 Day 2 Probability
”11” p1 p2 p11 = p1p2
”01” 1− p1 p2 p01 = (1− p1)p2
”10” p1 1− p2 p10 = p1(1− p2)

”00” 1− p1 1− p2 p00 = (1− p1)(1− p1)

Assuming independence, the probability of obtaining a given capture history
for an individual will correspond to the product of the capture probabilit-
ies on each day, described by the sets of probabilities {p11, p01, p10, p00}.
The vector for the observable capture histories will then have a multino-
mial distribution with three categories. The success probabilities for these
categories are defined by

p∗11 =
p11

1− p00
, p∗01 =

p01
1− p00

, p∗10 =
p10

1− p00
,
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ensuring that the probabilities sum to 1. These probabilities can then be
estimated for each individual by fitting a multinomial regression model to
the observed capture history data, in which the predictor is a function of
individual covariates (observed heterogeneity) and/or random effects (un-
observed heterogeneity). Under Mth, this gives the equations

p1p2
1− p00

p1(1− p2)

1− p00

=
p̂∗11

p̂∗10
⇔ p2 =

p̂∗11

p̂∗10 + p̂∗11
(2.2)

p1p2
1− p00

(1− p1)p2
1− p00

=
p̂∗11

p̂∗01
⇔ p1 =

p̂∗11

p̂∗01 + p̂∗11
(2.3)

This gives estimates for the individual capture probabilities on day 1 (p̂i,1)
and day 2 (p̂i,2), for all individuals i = 1, . . . , n. We can then use these
probabilities to obtain N̂ , using an empirical estimator such as the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952)

N̂ =
n∑

i=1

(1− p̂i,0)
−1, (2.4)

where p̂i,0 = (1− p̂i,1)(1− p̂i,2), corresponding to the estimated probability

that individual i is captured at least once.

2.2 Camera traps

In recent times, camera traps have become increasingly predominant as
ecological monitoring tools. They are particularly appealing to ecologists as
they provide mostly non-invasive and cost-efficient monitoring. In compar-
ison, the capture-recapture methods require a lot of manual and specialized
labor, more resources (including time), and are notoriously more invasive
(Wearn and Glover-Kapfer, 2019). The use of camera traps to monitor ro-
dents has so far been limited, with much of the camera traps methodologies
being dedicated to larger mammals, such as large carnivores (Burton et al.,
2015). Nonetheless, camera traps have a large potential for small rodents
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monitoring (Rendall et al., 2014; Palencia et al., 2021), and their use has
been increasing (Soininen et al., 2015; Villette et al., 2015; Littlewood et al.,
2021; Mölle et al., 2021). Still, given that no direct detectability measure
has been developed for camera trap methods where there are no distinguish-
able individual markings (like most small mammals), they require further
studies to assess their reliability (Gilbert et al., 2021). Nonetheless, for
many species, camera traps are outright the best methods because they
are actually capable of detecting them and otherwise they would simply
not be sampled (Boonstra and Krebs, 1978; Jensen et al., 1993), such as
lemmings or small mustelids like stoats (Mölle et al., 2021). Furthermore,
camera traps provide much better temporal resolution, allowing to sample
year-round even in harsh weather and field conditions which prevent the
use of other standard methods, unlocking a new world of data for several
species. An increase in the spatial resolution is also a further possibility, as
it is easier to cover larger spatial extents with camera traps (Soininen et al.,
2015).

2.2.1 Tunnel-based camera traps
In the specific case of boreal rodents, one of the largest barriers has always
been the presence of snow for most of the year. Camera traps circumvent
this by automated collection in remote locations. Soininen et al. (2015) de-
veloped a tunnel-based camera trap methodology to monitor small rodents.
These consist of metal devices simulating natural cavities, placed in natural
corridors that small mammals use. A camera with an infra-red sensor is
then placed at the top of the tunnel (Fig. 2.2), which is triggered by the
passage of animals with 1 minute spaced intervals. This methodology and
others alike allow for the monitoring of the presence of several species, par-
ticularly useful to monitor subnivean communities. However, unlike other
camera trap methods developed for large mammals, it does not allow for the
estimation of animal density using area and animal movement information
(Rowcliffe et al., 2008; Nakashima et al., 2017).

Annotation of the photos can then be performed manually by specialized
ecologists, or by recently developed pattern recognition algorithms, although
their performance is dependent on the existence of well annotated data sets
(Tabak et al., 2019). One handicap from using this methodology is the
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fact that they require expertise in the placement of the cameras, as well as
being of restricted use in areas subject to flooding and other environmental
factors. Spatial replication may help circumvent this by helping to cover
a large area and therefore being less subject to the biases caused by the
animals’ space use, including local changes in space use through time.

Figure 2.2. Example of tunnel-based camera traps for
small mammals. Panels A–B display dimensions, C–D show
internal and external appearance, and E shows two images
of small mammals photographed while crossing the tunnel.
Composite of Figs. 1–2 in Soininen et al. (2015). Used in
agreement with publisher (John Wiley and Sons).
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CHAPTER 3

Population Dynamics of Boreal Rodents

Many rodent species display marked fluctuations in their abundances, in-
cluding both seasonal fluctuations and multi-annual fluctuations. These
cycles have raised the interest of scientists for almost one hundred years
(starting with Elton, 1924), and both the existence of such cycles, as well as
their causes, have been amply studied and discussed (Stenseth, 1999; Krebs,
2013). The role of small rodents in boreal environments is thus tightly linked
to these population cycles, which act as spatio-temporal pacemakers for eco-
system processes (Korpela et al., 2013). Understanding the drivers of these
population processes therefore holds generalized importance, beyond the
local scale of these ecosystems.

3.1 Population processes

The population processes of small rodents have two main components, a
multi-annual and a multi-seasonal. The seasonal component is widespread
across many rodent populations and species but, in Fennoscandia, latitude
plays a major role. Multi-annual fluctuations arise generally only above
60°N (Hansson and Henttonen, 1988; Hanski et al., 1991). These cycles
are propelled by the interaction between density-dependence, as well as the
stochasticity and seasonality of the environment (Stenseth, 1999). They are
remarkable due to their regularity, i.e., their relatively fixed period, and
their variation in amplitude – with densities increasing up to 2-3 magnitude
orders from the low phase to the peak (Andreassen et al., 2021) – with deep
cascading effects into the ecosystem. These cycles have an intrinsic effect
into the small rodent ecology, with prominent changes in body mass, social
behavior, age distributions, sexual maturation, survival and growth rates
(Oli, 2019).
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3.1.1 Density-dependence
The concept of density-dependence in ecology refers to the regulation of
population growth by the number of individuals in a population (Hixon and
Johnson, 2006). In general, at lower densities, most individuals are likely to
be able to meet their resource needs. However, at very high densities, there
is an increase in competition, predation, food depletion and disease spread,
leading to the decrease of population growth rates. Density-dependence is
thus tightly linked to the carrying capacity of the environment (often known
as K, signaling the population size at which the multiplicative growth rate
reaches 1). Essentially, it corresponds to a mechanism which may allow for
populations to maintain long-term stable cycles, depending on the strength
and delays of the density-dependence.

The most common way of estimating density-dependence in ecological
studies has been through the use of autoregressive models (Slade, 1977;
Lande et al., 2002; Thorson et al., 2015). An autoregressive model is denoted
as AR(p), where p indicates the order of the model and is defined by

Xt = c+

p∑
i=1

ϕiXt−i + ϵt , t = 1, . . . , T. (3.1)

The variable Xt corresponds to abundance at time t modeled in the log
scale, ϕ1, . . . , ϕp are the autoregressive coefficients, c is a constant, and ϵt

represents white noise. It is important to note that linear autoregressive
models evidently correspond to an approximation of reality, and come with
the important assumption of linearity. Still, linear models are easily inter-
pretable, which is a great advantage in comparison with non-linear models
when it comes to studying the properties of the cycles, as well as its causes.

In ecology, the standard AR(1) and AR(2) models are generally the
most popular when it comes to estimating density-dependence. The AR(1)
model, often known as the Gompertz model, has had widespread use to
estimate density-dependence, fitting well within state-space model frame-
works (Dennis et al., 2006; Lebreton and Gimenez, 2012; Thorson et al.,
2015). However, AR(1) models only relate to direct density-dependence,
where the population state at time t given the population state at time t−1

is assumed conditionally independent of previous states. While this model
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has a number of advantages, it typically refers to irregular fluctuations, reg-
ulated by density-independent factors (Stenseth et al., 2003), and is thus not
always adequate. If large amplitude fluctuating cycles are of concern, then
delayed regulation is generally present and the order of the autoregressive
process should be increased, having p ≥ 2 (Korpela et al., 2014). Certain
rodent species, such as the gray-sided vole, have empirically been shown to
display population cycles well approximated by a linear AR(2) process for
the log-abundance Xt (Bjørnstad et al., 1995):

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + ϵt. (3.2)

This is a special case of 3.2, where ϕ1 can be interpreted as the annual direct
density-dependence (often measured in the fall), ϕ2 as the annual delayed
density dependence, and ϵt is related to environmental stochasticity (see
Fig. 3.1 for the parameter space where the model is stationary).
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Figure 3.1. Parameter space of the AR(2) coefficients for
stationary processes, contained inside the dotted triangle.
ϕ1 and ϕ2 correspond to the direct and delayed density-
dependence, respectively. Pairs of the parameters being
below the bold semi-circle correspond to cyclic dynamics
(pseudo-periodic behavior) with the period given by the
number in the middle of the blue dashed lines. The pseudo-
periodic area is given by ϕ2

1 + (1− ϕ2)
2 + 4ϕ2

2 < 0.
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The AR(2) model can be further interpreted as a trophic interaction
model, where the direct density-dependence will correspond to the effect
of the vole abundance in the previous season, and the delayed density-
dependence corresponds to a predator/food source, regulated by the num-
ber of voles two seasons before (Agrell et al., 1995; Stenseth, 1999). In the
particular case of rodent cycles, Stenseth et al. (1998) empirically investig-
ated the presence of non-linearity by resorting to threshold autoregressive
models (TAR), allowing for phase-dependency in the cycles, i.e., for the
density-dependence coefficients to vary with density. Their empirical study
revealed a degree of non-linearity on the direct density-dependence coef-
ficient, which appeared to be affected by the phase of the growth cycle.
However, the delayed density-dependence, responsible for regulating the
periodicity, was revealed to be approximately linear. This reinforces the
notion that linear AR(2) models may be used to analyze population regu-
lation processes of microtines.

3.1.2 Seasonality
Northern ecosystems are subject to strong seasonal effects which have a deep
impact on the population dynamics of all present species. Essentially, the
two main seasons constitute two distinct life cycle events, subject to differ-
ent effects on population growth, alternating between two modes. Winter
is linked to survival, with mostly only negative population growth due to
the practically negligible reproduction. Summer is linked to reproduction,
where the population growth will be a product of the reproduction rates and
the survival of the young, adding to survival of the overwintered (Stenseth
et al., 1998). For voles, it has been suggested that the multi-annual period-
icity may be in fact associated to the duration of the winter season (Hansson
and Henttonen, 1985; Stenseth et al., 2002), which can help produce long
term cycles and stability (but see Rodrı́guez-Pastor et al., 2018; Cornulier
et al., 2013 for additional contributing factors). However, even though sea-
sonality plays a major role in small rodent cycles, it has historically been
insufficiently addressed, a consequence of the limitations of field data col-
lection, particularly in the harsh winters (Stenseth, 1999). For that reason,
seasonal models treating the different seasons separately are important to
fully understand the sources of density-dependence (Stenseth et al., 2003;
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Fauteux et al., 2021). Hansen et al. (1999) proposed modeling the popula-
tion cycles using bivariate linear autoregressive models, treating spring and
fall log-abundances independently:

Xt = β1Yt−1 + β2Xt−1 + β3Yt−2 + β4Xt−2 + ϵt (3.3)

Yt = η1Xt + η2Yt−1 + η3Xt−1 + η4Yt−2 + ωt. (3.4)

The parameters β = (β1, . . . , β4) and η = (η1, . . . , η4) correspond to the
seasonal autoregressive coefficients associated with predicting either spring
log-abundance Xt, or fall log-abundance Yt, respectively. The series ϵt and
ωt are white noise terms. This model can easily be written in terms of
predicting seasonal growth rates, using response variables Xt − Yt−1 for
winter growth rates in (3.3), and Yt −Xt for summer growth rates in (3.4).

3.2 Spatial population synchrony

Population synchrony is defined as the simultaneous changes in the fluctu-
ations of different populations across space (Liebhold et al., 2004; Hansen et
al., 2020). Synchrony typically refers to abundance, but several other pop-
ulation features, such as reproduction/mortality, mean size or age distribu-
tion, can be spatially correlated. It is a phenomenon widely present in many
animal and plant populations, with greatly varying patterns (Koenig, 1999),
and it can even occur between different species. Studying synchrony reveals
different important aspects of populations, including regulating factors and
population/community structure. Three key processes are typically asso-
ciated with the presence of spatial synchrony. First, dispersal, acting by
coupling locally regulated populations (Ripa, 2000). Second, community
processes and trophic interactions, which may include (nomadic) predators
(Ims and Andreassen, 2000), competition (Ulrich et al., 2019), or parasites
(Vogwill et al., 2009). And finally, density-independent environmental (abi-
otic) factors, such as the climate (Bjørnstad et al., 1999a; Allstadt et al.,
2015).

3.2.1 Extending the Moran Effect
The environmental stochasticity effect has taken center stage when it comes
to studying synchrony, starting back in 1953. The landmark study by Pat
Moran (Moran, 1953) presented a model linking local weather conditions
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and the cycles of two separate populations, in what is now amply referred
to as the ”Moran effect” (Hansen et al., 2020). Moran (1953) ascertained
that the dynamics of different populations having the same intrinsic density
dependence structure and subject to the same effects of the environment,
should showcase the same synchrony in their populations as they do in their
environment. This means that the cause of synchrony can be completely
independent from the mechanisms regulating the population cycles. As an
example, if the cycles of two populationsX(1)

t andX
(2)
t are given by identical

coefficients ϕ1 and ϕ2 in 3.2, then

Cor(X(1)
t , X

(2)
t ) = Cor(ϵ(1)t , ϵ

(2)
t ). (3.5)

This theorem follows strict assumptions, including log-linear density de-
pendence, identical population processes between populations, and no dis-
persal/migration. However, the strict assumptions of the Moran theorem
are rarely fulfilled in nature. This has led to some necessary extensions
to account for exceptions, such as non-linear density regulation (Engen
and Sæther, 2005; Royama, 2005) and spatially heterogeneous dynamics
(Hugueny, 2006). Hence, the term ‘generalized Moran effect’ has been
coined to denote the general synchronizing effect of correlated environments
on population cycles (Hansen et al., 2020).

3.2.2 Measuring spatial synchrony
The occurrence of spatial synchrony is often noticeable simply by visually
inspecting population time series, which was the initial method to assess
synchrony before formal statistical analyses were developed (Liebhold et al.,
2004). To quantitatively assess spatial synchrony, a measure of association
between different time series observed at different spatial locations must
be employed. A common choice is to use Pearson’s correlation coefficient
to measure the linear association between two series, which is easily inter-
pretable. Assessing spatial synchrony by correlations carries two relevant
problems, including long-term trends and temporal autocorrelation. Long-
term trends may cause the patterns of synchrony to be obfuscated in short-
term analysis. This may be solved using a de-trending technique, such as
using the growth rates of the series (Buonaccorsi et al., 2001). The presence
of temporal autocorrelation violates the assumption of independence among
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samples when conducting inference on correlations. A solution for this is
fitting an adequate model, in particular an autoregressive model (also called
”pre-whitening”) (Liebhold et al., 2004), especially relevant when working
with density-dependent population processes. We can then use the correla-
tions between the model residuals from the different spatial locations as our
measure for population synchrony. To further study spatial synchrony at a
broad spatial scale, i.e, to assess the scale, shape or geography of synchrony,
we can model synchrony as a function of distance. A number of different
methods have been employed for this purpose, in particular variations of the
Mantel correlogram (e.g., Bjørnstad et al., 1999a; Bjørnstad et al., 1999b;
Gouhier and Guichard, 2014; Gouveia et al., 2015; Turkia et al., 2020).

3.2.3 Investigating the causes of synchrony
While measuring synchrony holds intrinsic value in defining population units
(i.e, meta-populations), one of the main research interest in studying syn-
chrony comes from understanding its causes. A particular problem in this
case corresponds to the inability of fully separating the different variables
contributing to it, and no single factor is generally responsible for driving
population synchrony (Liebhold et al., 2004; Vogwill et al., 2009). Dispersal
has been postulated as one of the key factors driving large scale synchrony,
even when acting at a local scale, and has been thoroughly investigated us-
ing different autoregressive/nonlinear models (Abbott, 2011). However, the
role of intra-specific dispersal in synchronizing populations has been deemed
limited, as it may not hold the stabilizing power to maintain large scale syn-
chrony (Briggs and Hoopes, 2004; Wall et al., 2013; Zhang et al., 2015). As
a consequence of the limitations of dispersal for large-scale synchrony, at-
tention has been drawn to a number of external drivers, both biotic and
abiotic, as a mean to synchronize populations. To investigate the effect of
the environment on synchronizing populations, population synchrony can
be often modeled as a function of the spatial correlations in other variables,
such as the weather (e.g Post and Forchhammer, 2004) or predator breeding
performance (e.g Fay et al., 2020).
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Figure 3.2. Effects of climate change on population syn-
chrony. The parameters inside the circles are: r, growth
rate; K, carrying capacity of the environment; σ2, the en-
vironmental variance; and ρe, the correlation in the envir-
onment. Figure withdrawn from Hansen et al. (2020), used
here under the Creative Commons CC BY license.

3.2.4 Climate change and population synchrony
Recent research has put emphasis on the implications of climate change on
synchrony and the subsequent impact on the sustainability of populations
(Sheppard et al., 2015; Koenig and Liebhold, 2016; Hansen et al., 2020).
Fig. 3.2 describes the complex web of interactions between climate change
and the consequences for population synchrony. In sum, climate change
will lead to new normal states in the environment, with direct consequences
to the growth rates and carrying capacity. Furthermore, changes in the
environmental variability through time, as well changes in the spatial envir-
onmental synchrony, will likely alter population cycles. Indirectly, climate
change may act as an enabler of habitat fragmentation, thus affecting dis-
persal rates, as well as changing competitor/predator distributions. Spatial
population synchrony can greatly influence both the rate of extinction of
certain species (Heino et al., 1997), as well as shape community dynamics
(Haynes et al., 2009). Thus, studying the interplay between climate change
and synchrony, particularly in Arctic ecosystems, may help reveal the chal-
lenges many populations are predicted to face, with direct implications for
conservation and management.
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CHAPTER 4

Summary of Papers

Paper 1 – Accounting for capture heterogeneity in the
estimation of density-dependence

The importance of addressing the sampling uncertainty when estimating
animal abundance has been a hot topic in research for several decades. In
particular, the discussion around capture heterogeneity has remained lively
up to this day, with numerous new extensions and approaches still being
investigated (Gimenez et al., 2017; Herliansyah et al., 2022). Uncertainty
in animal abundance estimates is a problem when seeking to estimate pop-
ulation parameters, such as density-dependence parameters (Yoccoz and
Ims, 2004; Lebreton and Gimenez, 2012). However, it has been common
practice to resort to simplistic models to describe the observation process
– in fact disregarding capture heterogeneity. This has been done assuming
either a homogeneous Poisson process (e.g. Stenseth et al., 2003), negative
Binomial (e.g., Santin-Janin et al., 2014) or Log-normal distribution (e.g.
Santin-Janin et al., 2014; Ono et al., 2019) for the observation model.

This first study had the following specific goals:

(1) Develop a framework to analyze capture-recapture data for closed
populations, combining both observed (via covariates) and unob-
served heterogeneity (random effects) to estimate capture probab-
ilities and abundance.

(2) Assess the importance of accounting for capture heterogeneity when
estimating population process parameters, specifically when estim-
ating the density-dependence structure described by AR(2) models.
Simultaneously, understand how the intrinsic AR(2) parameters
may affect the estimation process.

(3) Understand the effects of assuming a simple Poisson process when
estimating the density-dependence, compared to either using an
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explicit capture-recapture model or ignoring the observation error.

capture heterogeneity

AR(2) Model

CR Data

CR-INLA CR-VGAM

HT Estimator
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Figure 4.1. Schematic figure of the methodological setting
for the simulation study of paper 1. The underlying process
of this population is regulated by both direct and delayed
density-dependence, according to an AR(2) process. Here,
the goal is to estimate the true parameters of this popula-
tion process to further understand the regulating mechan-
isms driving the population cycles. When sampling from
this population, there is sampling error deriving from cap-
ture heterogeneity. This can be addressed using one of three
different methods, with two methods incorporating capture-
recapture information (CR-INLA and CR-VGAM), and one
which disregards it (Observed counts). From the time series
adjusted for detectability, is then possible to model the true
population process and estimate the AR(2) parameters. Fig-
ure created with draw.io.
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For these purposes, we implemented a simulation study based on real
capture-recapture data of gray-sided voles in Northeast Norway. First,
we generated a time series of length 20 simulating the true vole popu-
lation process (in the log scale), regulated by both direct and delayed
density-dependence. This process followed an AR(2) model, with vary-
ing coefficients {ϕ1, ϕ2}, and for different process variances {ϵ} (equation
3.2). Second, we simulated the capture process with observed heterogen-
eity (model Mth) in two days, where the capture probabilities depended
on the effect of a single covariate. This allowed to obtain a given number
of captured individuals at each trapping session, with associated capture
histories. Finally, we estimated the AR(2) coefficients using three different
approaches, as shown in Fig. 4.1:

(1) The first method (CR-INLA) used the methodology of Integrated
Nested Laplace Approximation (INLA) (Rue et al., 2017) to es-
timate the capture probabilities using the conditional likelihood
approach (see section 2.1). INLA allows for the natural integra-
tion of both covariates and random effects in a computationally ef-
ficient Bayesian framework. Then, we used the Horvitz-Thompson
(HT) estimator to estimate the log-abundance at each time point.
Finally, we fitted AR(2) models to estimate the AR(2) coefficients
using the log-abundance time series, now corrected for the obser-
vation process.

(2) The second method (CR-VGAM) used the R-package VGAM (Yee
et al., 2015) to estimate the capture probabilities. This method
also uses the conditional likelihood approach but in a vectorial
generalized additive model framework. This method does not allow
for the modeling of random effects, but nonetheless provided a basis
of comparison with the first method. After estimating the capture
probabilities, we once again used the HT estimator to obtain the
log-abundances, and then estimated back the AR(2) parameters.

(3) For our final method, we simply used the simulated log-counts
for each time point, ignoring the observation process, and directly
estimated the AR(2) coefficients from the log-count time series.

Furthermore, we tested the assumption of a homogeneous observation model,

25



Chapter 4 – Summary of Papers

and repeated the process described above but modeling the log-abundances
obtained through methods 1–3 as a Poisson process instead, before estim-
ating the AR(2) coefficients.

From this simulation study, it was possible to better understand the role
capture heterogeneity plays when seeking to estimate density-dependence.
Overall, the approaches which modeled the observation process outper-
formed the method which disregarded it, as one would expect (Lebreton
and Gimenez, 2012). However, the effects differed according to the AR(2)
parameters themselves and the process variance. Overall, the estimation
of the {ϕ1, ϕ2} coefficients was biased towards zero. This is a well-known
phenomenon of estimating AR coefficients when using short time series, and
can be corrected (Sørbye et al., 2021). In practice, this phenomenon trans-
lated into an underestimation of the strength of direct ϕ1 and delayed ϕ2

density-dependence, and an overestimation of the process variance of the
AR(2) model.

The most relevant factor affecting parameter estimation appeared to
be the process variance (ϵt). For lower values (below 0.16), there was a
larger separation between methods, and it appeared more important to
model capture heterogeneity. For high values of process variance, however,
the differences in performance were only marginal. This suggests that in
systems where the variations in amplitude are very pronounced, as is the
case of vole cycles, the sampling error does not obfuscate the population
patterns as much as in cases with low process variance. This could be ex-
plained by the fact that when the population process variance is high, the
observation variance becomes only a minor component of the total variance,
which happens in the context of the gray-sided vole. Other animal popu-
lations, particularly larger mammals, often show much smaller fluctuations
in abundance. In addition, other systems have much larger observation er-
rors (much lower detectability compared to these voles), which should be
accounted for whenever possible.

When assuming a Poisson process, the estimation was generally worse
(again, better seen for the low process variance simulations), with an over-
all larger bias. This occurred even when comparing simply the raw counts
with those modeled directly as a Poisson process. There was also an associ-
ated larger uncertainty in the coefficient estimates, even if the coverage in
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parameters was generally very high. This highlights a potential problem of
assuming a homogeneous observation process which does not reflect capture
heterogeneity, when this is present.
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Paper 2 – Tunnel-based camera traps as an alternative to
capture-recapture in estimating vole abundance

To monitor animal populations and be able to study their population dy-
namics, it is important to have sound estimates of abundance. In the
previous paper, we focused on using capture-recapture data to estimate
population parameters of interest. However, capture-recapture has several
limitations, in particular due to being resource-intensive, requiring a lot
of effort to deploy live traps and baiting on successive days. This limits
the possibility of covering large areas, providing reduced spatial resolution,
which can constrain the scope of the monitoring. For these reasons, auto-
mated camera-traps have become popular alternatives to standard capture-
recapture to study a host of animal groups, particularly large mammals, and
those which can be individually identified with distinctive features (Gilbert
et al., 2021). However, for small animals that are often very difficult to
detect, camera-traps have a very large potential which is only now starting
to be realized. Camera traps provide a measure of activity, and it is not
always clear whether the resulting activity indices are a good reflection of
the population state (Jennelle et al., 2002). As such, calibration studies
are required to ensure whether indices derived from camera traps can be
considered sound indices for abundance.

For this paper, we used two case studies in boreal/sub-arctic biomes
to assess the suitability of camera-trap indices to monitor populations of
two small rodent species, the gray-sided vole and tundra vole (Microtus oe-
conomus). To perform this study, reliable abundance data and camera trap
data collected at the same locations were required. The field methodology
for our study consisted of placing a single tunnel-based camera trap (CT) in
a grid of capture-recapture (CR) traps, at different spatial locations. The
CR-based (log) abundances were corrected for the observation process using
the CR-INLA method of paper 1, modeling capture history probabilities as
a function of individual covariates weight and sex, and spatial random ef-
fects. For the CT-indices, we used the mean (log) number of photos of the
given species, taken over different time windows of varying lengths, either
encompassing or preceding the live trapping experiment period. Prior to
performing calibration, we first assessed the linearity in the relationships
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between the CT-indices and the CR-estimates (in the log-scale) using non-
parametric smoothing models. Generally, the relationships proved to be
approximately linear, and considering that linear models are easily inter-
pretable and applicable, particularly in a calibration context, we decided to
use them. The calibration analysis consisted of two main steps. First, the
CT-indices of different time windows (exposure variables) were modeled as a
function of the log CR-abundances (ground-truthing variable), resulting in
a calibration line. The goodness-of-fit was assessed through the coefficient
of determination (R2). The time window which maximized the R2 was con-
sidered optimal. Second, we performed inverse prediction optimal CT-index
where we could assess the predictive capacities of the model (through k-fold
cross validation) and obtain prediction intervals with correctly estimated
uncertainty.

Our two case studies provided different results. The gray-sided vole
calibration study contained 120 calibration points collected at 15 different
spatial locations (scattered across 170 km in a straight line). The optimal
calibration regression was achieved using the interval of 5 days (encom-
passing the live trap experiment days) and revealed an R2 = 0.57. Moreover,
the model was able to correctly predict the correct abundance phase (either
low, intermediate or high) two thirds of the time. This can be taken as
a successful calibration for different reasons. First, the R2 is roughly in
line with those from other studies with similar species (Villette et al., 2015;
Parsons et al., 2021). Moreover, our methodology differed from those stud-
ies, which used cameras pointing at single CMR-traps (checked every day),
and performed a direct calibration between the animals photographed and
captured. In contrast, our tunnel-based camera traps were not pointing dir-
ectly any of the multiple CMR-traps, making it a more challenging task. In
addition, there is bound to exist some confounding with the animals which
get physically trapped and are not able to cross the camera traps and be
recorded. Finally, we purposely excluded a spatial term from the regression
models so that the calibration regressions could be generalizable to any new
location. This means that we disregard the local variations of the different
stations, as well as the different placements of the camera traps. These
factors suggest that indeed the activity measures obtained from the cam-
eras are able to provide a reliable image of the population state of gray-sided
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voles.
The tundra vole study highlighted some of the challenges one might

face with these studies. It consisted of 60 calibration points collected at 4
different spatial locations, located within 1km2. In this case, however, the
calibration regressions were much worse, achieving an optimal R2 = 0.21

which corresponded to the day preceding the beginning of the live trapping.
This poor calibration further resulted in a poor predictive performance, with
higher bias compared to the gray-sided vole case, and only successfully pre-
dicting the abundance phase one third of the times. Different factors may
help explain these results. On one hand, tundra voles are typically harder
to catch and already required pre-baiting for the live traps, which may have
an effect in the spatial distribution of the species. Moreover, this species
has a much more heterogeneous use of space, with rapid home range shifts
(Tast, 1966). This was evidenced by the lower and scattered correlations
in the number of photos taken by the cameras in adjacent days when com-
paring with the gray-sided vole, in which the number of photos remained
highly correlated for a long period. For the tundra vole, we additionally
detected an effect of the animal entrapment on the calibration, as the days
preceding the experiment exhibited higher goodness-of-fit than the experi-
ment days, unlike what had occurred with the gray-sided vole. Due to these
complications and given the close proximity of the trapping stations, we
further performed a calibration analysis but taking the mean of all stations,
effectively treating them as replicates of the same spatial location. With
this setup, the R2 with the optimized temporal window rose to 0.81. This
rise is likely linked to the smoothing out of the differences in space use of
the different animals, highlighting the necessity of using actual camera trap
replicates, in specific for unpredictable species such as the tundra vole.

It is relevant to add that R2 is an imperfect measure, in particular
because the ground-truthing abundance estimates are prone to error them-
selves, and do not correspond to the absolute true abundances – simply the
closest to them we can get. Even in perfect scenarios, the R2 is not expected
to be 1 when error is present in both variables. It has thus been recommen-
ded that such calibration studies are only conducted in good conditions,
namely high capture probabilities (such as the case of the voles) and low
sampling error (Gopalaswamy et al., 2015). Additionally, it is important
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to take into account the observation process, which we did in this study by
modeling the capture probabilities as a function of capture heterogeneity
(Knape and de Valpine, 2011).

Overall, this study highlights the potential of tunnel-based camera traps
as a monitoring method for small mammals. In addition to being able
to reflect local vole abundances, camera traps have the added benefit of
drastically increasing spatial (being relatively easy to spread out in space)
and temporal resolution (collecting data continuously throughout the year).
Furthermore, our cameras collected a lot more information on other species,
such as shrews, lemmings and small mustelids, which are usually not ad-
equately sampled (Mölle et al., 2021). Still, performing calibration studies
(when possible) remains important, as different species may use the space
differently (Kolowski et al., 2021).
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Figure 4.2. Schematic figure of the methodological set-
ting of paper 2. A field study was developed to col-
lect both capture-mark-recapture data a single tunnel-based
camera trap data of small rodents (panel 1; created with
BioRender.com). This study was conducted for two species.
Calibration was then performed using the number photos ob-
tained from the camera traps as the CT-index, calibrated as
a function of abundance estimates from CMR (panel 2). Fi-
nally, we can use the CT-index to predict abundance (panel
3).
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Paper 3 – Seasonality and Population Synchrony
Spatial synchrony has been a widely studied phenomenon across different
taxa and ecosystems, in a hope to achieve a better understanding of mech-
anisms driving ecological dynamics. The effect of the climate on population
synchrony was formalized and popularized by Moran (1953), applied to
populations of Canadian lynx, in a region with striking differences between
winter and summer. Even though Moran himself recognized the import-
ance of these seasonal differences, he was not able to account for seasonal
density-dependence given the lynx time series were annual only. The so-
called “Moran effect” has been subject to many extensions ever since, hoping
to account for a number of exceptions not included in the original theorem
specification, such as dispersal (Ripa, 2000), non-linear (Engen and Sæther,
2005) or spatially heterogeneous density-dependence (Hugueny, 2006). Nev-
ertheless, the effect of seasonal-specific density-dependence has not been ad-
dressed in synchrony studies, even if seasonality has a well-known profound
effect on many different systems (White and Hastings, 2020; Fauteux et al.,
2021), on top of being greatly influenced by climate change (Xu et al., 2013).

For this study, we devised an analytical protocol to account for the
contributions of season-specific density-dependence to the total observed
spatial population synchrony, before estimating the effects of weather on
driving the synchrony. We based and applied this framework to a popu-
lation of gray-sided voles from Northeast Norway, known for its seasonal
density-dependence and marked spatial synchrony (Hansen et al., 1999).
This protocol and case study application are illustrated in Fig. 4.3, showing
the main steps required to partial out different density-dependence contri-
butions from the observed synchrony, and investigating ecologically relevant
effects. The figure steps are structured as follows:

(1) To analyze the spatial synchrony of Norwegian gray-sided vole
populations, we set up a study in the Porsanger region of Nor-
way, sampling from 19 stations along a climate/habitat gradient
of 170 km. The different stations could be sorted into three dis-
tinct landscape/ecologically-defined regions: coastal (R1), fjord
(R2) and inland forest (R3).

(2) Seasonally-varying time series for log-abundance were obtained as
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a result of the long-term study. These were corrected to account
for the observation process using the method from paper 1. As
it was impossible to collect precise weather data directly at the
trapping stations, we derived proxy weather variables to represent
mild winter weather conditions, particularly snow melt/ice condi-
tions. These are the most relevant environmental factors affecting
vole populations (e.g. Hansson and Henttonen (1985) and Stien
et al. (2012)). The proxy variables were zero crosses, representing
mean temperature crosses above and below 0 degrees (Celsius),
and winter rainfall, corresponding to the amount of precipitation
on positive temperature days.

(3) The total observed synchrony is a product of a multitude of contrib-
uting factors, deterministic (density-dependence) and stochastic
(environment). To isolate the effects of the environment, it is im-
portant to first remove the density-dependence structure of the
population from the synchrony estimates. For this, we model (I)
the log-abundances obtained in the spring Xt and in the fall Yt
using different density-dependent models f(.), where: (II) is a gen-
eral autoregressive model of order p = 2 (AR(2)), regulated by
a single population parameter Θ; (III) is an AR(2) model with
spatial terms ΘR to account for regional differences in the density-
dependence; (IV) a bivariate AR(2) model with a spatial term,
addressing Xt and Yt as separate variables (similar to a Vectorial
Autoregressive Model (VAR)). The spatial correlations in either (I)
or the residuals from (II–IV) represent the measures of synchrony.

(4) Correlograms can then be used to display the extent and shape
of population synchrony (separate by season) using the different
measures, as well as the spatial synchrony in the weather variables.

(5) Finally, we can relate the decomposed synchrony in either spring
or fall to the spatial correlations in the environmental variables. If
population synchrony is (partially) driven by a weather variable, a
positive association is expected.
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Figure 4.3. Schematic visualization of protocol devised in
paper 3, applied to our gray-sided vole case study. Specifics
are detailed in the text.
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Applying our protocol to our case study clearly highlighted the im-
portance of accounting for seasonal density-dependence when estimating
stochastic effects of the environment. This is well noted when comparing
correlograms (III) and (IV) in Fig. 4.3, where both the strength and shape
of synchrony differ markedly between spring and fall. It thus becomes clear
how important seasonality is in determining the extent of spatial synchrony.
This is especially evident for the fall abundances, for which the synchrony
was reduced and with a steeper slope after accounting for seasonal density-
dependence. The nature of these season-specific effects was further found
to be linked to the relative magnitude of the noise term in the different
seasons, being larger in the spring compared to the fall.

Using our protocol allowed us to isolate contributions of mild winter
weather to spatial synchrony, namely winter rainfall and the frequency of
winter mild-spells. Additionally, we were able to recognize a time-lagged
effect of winter weather on fall population synchrony. Interestingly, lagged
effects in fall abundances had been previously noted by Moran (1953), and
in the case of voles they might be explained by a delay in the onset of repro-
duction and consequent reduced population growth during summer (Ergon
et al., 2001). As rain-on-snow events are likely to become increasingly fre-
quent as a result of climate change (AMAP, 2017), the strength and scale
of spatial synchrony of boreal rodent populations (and other taxa) might
change accordingly (Hansen et al., 2020).
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CHAPTER 5

Discussion

For this thesis, we sought to improve and assess methodologies to mon-
itor population dynamics of small rodents, applying it to vole data collected
within the COAT program. We focused on two key parts of population mon-
itoring. On one hand, the observation process, concentrating on abundance
estimation using both capture-recapture and camera trap methods. On the
other, modeling two population processes relevant for rodents – density-
dependence and spatial synchrony.

In the context of the observation process, we worked to develop a method
which allowed for fast and efficient estimation of the capture probabilities
of voles, modeling both observed heterogeneity in the form of covariates,
as well as unobserved information as random effects. This was possible
by resorting to INLA, which provides a Bayesian alternative to computer-
intensive MCMC, commonly employed in state-space modeling approaches
(Newman et al., 2022). Consequently, it was possible to implement a com-
prehensive simulation study (still taking 150 hours to run) to assess accuracy
of estimating density-dependence parameters after accounting for capture
heterogeneity, for different parameter scenarios. From this study we were
able to understand how the AR(2) parameters intrinsically affected para-
meter estimation. We further realized that even when knowing the true
abundances, there were very obvious systematic biases in the estimation of
the parameters, given the short length of the time series. A side project
to this thesis helps understand these biases and how to correct them, as
well as obtaining uncertainty estimates (Sørbye et al., 2021). This has been
made available in the R-package ARbiascorrect, accessible at the Github
repository pedrognicolau/ARbiascorrect-v1. We realized that when the
process variance is high, allied to relatively high capture probabilities (the
case of gray-sided vole populations), accounting for the observation process
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Chapter 5 – Discussion

becomes less important when estimating density-dependence. This may
be relevant practical information when monitoring rodent population cycles
using camera trap methodologies, where accounting for the observation pro-
cess is still very challenging (Gilbert et al., 2021).

Camera traps show great promise for the monitoring of small mammals,
and within COAT they are already being put in place to monitor popula-
tions (Mölle et al., 2021). It became a prime goal of this thesis to understand
how abundance estimates, obtained from capture-recapture, related to the
activity measures recorded by the camera traps. The second project fo-
cused on this relationship, performing a standard calibration study for two
vole species with different habitats, space use, trappability and monitoring
schemes. This study further confirmed the great potential of camera traps
to replace capture-recapture as the standard monitoring method for small
mammals, showing that, for voles, abundance is closely linked to camera
activity. Moreover, the added possibilities to expand temporal and spa-
tial resolution, while monitoring the whole small mammal community, are
very positive news for long-term monitoring programs such as COAT. Still,
our study reinforces the importance of using camera replicates for the same
spatial locations to help circumvent the differential space use of distinct
species/individuals. It further remains challenging to validate/calibrate the
data collected for other species sampled using this methodology, but with
no reliable ground-truthing estimates of abundance.

Finally, for the third project we focused on population synchrony – a
key process which can provide meta-population scale information on regu-
latory mechanisms, as well as help predict the challenges that populations
will face in the light of climate change. This is a complex phenomenon that
several arctic and boreal species can display, to which different factors con-
tribute. In fact, when studying drivers of population synchrony, it is often
impossible to isolate the contributions of every single driver, given the inter-
play between the effects of dispersal and predation, on top of complex envir-
onmental interactions (Liebhold et al., 2004; Lottig et al., 2017). Therefore,
we developed a methodological protocol which allows the separation of en-
vironmental and stochastic contributions to spatial synchrony. By removing
density-dependence contributions from the total observed synchrony, we in-
directly tackle contributions from both predation and dispersal, which are
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known to be strongly density-dependent. By analyzing the population syn-
chrony results from sub-arctic gray-sided voles, we noticed that a big part
of the observed synchrony could be indeed explained by density-dependence
processes. It was then possible to confirm winter snow/ice conditions as an
important driver of population synchrony for these small rodents. We be-
lieve our methodological framework has wide applicability to analyze syn-
chrony patterns in both multivoltine and univoltine species revealing to
season-specific demographic processes, especially relevant in environments
like the Arctic. This represents a methodological advancement as the im-
portance of seasonality, despite being widely recognized as a key part of
density-dependent processes, has been vastly overlooked in ecological dy-
namics studies (White and Hastings, 2020). A main limitation for the real
case study analysis was the lack of quality/precise weather data, which was
not available at each trapping station. To obtain weather information we
had to resort to meteorological model estimates which, for such remote
areas, can be prone to biases, particularly in the case of the precipitation
(Lussana et al., 2019). We were thus limited to rather uncertain weather
variables, and were prevented from exploring more complex relationships
between the environment and the species population dynamics.

The CR-INLA methodology, developed in the first manuscript, served
as the framework to estimate capture-recapture-based abundance in the
following papers. In this context, it is important to add a note. When
estimating the capture probabilities, we used the observation model Mth

(Otis et al., 1978), assuming independent capture probabilities for a given
animal on each day. We are aware that this model is not the most ac-
curately representative of the capture process, as it is likely that some be-
havioral effects (”trap-happy”) may be present (and thus, Mtbh) (Brehm
and Mortelliti, 2018). However, the capture-recapture data used through-
out the thesis related to two days of trapping, providing capture histories
with length equaling two. This makes the parameter estimation of both
behavior and temporal effects dependent on forcing constraints (Yee et al.,
2015). Hence, we find a temporal model to be more realistic than a simple
behavioral model Mbh, which would assume equal probabilities of capture
on different days, only affected in case an animal had been trapped before.
Interestingly, across our studies, we noticed a clear temporal effect for the
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gray-sided vole, with a larger proportion of capture histories “01” compared
to “10” and “11” summed together. This suggests animals were more likely
to be captured on the second day, independently of having been captured
or not on the first day. With this in mind, model Mth appeared the most
reasonable.
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CHAPTER 6

Future Outlook

While there have been decades of intense study and debate surrounding the
population dynamics of rodents, it is still surprising how many gaps there are
in our knowledge of the drivers and interactants that affect the multi-annual
population cycles. New methods and approaches, including those developed
during this project, will contribute to tackling the unanswered questions. It
remains important to precisely understand which factors determine the rate
and timing that lead to population increase, as up to now studies have
greatly focused on the crash phase, with several unexplored hypotheses and
mechanisms behind population growth (Hein and Jacob, 2015). However,
even if the down phase of rodent cycles has been thoroughly studied, there
is still no consensus on which exact factors cause populations to crash, par-
ticularly in regards to physiological constraints and demographic structure
which have been overlooked (Andreassen et al., 2021). Ultimately, disen-
tangling the causes and drivers of rodent population cycles will be required
to properly clarify the role of these species in the ecosystems, as well as to
predict and act upon the effects of climate change, not only for the rodents
themselves, but for the entire system in which they play such a key role. For
this, we must first dissect the interplay between factors such as seasonality,
environment, predation, diseases and food resources (Oli, 2019; Andreassen
et al., 2021).

To help answer many of the outstanding ecological questions surround-
ing population dynamics of arctic/boreal rodents, it is critical to continue
development of new methodologies. This is true both from the perspective
of field sampling methods, to increase the quality, quantity and resolution
of the data, but also on the statistical side, to correctly account for bi-
ases and properly model the ecological parameters of interest. A particular
concern of this thesis was understanding how well the new methodology of
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camera traps for small mammal monitoring depicted the true abundance
state of our populations of interest. Our results support the gradual meth-
odological transition into new camera-based alternatives, which enable an
important increase in both temporal and spatial data resolution. However,
as we transition into the future, different questions arise, particularly on
how to properly analyze continuous-time data. For species with distinctive
features in their appearance, it can be possible to combine capture-recapture
with camera trap data, and this may be partially possible for certain spe-
cies in arctic and boreal environments at certain times of the year, with
subtle moult changes (Dorning and Harris, 2019). But for most small mam-
mals with no recognizable features, there is still a lack of methodological
tools to validate camera trap data and model the error in the observation
process (Sollmann, 2018; Gilbert et al., 2021). Nevertheless, the potential
to monitor new populations, or parts of population cycles about which we
were previously in the dark, together with the possibility to study entire
community-level dynamics and interactions (e.g., predator-prey synchrony
patterns; Qi et al., 2021), is incredibly promising for ecological theory going
forward.

Finally, it is important to reinforce the value of long-term monitoring
projects such as COAT. Studying ecological processes is not only very time
consuming from a resource perspective, but also given the time scales of
ecological events. For this thesis, we needed 20 years of data to even be able
to get a grasp of gray-sided vole population dynamics and study some of
their intrinsic population parameters. For other species, such as lemmings,
20 years might not be enough. Moreover, it is essential to obtain quality
resolved environmental data from weather and landcover variables to be able
to explore ecological relationships (Mollenhauer et al., 2018). In fact, many
lines of data/evidence are required to perform short-term forecasting, even
more so in the face of climate change and for environments as dynamic as the
arctic (Dietze et al., 2018). Long-term continuous monitoring is therefore
essential to recognize, predict and adapt to change.
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Closing Note

As a closing paragraph, I would like to leave a light-hearted consideration
regarding the work in statistical ecology. Statistical ecology is a comprom-
ise between two worlds – ecological rigor and statistical feasibility. On the
statistical side, we usually want the models to be as simple, straightforward
and parsimonious as possible. The simplest models are always the best!
We cannot simply add an interaction term at every single variable of the
model. How good would it be if the data fitted the model instead? We
are often forced to make assumptions, which will hopefully not have any
practical consequences, and we hope to find justifications for every outlier.
And in terms of data? We want loads of it! Long-time series, like hundreds
of years long – is that too much to ask for? Also, clean, well formatted data-
sets, with no insertion typos, and with useful and detailed covariates only.
Would it be possible to have weather stations at each individual trapping
location? Strange field notes written with indecipherable abbreviations in
possibly foreign languages? Maybe just ignore that column for now! From
an ecological perspective, it is important to be thorough, account for uncer-
tainty in every possible variable. We want to make the most out of missing
data, censored data as well as easily combine data from different sources
and formats. And we want those field notes to somehow count into the
model, “surely the lack of animals must be due to the loud thunderstorms
in the distance!”. We would like to be able to estimate a 5 year cycle using
one summer’s worth of data. Essentially, we want 1001 answers from a
dataset with 101 rows, that took so much sweat, blood, (money) and tears
to collect.

The world is complicated and layered, and statistical ecology has the
arduous but beautiful task of deciphering each layer, making the perfect
compromise between ecological theory and statistical practice. In the end,
we may be told that all models are wrong, with some being useful. Well, at
least the useless models will always have our emotional attachment.
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Abstract
Population dynamic models combine density dependence and environmental ef-
fects. Ignoring sampling uncertainty might lead to biased estimation of the strength 
of density dependence. This is typically addressed using state-space model ap-
proaches, which integrate sampling error and population process estimates. Such 
models seldom include an explicit link between the sampling procedures and the true 
abundance, which is common in capture–recapture settings. However, many of the 
models proposed to estimate abundance in the presence of capture heterogeneity 
lead to incomplete likelihood functions and cannot be straightforwardly included in 
state-space models. We assessed the importance of estimating sampling error explic-
itly by taking an intermediate approach between ignoring uncertainty in abundance 
estimates and fully specified state-space models for density-dependence estimation 
based on autoregressive processes. First, we estimated individual capture probabil-
ities based on a heterogeneity model for a closed population, using a conditional 
multinomial likelihood, followed by a Horvitz–Thompson estimate for abundance. 
Second, we estimated coefficients of autoregressive models for the log abundance. 
Inference was performed using the methodology of integrated nested Laplace ap-
proximation (INLA). We performed an extensive simulation study to compare our ap-
proach with estimates disregarding capture history information, and using R-package 
VGAM, for different parameter specifications. The methods were then applied to a 
real data set of gray-sided voles Myodes rufocanus from Northern Norway. We found 
that density-dependence estimation was improved when explicitly modeling sam-
pling error in scenarios with low process variances, in which differences in coverage 
reached up to 8% in estimating the coefficients of the autoregressive processes. In 
this case, the bias also increased assuming a Poisson distribution in the observational 
model. For high process variances, the differences between methods were small and 
it appeared less important to model heterogeneity.
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1  | INTRODUC TION

Models used to analyze population dynamics include a combination 
of density dependence and environmental effects. Ignoring the un-
certainty in abundance estimates biases estimates of the strength 
of density dependence, and different approaches exist to achieve 
better accuracy (see Lebreton & Gimenez, 2012 for a review). In par-
ticular, state-space models combining an observation model—link-
ing the observations such as counts to the true abundance—and a 
process model—describing the processes driving population dynam-
ics—have become a standard approach in many analyses (Dennis & 
Taper, 1994). However, these models rarely include an explicit model 
of the link between how counts were obtained and true abundance, 
often relying on a nonspecific observation model such as log nor-
mal or Poisson distribution (for instance, Ono, Langangen, & Chr. 
Stenseth, 2019, but see below).

Capture–recapture methods have been extensively used to esti-
mate abundance and density dependence, and many methods have 
been developed to incorporate different sources of variability into 
capture probability estimation, such as environmental information, 
survival, or trophic interactions (Barker, Fletcher, & Scofield, 2002; 
Lebreton & Gimenez, 2012; Schofield & Barker, 2008; Yackulic, 
Korman, Yard, & Dzul, 2018). Estimating abundance is a challenging 
statistical problem (Link, 2003), and heterogeneity in capture prob-
abilities can lead to large biases in abundance estimates when using 
models assuming no heterogeneity (Carothers, 1973; Otis, Burnham, 
White, & Anderson, 1978). However, many of the models that have 
been proposed to estimate abundance in the presence of hetero-
geneity do not lead to observation models that can be included in 
state-space models as they do not lead to likelihood functions in a 
closed form (Chao & Huggins, 2006; Huggins & Hwang, 2011).

Many studies investigating density dependence have used simple 
process models such as the Gompertz model—that is, a model which 
is a first-order autoregressive model on a log scale (Ono et al., 2019; 
Thibaut & Connolly, 2019). However, ecological processes such as 
trophic interactions (Bjørnstad, Falck, & Stenseth, 1995) or intrin-
sic ecological properties such as age structure (Lande, Engen, & 
Sæther, 2002) may lead to more complex process models such as a 
second-order autoregressive model (AR(2)). An important case is the 
population cycles observed in many small mammal populations, par-
ticularly in northern environments (Bjørnstad & Chr. Stenseth, 1999; 
Elton, 1924; Stenseth, 1999). These quasi-periodic fluctuations are 
quite well approximated by AR(2) models on a logarithmic scale 
(Bjørnstad et al., 1995). Whereas most analyses have ignored the 
uncertainty in abundance estimates (Bjørnstad et al., 1995), some 
have used state-space models (Cornulier et al., 2013; Ims, Yoccoz, & 
Killengreen, 2011; Kleiven, Henden, Ims, & Yoccoz, 2018; Stenseth 
et al., 2003). However, approaches using a capture–recapture 

framework and including capture heterogeneity have relied on inte-
grating out random effects describing capture heterogeneity (King, 
Brooks, & Coulson, 2008; Schofield & Barker, 2013) and using su-
perpopulation data augmentation (Royle, 2008); these approaches 
did not consider the conditional likelihood approach to estimating 
population size, which can easily handle, for example, individual 
covariates (Huggins & Hwang, 2011). Moreover, a fully MCMC-
based Bayesian approach is computationally intensive on large data 
sets and requires that careful considerations are given to choices 
of priors and superpopulation sizes for data augmentation (Royle, 
Dorazio, & Link, 2007).

Here, we investigated the performance of an intermediate ap-
proach between ignoring uncertainty in abundance estimates (i.e., 
using the raw population counts) and fully specified state-space 
models. Specifically, we first used a multinomial observation model 
to estimate capture probabilities followed by estimating abundance 
at each time point using the Horvitz–Thompson estimator (Horvitz 
& Thompson, 1952). Second, we fitted an AR(2) process model to 
the log abundance to estimate direct and delayed density depen-
dence given by the first and second coefficients of the AR(2) model, 
respectively. Both estimation steps were performed in a unified way, 
incorporating the models within the general class of latent Gaussian 
models (Rue, Martino, & Chopin, 2009). Full Bayesian inference was 
then obtained using the methodology of integrated nested Laplace 
approximation (INLA) (Rue et al., 2009, 2017).

We based our analyses on a large-scale study of popula-
tion dynamics of the dominant small mammal species in north-
ern Fennoscandia, the gray-sided vole Myodes rufocanus (Ims 
et al., 2011). This species shows large fluctuations with a 4- to 5-year 
periodicity (Ims et al., 2011; Marolla et al., 2019). We monitored 
populations of gray-sided voles along a 155-km gradient from coast 
to inland, using live capture–recapture methods, starting in 2000. 
Previous analyses have shown that there was large heterogeneity in 
capture probabilities (Yoccoz & Ims, 2004). In this rodent study, the 
goal was to understand spatial patterns of population dynamics, as-
sessing potential seasonal effects on the density-dependence esti-
mates. For this, we first needed to assess the robustness of using an 
approach based on estimated abundances but without implementing 
a full state-space model. In this paper, we therefore use a simula-
tion study built around the case study (adaptable to other situations 
from the code provided) to assess the estimation accuracy of the 
density dependence, both including and excluding capture history 
information.

The structure of this paper is as follows. Section 2 provides our 
methodological background to analyze capture–recapture data and 
describes the Bayesian framework to perform parameter estima-
tion. This includes using INLA to estimate individual capture proba-
bilities and the direct and delayed density dependence given by the 

K E Y W O R D S

abundance, capture probability, closed population models, density dependence, INLA, process 
variance
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coefficients of AR(2) models. Section 3 contains an extensive simu-
lation study, investigating how density-dependence estimates are in-
fluenced when individual capture probabilities are taken into account. 
In Section 4, we study the population cycles of gray-sided voles. We 
first compare different observation models in estimating individual 
capture probabilities and then assess whether incorporation of in-
dividual capture probabilities influences density-dependence esti-
mates. A summary and concluding remarks are given in Section 5.

2  | METHODOLOGY

Capture–recapture experiments are important to assess hetero-
geneity in individual capture probabilities. This section describes 
our approach to incorporate capture–recapture information in the 
estimation of density dependence. First, we define an observation 
model in which capture probabilities are modeled in terms of indi-
vidual features and then used to estimate abundance. Second, we 
fit an AR(2) process model to the estimated log abundance to assess 
density dependence. When using state-space approaches, the pa-
rameters of the observation and process model are estimated simul-
taneously. This is not possible in our case as the capture probabilities 
are estimated based on a conditional multinomial likelihood, due to 
individuals that were not observed. Instead, we apply a sequential 
approach, first estimating the capture probabilities and then the 
AR(2) coefficients. This allows us to use an explicit sampling model 
to estimate capture probabilities, instead of assuming that the ob-
served counts have a Poisson or log normal distribution. The given 
sequential approach is computationally efficient using the R-INLA 
package which is freely available at www.r-inla.org.

2.1 | Statistical background on capture–
recapture data

Assume a closed population with a total of N individuals and a cap-
ture–recapture experiment with τ capture sessions. Let

denote the capture history for the ith individual. If wij = 1, the indi-
vidual was captured at the jth capture session, while wij = 0 other-
wise, that is, wij ~ Bernoulli(pij), j = 1, …, τ. For each individual, the 
probability of a given capture history is then

Assuming that all individuals are captured independently, the 
complete likelihood becomes

where both N and the set of probabilities {pij} are unknown. Due to 
the unknown number of noncaptured individuals, computation of 
the likelihood is unfeasible. This is a well-known problem (Huggins 
& Hwang, 2011) and requires alternative strategies to perform pa-
rameter estimation.

A commonly applied approach is to maximize the conditional 
likelihood for the n individuals that were captured at least once. Let 
cik, k = 0, …, 2τ − 1, denotes the probability that the capture history 
of individual i is equal to category k. The different categories are 
defined by all possible permutations of the capture session vector, 
giving a total of m = 2τ − 1 categories for the captured individuals.

From here onwards, we will refer to data sets with only two 
capture events, in which mortality and emigration are disregarded 
considering capture events on adjacent days. The event that an indi-
vidual is never captured is then defined as category 0, while the cat-
egories 1, 2, and 3 refer to the capture histories (1,0), (0,1), and (1,1), 
respectively. To perform parameter estimation, we need to make re-
alistic assumptions on the capture probabilities for different capture 
sessions. Otis et al. (1978) propose a total of eight different models 
characterizing capture probabilities for different sessions depending 
on time, behavior, and homogeneity of the individuals, also including 
combinations of these three factors. Here, we consider a heteroge-
neity model including a temporal effect, Mth. This implies that the 
capture probabilities depend on different features of the individuals. 
Further, we assume that the capture probability on the first and sec-
ond capture sessions is independent. The probabilities for the differ-
ent categories are then specified as

To estimate abundance based on individuals that were cap-
tured, we use the Horvitz–Thompson estimator (Horvitz & 
Thompson, 1952)

where ĉi0 denotes the estimated probability that individual i was not 
captured. This probability is estimated using a regression model as 
explained in the next section.

2.2 | A multinomial capture–recapture regression 
model including a Poisson transformation

An important question in analyzing population processes from cap-
ture–recapture data is whether features of the captured individuals 
give valuable information in further analysis of density dependence. 
To estimate the probabilities in (2), it is natural to assume a multi-
nomial regression model for the captured individuals, incorporating 
covariate information which helps to separate different capture cat-
egories. We define the vector Y′

i
 = (Yi1, …, Yim), where Yik = 1 for an 

individual classified to category k, while the remaining elements of 
Yi are 0. Each of the vectors Y1, …, Yn has a multinomial distribution. 

w′
i
=
(
wi1,…,wi!

)
, i=1,…,N,

pwi
=

!∏

j=1

p
w"#

"# (1−p"# )
1−w"# , i=1,…,N.

L
(
N,

{
p!"

}
|
{
w!"

})
=

N∏

i=1

#∏

j=1

p
w!"

!" (1−p!" )
1−w!" ,

(1)

ci0=
(
1−pi1

) (
1−pi2

)
, ci1=pi1

(
1−pi2

)
, ci2=

(
1−pi1

)
pi2, ci3=pi1pi2, i=1,…,N.

(2)N̂=
∑n

i=1
(1− ĉi0)

−1,
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Based on (1), probabilities for the m = 3 observed categories are de-
fined by c̃!"= c!"∕

(
1−ci0

)
, k=1,…,m, ensuring that the probabilities 

sum to 1. These probabilities can then be modeled in terms of ob-
served individual features such as weight, sex, and age.

We denote the individual features or covariates by z′
r
=
(
z1r,…, z!"

)
. 

Further, we define the linear predictor

where the coefficient γkr is specific for category k and covariate r, 
while v is the number of covariates. The scaled probabilities for the 
captured individuals are then expressed as

The resulting multinomial likelihood is

where !′
i
=
(
!1r, …, !"#

)
, r = 1, …, v. Notice that in maximizing (5), the 

denominator of c̃!" does not simplify using the ordinary logarithmic 
transformation. It is therefore common to apply the well-known 
multinomial Poisson transformation (Baker, 1994) in which the likeli-
hood is rewritten as

Here, !"#= eV"#+$ i represents the rate of a Poisson distributed ran-
dom variable Yik. The given transformation from a multinomial likeli-
hood to the Poisson likelihood introduces auxiliary parameters β′ = (β1, 
…, βn), in which βi is proportional to ln

(∑m
k=1 e

V!"
)
. This is just a technical 

detail to make the approximation work correctly. The likelihood LP(.) is 
proportional to LM(.) and gives the same maximum-likelihood estimates 
for the coefficient vectors γr. The resulting regression model is then 
summarized in terms of linking the expectation of the Poisson variables 
to the linear predictor using the log transform, that is,

where !i∼N
(
0, "−1

)
 denotes small independent random error terms.

In fitting the given model to a data set, the vectors {!r}vr=1 will not 
be identifiable. However, in our case we only need estimates of the 
differences in these coefficients as these represent ratios of log prob-
abilities between the different categories. For categories k and l, we 
notice that

In estimating the parameters of the model, this implies that the 
auxiliary parameters and error terms disappear, but these are still 
included in fitting (6) to a data set. In the case of assuming (1), the 
estimated individual probabilities are then given by

or equivalently

These probabilities are then used to estimate ĉi0 in (2).

2.3 | Implementation using a Bayesian framework

To fit (6) to a data set and estimate the capture probabilities, we 
choose to apply a Bayesian approach. This implies that all param-
eters in (6) are viewed as random variables. Specifically, the result-
ing regression model can be incorporated within the computational 
framework of latent Gaussian models. This is a flexible class of three-
stage hierarchical models, which can be analyzed in a unified way 
using INLA. Subsequently, the model in (6) is reformulated in terms 
of having conditionally independent observations, given a latent 
field and hyperparameters.

The three stages of a latent Gaussian model are expressed as 
follows, where π(.) is generic notation for probability densities:

1. The first stage specifies the likelihood where the observations 
are assumed conditionally independent given a latent field x 
and hyperparameters θ. In our case, let y′= (y′

1
,…, y′

n
) denote 

the stacked vector of the m categories for the n individuals. 
The likelihood is then expressed as

2. The latent field x collects all random variables of the linear 
predictor

(3)V!"=
∑v

r=1
#"$z!$, i=1,…, n, k=1,…,m,

(4)c̃!"=
eV!"

∑m
k=1 e

V!"

, i=1,…, n, k=1,…,m.

(5)LM
(
!1,…, !v|y1,…, yn

)
∝

n∏

i=1

m∏

k=1

(c̃!")
y!" ,

LP
(
!1,…, !v, !|y1,…, yn

)
∝

n∏

i=1

m∏

k=1

e−"#$"
y#$
#$
.

(6)
ln
(
E
(
Y!"

))
= ln

(
#!"

)
=
∑v

r=1
$"%z!%+& i+'i, i=1,…, n, k=1,…,m,

ln

(
c̃!"
c̃!#

)
=V!"−V!# =

v∑

r=1

($"%−$#%)z!%.

(7)ln

(
p̂i1

1− p̂i1

)
=

v∑

r=1

("̂3r− "̂2r)z#$,

(8)ln

(
p̂i2

1− p̂i2

)
=

v∑

r=1

("̂3r− "̂1r)z#$,

(9)p̂i1=
e
∑v

r=1 ("̂3r−"̂2r)z#$

1+e
∑v

r=1 ("̂3r−"̂2r)z#$
,

(10)p̂i2=
e
∑v

r=1 ("̂3r−"̂1r)z#$

1+e
∑v

r=1 ("̂3r−"̂1r)z#$
.

L(x, !|y)=
!"∏

i=1

#
(
yi|xi, !

)
.

(11)x=
{
!1,…, !v,", #

}
,
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where we could also include the predictor itself. The latent field 
models the dependency structure of the observations and is as-
signed a multivariate Gaussian prior

The precision (inverse covariance) matrix Q is typically sparse 
such that x has Markov properties and is then referred to as a 
Gaussian Markov random field.

3. The hyperparameters θ of a latent Gaussian model are usually 
assigned non-Gaussian priors. Here, we only have one hyper-
parameter being the precision parameter of the random error 
terms, θ = κ. This parameter is assigned a penalized complexity 
prior (Simpson, Rue, Riebler, Martins, & Sørbye, 2017), implying 
that κ−1/2 has an exponential density.

The joint posterior for all elements of the latent field and the 
additional hyperparameter is then described as

The main interest is to calculate the marginal posteriors for each 
of the latent field components and each of the hyperparameters.

For the multinomial model, INLA is used to estimate the marginal 
posteriors for all the coefficients

These provide posterior mean estimates of the differences 
γkr – γlr, which are used to estimate the individual capture probabili-
ties and the abundance by (2).

2.4 | Estimating density dependence

Our final step is to fit a process model to study population dy-
namics of a species. Specifically, we focus on estimating density 
dependence by fitting an AR(2) model to a given time series, re-
flecting the population cycle for the relevant species. Let ln(Nt) 
denote the true log abundance at time t. The AR(2) model is then 
defined by

where ln(η) denotes an offset, while the noise terms are independ-
ent Gaussian variables, !t∼N(0, "2! ). T denotes the length of the 
time series, while the coefficients ϕ1 and ϕ2 characterize the direct 
and delayed density dependence of the series. The given process 
is stationary when −1≤!2≤1− ||!1

||<1 and has pseudoperiodic be-
havior when !2

1
+4!2≤0. Estimation of the coefficients of AR(2) is 

not influenced by the offset ln(η). This implies that if the number 
of captured individuals at different time points is proportional to 
the underlying true abundance, we would get identical parameter 
estimates.

The AR(2) model is fitted within the framework of latent 
Gaussian models using INLA. In this case, the model has three hyper-
parameters, including !="−2

#  and the coefficients ϕ1 and ϕ2. These 
parameters are all assigned PC priors (Simpson et al., 2017; Sørbye 
& Rue, 2017). Of main interest is to study how the estimates of ϕ1 
and ϕ2 vary when capture heterogeneity is accounted for using the 
multinomial observational model.

Often, simplifying assumptions regarding the data generat-
ing process are made, for example, by assuming a Poisson process 
(Stenseth et al., 2003) or a log-normal distribution (Santin-Janin 
et al., 2014) for the observed counts. These assumptions can be 
implicit while defining the observation models in state-space ap-
proaches. We study the Poisson distribution assumption in an ad-
ditional step also fitted using INLA. The log rate of the assumed 
underlying Poisson process for the abundance is expressed in terms 
of the linear predictor

Here, β0 denotes an intercept, while e1, …, eT denotes indepen-
dent and identically distributed random variables, ei∼N(0, !−1

e
). 

These error terms are included to model random variation as a func-
tion of time. As detailed in the next section, the AR(2) model will be 
fitted either to the estimated log abundance ln(N̂1),…, ln(N̂T) or to 
the posterior means of the log rates of the corresponding Poisson 
process, denoted "̂1,…, "̂T.

3  | SIMUL ATION STUDY COMPARING 
METHODS TO ESTIMATE DENSIT Y 
DEPENDENCE

This section provides an extensive simulation study to assess how 
the inclusion of capture history information influences estimation 
of density dependence. We start by simulating data to approximate 
a realistic capture–recapture sampling scenario. The underlying log 
population of the sampled species is generated as an AR(2) process 
in time, using different fixed combinations of the coefficients (ϕ1, 
ϕ2) and the innovation variance !2" , from here onwards referred to as 
the (population) process variance. Each resulting individual is then 
assigned a random weight, and a two-day capture history according 
to a multinomial model with probabilities defined by (1). We then 
fit an AR(2) process model to the estimates of log abundance or 
log rates obtained by different methods. These different methods 
are described in Section 3.1, while Section 3.2 specifies the simula-
tion procedure and the method performance criteria used. Finally, 
Section 3.3 provides simulation results and an evaluation of the dif-
ferent methods.

!(x|!)∼N
(
0,Q−1(!)

)
.

!(x, "|y)∝
#$∏

i=1

!(yi|xi, ")!(x|")!(").

!("#$|y), k=1,…,m, r=1,…, v.

(12)ln(Nt)= ln(!)+"1ln(Nt−1)+"2ln(Nt−2)+#t, t=1,…, T,

(13)!t= ln(E(Nt))="0+et, t=1,…, T.
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3.1 | Estimation methods

An overview of the different estimation methods used in the simula-
tion study is given in Figure 1. The left-hand side of the figure shows 
the additional steps needed to implement the observation model, 
incorporating sampling error in terms of capture history informa-
tion. We employ two methods of estimating individual capture prob-
abilities. The first is described in Sections 2.2 using INLA (method: 
CR-INLA) and corresponds to our suggested approach. The second, 
for comparison, estimates individual capture probabilities using the 
R-package VGAM (Yee, 2019). Among other utilities, the VGAM (vec-
tor generalized additive model) framework can be used to analyze 
closed population capture–recapture data, allowing the incorpora-
tion of individual covariates while using the conditional likelihood 
(Yee, Stoklosa, & Huggins, 2015). This application of VGAM allows for 
a flexible and efficient estimation of capture probabilities for all of the 
eight heterogeneity models given by Otis et al. (1978) (method: CR-
VGAM). From the estimated capture probabilities from either of the 
two methods, we proceed to estimate the true log abundance using 
the Horvitz–Thompson estimator in (2). At this point, we have two 
possible variants in estimating density dependence: We either fit the 
AR(2) model to the times series of estimated log abundance {ln(N̂t)}

T
t=1

 

(A variant), or we fit the AR(2) model to the corresponding estimated 
log rate of a Poisson process, {"̂t}Tt=1 (P variant). The right-hand side 
of Figure 1 illustrates the approach disregarding capture history, fit-
ting the AR(2) model directly to the observed log counts, or to the 
log rate of the corresponding Poisson process (method: ObsCount). 
Finally, the performance of the different estimation methods is com-
pared with the results fitting the AR(2) model to the true generated 
log abundance or estimated log rate (method: Baseline).

3.2 | Simulation procedure

For each combination of AR(2) coefficients, (ϕ1, ϕ2), we generated 
M = 200 time series. Specifically, we chose ϕ1 ∈ (−1, −0.5, 0, 0.5, 
1) and ϕ2 ∈ (−0.8, −0.5, −0.2), giving a total of fifteen combinations 
of the coefficients. These combinations ensure that the resulting 
generated time series were stationary, also having pseudoperiodic 
behavior. To investigate the effect of varying the process variance 
of the AR(2) process, we further compared density-dependence 
estimates for the values !2" ∈ (0.04, 0.08, 0.16, 0.32, 0.64). The de-
tails of the simulation procedure can be described in the following 
steps:

F I G U R E  1   Methodological flowchart
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1. Generate the series {ln(Nt)}
T
t=1

 according to (12) where 
T = 20, using different fixed combinations of (ϕ1, ϕ2). To 
remove the effect of sample size on the estimation of capture 
probability, we assumed that E(Nt) = 20 by using an offset 
ln(!)= ln(20)− 1

2
Var(ln(Nt)). The series was rounded to give in-

teger values for {Nt}
T
t=1

, representing the abundance of an 
animal population. The total number of individuals generated 
for one simulated AR(2) process was then Ñ=

∑T
t=1 Nt.

2. For each of the Ñ individuals, we generated a random weight

 where σw = 1.2, while μt ~ Log normal(ln(30), ln(5)). The weight was 
then scaled by the sample standard deviation of the generated 
weights to make it dimensionless. The resulting variable was used 
as an individual-specific covariate in (3). In this context, weight is 
a proxy for detectability. We varied the expected value of weight 
with time to model varying detectability, reflecting changes in the 
composition of the population at different time points. Thus, the 
varying mean reflects biological variation which we considered 
more realistic than assuming constant capture probabilities for dif-
ferent time points. The parameters relating to the weight distribu-
tion were here chosen to illustrate this biological variation.

3. Assume a temporal effect Mth for the capture–recapture pro-
cess with τ = 2. To assign a capture history to each individual, 
we first assumed that the capture probabilities for days 1 and 
2 were pi1 ≡ p1 = 0.55 and pi2 ≡ p2 = 0.75 for the total 
generated population. These probabilities were used to find 
reasonable values for the specific coefficients for the observed 
categories in terms of

The final individual capture probabilities were then computed ac-
cording to (9)–(10) including the generated random weight as a covari-
ate, implying v=1.

4. Remove individuals with capture history according to category 
0 (undetected).

5. Estimate abundance using each of the methods described in 
Section 3.1 and fit an AR(2) model to the resulting time series in-
cluding both the A and P variants.

The choices made in this simulation study intended to approx-
imate the characteristics of a real ecological data set. Specifically, 

z!"|#t∼Lognormal
(
ln
(
#t

)
, ln

(
$w

))
,

!31−!21= ln

(
p1

1−p1

)
and !31−!11= ln

(
p2

1−p2

)
.

Method

Coverage RMSE

ϕ1 ϕ2 ϕ1 ϕ2

!
2

"
A P A P A P A P

Baseline 0.04 0.91 0.85 0.88 0.86 0.21 0.40 0.20 0.36

CR-INLA 0.04 0.83 0.87 0.80 0.85 0.27 0.38 0.27 0.35

CR-VGAM 0.04 0.80 0.83 0.77 0.83 0.29 0.40 0.28 0.37

ObsCount 0.04 0.77 0.81 0.75 0.82 0.31 0.42 0.29 0.38

Baseline 0.08 0.91 0.92 0.89 0.90 0.20 0.26 0.20 0.25

CR-INLA 0.08 0.87 0.89 0.85 0.87 0.25 0.27 0.24 0.26

CR-VGAM 0.08 0.86 0.88 0.84 0.86 0.26 0.29 0.25 0.27

ObsCount 0.08 0.84 0.87 0.82 0.85 0.27 0.31 0.26 0.29

Baseline 0.16 0.92 0.91 0.88 0.88 0.20 0.22 0.20 0.21

CR-INLA 0.16 0.89 0.89 0.86 0.86 0.23 0.24 0.22 0.23

CR-VGAM 0.16 0.88 0.88 0.86 0.85 0.24 0.25 0.23 0.24

ObsCount 0.16 0.87 0.88 0.85 0.85 0.24 0.25 0.23 0.24

Baseline 0.32 0.91 0.91 0.88 0.88 0.21 0.21 0.20 0.21

CR-INLA 0.32 0.89 0.89 0.86 0.87 0.23 0.23 0.22 0.22

CR-VGAM 0.32 0.88 0.88 0.87 0.86 0.23 0.23 0.22 0.23

ObsCount 0.32 0.88 0.88 0.86 0.86 0.23 0.24 0.23 0.23

Baseline 0.64 0.91 0.90 0.89 0.87 0.21 0.22 0.20 0.21

CR-INLA 0.64 0.88 0.88 0.85 0.85 0.23 0.23 0.22 0.22

CR-VGAM 0.64 0.88 0.87 0.84 0.84 0.23 0.23 0.23 0.23

ObsCount 0.64 0.87 0.87 0.84 0.84 0.23 0.24 0.23 0.23

TA B L E  1   The estimated average 
coverage and RMSE for all combinations 
of (ϕ1, ϕ2) in the four methods, using five 
levels of !2". The AR(2) process was either 
fitted to the log abundance (A) or the log 
rate of the corresponding Poisson process 
(P)
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we have chosen to simulate rather short time series, having similar 
length as the real data set used in Section 4. Also, the initial cap-
ture probabilities for day 1 and day 2 were close to the proportions 
of captured individuals in the real data set (being 0.55 and 0.77, 
respectively).

Our next step was to apply INLA and fit the AR(2) process model 
to the generated time series. This provided estimates of the mar-
ginal posterior distributions for the two AR coefficients ϕ1 and ϕ2, 
for all approaches. Based on the posterior distributions, we could 
then calculate summary statistics, including the posterior mean of 
the coefficients, the standard deviations, and credible intervals. To 
evaluate and compare the quality of the different density-depen-
dence estimates, we computed the estimated root mean-squared 
error (RMSE), defined by

Here, "̂k denotes the posterior mean estimate of the kth AR 
coefficient and !k denotes the true value of that coefficient, while 
M is the number of simulations. We also compared the frequentist 
coverage properties using the different approaches. This corre-
sponded to finding the proportion of times the true AR coefficient 
was inside the M estimated 95% credible intervals. This means we 
would expect a coverage of 0.95 for an unbiased AR coefficient 
estimator.

3.3 | Simulation results

Table 1 displays the average performance in terms of coverage and 
RMSE for the different methods used to estimate density depend-
ence, including the two variants A and P. The averages were com-
puted across all the given combinations of (ϕ1, ϕ2) and for each of the 
five fixed values of !2". Due to the short time-series length, cover-
age using the Baseline method will not achieve the nominal level of 
0.95 (only nominal for the A variant). It is well known that estima-
tors for the coefficients of AR processes are biased for small sam-
ple sizes (Shaman & Stine, 1988). Furthermore, the Baseline method 
for the P variant is not optimal considering it is based on the true 
log counts rather than alternatively generating true log rates of a 
Poisson process.

The differences for the different methods were rather small, 
except for the two lowest process variance levels where there was 
a clear benefit from including capture history. CR-INLA provided 
the highest coverage, followed by CR-VGAM and ObsCount. Using 
CR-INLA, the coverage was within the range (0.83–0.89) for ϕ1 and 
within the range (0.80–0.86) for ϕ2. Further, the results indicated that 
fitting the AR(2) model to the log rate of a Poisson process (P variant) 
provided generally higher coverage than using the A variants. When 
comparing the different methods using RMSE, which considers both 
bias and variance, we see that CR-INLA had the smallest error in all 
cases, while the method ObsCount had the largest error. Again, the 

differences between the methods were very small except for the 
lowest levels of the process variance. In general, RMSE was reduced 
for all methods as the process variance increased. Moreover, RMSE 
was higher for the P variants compared with the A variants at the 
two lowest process variance levels, using all methods. This was due 
to both an increased variance and bias, which explains why the P 
variants had higher coverage.

The estimation bias of the different methods can be assessed ex-
plicitly in Figure 2, containing the posterior mean estimates ("̂1, "̂2) for 
each of the fixed combinations. The figure includes point estimates 
both using the A variant (left-hand side) and P variant (right-hand side) 
of the different methods. Here, the results refer to !2" =0.08 (upper 
panels) and !2" =0.32 (lower panels). The corresponding results using 
the other variance levels are given in the supplementary material 
(Figures S1–S9). For the two lowest levels of process variance, the es-
timation bias using CR-INLA was slightly lower than using the other 
methods for all combinations of (ϕ1, ϕ2). When the process variance 
was increased, the different methods gave approximately the same 
point estimates. The bias was slightly larger using the P variants com-
pared with the A variants. This was in correspondence with the higher 
averages of the RMSE values for the P variants, as already observed.

To further study coverage and RMSE for each of the 15 combi-
nations, we computed a joint coverage being the proportion of times 
both of the estimated 95% credible intervals contained ϕ1 and ϕ2, 
respectively. We also computed a joint RMSE for both parameters, 
defined by

The results for coverage and RMSE are shown in Figures 3 and 4, 
respectively. Our results showed that the coverage was smallest and 
RMSE is largest when |ϕ1| = 1 in most combinations of the AR coef-
ficients. CR-INLA was seen to give the highest coverage and lowest 
RMSE for most of the combinations when !2" =0.08, at least for the A 
variants. When !2" =0.32, the results were very similar for all methods.

In summary, we can conclude that including capture history in-
formation improved the estimation of density dependence in pro-
cess models having low process variance. Out of the tested methods, 
our suggested approach CR-INLA performed best, followed by CR-
VGAM. For the given simulated data, the additional step of estimat-
ing log rates of a Poisson process resulted in larger RMSE.

Finally, we notice that both of the two AR coefficients were un-
derestimated, and this bias increased with the absolute values of the 
coefficients.

The given simulation study was based on certain choices to il-
lustrate a capture–recapture scenario using an AR(2) process model. 
Here, we have assumed independent capture probabilities for the 
two capture sessions. The given approach could have easily been 
adapted to other models given by Otis et al. (1978), such as to also 
include a behavioral effect. Longer time series would have improved 
the estimation results using all of the suggested methods, albeit 
being less realistic from an ecological point of view.

RMSE("̂k)=

√√√√ 1

M

M∑

i=1

("̂k−"k)
2, k=1, 2.

RMSE("̂1, "̂2)=

√√√√ 1

M

M∑

i=1

2∑

k=1

("̂k−"k)
2.
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4  | ESTIMATING DENSIT Y DEPENDENCE 
USING A RE AL DATA SET

In this section, we estimated density dependence for a real capture–
recapture data set of small mammals, collected at 20 different spatial 
locations over a period of 18 years. Our main focus was to assess 
density-dependence estimates, studying how inclusion of capture 
history influenced the estimation. Using the CR-INLA approach, we 
estimated capture probabilities by the regression model in (6), includ-
ing individual-specific covariate information and random effects. We 
proceeded to estimate the true abundances at each time point for 
each spatial location using (2). Finally, we fitted the AR(2) model to 
estimate density dependence and compared the results with using 
the methods CR-VGAM and ObsCount. For all three methods, we 
assessed both the A and P variants.

4.1 | Data description

The data included a total of 3,090 gray-sided voles, captured alive in 
the Porsanger region (latitude 70°N), in Northern Norway. The data 
were collected at 20 different stations, spaced evenly along 155 km 
of road (see Figure 5), in the period 2000–2017. Sampling was con-
ducted twice a year, in spring and fall, and each capture session 

consisted of two visits. Two individual-specific variables were re-
corded, including weight and sex. Animals captured dead during the 
first trapping session were excluded from the analysis.

4.2 | Observation model selection, estimating 
capture probabilities

To estimate individual capture probabilities, we used the whole data 
set across time points and stations. Our first step was to select a 
reasonable observation model. Fitting the regression model in (6), 
we considered inclusion of the following variables

1. Weight (continuous standardized variable);
2. Sex (categorical variable for male or female);
3. Season (categorical variable for spring or fall);
4. Station (index variable for the evenly spaced stations);
5. Time (index variable for year)

To select which variables should be included, we evaluated dif-
ferent models using various information criteria. When applying 
CR-INLA, we used the estimates for the deviance information cri-
terion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002) and 
Watanabe–Akaike's information criterion (WAIC) (Watanabe, 2010). 
When using CR-VGAM, we used the estimates of Akaike's 

F I G U R E  2   Posterior mean estimates 
of ϕ1 and ϕ2, for the A variants on the left 
(panels a and c) and P variants on the right 
(panels b and d). The points of intersection 
of the dotted gray lines correspond to the 
true parameter values. The intersections, 
at which each set of dots lean to, 
correspond to the true value of that given 
set. Panels a and b show results when 
!2" =0.08, whereas c and d correspond to 
!2" =0.32
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information criterion (AIC) (Akaike, 1973) and the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978).

An overview of the different models and the estimated information 
criteria is shown in Table 2, comparing the two methods for a total of 
8 different models. The VGAM package does not allow for inclusion of 
random effect terms (Yee et al., 2015), which implies that Time could 
not be included in the CR-VGAM model explicitly. Using INLA, we can 
straightforwardly include nonlinear effects of covariates. Applying the 

method CR-INLA, we chose to model Time as a first-order random 
walk process (rw1) (Rue & Held, 2005; Sørbye & Rue, 2014). Also, we 
considered to include season as a categorical covariate, both using CR-
INLA and CR-VGAM. However, using the CR-INLA approach, season is 
not included simultaneously with time to avoid confounding.

The resulting optimal observation model for CR-INLA, minimiz-
ing both DIC and WAIC, included all variables except season. The 
linear predictor as defined by (6) is here given by

F I G U R E  3   Joint coverage for different combinations of (ϕ1, ϕ2) for !2" =0.08 (panels a and b) and !2" =0.32 (panels c and d). A variants are 
represented on the left (panels a and c) and P variants on the right (panels b and d). The results were split into 3 sets (ϕ2 ∈ (−0.8, −0.5, −0.2), 
where each set includes the coverage results for ϕ1 ∈ (−1, −0.5, 0, 0.5, 1)
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where f(timei) denotes the rw1 model, specifying a nonlinear ran-
dom effect of time. In selecting an observation model for the CR-
VGAM approach, we observed rather small differences in the values 
of the goodness-of-fit criteria for the different models. The optimal 
observation model according to AIC included weight and sex, while 

BIC was minimized when only weight was included. In the case of 
vole species, sex is known to have an effect on detectability (Bryja 
et al., 2005), so we chose to include both weight and sex in estimating 
the capture probabilities.

Figure 6 illustrates the distributions of the estimated capture 
probabilities for the two capture sessions, {p̂i1}ni=1 and {p̂i2}ni=1, 
using both CR-INLA and CR-VGAM. The mean capture probability 

ln(E(Y!"))= ln(#!")= $k1weighti+$k2sexi+$k3stationi+ f(timei)+% i+&i, i=1,…, n, k=1,…, 3,

F I G U R E  4   Joint RMSE for different combinations of (ϕ1, ϕ2) for !2" =0.08 (panels a and b) and !2" =0.32 (panels c and d). A variants are 
represented on the left (panels a and c) and P variants on the right (panels b and d). The results were split into 3 sets (ϕ2 ∈ (−0.8, −0.5, −0.2), 
where each set includes the RMSE results for ϕ1 ∈ (−1, −0.5, 0, 0.5, 1)
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is seen to increase on the second day using both methods. CR-
VGAM gave higher estimates of the capture probabilities, having 
a low variance for both days. Using CR-INLA, the estimated indi-
vidual capture probabilities showed more heterogeneity, having a 
larger variance for both days. Using the given estimated capture 

probabilities for the observed categories, we can estimate the 
probability that an individual is never captured, corresponding to 
category ci0 in (1). The resulting 95% percentile interval for ci0 was 
(0.19–0.32) using CR-INLA. Using CR-VGAM, the corresponding 
interval was (0.08–0.12).

F I G U R E  5   Stations distribution in 
Northern Norway, from Lillefjord to 
Karasjok. The station numbering goes 
along the north/south gradient, with 
station 1 being near Lillefjord and station 
20 near Karasjok. This map was obtained 
from Google Maps

CR-INLA CR-VGAM

Model Covariates DIC WAIC AIC BIC

1 Intercept 19,400 19,613 6,568 6,580

2 Weight −149 −158 −8 −2

3 Weight + sex −199 −217 −12 0

4 Weight + sex + season −223 −242 −11 +8

5 Weight + sex + station −213 −232 −10 +7

6 Weight + sex + time −254 −278 – –

7 Weight + sex + season + station −249 −269 −9 +15

8 Weight + sex + station + time −275 −300 – –

TA B L E  2   Observation model selection 
for CR-INLA and CR-VGAM, using the 
selected information criteria. All values 
are given in comparison with the intercept 
model (1) for easier visualization. The 
lowest scores represent the best models, 
compromising goodness of fit with model 
complexity
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4.3 | Fitting the AR(2) process model to estimate 
density dependence

Given the estimates of the capture probabilities for each individual, 
we used the Horvitz–Thompson estimator to compute abundance at 

each time point for each station. We then fitted the AR(2) model to 
the resulting estimated log abundance, providing estimates of both 
direct and delayed density dependence. We split the time series 
into spring and fall, to account for a possible seasonal influence in 
the parameter estimation. This resulted in two time series of length 

F I G U R E  6   Estimates for p1 and p2 
for the CR-INLA (panel a) and CR-VGAM 
(panel b) models
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F I G U R E  7   Estimates for ϕ1 (panel a) 
and ϕ2 (panel b) for the mean coefficients 
of both A and P variants, for the spring 
(green hue) and fall (orange hue) seasons 
separately
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T = 18 for each of the 20 stations. The AR(2) model was fitted using 
the three presented methods (CR-INLA, CR-VGAM, and ObsCount) 
using both the A and P variants. Station 9 did not have enough ob-
servations for the parameters to be estimated and was thus not in-
cluded in the results.

The main results are displayed in Figure 7, showing the poste-
rior mean estimates of the AR coefficients for the two seasons, for 
variants A and P. The estimates of both direct and delayed density 
dependence were very similar using all the given methods and were 
thus lumped together (see Figures S11 and S12 for detailed values). 
Interestingly, the differences seen in the capture probability esti-
mates between CR-INLA and CR-VGAM do not seem to have influ-
enced the density-dependence estimates. This is in correspondence 
with the simulation study in Section 3, as the process variance !2" for 
all of the stations was quite high, with the overall estimated average 
being "̂2# =0.9. This value likely corresponds to an overestimation of 
!2" , with the true average being likely significantly lower and closer 
to 0.6 (see Figure S10 for bias estimates at different variance levels). 
In both spring and fall, the estimates of ϕ1 varied from around −0.25 
to 0.6, whereas the estimates of ϕ2 ranged from around 0 to −0.8. 
For all stations, except 3 and 13, the estimated time series showed 
a semi-periodic behavior. We also notice that the AR(2) coefficients 
varied with season for the same station, which suggests a seasonal 
effect in the density dependence. Additionally, during both sea-
sons, the results indicate a decreasing trend in the value of ϕ2 along 
the given transect (from coast to inland).

5  | DISCUSSION

The main goal of this paper was to assess the importance of includ-
ing capture heterogeneity in the estimation of density dependence, 
thus incorporating sampling error in the observation model. To in-
vestigate this, we performed an extensive simulation study in which 
we generated AR(2) time series, representing the true log abundance 
of an animal population, and simulated a CR sampling scenario from 
that population. We then tested the performance of different meth-
ods, both including capture history information and disregarding it. 
For the first method, CR-INLA, we defined an observation model to 
estimate individual capture probabilities through a multinomial likeli-
hood and followed it with a Horvitz–Thompson estimate of the true 
abundance. The second method, CR-VGAM, used the existing VGAM 
methodology to estimate abundance from CR data, establishing it as 
a control method. Finally, we compared these two methods with a 
simple (yet common) approach, disregarding the capture history in-
formation (effectively assuming a homogeneous capture process), 
to estimate the true autoregressive coefficients from the observed 
counts directly. We further investigated the assumption of using a 
Poisson distribution for the capture data, fitting the AR(2) process 
to the estimated log rates. This was chosen as an example of an ob-
servation model used in the ubiquitous state-space models, where 
the observation model typically assumes some type of homogeneous 
capture process, such as Poisson or log normal.

Based on our simulation study, we found that incorporating cap-
ture history information was important in estimating density depen-
dence for AR(2) models with process variance below 0.16. In such 
scenarios, both methods including capture history outperformed 
the method disregarding it, with reduced estimation bias and im-
proved parameter coverage (8% higher in CR-INLA (A) compared 
with ObsCount (A) for the lowest tested process variance; see Table 
S1). However, in scenarios with a large process variance, the meth-
ods that estimated capture probability did not stand out, producing 
extremely similar results compared with the observed counts ap-
proach. Furthermore, parameter estimates for both AR coefficients 
were generally biased toward 0, using all the methods, increasingly 
underestimating the absolute values of the parameters. In the con-
text of quasi-periodic dynamics described by an AR(2) process, this 
means underestimating the strength of direct ϕ1 and delayed ϕ2 
density dependence, and overestimating the process variance of the 
AR(2) model (see Figure S10).

The data collected in Porsanger showcased vole populations 
with very large fluctuations in abundance, as is typical of such sys-
tems (Cornulier et al., 2013; Henttonen & Hanski, 2000). Moreover, 
the estimated capture probabilities were relatively high, resulting in 
a relatively small bias when comparing the observed counts and the 
estimated abundance. This resulted in all methods, and respective 
variants, producing similar results—this could have been expected 
given the observation variance is, in that case, only a minor compo-
nent of the total variance. Other populations, such as large mam-
mals, may show much smaller abundance fluctuations and therefore 
a larger contribution of the observation error to the total variance 
(e.g., Besbeas & Morgan, 2019). Moreover, in the case of other ani-
mal groups, such as snakes, capture probabilities are often very low 
(Rose, Wylie, Casazza, & Halstead, 2018), and could potentially lead 
to a larger bias corrections in density-dependence estimates by ac-
counting for capture heterogeneity (Fletcher et al., 2011), although 
we do not explicitly test this in this paper.

Extending our approach to other observation process models (e.g., 
spatial capture–recapture models (Royle, Fuller, & Sutherland, 2017), 
including individual heterogeneity (Efford & Mowat, 2014), would 
provide a general approach to reducing biases in population dynamic 
models. One disadvantage of the CR-INLA method is that it would be 
cumbersome to apply in CR data sets with more than 3 days, given the 
data expansion necessary to fit multinomial likelihoods in INLA, where 
all the category combinations, observed and not, must be present. This 
could potentially be automatized as in Bayesian fitting of capture–
mark–recapture models (McCrea, 2014).

Two limitations of our simulation study were pointed out during 
the revision process of this manuscript. Given the complex nature 
of the simulation setup, involving 4 methods in 2 variants, and 75 
combinations of parameters, the running time proved to be lengthy. 
Even when running in parallel, we needed roughly 150 hr to obtain 
the full results, from running 200 simulations per unique combina-
tion of parameters. Time thus became a constraint and prevented 
us from running a higher number of simulations, such as 500 or even 
1,000. Nonetheless, we believe our results show true patterns as we 
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noticed early convergence in both coverage and RMSE, from around 
50 simulations. Moreover, because we decided to split the results by 
process variance level, our aggregated averages, displayed in Table 1, 
combine 3,000 simulations for each method. In addition, it was noted 
that we did not propagate the uncertainty from our first modeling 
step into the second. We recognize that this would be a definite 
advantage, working with a Bayesian framework, and we have now 
investigated this. We first generated 200 posterior samples from 
the fitted multinomial model, and then, we fitted the AR(2) model 
to these samples. The resulting variance in estimating the AR coeffi-
cients was very small. This can be seen with an example displayed in 
Figure S13. The upper panels (a and b) show the posterior sampling 
distributions for the differences in the specific coefficients related to 
the categories of the multinomial model. These are used to estimate 
the abundances at each time point (panel c). The resulting distribu-
tions for the AR coefficients (panel d and e) are very narrow giving 
standard deviations smaller than 0.01. This is much smaller than the 
standard deviation in estimating the coefficients of independently 
generated AR(2) time series. Therefore, we realized we would not 
gain much from the uncertainty propagation, also taking into consid-
eration the large amount of additional running time required.

In summary, we have found that capture–recapture information 
given by two capture events contributes to improve density-depen-
dence estimates of AR(2) models with low process variance. In such 
cases, we recommended that capture heterogeneity is accounted for 
in the observation model, as it can constitute an important part of 
the total sampling error. Further analyses are required to assess how 
more capture events could impact process estimation.
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A Simulation results
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Figure 1: Estimates of the different methods for �2
✏ = 0.04.
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Figure 2: Estimates of the different methods for �2
✏ = 0.16.
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Figure 3: Estimates of the different methods for �2
✏ = 0.64.
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Figure 4: Coverage for different combinations of (�1,�2) for �2
✏ = 0.04 in both variants.
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Figure 5: Coverage for different combinations of (�1,�2) for �2
✏ = 0.16 in both variants.
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Figure 6: Coverage for different combinations of (�1,�2) for �2
✏ = 0.64 in both variants.
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Figure 7: RMSE for different combinations of (�1,�2) for �2
✏ = 0.04 in both variants.
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Figure 8: RMSE for different combinations of (�1,�2) for �2
✏ = 0.16 in both variants.
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Figure 9: RMSE for different combinations of (�1,�2) for �2
✏ = 0.64 in both variants.
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Figure 10: Mean process variance estimate for the A variants in the simulation exercise, across

all combinations of parameters. The dashed grey line corresponds to the theoretical optimum.

The green line provides the practical optimum. The three methods provide similar estimates of

the process variance, increasingly overestimating it for larger �2
✏ values.
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Table 1: Values of average joint coverage and joint RMSE for all combinations of simulations for

the four different methods, in 5 levels of variance �2
✏ . (A) columns represent the log-Abundance

variants, while (P) columns show values for the log-Poisson rate variants.

Joint Coverage Joint RMSE
Method �2

✏ A P A P

Baseline

0.04

0.81 0.75 0.41 0.75

CR-INLA 0.71 0.76 0.54 0.72

CR-VGAM 0.66 0.72 0.58 0.77

ObsCount 0.63 0.69 0.61 0.80

Baseline

0.08

0.82 0.84 0.40 0.51

CR-INLA 0.76 0.80 0.48 0.53

CR-VGAM 0.74 0.78 0.51 0.57

ObsCount 0.72 0.77 0.53 0.60

Baseline

0.16

0.82 0.82 0.41 0.43

CR-INLA 0.79 0.79 0.46 0.46

CR-VGAM 0.77 0.77 0.47 0.48

ObsCount 0.77 0.77 0.48 0.49

Baseline

0.32

0.82 0.81 0.41 0.43

CR-INLA 0.79 0.79 0.45 0.45

CR-VGAM 0.79 0.79 0.45 0.46

ObsCount 0.79 0.78 0.46 0.47

Baseline

0.64

0.83 0.80 0.40 0.43

CR-INLA 0.77 0.77 0.45 0.45

CR-VGAM 0.76 0.76 0.46 0.46

ObsCount 0.76 0.76 0.46 0.47
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B Real data results
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Figure 11: Estimates for �1 for the different methods in both variants, per season.
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Figure 12: Estimates for �2 for the different methods in both variants, per season.
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C (C) Propagating uncertainty example
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Figure 13: Example of propagating uncertainty from the estimation of the �-coefficents of the

multinomial model (a and b) to the estimation of �1 and �2 with CR-INLA for one simulation

setting.
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Figure C1 (cont.) These plots show an example of propagating uncertainty from the estima-

tion of the �-coefficients, used to estimate the capture probabilities in (??) and (??), to es-

timating abundance and the AR coefficients. The posterior Monte Carlo samples for the �-

coefficients were obtained using the function inla.posterior.sample for the fitted multi-

nomial model. The figure illustrates error propagation for a single simulated dataset with true

parameters {�1 = 0.2,�2 = �0.5,�2
✏ = 0.08}, using 200 Monte Carlo samples. Panels a)

and b) show the distribution of the differences between the �-coefficients. Panel c) shows the

resulting overlapped estimates for the abundance N̂ , while panels d) and e) give the resulting

distributions for �1 and �2. These distributions are very narrow, giving standard deviations equal

to 0.007 and 0.005 for �1 and �2, respectively. This is a consequence of the very low variation

in the estimated abundance in panel c).
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Abstract

Camera traps have become increasingly popular as a labor-efficient and non-invasive tool to

study animal ecology. Despite rodents being the most abundant and specious order of living

mammals, camera trap studies have mainly focused on larger mammals. Here we investigate

the suitability of camera-trap-based abundance indices to monitor population cycles of two

species of voles with key functions in boreal and Arctic ecosystems. The targeted species —

gray-sided vole (Myodes rufocanus) and tundra vole (Microtus oeconomus) – differ with respect

to habitat use and spatial-social organization, which allow us to assess whether such species-

traits influence the accuracy of the abundance indices. For both species, multiple live-trapping

grids yielding capture-mark-recapture (CMR) abundance estimates, were matched with single

tunnel-based camera traps (CT) intended to yield abundance indices. The study encompassed

three years with contrasting abundances and phases of the population cycle. First, we used lin-

1



ear regressions to calibrate CT-indices based on photo counts over different time-windows as a

function of CMR-derived abundance estimates. Then, we performed inverse regressions to pre-

dict CMR-abundances from CT-indices. We found that CT-indices (for windows showing best

goodness-of-fit) from single camera traps predicted adequately the CMR-based estimates for

the gray-sided vole, whereas such predictions were generally poor for the tundra vole. However,

aggregating photo counts over several nearby camera traps yielded also reliable abundance in-

dices for the tundra vole. The two species differed also with respect to the optimal time-window

for the CT-indices, which was 1 day for the tundra vole and 5 days for the gray-sided vole. Such

species differences imply that the design of camera trap studies of rodent population dynamics

should to be adapted to the species in focus. Overall, tunnel-based camera traps yield much

more temporally resolved abundance metrics than alternative methods. This gives a potential

for revealing new aspects of the multi-annual population cycles of voles as well as other small

mammal species they interact with in boreal and Arctic ecosystems.

Key words: Rodents, Index-calibration regression, inverse prediction, camera trap, population

monitoring

1 Introduction1

During the last decade, the use of camera traps has increased drastically in animal ecology as this2

provides a non-invasive and cost efficient alternative to traditional census methods (Wearn and3

Glover-Kapfer, 2019). In studies of mammals, the use of camera traps has so far largely focused4

on large-sized species (Burton et al., 2015). Nonetheless, smaller-sized rodents represent the most5

abundant and specious order of mammals (Wilson and Reeder, 2005). Many rodent species are6

cryptic, and hence resource-demanding, or otherwise difficult to study by means of conventional7

methods. Hence, camera traps specifically adapted to study small rodents may advance our abil-8

ity to investigate their ecology (Rendall et al., 2014). Studying the population dynamics of small9

2



rodents is important for several reasons (Krebs, 2013). Many rodent species pose risks to humans10

as vectors of zoonoses (Meerburg et al., 2009a; Capizzi et al., 2014) or by damaging crops (Meer-11

burg et al., 2009b; Andreassen et al., 2021). Moreover, voles and lemmings exert key ecosystem12

functions, especially in northern biomes where they exhibit multi-annual population cycles (Ims13

and Fuglei, 2005). Therefore, accurate monitoring of boreal and Arctic small rodent populations is14

fundamental to studies of ecosystem dynamics (Legagneux et al., 2014; Boonstra et al., 2016) and15

to the successful conservation of endangered species that are directly (Ims et al., 2018) or indirectly16

affected by their population dynamics (Marolla et al., 2019; Henden et al., 2021). Many boreal and17

Arctic rodent monitoring programs are still based on kill-traps (snap-traps), providing counts as18

indices of abundance (Turchin et al., 2000; Hörnfeldt et al., 2005; Korpela et al., 2013; Cornulier19

et al., 2013; Kleiven et al., 2018; Ehrich et al., 2019). However, kill-trapping is fraught with both20

ethical issues (Powell and Proulx, 2003) and questionable assumptions regarding sampling errors21

(Hanski et al., 1994). Live-trap-based, capture-mark-recapture (CMR) monitoring is less invasive22

and allows to account for sampling errors (Krebs et al., 2011). However, live-trapping requires23

much effort from qualified personnel and is therefore rarely sufficiently long-term and spatially24

extensive to support monitoring programs. In addition, several species display very low trappabil-25

ity in live-traps and are thus inadequately monitored by capture-recapture methods (Boonstra and26

Krebs, 1978; Jensen et al., 1993). In general, existing monitoring programs of rodent populations27

are logistically limited in terms of their coarse temporal resolution. In northern ecosystems such28

monitoring is usually restricted to two trapping sessions per year (Cornulier et al., 2013). This29

implies an important limitation due to the multivoltine life histories and the fast population dynam-30

ics of voles and lemmings. Camera traps may potentially resolve such constraints by providing31

means for spatially extensive and continuous year-round monitoring, even in climatically harsh and32

remote boreal and Arctic regions (Soininen et al., 2015; Mölle et al., 2021).33

Camera traps are today most commonly used to analyze presence-absence dynamics (i.e. oc-34

cupancy probability) (MacKenzie et al., 2002; Bailey et al., 2014). However, presence-absence35
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is a less informative population state variable than abundance, especially when density-dependent36

population regulatory mechanisms are of concern. Hence, the use of camera traps to estimate37

abundance is increasing. Most of these studies have however focused on marked (or otherwise38

distinguishable) individuals (Gilbert et al., 2021; Palencia et al., 2021). For many species, such39

as small rodents, it is not feasible to either mark or distinguish individuals by clues that are visi-40

ble in camera trap images. Moreover, design constraints make presence-absence-based abundance41

estimators less applicable in the case of unmarked small mammals.42

If the aim is to study population dynamics, for instance by means of time series analyses43

(Stenseth, 1999; Cornulier et al., 2013; Barraquand et al., 2017), simple indices of abundance44

can be used if there is a proportionate relationship between true abundance and the abundance45

index (Hanski et al., 1994; Lambin et al., 2000; Yoccoz et al., 2001; Gilbert et al., 2021). Counts46

of motion triggered photos appear to be a promising abundance index for large- to medium-sized47

mammals (Palmer et al., 2018). Recent studies suggest that this may also be the case for some small48

rodent species (Villette et al., 2015; Parsons et al., 2021). However, as of yet, such camera-based49

abundance indices have not been validated for rodent species that exhibit multi-annual popula-50

tion cycles, for instance, boreal and Arctic voles. Furthermore, previous works have been limited51

in scope and have not assessed the uncertainty associated with using camera-trap indices to esti-52

mate population abundance. A potential challenge in the case of such population dynamics is that53

there may be density- and/or cyclic phase-dependent aspects of their performance (sensu Stenseth54

(1999)) that may influence the reliability of camera-trap (CT) indices.55

Proper calibration of CT-based abundance indices as a function of CMR-based abundance esti-56

mates is challenging. Generally, calibration consists of modelling the measurable response variable57

(e.g. a population index) as a function of a ground-truthing variable that typically is assumed to be58

measured accurately (e.g. a population state variable measured without error). Once a calibration59

function is established, it can be used in inverse regression to predict the state variable for a given60

value of the response variable (Eisenhart, 1939). The goodness of the fit of the regression may be61
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assessed using the ordinary coefficient of determination (R2). In most ecological studies, the true62

state of a population is not known and must be estimated with some error, for instance, based on63

CMR trapping. As the error of the population state estimate (i.e. the ground-truth variable) may not64

be negligible, this becomes a more difficult calibration problem because the uncertainty of the true65

abundance can bias the estimation of the population state (Gopalaswamy et al., 2015). Thus it is66

important to assess the accuracy of prediction after establishing a calibration function (Diefenbach67

et al., 1994), to ensure high precision of the abundance predictions, which can sometimes be too68

low (Jennelle et al., 2002). Furthermore, camera trap-based abundance indices have been criticized69

for not being generalizable to other species or sampling sites (Jennelle et al., 2002). It is there-70

fore important to investigate potential differences in the performance of the abundance index for71

different species, i.e., to assess out-of-sample predictive ability of the index-calibration models.72

In this study, we assess the suitability of camera-trap-based abundance indices for studying73

population dynamics of the gray-sided vole (Myodes rufocanus) and the tundra vole (Microtus74

oeconomus). Both species are renowned for their multi-annual cycles (Hansen et al., 1999; Turchin75

et al., 2000; Cornulier et al., 2013) and key roles in boreal and sub-arctic ecosystems (Ims and76

Fuglei, 2005; Boonstra et al., 2016). The two vole species are also known to differ profoundly77

in their habitat use and spatial-social organization (Ims, 1987a; Bondrup-Nielsen and Ims, 1990),78

which provides a case for assessing whether such species-specific traits influence camera trap-79

based abundance indices (CT-indices). For both species, we used time series of spatio-temporally80

matched CT-indices and CMR-estimates, spanning a wide range of abundances and different phases81

of the population cycle. We followed a two-step calibration approach. First, we fitted calibration82

regressions, with the CT-indices, based on photo counts from single camera traps, as the exposure83

variable and CMR-based abundance estimates as the ground-truthing variable. In the case of tundra84

vole, for which several camera traps were used within the same local population, we also assessed to85

what extent aggregating data over several camera traps improved the fit of the calibration regression,86

i.e., treating the cameras as spatial replicates. As the camera traps provide continuous-time data,87
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we assessed which temporal resolution (i.e. time-window) of the camera trap data was optimal,88

in the sense of providing the best goodness-of-fit calibration regression (i.e, maximized the R2).89

As the second step, we performed inverse prediction to estimate vole abundance using the optimal90

CT-index, and evaluated the predictive performance of the model using k-fold cross-validation, bias91

and a classification metric for three abundance classes.92

2 Methods93

2.1 Study areas and species94

The data were obtained from two study areas in sub-arctic Norway (Figure 1), where long-term95

monitoring of vole population is ongoing by means of CMR-trapping. Regional-scale population96

dynamics of gray-sided vole were monitored in Porsanger (N 70.05°, E 24.97°) with multiple trap-97

ping stations spaced along a 170 km transect (Nicolau et al., 2020). The sampling was conducted in98

mountain birch forest, where the gray-sided vole is the most common species within a community99

with four other rodent species (Yoccoz and Ims, 2004). The phases of the 4-year population cycle100

exhibit a great deal of spatial synchrony across the sampled region In case of the tundra vole, local101

population dynamics were monitored within an area of 1km2 on the small oceanic island Håkøya102

(N 69.67°, E 18.83°). The tundra vole is here the only rodent species present. The population is103

distributed on patches of coastal meadows (Soininen et al., 2015), which is the preferred habitat for104

this species in Arctic and boreal ecosystem (Tast, 1966; Soininen et al., 2018).105
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Figure 1: Maps of the study areas. Bottom left: regional map of Fennoscandia with the two study
areas marked with different colored rectangles (Håkøya in black and Porsanger in gray). Left:
Håkøya study area for the tundra vole. Right: Porsanger study area for the gray-sided vole. Black
dots denote sampling stations, green hue is forest, light yellow corresponds to non-forested areas
on dry ground (e.g. alpine or coastal heaths), gray is mire and the blue is sea. Notice the different
scale of the two study area maps.
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2.2 Sampling design106

2.2.1 CMR-trapping107

CMR-trapping was conducted with baited Ugglan No. 2 live traps during the snow-free seasons108

in the years 2018-2020. Unless previously marked, trapped animals were marked with a passive109

induced transponder (PIT)-tag, and the individual covariates weight and sex were recorded.110

For the gray-sided vole monitoring, the trapping was conducted on 15 trapping stations spaced111

along the study transect (Figure 1). Each trapping station consisted of a standardized grid with112

16 live traps, covering an area of about 0.5 ha (Ehrich et al., 2009). In each of the three years,113

trapping was conducted in three sessions: middle of June, beginning of August and middle of114

September. During each session, the trapping was conducted over two consecutive days trapping115

days, following a trap-setting day (see Ehrich et al. (2009) for more details).116

For the tundra vole monitoring, trapping was conducted in variably shaped and sized coastal117

meadow patches. For the purpose of the present study, we defined 4 sampling stations with sizes118

(approximately 0.5) and trapping grids (10-20 live traps) that were comparable to the sampling119

stations of the gray-sided vole monitoring. However, in contrast to the widely spaced trapping120

stations in the regional-scale monitoring of the gray-sided vole, the adjacent tundra vole trapping121

stations were considered to cover the same local population. CMR-trapping of tundra voles was122

conducted monthly from June to October (i.e., five trapping sessions) in each of the three years. As123

the trappability of tundra voles is lower than that of gray-sided voles (Øvrejorde, 2007), the tundra124

vole trapping was conducted over three consecutive days per session. Trappability was further125

enhanced by pre-baiting the live-traps one day prior to the first trap-night.126
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2.2.2 CMR-based abundance estimation127

To address the sampling error associated with capture heterogeneity, abundances were estimated128

using the capture histories of each of the trapped individuals. Specifically, individual capture prob-129

abilities were assumed to have a temporal effect (model Mth in Otis et al. (1978)). We then fitted130

a multinomial regression model, where the logit-transformed probabilities of the capture histo-131

ries were modelled in terms of the individual variables weight and sex. In addition, the predictor132

included independent random effects for stations, to account for spatially-varying capture hetero-133

geneity. Finally, the CMR-based abundances (Ns,t) were estimated using the Horvitz-Thompson134

estimator (Horvitz and Thompson, 1952), for each station s and trap season t (Huggins and Hwang,135

2011). This corresponds to the CR-INLA framework presented in Nicolau et al. (2020). Finally, we136

standardized the abundance estimates according to the number of live traps per trapping location.137

2.2.3 Camera trapping and abundance indices138

In November 2017 (tundra vole) and June 2018 (gray-sided vole), a single camera trap was placed139

within each of the CMR-grids, for a total of 15 camera traps in Porsanger and 4 in Håkøya. We used140

the tunnel trap developed by (Soininen et al., 2015) and with the specific camera settings described141

in Mölle et al. (2021) and Appendix A.2.142
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k = Days

3rd CMR day (Håkøya)
2nd CMR day

1st CMR day
Trap-settingPrevious day

Windows centered on 1st trapping day

-11  -10  -9  …  -2  -1  0  +1  +2 …  +9  +10  +11

Figure 2: Schematic representation of the time-windows used to aggregate photo counts for the
camera trap-based abundance indices. Days related to the CMR-trapping are presented in green,
with day 0 corresponding to the first capture day (following trap-setting on the previous day; day
-1), followed by one (gray-sided vole) or two (tundra vole) capture days. Two types/groups of
time-windows are defined: CMR-encompassing, centered on first CMR day and thus including all
days with activated live traps, shown by the upper set of of vertical arrows; and CMR-preceding,
for the days preceding the trap-setting day, shown by the set of bottom left vertical arrows.

We use a range of time-windows of daily photo counts to derive CT-indices (Figure 1). Let Xk,143

k = −11, . . . ,11, denote the number of photos counted at day k relative to the first day of CMR-144

trapping (k = 0). The different temporal windows I denote intervals of d days. Each CT-index is145

then defined as the average CT-counts per day for a given I, given by YI =
1
d ∑k∈I Xk.146

We define two types/groups of time-windows, depending on whether the window encompassed147

the CMR-trapping or preceded it. We make this distinction to account for the potential confounding148

effect of entrapment of animals during CMR-trapping (i.e. considering that animals in live traps149

cannot be camera trapped). For the CMR-preceding intervals, we assessed the windows I = [k,−2],150

where k = −11, . . . ,−2. For the CMR-encompassing intervals, we used the windows I = [−k,k],151

where k = 0, . . . ,11.152
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2.3 Calibration analysis153

For each time-window, we calibrated the CT-indices from the single camera trap per sampling sta-154

tion against the temporally matching CMR-based abundances estimates for the same station. For155

gray-sided voles, the dataset includes in total 115 calibration points, while there are 60 calibration156

points for the tundra voles (see Appendix A.1). As the 4 trapping stations for the tundra vole cov-157

ered the same local population, we additionally perform a calibration analysis with the abundance158

indices and estimates averaged over all stations, which yields 15 calibration points.159

2.3.1 Calibration Regression160

Let YI,s,t denote the CT-index for a given temporal window I, measured at station s and trap season

t. A linear relationship between the CT-index and the CMR-abundance (Ns,t) is best fitted on a

log-scale. A linear regression model is thus formulated by

log(YI,s,t +1) = β0 +β1 log(NI,s,t +1)+ εI,s,t , (1)

where β0 and β1 are coefficients to be estimated to define the calibration line for each temporal161

window I. The set {εI,s,t} denotes error terms that are assumed to be independent and normally162

distributed with homogeneous variance. The number 1 was added to ensure positive arguments of163

the log-function. The ordinary coefficient of determination R2 is used as a measure of the goodness-164

of-fit.165

2.3.2 Inverse prediction and model validation166

For a simple linear regression model, the prediction interval for the explanatory variable can be167

calculated by inverting the corresponding prediction interval for the response variable. Here, we168
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used the R-package investr (Greenwell and Schubert Kabban, 2014) to compute the Wald 95%169

prediction interval for a new observation, x̂0 = ŷ0+β̂0

β̂1
, where x̂0 is the CMR-abundance estimate170

using the observed CT-index ŷ0, and β̂0 and β̂1 denote estimates of the coefficients.171

To assess the predictive performance of the calibration model with the time-window with the172

highest R2 value, we employ a k-fold cross-validation approach. Specifically, we remove all cali-173

bration points for a given station and estimate the coefficients of (1) using the remaining stations.174

We then predict the CMR-abundances given the corresponding CT-index of the excluded station.175

This is repeated for all stations, thus being equivalent to a 15-fold cross-validation approach for176

the gray-sided vole and a 4-fold cross-validation approach for tundra voles. For the spatially aggre-177

gated tundra vole calibration, performing cross-validation is not feasible (only 15 calibration points178

at a single spatial location).179

Different measures of predictive performance are computed. These include coverage of the 95%180

prediction interval for the explanatory variables log CMR-abundances, the mean absolute error and181

the root mean squared error. Additionally, we define an ecological classification metric (ECM)182

which intends to provide qualitative information on predictions that are functionally relevant for183

a cyclic populations (i.e. cycle phases). We define the following three population density cate-184

gories: low-abundances (low phase of the cycle), intermediate abundances and high abundances185

(high phase). The high and low abundances are defined as the 25% and 75% quantiles of the re-186

spective sample distributions for each species. The ECM is thus defined as the proportion of times187

the true observed log-abundance value and the predicted value belong to the same category. The188

analysis was conducted in R 4.0.3 (R Core Team 2020).189
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3 Results190

3.1 Abundance estimates and indices191

Annual means of the CMR-based abundance estimates reveal the phases/years of population in-192

crease (2018), peak (2019) and crash (2020) for both vole species (Figure 3). The distributions193

of the standardized abundance estimates and indices were similar between the species (Table 1).194

Moreover, neither the overall means nor the variance in the CT-indices differed notably between195

species or time windows (Table 1 and Figure 4). However, there was a difference in the temporal196

autocorrelations of daily CT-counts between the two species. While the estimated auto-correlations197

decreased linearly over time with relatively little scatter for the gray-sided vole, the estimated auto-198

correlations for the tundra vole showed a steeper decrease over the first 4 days before it leveled199

off with a large scatter. Furthermore, for the gray-sided vole, there was an increase in the mean200

number of photos taken the days right after the trapping experiment, which could suggest a possible201

interaction between the two methodologies.202
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Figure 3: Population dynamics over trapping seasons (within-years) and years based on log-scale
CT-abundance indices (blue circles) and log CMR-abundance estimates standardized by number of
traps (orange circles). The indices and estimates represent means with standard error bars over all
trapping stations for the two species. The optimal time-windows for the CT-index are used for both
species (see Figure 5).

Table 1: Distribution statistics (arithmetic mean, standard deviation and range) for the standard-
ized log-transformed abundances estimates (CMR-based; log(abundance/N traps) and CT-indices
(log(CT-counts)/(N days)) used in the calibration regression models. The CT-indices are given for
the time-window that provided the best fitting calibration regression (see Figure 5).

Metric Statistic Gray-sided vole Tundra vole

CMR-estimates
Mean 0.54 0.59

STDev 0.44 0.34
Range 0-1.63 0-1.59

CT-indices
Mean 0.93 1.13

STDev 0.84 0.94
Range 0-3.10 0-3.22
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Figure 4: CT-count variation and temporal correlations. Left panels: mean of all the log CT-
counts on each day relative to the trapping experiment (according to Fig.2), with standard deviation
bars. Right panels: temporal auto-correlations in daily CT-counts per trap and trapping session as a
function of temporal distance, i.e., days apart. The solid lines are non-parametric smooth regression
lines from the smooth.spline function of the stats R-package (version 4.0.3).

3.2 Linear calibration regression203

The linear calibration regressions based on the single camera trap per trapping station yielded204

R2-values that greatly differed between the two species. The R2–values for all time-windows are205

substantially higher for the gray-sided vole than the tundra vole (Figure 5). For the gray-sided206

vole, all time-windows for the CMR-encompassing group yielded similarly good fits (all R2 > 0.5207

except for Y[0,0]). The best fitting calibration model (R2 = 0.58, coefficients: β0 = 0.15; β1 = 1.44)208

was obtained for the 5-day time-window that encompassed the live-trapping session (Y[−2,2]). This209

regression model fulfilled the assumptions regarding log-scale linearity. For the tundra vole, the210
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best fit (R2 = 0.21, coefficients: β0 = 0.37; β1 = 1.28) was obtained for the CT-index based on the211

single day before the onset of the live-trapping (Y[−2,−2]). For the other time-windows (all R2 < 0.2)212

the difference between the two groups of time-windows was small. When the data were aggregated213

over four adjacent sampling stations for the tundra vole population, the fit of the calibration function214

improved substantially (R2 = 0.81, Coefficients: β0 =−0.16; β1 = 2.17, Figure 6).215
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Figure 5: Statistics for linear calibration regressions. Left panels: R2 values for the calibration lin-
ear regressions fitted to the two groups of time-windows (CRM-encompassing: light gray symbols
and CMR-preceding: dark gray symbols). The highest R2 values for each species is marked with
an enlarged blue dot. Right panels: Data points and regression lines with 95% confidence intervals
for the species-specific linear calibration models that yielded the highest R2.
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Figure 6: Calibration regression for tundra vole using aggregated data across all stations for the
best fitting time-window (Y[−2,−2]). Coefficients: β0 =−0.16; β1 = 2.17; p-value < 0.001.

3.3 Inverse prediction and validation216

As could be expected from the differences in the goodness-of-fit of the calibration regression (i.e.217

the R2 values), the prediction intervals derived by the inverse regression were wider for the tundra218

vole than for the gray-sided vole (Figure 7). The RMSE value (indicating the width of the interval)219

was almost twice as high as for the tundra vole compared to the gray-sided vole, and the bias was220

about three times higher (Table 2). In terms of classifying abundances based on the single camera221

traps with respect to the three abundance classes (cf. ECM metrics in Table 2), two thirds of the222

instances were correctly classified for the gray-sided vole, compared to roughly one third for the223

tundra vole.224
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Table 2: Prediction metrics for the models with highest R2 for both the gray-sided Vole (Y[−2,2])
and the tundra vole (Y[−2,−2]).

Species Coverage ECMA Bias RMSE

Gray-sided vole 0.957 0.661 -0.004 0.385

Tundra vole 0.933 0.350 0.013 0.701
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Figure 7: Inverse prediction plots for the CT-index windows yielding the best goodness-of-fit for
each region, on the log scale. The Wald 95% confidence intervals are colored in yellow, and the
data points are plotted in black dots.
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4 Discussion225

We have here assessed the adequacy of using photo counts, from the tunnel-camera trap developed226

by Soininen et al. (2015), as abundance metrics to study population dynamics of two ecologically227

important vole species that exhibit multi-annual cycles in boreal and Arctic ecosystems. Our assess-228

ment employed a two-step calibration approach, in which different temporally-scaled CT-indices229

from single camera traps were used as exposure variables calibrated against CMR-based abundance230

estimates from local live-trap grids, as the ground-truthing variable. In order to be adequate, abun-231

dance indices are required to have proportional (e.g. linear) relationships to the true abundance as232

well as reasonable precision. Considering that count-based camera trap indices (i.e. the number233

of motion-triggered animal passages) also reflect animal behavior (e.g. spacing behavior; sensu234

Krebs (1996)), which for long has been known to be density and phase dependent in cyclic vole235

populations (Chitty, 1960; Krebs, 2013), the assumption regarding proportionality can be violated.236

While the proportionality assumption (on the log-scale) appeared to be met for both vole237

species, the precision of the abundance indices based on single camera traps differed consider-238

ably between them. For the gray-sided vole, the CT-indices from the single camera traps correlated239

well with the CMR-abundance estimates from the matched live-trapping grids, whereas equivalent240

correlation for the tundra vole was poorer. Accordingly, validation metrics of the inverse regres-241

sions showed that the abundance predictions based on single camera traps were substantially better242

for the gray-sided vole than the tundra vole. Compared with two previous calibration studies of243

non-cyclic vole populations in boreal America, the goodness of fit of the calibration regression for244

the cyclic gray-sided vole population (R2 = 0.58) performed equally good (Villette et al., 2015)245

or better (Parsons et al., 2021). The two American studies employed a different camera trap; i.e.246

open cameras mounted in front of the entrance of baited live traps. Moreover, these previous stud-247

ies used aggregated CT-indices over 15-16 (Villette et al., 2015) and 16-20 camera traps (Parsons248

et al., 2021) per live-trapping grid, which was twice the size of our grids. The fact that we obtained249
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at least an equally good calibration for gray-sided vole with a single camera trap, and an even bet-250

ter calibration (R2 = 0.81) for the tundra vole when aggregating the data over only 4 camera traps,251

indicates that our unbaited tunnel-based traps are more efficient in capturing voles.252

The differences in goodness-of-fit of the calibrations (and thus also precision of the abun-253

dance predictions) of gray-sided voles and tundra voles are reflected by the different optimal254

time-windows and the temporal auto-correlations of CT-counts for the two species. The optimized255

time-window for the gray-sided vole was longer (5 days including the live trapping days) and less256

temporally distinct (high R2-values for wide range of time-windows) than for the tundra voles. The257

best time-window for the rundra vole was based on a single day just prior to the onset of the live-258

trapping sessions. Accordingly, the auto-correlations of the daily camera counts dropped faster and259

had a generally higher scatter for the tundra vole than the gray-sided vole. We believe this can260

be explained by the fact that the two vole species differ with respect to how their populations are261

spatio-socially organized (Ims, 1987b; Bondrup-Nielsen and Ims, 1990). Due to female territorial-262

ity, gray-sided voles are more evenly spaced within their habitat than tundra voles where females263

form spatially clustered kin-groups. These local tundra vole kin-groups are temporally unstable264

since females frequently shift home ranges (Tast, 1966). Consequently, local-scale abundance dy-265

namics of tundra voles is typically characterized with a high turnover (Andreassen and Ims, 2001)266

and weak auto-correlations (Ims and Andreassen, 1999). The much improved fit of the tundra vole267

calibration regression, when based on 4 instead of 1 camera trap, is most likely due to the effect of268

smoothing out the large small-scale spatio-temporal variability. This result underlines the benefit269

of spatially replicating camera traps within the same location/local population, which has also been270

highlighted by other authors (Kolowski et al., 2021). However, our study also shows that only a few271

tunnel-based camera traps may be needed to get adequate abundance indices for both vole species.272

In fact, a single camera trap was able to capture the main features of the cyclic dynamics of gray-273

sided vole. This indicates there may be a potential for conducting spatially extensive monitoring,274

for instance in order to estimate patterns of large-scale spatial population synchrony (Bjørnstad275

20



et al., 1999), even with a limited number of camera traps available.276

We believe that the greatest asset of the tunnel-based camera trap employed in our study is277

its ability to yield population metrics year-round, with a finer temporal resolution than any other278

presently available method. For small rodents with multi-annual cycles, the transitions between279

the different cyclic phases (e.g. between peak and crash) can be very rapid and take place at any280

time of the year (Krebs, 2013). By providing reliable abundance indices for time-windows as281

short as a few days, camera traps radically enhance our options for identifying the drivers of cyclic282

rodent dynamics. Strongly density-dependent interactions and rapid community-level dynamics283

have for long been assumed to be driving rodents cycles (Hansson and Henttonen, 1988; Turchin284

and Hanski, 2001; Barraquand et al., 2017). Assumed key interactions – such as those between285

voles and small mustelids – have been beyond the reach of thorough investigations owing to dif-286

ficulty of obtaining adequately scaled data for both interactants simultaneously (King and Powell,287

2006). Our tunnel-based camera traps recorded substantial data (i.e. relatively high number of288

photo counts) for all members of the small mammal community in both study areas, including289

small mustelids (least weasel Mustela nivalis and stoat Mustela erminea), Norwegian lemmings290

(Lemmus lemmus) and shrews (Sorex spp.) (see also (Mölle et al., 2021) and Appendix B.3). While291

species-interactions based on camera trap data can be analysed based on absence-presence records292

within an occupancy modelling framework ((Rota et al., 2016; Fidino et al., 2019)), abundance met-293

rics are more informative as they allow analyses of the density-dependent interactions that appear294

to drive population cycles (Stenseth, 1999). New studies are needed to validate camera trap-based295

abundance indices for species such as mustelids and lemmings. As true ground-truthing variables296

for such species (especially mustelids (King and Powell, 2006)) are extremely difficult to obtain,297

there may be alternatives to use other statistical frameworks to obtain detectability corrected abun-298

dance indices (Gilbert et al., 2021; Palencia et al., 2021). Such frameworks may also be used derive299

unbiased abundance indices from camera-trap data during the boreal and Arctic winter, when deep300

snow and harsh climatic condition hinder calibration studies of the kind we have performed in this301

21



study. Hence, although our study highlights the potential of tunnel-based camera traps to likely302

advance studies of cyclic rodent populations, it also illustrates the need for performing species- and303

context-specific validation studies.304
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A Supplementary Methods492

A.1 Temporal distribution of data sampling493

2018 2019 2020
Month M J J A S M J J A S M J J A S
Station 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
H1
H2
H3
H4

Full data available
Log-Abundance data only
No camera data available
Camera malfunction
No CMR data available

Figure 8: Temporal distribution of the index-calibration data for each of the stations for the different
regions.
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A.2 Camera Trap sampling494

We used ReconyxT M SM750 HyperfireT M (Reconyx Inc., Holmen, WI, USA) with a passive in-495

frared (PIR) motion sensor. Each camera trap was placed at the roof of an artificial metal tunnel,496

facing down. These tunnels were deployed in natural small mammal runways without any kind of497

lure, simulating natural tunnels/cavities which small mammals typically enter. For a more detailed498

description of the small mammal camera setup see (Soininen et al., 2015) and (Mölle et al., 2021).499

At Porsanger, where the capture-recapture was done in standardized trapping grids, the camera500

traps were always deployed close to the center of the grid. At Håkøya, where the shape of the501

capture-recapture grids did not follow a structured design, the camera traps were deployed within502

the trapping grid.503

This methodology allowed us to collect continuous camera trap data from the small rodent504

populations monitored by the capture-recapture design, with a total of 15 camera traps (and capture-505

recapture grids) in Porsanger and 4 in Håkøya. The camera traps collected data continuously and506

were checked once a year to replace batteries and collect memory cards. To avoid multiple camera507

trap counts from the same trigger event and to save power so that battery would not run out before508

next check, the cameras were set to not be triggered more than once per minute.509

A.2.1 Camera trap image annotations510

Once collected, all the camera trap images were annotated using the MLWIC package in R511

(Tabak et al., 2019) for automatic image classification. We set the classification threshold at 95%512

confidence for positive identification of a species in a photo. For the images from Håkøya, an513

area only inhabited by a single vole species, the images were classified to species level with high514

accuracy. For the Porsanger dataset, which contains multiple vole species, it was not possible to515

obtain sufficient classification results using the MLWIC package, as it did not separate different516
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species of voles accurately (only possible at genus level). Therefore, we manually annotated the517

images for the Porsanger analysis to species level.518

519
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B Supplementary Results520

In this section we present the calibration model coefficients for the different CT-indices tested in521

this study, as well as the predictive metrics, separately for the Gray-sided Vole (B.1) and for the522

Tundra Vole (B.2). Finally, we show the photo counts of all the species detected in the camera traps523

(B.3).524

B.1 Gray-sided Vole525

B.1.1 Linear Regression Coefficients526

Table 3: Coefficients for region Porsanger for all the CMR-encompassing windows.

Window β0 (± s.e.) β1 (± s.e.) p-value (β1) R2

Y[0,0] 0.05±0.1 1.45±0.15 < 0.001 0.466
Y[−1,1] 0.14±0.09 1.41±0.13 < 0.001 0.521
Y[−2,2] 0.15±0.08 1.44±0.12 < 0.001 0.578
Y[−3,3] 0.16±0.08 1.39±0.11 < 0.001 0.569
Y[−4,4] 0.16±0.08 1.34±0.11 < 0.001 0.569
Y[−5,5] 0.15±0.08 1.32±0.11 < 0.001 0.564
Y[−6,6] 0.16±0.08 1.28±0.11 < 0.001 0.545
Y[−7,7] 0.16±0.08 1.27±0.11 < 0.001 0.546
Y[−8,8] 0.16±0.08 1.25±0.11 < 0.001 0.541
Y[−9,9] 0.16±0.08 1.24±0.11 < 0.001 0.534

Y[−10,10] 0.15±0.08 1.23±0.11 < 0.001 0.535
Y[−11,11] 0.14±0.07 1.2±0.11 < 0.001 0.535
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Table 4: Coefficients for region Porsanger for all the CMR-preceding windows.

Window β0 (± s.e.) β1 (± s.e.) p-value (β1) R2

Y[−2,−2] −0.01±0.09 1.05±0.13 < 0.001 0.3732

Y[−3,−2] 0.05±0.08 0.96±0.12 < 0.001 0.3626

Y[−4,−2] 0.04±0.08 0.98±0.11 < 0.001 0.3938

Y[−5,−2] 0.04±0.08 0.99±0.12 < 0.001 0.3964

Y[−6,−2] 0.06±0.09 0.98±0.12 < 0.001 0.3636

Y[−7,−2] 0.07±0.08 1.03±0.12 < 0.001 0.3901

Y[−8,−2] 0.09±0.08 1.02±0.12 < 0.001 0.3889

Y[−9,−2] 0.09±0.08 1.01±0.12 < 0.001 0.3894

Y[−10,−2] 0.09±0.08 1.03±0.12 < 0.001 0.3955

Y[−11,−2] 0.08±0.08 1±0.12 < 0.001 0.3945
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B.1.2 Predictive Performance527

Table 5: Predictive performance of the calibration models for Porsanger, using the CT-index for the
CMR-encompassing windows to predict log-abundance.

Window Coverage ECM Bias RMSE

Y[0,0] 0.957 0.617 -0.008 0.483

Y[−1,1] 0.957 0.600 -0.007 0.431

Y[−2,2] 0.957 0.661 -0.004 0.385

Y[−3,3] 0.957 0.652 -0.004 0.394

Y[−4,4] 0.948 0.670 -0.003 0.394

Y[−5,5] 0.948 0.652 -0.004 0.399

Y[−6,6] 0.957 0.609 -0.005 0.415

Y[−7,7] 0.957 0.617 -0.004 0.415

Y[−8,8] 0.948 0.609 -0.005 0.421

Y[−9,9] 0.948 0.617 -0.005 0.427

Y[−10,10] 0.939 0.609 -0.005 0.427

Y[−11,11] 0.939 0.626 -0.005 0.427
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Table 6: Predictive performance of the calibration models for Porsanger, using the CT-index for the
CMR-preceding windows to predict log-abundance.

Window Coverage ECM Bias RMSE

Y[−2,−2] 0.930 0.617 -0.011 0.599

Y[−3,−2] 0.948 0.548 -0.011 0.611

Y[−4,−2] 0.983 0.548 -0.009 0.571

Y[−5,−2] 0.965 0.557 -0.009 0.568

Y[−6,−2] 0.965 0.574 -0.009 0.605

Y[−7,−2] 0.957 0.591 -0.007 0.570

Y[−8,−2] 0.948 0.591 -0.007 0.574

Y[−9,−2] 0.948 0.591 -0.007 0.573

Y[−10,−2] 0.957 0.609 -0.007 0.566

Y[−11,−2] 0.957 0.583 -0.007 0.566
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B.2 Tundra Vole528

B.2.1 Linear regression coefficients529

Table 7: Coefficients for region Håkøya for all the CMR-encompassing windows.

Window β0 (± s.e.) β1 (± s.e.) p-value (β1) R2

Y[0,0] 0.43±0.25 0.96±0.37 0.012 0.104

Y[−1,1] 0.46±0.24 1.13±0.35 0.002 0.150

Y[−2,2] 0.53±0.23 1.1±0.34 0.002 0.152

Y[−3,3] 0.58±0.23 1.1±0.34 0.003 0.145

Y[−4,4] 0.64±0.22 1.0±0.33 0.004 0.137

Y[−5,5] 0.70±0.22 0.91±0.32 0.007 0.120

Y[−6,6] 0.71±0.22 0.89±0.32 0.008 0.117

Y[−7,7] 0.73±0.22 0.87±0.32 0.008 0.114

Y[−8,8] 0.72±0.22 0.89±0.32 0.007 0.118

Y[−9,9] 0.72±0.21 0.91±0.31 0.005 0.126

Y[−10,10] 0.72±0.21 0.89±0.31 0.006 0.124

Y[−11,11] 0.73±0.21 0.89±0.31 0.005 0.126
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Table 8: Coefficients for region Håkøya for all the CMR-preceding windows.

Window β0 (± s.e.) β1 (± s.e.) R2 p-value (β1)

Y[−2,−2] 0.37±0.22 1.28±0.33 0.2109 < 0.001

Y[−3,−2] 0.54±0.22 1.09±0.32 0.1692 0.001

Y[−4,−2] 0.61±0.21 1.00±0.32 0.1471 0.002

Y[−5,−2] 0.68±0.22 0.88±0.32 0.1162 0.008

Y[−6,−2] 0.71±0.21 0.83±0.32 0.1056 0.011

Y[−7,−2] 0.75±0.22 0.82±0.32 0.1025 0.013

Y[−8,−2] 0.75±0.22 0.84±0.32 0.1039 0.012

Y[−9,−2] 0.76±0.22 0.86±0.32 0.1097 0.010

Y[−10,−2] 0.78±0.22 0.85±0.32 0.1082 0.010

Y[−11,−2] 0.76±0.22 0.87±0.32 0.1136 0.008

39



B.2.2 Predictive performance530

Table 9: Predictive performance of the calibration models for Håkøya, using the CMR-
encompassing windows.

Window Coverage ECM Bias RMSE

Y[0,0] 0.933 0.283 0.022 1.109

Y[−1,1] 0.933 0.367 -0.003 0.860

Y[−2,2] 0.933 0.333 0.003 0.886

Y[−3,3] 0.950 0.300 0.013 0.921

Y[−4,4] 0.967 0.300 0.012 0.942

Y[−5,5] 0.950 0.267 0.037 1.040

Y[−6,6] 0.950 0.250 0.045 1.073

Y[−7,7] 0.950 0.250 0.038 1.077

Y[−8,8] 0.950 0.250 0.026 1.050

Y[−9,9] 0.950 0.250 0.020 0.996

Y[−10,10] 0.933 0.283 0.011 0.988

Y[−11,11] 0.933 0.283 0.010 0.987
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Table 10: Predictive performance of the calibration models for Håkøya, using the CMR-preceding
windows.

Window Coverage ECM Bias RMSE

Y[−2,−2] 0.933 0.350 0.013 0.701

Y[−3,−2] 0.967 0.383 0.017 0.793

Y[−4,−2] 0.950 0.317 0.034 0.891

Y[−5,−2] 0.950 0.283 0.070 1.072

Y[−6,−2] 0.983 0.267 0.084 1.178

Y[−7,−2] 0.983 0.217 0.065 1.164

Y[−8,−2] 0.983 0.217 0.059 1.127

Y[−9,−2] 0.967 0.233 0.048 1.075

Y[−10,−2] 0.983 0.233 0.028 1.056

Y[−11,−2] 0.967 0.233 0.022 1.021
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B.3 Other species531

The camera traps provide information on more species than the two vole species used in this cal-532

ibration. Figure 9 displays counts of all species observed in the camera during the course of the533

study. In Porsanger, the Norwegian Lemming (Lemmus lemmus) is regularly observed (it is absent534

on Håkøya). This is a rodent species that has been considered particularly difficult to trap, and535

in fact no lemmings have been trapped by the live traps during this study (and only one during536

the previous 20 years in the same grids). Shrews are also observed in about the same numbers as537

voles in both study regions. Moreover, small mustelids (stoat (Mustela erminea) and least weasel538

(Mustela nivalis)) are also frequently observed in the regions where they exist (least weasel is not539

present on Håkøya).540
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Figure 9: Number of trigger events for all species recorded by the camera traps as a monthly total
for the two regions Håkøya and Porsanger, using automated classification data.
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Abstract

Spatial population synchrony has been the focus of theoretical and empirical studies for decades,
in the hopes of understanding mechanisms and interactions driving ecological dynamics. In
many systems, it is well-known that seasonality plays a critical role in the density-dependence
structure of the populations, yet this has hardly received any attention in synchrony studies.
Here, we propose a protocol that allows to elucidate deterministic and stochastic sources of
spatial synchrony, while accounting for geographic- and season-specific density dependence. We
apply our protocol to seasonally-sampled time series of sub-arctic gray-sided voles, known for
marked spatial synchrony. Dissociating seasonal density-dependence contributions to the total
observed synchrony reveals differential strength and shape of synchrony patterns by season.
Mild winter weather reveals to be an important driver of vole spatial synchrony, with lagged
effects in the fall. This has direct implications to the future population dynamics of such species
when facing climate change.

1 Introduction

Spatial synchrony – referring to the extent local populations display simultaneous changes across
space – is a universal characteristic of geographically distributed populations. The strength and
scale of population synchrony, which varies tremendously between species and ecosystems, has
been the subject of a large number of theoretical and empirical studies (reviewed by Liebhold
et al. (2004); Hansen et al. (2020)). These studies are motivated by their potential to provide
unique insights into the mechanisms that drive ecological dynamics across a range of spatial
scales (Bjørnstad et al., 1999; Koenig, 1999; Walter et al., 2017). The study of spatial population
synchrony is one of the fields within ecology that is, both conceptually and methodologically,
most tightly linked to other sciences that also deal with spatio-temporal dynamics (Nareddy
et al., 2020; Pérez-García et al., 2021).

P.A.P. Moran (1953) developed the first formal theory of spatial population synchrony. Moran’s
theorem postulates that populations subjected to the same regulatory biotic mechanisms (i.e.
log-linear density dependence), and influenced by the same (or perfectly correlated) abiotic
environmental variation (e.g. stochastic weather), will display a synchrony that mirrors the
synchrony of the environmental variation (Moran, 1953; Hudson and Cattadori, 1999; Hansen
et al., 2020). While this theorem has become a cornerstone of the study of population synchrony,
Moran himself expressed the need for relaxing some of its restrictive assumptions in order to be
more applicable to empirical case studies. Subsequently, many studies have contributed to a
“generalization of the Moran effect” (sensu Hansen et al. (2020)) by, for instance, allowing for
non-linear density dependence (Blasius et al., 1999; Engen and Sæther, 2005), spatially hetero-
geneous (Royama, 2005; Hugueny, 2006) and temporally autocorrelated environmental varia-
tion (Massie et al., 2015), and inclusion of other synchronizing mechanisms (e.g. dispersal Ripa
(2000) and trophic interactions Jarillo et al. (2020)). Analytical approaches to elucidate the ef-
fect of climatic variation on population synchrony have become particularly timely in the current
era of anthropogenic climate change (Sheppard et al., 2015; Koenig and Liebhold, 2016).

Accounting for seasonality was a fundamental aspect highlighted by Moran (1953) when as-
sessing the effect of meteorological conditions on population synchrony. This became clear to
him when analyzing population time series of lynx from boreal Canada, which is a region with
strikingly different climate in summer and winter. Moran realized that season-specific biotic
mechanisms were important, because different demographic parameters are involved in the two
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seasons (e.g. reproduction only in summer). However, because the lynx population time series
were based on only one census per year, Moran was not able to analytically account for season-
specific population processes (i.e. density dependence). More modern studies of seasonally-
sampled boreal and arctic rodent populations have shown that marked season-specific density
dependence is indeed present and a crucially important determinant of local population dynam-
ics (Hansen et al., 1999; Stenseth et al., 2003; Fauteux et al., 2021). Although seasonality is such
a critical aspect of most ecological systems (White and Hastings, 2020), and changing seasonal-
ity is one of the most profound consequences of global warming in the northern hemisphere (Xu
et al., 2013), we are not aware of any study of population synchrony that has explicitly incorpo-
rated seasonality. On the contrary, it has even been argued that one should use yearly averages
to remove the influence of seasonality when estimating synchrony (e.g. Dallas et al. (2020)).

The purpose of the present study is to devise a general stepwise analytical protocol, that ac-
counts for season-dependent and geographic context-dependent population processes, to iden-
tify which aspects of climatic variation and change are most influential to spatial population
synchrony (Fig. 1). We illustrate the applicability and potential of the protocol through a case
study of the gray-sided vole (Myodes rufocanus). This boreal-arctic rodent species is renowned
for its important role in ecosystem functioning (Boonstra et al., 2016) and multi-annual popula-
tion cycles (Hansen et al., 1999; Turchin et al., 2000), with suspected impacts of climate change
on these cycles (Ims et al., 2008; Cornulier et al., 2013).

2 Results

Local gray-sided vole abundances were estimated every spring and fall over 21 years based on
capture-recapture sampling in northern Norway (Fig. 2 a, b). Nineteen sampling locations (i.e.
live-trapping grids) were spaced along a 170 km transect in boreal mountain birch forest and
encompassed three predefined geographic regions (R1: coast, R2: fiord and R3; inland; Fig. 2a)
which were expected to influence the density dependent structure of vole population dynamics.

The 21-year population time series encompass five multi-annual cycles, exhibiting profound
overall synchrony across the extent of the study area (Fig. 2b). However, despite visible spatial
synchrony, and relative temporal stationarity, there is also some variation in timing and ampli-
tude of the cyclic peaks among the localities. This regards especially the spring series, which
have lower and more variable abundance estimates than the fall series (Fig. 2b).

Previous studies have demonstrated that local boreal and Arctic vole populations are ad-
versely affected by winter weather phenomena, such as thaw-freeze cycles (Aars and Ims, 2002;
Kausrud et al., 2008) and rain-on-snow events (Fauteux et al., 2021). Hence, we derived local
time series of the number of days the temperature crossed zero degrees (Celsius), and the to-
tal amount of rainfall (mm) during winter (Fig. 2d). The two weather variables exhibit spatial
synchrony, with a tendency for milder (more zero crosses) and wetter (more rainfall) climate
towards the coastal area.

2.1 Density-dependence structure

Following Stenseth et al. (2003), we fitted second-order log-linear autoregressive models to the
population time series, according to the density-dependent (DD) models described in Fig. 1
(models II-IV). As we use a Bayesian framework to conduct the data analysis, we selected
BayesianR2 (Gelman et al., 2019) as a measure of explained variance (i.e. the fit) of the different
linear autoregressive models. In general, the models explained more of the abundance variance
in the fall than the spring (Fig. 3). The inclusion of geographic region-specific DD parameters
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(when comparing model II and III; Fig. 3) did not improve the model fit much, suggesting there
are small differences in the DD structure between the three geographic regions. However, a
large improvement of the model fit was achieved when including including season-specific DD
parameters (model IV; Fig. 3), especially concerning the fall abundances. This implies that
season-specific biotic interactions are strongly influential components of the overall population
dynamics.

2.2 Spatial population synchrony

The spatial correlograms, based on the four population metrics (I-IV) outlined in Fig. 1, clearly
show that much of the overall spatial population synchrony (Fig. 4, I) is due to a common DD
structure across the study area (Fig. 4, II-IV). Moreover, when accounting for season-specific
DD (model IV), the synchrony in the residuals drops substantially in comparison to that from
models II and III, which only account for annual DD (Fig. 4, IV). The reduction in spatial syn-
chrony due to seasonal DD is particularly sharp for the fall abundances, for which the synchrony
between the most distant populations approaches zero. Accounting for the slight differences in
density dependence among the three geographic regions provides almost no contribution to the
synchrony pattern (i.e., comparison between II and III in Fig. 4).

2.2.1 Weather synchrony vs. population synchrony

The synchrony of both of the weather variables declined steeply as a function of distance be-
tween the sampling stations. However, there was more scattering in the cross-correlations in
rainfall when compared to the correlations in the zero crosses (Fig. 5a). The synchrony of num-
ber of zero crosses was positively and significantly associated to population synchrony corrected
for DD structure (model IV) both in fall and spring, while the synchrony in winter rainfall was
only related to the population synchrony in the fall (Fig. 5b,c).

3 Discussion

We have here proposed and exemplified an analytical protocol, that based on time series data,
allows for elucidating deterministic and stochastic sources of spatial population synchrony. Po-
tential deterministic sources include density dependence, climatic seasonality and geographic
ecological context, while influential stochastic sources are likely weather variables. Spatial co-
variance in stochastic weather events amounts to the Moran effect provided that the determinis-
tic components of local population dynamics are linear and identical. Nonetheless, under most
circumstances, correlated weather events are expected to exert synchronizing effects when the
local density-dependent structure is non-linear and spatially heterogeneous (i.e., the generalized
Moran effect; cf. Engen and Sæther (2005); Royama (2005); Hansen et al. (2020)).

Moran (1953) showed that a key step to make “meteorological phenomena show up more
clearly” in statistical analyses of population synchrony is to remove the density-dependent struc-
ture from the population time series before making further statistical inferences (e.g., by ana-
lyzing the residuals of an autoregressive model). Many studies have used Moran’s approach
to remove serial autocorrelation in order to fulfill the independence requirement for significance
tests of synchrony (Buonaccorsi et al., 2001; Liebhold et al., 2004). However, there appears to be
a lack of studies that have followed Moran’s suggestion to formally analyze whether the scale of
synchrony in the population residuals is dependent on synchrony in the weather (but see Grøtan
et al. (2005)); i.e., as achieved by step IV in our analytical protocol. Accordingly, Hansen et al.

4



(2020) conclude that there has been an “analytical deficiency” in empirical Moran-effect stud-
ies in terms of making formal inferences about how population synchrony is environmentally
forced. We show in the present study that by focusing on residuals which by definition depend
on an adequate model structure, we draw more accurate inferences regarding the strength and
scale of synchrony.

By applying our analytical protocol to bi-annually sampled time series of gray-sided vole
populations we demonstrate winter weather contributions to spatial synchrony. We found that
both the amount of rainfall and the frequency of mild-spells in winter contribute to spatial syn-
chrony. These two weather variables have previously been found to affect local population
dynamics of boreal and arctic vole species by enhancing winter declines (Aars and Ims, 2002;
Fauteux et al., 2021). However, the present study is the first to analytically link large-scale spa-
tial synchrony – a phenomenon that appears to be ubiquitous in boreal and arctic cyclic small
rodent populations (cf. Stenseth and Ims (1993); Krebs (2013)) – to any form of stochastic
environmental forcing; i.e. Moran effects.

An interesting result arising from our analysis is the time-lagged effect of the winter weather
on synchrony of fall abundances. Moran (1953) found similar time-lagged weather effects on
an annual time-scale for Canada lynx and speculated about which biological mechanisms could
be involved. In voles, environmental conditions in the non-breeding seasons may have lasting
effects, for instance, by delaying the onset of reproduction and thereby reducing population
growth over the summer (Ergon et al., 2001). The combination of direct and lagged effects of
winter weather amounts to an enhanced Moran effect. As increased frequencies of rain-on-snow
events and thaw-freeze cycles are very likely outcomes of climate warming in boreal and Arctic
ecosystems (AMAP, 2017), we predict that the strength and scale of spatial synchrony of rodent
populations will change in these ecosystems.

Climatic seasonality is an externally forced oscillator that acts on the dynamics of most natu-
ral systems (Fretwell, 1972). Yet both empirical and theoretical studies of ecological dynamics
mostly ignore this fact (White and Hastings, 2020). While seasonality has been shown to be
a very important component of spatio-temporal disease dynamics (Earn et al., 1998; Grenfell
et al., 2001; Moustakas et al., 2018), we are not aware of empirical studies that have explicitly
investigated how such seasonal forcing acts on the strength and scale of synchrony in animal
population dynamics. Our analytical protocol provides means for filling this knowledge gap.
Specifically, the role of seasonality becomes evident by comparing the correlograms of residuals
from models with and without seasonal density dependence (i.e. compare correlograms III and
IV in Fig. 4). In the case of sub-arctic gray-sided voles, seasonality is evidently an important
determinant of the region-scale spatial synchrony. This regards especially the fall abundances,
for which both the overall synchrony becomes reduced and the distance effect is enhanced when
seasonal density dependence is accounted for. In this case, it appears that the exact nature of
such season-specific effects is contingent on the relative magnitude of the spring and fall noise
term of the bi-variate autoregressive model (see Appendix C).

The role of seasonality may be a particularly forceful determinant of spatio-temporal pop-
ulation dynamics in species with multivoltine life cycles, like voles. For instance, the length
of winter seasons has been found to exert a strong effect on the local vole population dynam-
ics by acting through density dependent structure (Batzli, 1999; Stenseth, 1999; Stenseth et al.,
2003; Bierman et al., 2006) and likely also through season-specific noise terms (Vasseur (2007),
Appendix C). Hence, it may not be surprising that seasonality also exerts an effect on regional
population dynamics (e.g. large-scale spatial synchrony) as here shown for sub-arctic gray-
sided voles. However, as demographic processes are typically season-specific also in univoltine
species (Boyce et al., 1999) – including how they are affected by density-dependent and inde-
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pendent factors –, we believe that our analytical protocol (Fig. 1) will help advance empirical
studies of spatial population synchrony for a wide range of species.

4 Methods

The methods section follows the structure outlined in Fig. 1, with the five steps required to
investigate weather effects on the spatial population synchrony of a gray-sided vole population,
after accounting for the geographical- and seasonal-DD structure of the population.

4.1 Sampling and Time Series (Steps 1 and 2)

4.1.1 Data and Study Area

We use data from a long-term running monitoring program of the rodent community in the
region of Porsanger, northern Norway, between 2000-2020. The data collection consisted of a
capture-mark-recapture methodology with two trapping days at 19 individual stations, scattered
along a linear transect of approximately 170 km of road. Trapping sessions were conducted
twice per year, once in late spring after snow melt, and once at the end of the summer, at the
end of the vole reproductive season (see Ehrich et al. (2009) for precise trapping specifications).
The Porsanger region contains different landscapes and is subject to a strong climatic contrast
(in both temperature and precipitation). The different stations can be sorted into m = 3 regions
according to their landscape affinities: coastal region (R1), fjord region (R2) and inland region
(R3). Stations 1–5 were included in R1 (n1 = 5), stations 6–12 were included in R2 (n2 = 7)
and stations 13–19 were included in R3 (n3 = 7). Fig. 2 summarizes spatial features of the
study area and data.

4.1.2 Abundance estimation from mark-capture-recapture data

To reduce a potential bias when estimating synchrony (Santin-Janin et al., 2014), we incorpo-
rated the sampling error from capture heterogeneity in our estimates of seasonal abundances
(Nicolau et al., 2020). Specifically, we fitted a multinomial regression model to the capture
history data to estimate the probability of obtaining a given capture history as a function of in-
dividual features registered during the live trapping. These features included the weight and sex
of the individuals. We also added a random effect for station in the predictor of the regression
model. Individual capture probabilities were subsequently estimated by assuming a temporal
effect on the capture process (model Mth, Otis et al. (1978)). Finally, the individual probabili-
ties were used to estimate seasonal abundances using an empirical Horvitz-Thompson estimator,
which is a function of the estimated individual capture probabilities. Denote the resulting esti-
mated log abundances by {Xs,t} and {Ys,t}, for spring and fall, respectively, at spatial locations
s = 1, . . . , ns and year t = 1, . . . , nt. For the case study, ns = 19 and nt = 21.

4.1.3 Weather variables

To explore the effect of the weather on the spatial synchrony, we should ideally look into the
winter snow conditions (i.e, snow depth and ice formation) as they can be considered the most
relevant climatic variables affecting rodent population cycles (Hansson and Henttonen, 1985;
Hansen et al., 2013; Stien et al., 2012; Fauteux et al., 2021), being an interaction of different
weather variables, including temperature and precipitation. As this information was not directly
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available, we resorted to proxy variables of snow conditions, using the temperature and pre-
cipitation estimates from the Norwegian Meteorological Institute between 2000-2020. These
measurements correspond to model estimates (not measured at station level) and are prone to
large uncertainties, particularly the precipitation (Lussana et al., 2019). For our proxies of snow
conditions, we derived two variables: winter zero crosses, as the total number of times the mean
daily temperature crossed 0 °C during winter (21 Dec – 20 Mar); and winter rainfall, as the
precipitation sum in days where the mean temperature surpassed 0 °C, during winter.

4.2 Statistical Framework

We describe the statistical framework to decompose density-dependence contributions into the
spatial synchrony of populations, and isolate the weather effects on population synchrony, de-
scribed in steps 3–5 in Fig. 1.

4.2.1 Density-dependence structure (Step 3)

The general protocol (Fig. 1, step 3) specifies three different models for the DD structure of the
estimated time series. Here, we assume that the general function f(.) is linear, describing the
log-DD structure in terms of direct and delayed effects up to lag p. Specifically, the three models
either include or exclude regional- and seasonal-dependent effects as specified below.

In general, the spatial locations s are assumed to be within a closed geographical region R,
which can be partitioned into m mutually exclusive subregions, R = R1 ∪ . . . ∪ Rm. For the
gray-sided vole case study, this corresponds tom = 3 regions. The most general model includes
both regional-specific and seasonal-specific terms (Fig. 1, model (IV)), and the assumed log-
linear dependency structure up to order p can be expressed by

Xs,t = βr1Ys,t−1 + βr2Xs,t−1 + . . .+ βr,2p−1Ys,t−p + βr,2pXs,t−p + εs,t (1)

Ys,t = γr1Xs,t + γr2Ys,t−1 + . . .+ γr,2p−1Xs,t−1 + γr,2pYs,t−p + ωs,t (2)

where t = p + 1, . . . , nt and s ∈ Rr. The terms εst and ωst denote individual random en-
vironmental noise at each spatial location s for each time point t, while the sets of regional-
and seasonal-specific coefficients can be summarized as ΘRx = {βr1, . . . , βr,2p} and ΘRy =
{γr1, . . . , γr,2p}.

Simplifications of the given model will yield more simplistic measures of the DD structure.
According to the general protocol in Fig. 1, Model (I) corresponds to assuming no DD structure,
in which all of the given coefficients are equal to 0. This corresponds to simply using the
estimated raw log-abundance series, {Xs,t} and {Ys,t}, in further analysis.

Following (Stenseth et al., 2003), we included delayed effects up to order p = 2 for the
case study. Model (II) refers to a second-order annual autoregressive processes including coef-
ficients Θ = {β2, β4, γ2, γ4} which are neither regional-specific (m = 1; disregarding spatial
heterogeneity), nor seasonal-specific (β1 = β3 = γ1 = γ3 = 0; assuming yearly dynamics).
Such AR(2) models are often used in literature (e.g. Turkia et al. (2020); Dallas et al. (2020)).
Model (III) is characterized by incorporating regional-specific effects {βr2, βr4, γr2, γr4}mr=1.
This corresponds to AR(2) models which allow for spatial differences in the DD structure which
can account for some of the observed synchrony (Hugueny, 2006). Finally, by including the
seasonal-specific effects {βr1, βr3, γr1, γr3}mr=1, we get the bivariate model (IV) which is very
similar to a second-order vector autoregressive model (VAR). The difference to a VAR-model,
however, is that the time series {Xs,t} and {Ys,t} are observed at two different time points in
year t, and the fall log-abundances are modeled in terms of the spring observations within the
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same year. Seasonal-specific DD has been recognized as fundamental to model small rodent
population dynamics (Hansen et al., 1999), but to our knowledge seasonal DD contributions to
spatial synchrony have not been assessed.

4.2.2 Measuring the scale and shape of spatial population synchrony (Step 4)

To assess the scale and shape of the spatial synchrony, we can consider the spatial correlations
of the environmental noise terms in Models (I–IV) as a function of geographical distance. The
following analysis is repeated using the four different models for DD structure, specified in
section 4.2.1. A major goal is then to understand how the inclusion of regional- and seasonal-
specific terms influences the synchrony estimates, i.e., which part of the synchrony is explained
by the different DD components.

Define the residual vectors ε′s = (εs,1, . . . , εs,nt) and ω′s = (ωs,1, . . . , ωs,nt) for all spatial
locations s = 1, . . . , ns and t = p+1, . . . , nt. The contributions to the spatial synchrony are then
characterized by the pairwise correlations between vectors within each of the sets {ε′s}

ns
s=1 and

{ω′s}
ns
s=1. If the associations between these residual series are expected to be linear, the degree of

synchrony is typically measured using Pearson’s correlation coefficient (Bjørnstad et al., 1999;
Liebhold et al., 2004). To model the correlations in terms of geographical distance, let δi,j
denote the Euclidean distance between two stations i and j. In accordance with calculating the
spatial correlogram (Bjørnstad et al., 1999; Bjørnstad and Falck, 2001; Liebhold et al., 2004),
we discretize the ns(ns − 1)/2 unique distances between stations into distance classes dk, k =
1, . . . ,K, where K is the total number of classes. Specifically, a distance class dk is defined
by Lk < δi,j < Uk, where Lk and Uk represent the lower and upper bound of the distances
within that class, respectively. The corresponding averages of the pairwise correlations {ρi,j}
for distance class dk are then given by

ρk(dk) =
2
∑nk

i=1

∑nk
j=i+1 ρi,j

nk(nk − 1)
, Lk < δi,j ≤ Uk, (3)

where nk is the total number of distances/correlations within distance class dk. The given formu-
lation is analogous to the calculation of Koenig’s modified correlogram (Koenig, 1999; Bjørn-
stad et al., 1999), as the correlations are not centered (zero synchrony is taken as the reference
line of the correlogram). For the given case study, we assumed that the distance-class width
is Uk − Lk = 1 for all classes, which corresponds to rounding off the geographical distances
to the nearest integer. We used this method to calculate the averaged correlations in (3) as a
pre-processing step to reduce random noise in the estimated correlations.

As an alternative to using the non-parametric covariance function (Bjørnstad and Falck, 2001)
or other non-parametric estimates of the correlation function (Liebhold et al., 2004), we chose
to model the correlations in terms of the distances using the regression model

ρk(dk) = f(dk) + νk, k = 1, . . . ,K. (4)

Here, f denotes a smooth underlying function while {νk} represents zero-mean, independent
Gaussian error terms with constant variance. This model is fitted using a Bayesian framework
where the function f is assigned a second-order intrinsic Gaussian Markov random field prior
(Rue and Held (2005), page 110). The model is scaled according to Sørbye and Rue (2014) and
the precision parameter of the model is assigned a penalized complexity prior with parameters
U = 0.5 and α = 0.01 (Simpson et al., 2017). Using the methodology of integrated nested
Laplace approximation (Rue et al., 2009), both the posterior mean and credible intervals for f are
calculated efficiently, without the need of resampling techniques, like Monte Carlo simulation
or bootstrapping.
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4.2.3 Effects of Weather (Step 5)

Finally, we can use the measures of synchrony accounting for the effects of geographic- and
seasonal-dependent DD to investigate potential weather (or other relevant environmental vari-
ables) drivers. For this, we can model the set of correlations {ρk(dk)}Kk=1 from model (IV)
as a function of the corresponding spatial correlations of different weather covariates, defined
by {ρ(c)k (dk)}Kk=1. The availability of such covariates are typically case-specific but should be
measured or estimated to represent the same spatial locations and time points used for the log-
abundance estimates. For the given case study, the relationship between the weather variables
(zero crosses and winter rainfall) appeared to be linear, and was thus modeled using simple
linear regression models.
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10



Figure 1: (cont.) The five main steps of a general methodological protocol to single out the
impacts of climatic variation (weather) on spatial population synchrony, by accounting for sea-
sonal and geographical contexts in ecological population processes (density dependence). Step
1: Seasonal (spring and fall) sampling of both local populations and a focal weather variable at
different locations (crosses). The geographic sampling frame encompasses two regions (R1 and
R2) representing different geographic ecological contexts (e.g. habitats or ecological commu-
nities). Step 2: Season- and region-specific time series of local population abundance estimates
resulting from the sampling process, together with time series of the focal weather variable.
The estimation of abundance ideally involves separating the observation process and the popu-
lation process, accounting for detectability. Step 3: Four alternative models to further analyze
spatial population synchrony. (I) corresponds to seasonal abundance estimates (Xt and Yt). (II-
IV) correspond to the sets of Xt − f(.) and Yt − f(.) from the respective general models for
density-dependence, modeling state of the population at time t as a function of previous p states.
Model (II) includes only one set Θ of density-dependence parameters with annual time lags (i.e.
ignoring seasonal and regional components). Model (III) includes region-specific parameters
ΘR, again with annual time lags (i.e. ignoring seasonal components). Model (IV) is a bi-variate
model (Stenseth et al., 2003) that includes both geographic- and season-specific parameters ΘRX

and ΘRY
. Step 4: Season-specific synchrony patterns (i.e. scale and shape) of the population

(derived from Step 3) and weather metrics (derived from Step 2) as function of distance. The
dots are the pairwise cross-correlations of the population metrics and the weather variables,
while the lines are estimated correlograms with associated uncertainty intervals (e.g., Bjørnstad
et al. (1999)). Step 5: Estimated effects of weather synchrony on population synchrony. Season-
specific (Fall and Spring) population synchrony with corrected for seasonal-density dependence
and geographic context effects (i.e. residuals from model (IV)) are regressed against the spatial
synchrony in the focal weather variable. Illustrations created with Biorender.com.

11



R1

R2

R3

a) Sampling

2000 2005 2010 2015 2020

0
10

20
30

c) Zero Crosses

N
um

be
ro

fW
in

te
rZ

er
o

C
ro

ss
es

2000 2005 2010 2015 2020

0
50

10
0

15
0

d) Winter Rainfall

To
ta

l W
in

te
r R

ai
nf

al
l (

m
m

)

b) Population time series

Distance (km)

2000 2005 2010 2015 2020

0
20

40
60

2000 2005 2010 2015 2020

0
20

40
60

Spring

Fall

Es
tim

at
ed

 A
bu

nd
an

ce
Es

tim
at

ed
 A

bu
nd

an
ce

20 km

N

Figure 2: Sampling design and time series. a) Map with the 19 sampling stations (“dot/stars”)
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Figure 5: Weather synchrony versus population synchrony. Panels a) Correlograms of the two
focal weather variables with associated 95% credible intervals, winter zero crosses (ZC; top) and
winter rainfall (WR; bottom). Panels b) and c) correspond to linear regression lines, with asso-
ciated 95% credible intervals, of population synchrony as a function of weather synchrony for
spring (b) and fall abundances (c). Slope estimates for spring are βZC = 0.16 (CI : -0.04,0.36)
βWR = 0.00 (CI : -0.11,0.10). Slope estimates for fall are βZC = 0.38 (CI : 0.20,0.56) and
βWR = 0.21 (CI : 0.12,0.30). CI denotes 95% credible intervals for each regression coefficient
β.
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Figure 6: Winter mean temperature and winter total precipitation for the 19 stations, color-coded
according to their region.
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B Model coefficients (section 2.1)
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Figure 7: Autoregressive coefficient estimates for model II. Associated 95% credible intervals
are represented by the bars.
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Figure 8: Autoregressive coefficient estimates for model III. Associated 95% credible intervals
correspond to the bars, with the coefficients associated with each region represented with the
respective color (blue for R1, green for R2 and yellow for R3).
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Model IV
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Figure 9: Autoregressive coefficient estimates for model IV, according to the different seasons.
Associated 95% credible intervals correspond to the bars, with the coefficients associated with
each region represented with the respective color (blue for R1, green for R2 and yellow for R3).

21



C Simulations

To assess when the observed changes in seasonal correlations can occur, we made a short simu-
lation study. We simulated 100.000 pairs of time series, each pair corresponding to 2 populations
with a true process described by model IV (see Methods), with regression parameters approx-
imating those of the real data set (section B; parameter values were {β1 = 0.5, β2 = 0.1,
β3 = −0.4, β4 = 0.1, γ1 = 0.8, γ2 = 0.1, γ3 = −0.1, γ4 = −0.1}. We then compared (a)
the true correlation in the noise terms for each pair (which corresponds to a parameter in the
simulation; we used r=0.5 for the spring correlation and r=0.3 for the fall correlation), against:
(b) the correlations when using year-to-year raw abundances for either spring and fall (model I);
and (c) correlations in the residuals of yearly AR(2) for each season separately (model II).

Figure 10 displays the noise correlation estimates for each of the approaches, using differ-
ent variances of spring and fall noise. We can infer that the decrease we have observed for fall
densities (i.e., summer season) happens when the winter noise is as large or larger than the sum-
mer noise, which is expected be the case in study system (the estimated variances were 0.86 for
spring and 0.86 for fall). If the summer noise is larger than the winter noise, the patterns are
reversed compared to the case when winter noise is larger than summer noise . Note that corre-
lations based on annual models can be higher than the true ones. This confirms that the observed
changes come from considering the seasonal model (IV) instead of the annual models (I–III),
rather than artifacts related to the data. This shows that fluctuating (i.e., seasonal) environments
can enhance synchrony, but the exact pattern obtained using annual time series will depend on
the noise structure and which season is monitored (Vasseur, 2007).
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Figure 10: Simulating noise term correlations for either Spring and Fall. X-axis corresponds to
the noise terms of either Spring (left) and Fall processes (right). This corresponds to the ε and ω
terms in equations 1–2. The mean true correlations in the noise terms (a) are the black dots; the
mean correlations in the raw abundances are the red dots; are the mean correlations in the AR(2)
model residuals (c) are the blue dots.
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